xref: /linux/drivers/hv/hv_balloon.c (revision c358f53871605a1a8d7ed6e544a05ea00e9c80cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/debugfs.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/kthread.h>
20 #include <linux/completion.h>
21 #include <linux/count_zeros.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/memory.h>
24 #include <linux/notifier.h>
25 #include <linux/percpu_counter.h>
26 #include <linux/page_reporting.h>
27 
28 #include <linux/hyperv.h>
29 #include <asm/hyperv-tlfs.h>
30 
31 #include <asm/mshyperv.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include "hv_trace_balloon.h"
35 
36 /*
37  * We begin with definitions supporting the Dynamic Memory protocol
38  * with the host.
39  *
40  * Begin protocol definitions.
41  */
42 
43 
44 
45 /*
46  * Protocol versions. The low word is the minor version, the high word the major
47  * version.
48  *
49  * History:
50  * Initial version 1.0
51  * Changed to 0.1 on 2009/03/25
52  * Changes to 0.2 on 2009/05/14
53  * Changes to 0.3 on 2009/12/03
54  * Changed to 1.0 on 2011/04/05
55  */
56 
57 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
58 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
59 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
60 
61 enum {
62 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
63 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
64 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
65 
66 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
69 
70 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
71 };
72 
73 
74 
75 /*
76  * Message Types
77  */
78 
79 enum dm_message_type {
80 	/*
81 	 * Version 0.3
82 	 */
83 	DM_ERROR			= 0,
84 	DM_VERSION_REQUEST		= 1,
85 	DM_VERSION_RESPONSE		= 2,
86 	DM_CAPABILITIES_REPORT		= 3,
87 	DM_CAPABILITIES_RESPONSE	= 4,
88 	DM_STATUS_REPORT		= 5,
89 	DM_BALLOON_REQUEST		= 6,
90 	DM_BALLOON_RESPONSE		= 7,
91 	DM_UNBALLOON_REQUEST		= 8,
92 	DM_UNBALLOON_RESPONSE		= 9,
93 	DM_MEM_HOT_ADD_REQUEST		= 10,
94 	DM_MEM_HOT_ADD_RESPONSE		= 11,
95 	DM_VERSION_03_MAX		= 11,
96 	/*
97 	 * Version 1.0.
98 	 */
99 	DM_INFO_MESSAGE			= 12,
100 	DM_VERSION_1_MAX		= 12
101 };
102 
103 
104 /*
105  * Structures defining the dynamic memory management
106  * protocol.
107  */
108 
109 union dm_version {
110 	struct {
111 		__u16 minor_version;
112 		__u16 major_version;
113 	};
114 	__u32 version;
115 } __packed;
116 
117 
118 union dm_caps {
119 	struct {
120 		__u64 balloon:1;
121 		__u64 hot_add:1;
122 		/*
123 		 * To support guests that may have alignment
124 		 * limitations on hot-add, the guest can specify
125 		 * its alignment requirements; a value of n
126 		 * represents an alignment of 2^n in mega bytes.
127 		 */
128 		__u64 hot_add_alignment:4;
129 		__u64 reservedz:58;
130 	} cap_bits;
131 	__u64 caps;
132 } __packed;
133 
134 union dm_mem_page_range {
135 	struct  {
136 		/*
137 		 * The PFN number of the first page in the range.
138 		 * 40 bits is the architectural limit of a PFN
139 		 * number for AMD64.
140 		 */
141 		__u64 start_page:40;
142 		/*
143 		 * The number of pages in the range.
144 		 */
145 		__u64 page_cnt:24;
146 	} finfo;
147 	__u64  page_range;
148 } __packed;
149 
150 
151 
152 /*
153  * The header for all dynamic memory messages:
154  *
155  * type: Type of the message.
156  * size: Size of the message in bytes; including the header.
157  * trans_id: The guest is responsible for manufacturing this ID.
158  */
159 
160 struct dm_header {
161 	__u16 type;
162 	__u16 size;
163 	__u32 trans_id;
164 } __packed;
165 
166 /*
167  * A generic message format for dynamic memory.
168  * Specific message formats are defined later in the file.
169  */
170 
171 struct dm_message {
172 	struct dm_header hdr;
173 	__u8 data[]; /* enclosed message */
174 } __packed;
175 
176 
177 /*
178  * Specific message types supporting the dynamic memory protocol.
179  */
180 
181 /*
182  * Version negotiation message. Sent from the guest to the host.
183  * The guest is free to try different versions until the host
184  * accepts the version.
185  *
186  * dm_version: The protocol version requested.
187  * is_last_attempt: If TRUE, this is the last version guest will request.
188  * reservedz: Reserved field, set to zero.
189  */
190 
191 struct dm_version_request {
192 	struct dm_header hdr;
193 	union dm_version version;
194 	__u32 is_last_attempt:1;
195 	__u32 reservedz:31;
196 } __packed;
197 
198 /*
199  * Version response message; Host to Guest and indicates
200  * if the host has accepted the version sent by the guest.
201  *
202  * is_accepted: If TRUE, host has accepted the version and the guest
203  * should proceed to the next stage of the protocol. FALSE indicates that
204  * guest should re-try with a different version.
205  *
206  * reservedz: Reserved field, set to zero.
207  */
208 
209 struct dm_version_response {
210 	struct dm_header hdr;
211 	__u64 is_accepted:1;
212 	__u64 reservedz:63;
213 } __packed;
214 
215 /*
216  * Message reporting capabilities. This is sent from the guest to the
217  * host.
218  */
219 
220 struct dm_capabilities {
221 	struct dm_header hdr;
222 	union dm_caps caps;
223 	__u64 min_page_cnt;
224 	__u64 max_page_number;
225 } __packed;
226 
227 /*
228  * Response to the capabilities message. This is sent from the host to the
229  * guest. This message notifies if the host has accepted the guest's
230  * capabilities. If the host has not accepted, the guest must shutdown
231  * the service.
232  *
233  * is_accepted: Indicates if the host has accepted guest's capabilities.
234  * reservedz: Must be 0.
235  */
236 
237 struct dm_capabilities_resp_msg {
238 	struct dm_header hdr;
239 	__u64 is_accepted:1;
240 	__u64 reservedz:63;
241 } __packed;
242 
243 /*
244  * This message is used to report memory pressure from the guest.
245  * This message is not part of any transaction and there is no
246  * response to this message.
247  *
248  * num_avail: Available memory in pages.
249  * num_committed: Committed memory in pages.
250  * page_file_size: The accumulated size of all page files
251  *		   in the system in pages.
252  * zero_free: The number of zero and free pages.
253  * page_file_writes: The writes to the page file in pages.
254  * io_diff: An indicator of file cache efficiency or page file activity,
255  *	    calculated as File Cache Page Fault Count - Page Read Count.
256  *	    This value is in pages.
257  *
258  * Some of these metrics are Windows specific and fortunately
259  * the algorithm on the host side that computes the guest memory
260  * pressure only uses num_committed value.
261  */
262 
263 struct dm_status {
264 	struct dm_header hdr;
265 	__u64 num_avail;
266 	__u64 num_committed;
267 	__u64 page_file_size;
268 	__u64 zero_free;
269 	__u32 page_file_writes;
270 	__u32 io_diff;
271 } __packed;
272 
273 
274 /*
275  * Message to ask the guest to allocate memory - balloon up message.
276  * This message is sent from the host to the guest. The guest may not be
277  * able to allocate as much memory as requested.
278  *
279  * num_pages: number of pages to allocate.
280  */
281 
282 struct dm_balloon {
283 	struct dm_header hdr;
284 	__u32 num_pages;
285 	__u32 reservedz;
286 } __packed;
287 
288 
289 /*
290  * Balloon response message; this message is sent from the guest
291  * to the host in response to the balloon message.
292  *
293  * reservedz: Reserved; must be set to zero.
294  * more_pages: If FALSE, this is the last message of the transaction.
295  * if TRUE there will atleast one more message from the guest.
296  *
297  * range_count: The number of ranges in the range array.
298  *
299  * range_array: An array of page ranges returned to the host.
300  *
301  */
302 
303 struct dm_balloon_response {
304 	struct dm_header hdr;
305 	__u32 reservedz;
306 	__u32 more_pages:1;
307 	__u32 range_count:31;
308 	union dm_mem_page_range range_array[];
309 } __packed;
310 
311 /*
312  * Un-balloon message; this message is sent from the host
313  * to the guest to give guest more memory.
314  *
315  * more_pages: If FALSE, this is the last message of the transaction.
316  * if TRUE there will atleast one more message from the guest.
317  *
318  * reservedz: Reserved; must be set to zero.
319  *
320  * range_count: The number of ranges in the range array.
321  *
322  * range_array: An array of page ranges returned to the host.
323  *
324  */
325 
326 struct dm_unballoon_request {
327 	struct dm_header hdr;
328 	__u32 more_pages:1;
329 	__u32 reservedz:31;
330 	__u32 range_count;
331 	union dm_mem_page_range range_array[];
332 } __packed;
333 
334 /*
335  * Un-balloon response message; this message is sent from the guest
336  * to the host in response to an unballoon request.
337  *
338  */
339 
340 struct dm_unballoon_response {
341 	struct dm_header hdr;
342 } __packed;
343 
344 
345 /*
346  * Hot add request message. Message sent from the host to the guest.
347  *
348  * mem_range: Memory range to hot add.
349  *
350  */
351 
352 struct dm_hot_add {
353 	struct dm_header hdr;
354 	union dm_mem_page_range range;
355 } __packed;
356 
357 /*
358  * Hot add response message.
359  * This message is sent by the guest to report the status of a hot add request.
360  * If page_count is less than the requested page count, then the host should
361  * assume all further hot add requests will fail, since this indicates that
362  * the guest has hit an upper physical memory barrier.
363  *
364  * Hot adds may also fail due to low resources; in this case, the guest must
365  * not complete this message until the hot add can succeed, and the host must
366  * not send a new hot add request until the response is sent.
367  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
368  * times it fails the request.
369  *
370  *
371  * page_count: number of pages that were successfully hot added.
372  *
373  * result: result of the operation 1: success, 0: failure.
374  *
375  */
376 
377 struct dm_hot_add_response {
378 	struct dm_header hdr;
379 	__u32 page_count;
380 	__u32 result;
381 } __packed;
382 
383 /*
384  * Types of information sent from host to the guest.
385  */
386 
387 enum dm_info_type {
388 	INFO_TYPE_MAX_PAGE_CNT = 0,
389 	MAX_INFO_TYPE
390 };
391 
392 
393 /*
394  * Header for the information message.
395  */
396 
397 struct dm_info_header {
398 	enum dm_info_type type;
399 	__u32 data_size;
400 } __packed;
401 
402 /*
403  * This message is sent from the host to the guest to pass
404  * some relevant information (win8 addition).
405  *
406  * reserved: no used.
407  * info_size: size of the information blob.
408  * info: information blob.
409  */
410 
411 struct dm_info_msg {
412 	struct dm_header hdr;
413 	__u32 reserved;
414 	__u32 info_size;
415 	__u8  info[];
416 };
417 
418 /*
419  * End protocol definitions.
420  */
421 
422 /*
423  * State to manage hot adding memory into the guest.
424  * The range start_pfn : end_pfn specifies the range
425  * that the host has asked us to hot add. The range
426  * start_pfn : ha_end_pfn specifies the range that we have
427  * currently hot added. We hot add in multiples of 128M
428  * chunks; it is possible that we may not be able to bring
429  * online all the pages in the region. The range
430  * covered_start_pfn:covered_end_pfn defines the pages that can
431  * be brough online.
432  */
433 
434 struct hv_hotadd_state {
435 	struct list_head list;
436 	unsigned long start_pfn;
437 	unsigned long covered_start_pfn;
438 	unsigned long covered_end_pfn;
439 	unsigned long ha_end_pfn;
440 	unsigned long end_pfn;
441 	/*
442 	 * A list of gaps.
443 	 */
444 	struct list_head gap_list;
445 };
446 
447 struct hv_hotadd_gap {
448 	struct list_head list;
449 	unsigned long start_pfn;
450 	unsigned long end_pfn;
451 };
452 
453 struct balloon_state {
454 	__u32 num_pages;
455 	struct work_struct wrk;
456 };
457 
458 struct hot_add_wrk {
459 	union dm_mem_page_range ha_page_range;
460 	union dm_mem_page_range ha_region_range;
461 	struct work_struct wrk;
462 };
463 
464 static bool allow_hibernation;
465 static bool hot_add = true;
466 static bool do_hot_add;
467 /*
468  * Delay reporting memory pressure by
469  * the specified number of seconds.
470  */
471 static uint pressure_report_delay = 45;
472 
473 /*
474  * The last time we posted a pressure report to host.
475  */
476 static unsigned long last_post_time;
477 
478 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
479 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
480 
481 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
482 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
483 static atomic_t trans_id = ATOMIC_INIT(0);
484 
485 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
486 
487 /*
488  * Driver specific state.
489  */
490 
491 enum hv_dm_state {
492 	DM_INITIALIZING = 0,
493 	DM_INITIALIZED,
494 	DM_BALLOON_UP,
495 	DM_BALLOON_DOWN,
496 	DM_HOT_ADD,
497 	DM_INIT_ERROR
498 };
499 
500 
501 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
502 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
503 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
504 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
505 
506 struct hv_dynmem_device {
507 	struct hv_device *dev;
508 	enum hv_dm_state state;
509 	struct completion host_event;
510 	struct completion config_event;
511 
512 	/*
513 	 * Number of pages we have currently ballooned out.
514 	 */
515 	unsigned int num_pages_ballooned;
516 	unsigned int num_pages_onlined;
517 	unsigned int num_pages_added;
518 
519 	/*
520 	 * State to manage the ballooning (up) operation.
521 	 */
522 	struct balloon_state balloon_wrk;
523 
524 	/*
525 	 * State to execute the "hot-add" operation.
526 	 */
527 	struct hot_add_wrk ha_wrk;
528 
529 	/*
530 	 * This state tracks if the host has specified a hot-add
531 	 * region.
532 	 */
533 	bool host_specified_ha_region;
534 
535 	/*
536 	 * State to synchronize hot-add.
537 	 */
538 	struct completion  ol_waitevent;
539 	/*
540 	 * This thread handles hot-add
541 	 * requests from the host as well as notifying
542 	 * the host with regards to memory pressure in
543 	 * the guest.
544 	 */
545 	struct task_struct *thread;
546 
547 	/*
548 	 * Protects ha_region_list, num_pages_onlined counter and individual
549 	 * regions from ha_region_list.
550 	 */
551 	spinlock_t ha_lock;
552 
553 	/*
554 	 * A list of hot-add regions.
555 	 */
556 	struct list_head ha_region_list;
557 
558 	/*
559 	 * We start with the highest version we can support
560 	 * and downgrade based on the host; we save here the
561 	 * next version to try.
562 	 */
563 	__u32 next_version;
564 
565 	/*
566 	 * The negotiated version agreed by host.
567 	 */
568 	__u32 version;
569 
570 	struct page_reporting_dev_info pr_dev_info;
571 
572 	/*
573 	 * Maximum number of pages that can be hot_add-ed
574 	 */
575 	__u64 max_dynamic_page_count;
576 };
577 
578 static struct hv_dynmem_device dm_device;
579 
580 static void post_status(struct hv_dynmem_device *dm);
581 
582 #ifdef CONFIG_MEMORY_HOTPLUG
583 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
584 				     unsigned long pfn)
585 {
586 	struct hv_hotadd_gap *gap;
587 
588 	/* The page is not backed. */
589 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
590 		return false;
591 
592 	/* Check for gaps. */
593 	list_for_each_entry(gap, &has->gap_list, list) {
594 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
595 			return false;
596 	}
597 
598 	return true;
599 }
600 
601 static unsigned long hv_page_offline_check(unsigned long start_pfn,
602 					   unsigned long nr_pages)
603 {
604 	unsigned long pfn = start_pfn, count = 0;
605 	struct hv_hotadd_state *has;
606 	bool found;
607 
608 	while (pfn < start_pfn + nr_pages) {
609 		/*
610 		 * Search for HAS which covers the pfn and when we find one
611 		 * count how many consequitive PFNs are covered.
612 		 */
613 		found = false;
614 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
615 			while ((pfn >= has->start_pfn) &&
616 			       (pfn < has->end_pfn) &&
617 			       (pfn < start_pfn + nr_pages)) {
618 				found = true;
619 				if (has_pfn_is_backed(has, pfn))
620 					count++;
621 				pfn++;
622 			}
623 		}
624 
625 		/*
626 		 * This PFN is not in any HAS (e.g. we're offlining a region
627 		 * which was present at boot), no need to account for it. Go
628 		 * to the next one.
629 		 */
630 		if (!found)
631 			pfn++;
632 	}
633 
634 	return count;
635 }
636 
637 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
638 			      void *v)
639 {
640 	struct memory_notify *mem = (struct memory_notify *)v;
641 	unsigned long flags, pfn_count;
642 
643 	switch (val) {
644 	case MEM_ONLINE:
645 	case MEM_CANCEL_ONLINE:
646 		complete(&dm_device.ol_waitevent);
647 		break;
648 
649 	case MEM_OFFLINE:
650 		spin_lock_irqsave(&dm_device.ha_lock, flags);
651 		pfn_count = hv_page_offline_check(mem->start_pfn,
652 						  mem->nr_pages);
653 		if (pfn_count <= dm_device.num_pages_onlined) {
654 			dm_device.num_pages_onlined -= pfn_count;
655 		} else {
656 			/*
657 			 * We're offlining more pages than we managed to online.
658 			 * This is unexpected. In any case don't let
659 			 * num_pages_onlined wrap around zero.
660 			 */
661 			WARN_ON_ONCE(1);
662 			dm_device.num_pages_onlined = 0;
663 		}
664 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
665 		break;
666 	case MEM_GOING_ONLINE:
667 	case MEM_GOING_OFFLINE:
668 	case MEM_CANCEL_OFFLINE:
669 		break;
670 	}
671 	return NOTIFY_OK;
672 }
673 
674 static struct notifier_block hv_memory_nb = {
675 	.notifier_call = hv_memory_notifier,
676 	.priority = 0
677 };
678 
679 /* Check if the particular page is backed and can be onlined and online it. */
680 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
681 {
682 	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
683 		if (!PageOffline(pg))
684 			__SetPageOffline(pg);
685 		return;
686 	}
687 	if (PageOffline(pg))
688 		__ClearPageOffline(pg);
689 
690 	/* This frame is currently backed; online the page. */
691 	generic_online_page(pg, 0);
692 
693 	lockdep_assert_held(&dm_device.ha_lock);
694 	dm_device.num_pages_onlined++;
695 }
696 
697 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
698 				unsigned long start_pfn, unsigned long size)
699 {
700 	int i;
701 
702 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
703 	for (i = 0; i < size; i++)
704 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
705 }
706 
707 static void hv_mem_hot_add(unsigned long start, unsigned long size,
708 				unsigned long pfn_count,
709 				struct hv_hotadd_state *has)
710 {
711 	int ret = 0;
712 	int i, nid;
713 	unsigned long start_pfn;
714 	unsigned long processed_pfn;
715 	unsigned long total_pfn = pfn_count;
716 	unsigned long flags;
717 
718 	for (i = 0; i < (size/HA_CHUNK); i++) {
719 		start_pfn = start + (i * HA_CHUNK);
720 
721 		spin_lock_irqsave(&dm_device.ha_lock, flags);
722 		has->ha_end_pfn +=  HA_CHUNK;
723 
724 		if (total_pfn > HA_CHUNK) {
725 			processed_pfn = HA_CHUNK;
726 			total_pfn -= HA_CHUNK;
727 		} else {
728 			processed_pfn = total_pfn;
729 			total_pfn = 0;
730 		}
731 
732 		has->covered_end_pfn +=  processed_pfn;
733 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
734 
735 		reinit_completion(&dm_device.ol_waitevent);
736 
737 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
738 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
739 				(HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
740 
741 		if (ret) {
742 			pr_err("hot_add memory failed error is %d\n", ret);
743 			if (ret == -EEXIST) {
744 				/*
745 				 * This error indicates that the error
746 				 * is not a transient failure. This is the
747 				 * case where the guest's physical address map
748 				 * precludes hot adding memory. Stop all further
749 				 * memory hot-add.
750 				 */
751 				do_hot_add = false;
752 			}
753 			spin_lock_irqsave(&dm_device.ha_lock, flags);
754 			has->ha_end_pfn -= HA_CHUNK;
755 			has->covered_end_pfn -=  processed_pfn;
756 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
757 			break;
758 		}
759 
760 		/*
761 		 * Wait for memory to get onlined. If the kernel onlined the
762 		 * memory when adding it, this will return directly. Otherwise,
763 		 * it will wait for user space to online the memory. This helps
764 		 * to avoid adding memory faster than it is getting onlined. As
765 		 * adding succeeded, it is ok to proceed even if the memory was
766 		 * not onlined in time.
767 		 */
768 		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
769 		post_status(&dm_device);
770 	}
771 }
772 
773 static void hv_online_page(struct page *pg, unsigned int order)
774 {
775 	struct hv_hotadd_state *has;
776 	unsigned long flags;
777 	unsigned long pfn = page_to_pfn(pg);
778 
779 	spin_lock_irqsave(&dm_device.ha_lock, flags);
780 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
781 		/* The page belongs to a different HAS. */
782 		if ((pfn < has->start_pfn) ||
783 				(pfn + (1UL << order) > has->end_pfn))
784 			continue;
785 
786 		hv_bring_pgs_online(has, pfn, 1UL << order);
787 		break;
788 	}
789 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
790 }
791 
792 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
793 {
794 	struct hv_hotadd_state *has;
795 	struct hv_hotadd_gap *gap;
796 	unsigned long residual, new_inc;
797 	int ret = 0;
798 	unsigned long flags;
799 
800 	spin_lock_irqsave(&dm_device.ha_lock, flags);
801 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
802 		/*
803 		 * If the pfn range we are dealing with is not in the current
804 		 * "hot add block", move on.
805 		 */
806 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
807 			continue;
808 
809 		/*
810 		 * If the current start pfn is not where the covered_end
811 		 * is, create a gap and update covered_end_pfn.
812 		 */
813 		if (has->covered_end_pfn != start_pfn) {
814 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
815 			if (!gap) {
816 				ret = -ENOMEM;
817 				break;
818 			}
819 
820 			INIT_LIST_HEAD(&gap->list);
821 			gap->start_pfn = has->covered_end_pfn;
822 			gap->end_pfn = start_pfn;
823 			list_add_tail(&gap->list, &has->gap_list);
824 
825 			has->covered_end_pfn = start_pfn;
826 		}
827 
828 		/*
829 		 * If the current hot add-request extends beyond
830 		 * our current limit; extend it.
831 		 */
832 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
833 			residual = (start_pfn + pfn_cnt - has->end_pfn);
834 			/*
835 			 * Extend the region by multiples of HA_CHUNK.
836 			 */
837 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
838 			if (residual % HA_CHUNK)
839 				new_inc += HA_CHUNK;
840 
841 			has->end_pfn += new_inc;
842 		}
843 
844 		ret = 1;
845 		break;
846 	}
847 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
848 
849 	return ret;
850 }
851 
852 static unsigned long handle_pg_range(unsigned long pg_start,
853 					unsigned long pg_count)
854 {
855 	unsigned long start_pfn = pg_start;
856 	unsigned long pfn_cnt = pg_count;
857 	unsigned long size;
858 	struct hv_hotadd_state *has;
859 	unsigned long pgs_ol = 0;
860 	unsigned long old_covered_state;
861 	unsigned long res = 0, flags;
862 
863 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
864 		pg_start);
865 
866 	spin_lock_irqsave(&dm_device.ha_lock, flags);
867 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
868 		/*
869 		 * If the pfn range we are dealing with is not in the current
870 		 * "hot add block", move on.
871 		 */
872 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
873 			continue;
874 
875 		old_covered_state = has->covered_end_pfn;
876 
877 		if (start_pfn < has->ha_end_pfn) {
878 			/*
879 			 * This is the case where we are backing pages
880 			 * in an already hot added region. Bring
881 			 * these pages online first.
882 			 */
883 			pgs_ol = has->ha_end_pfn - start_pfn;
884 			if (pgs_ol > pfn_cnt)
885 				pgs_ol = pfn_cnt;
886 
887 			has->covered_end_pfn +=  pgs_ol;
888 			pfn_cnt -= pgs_ol;
889 			/*
890 			 * Check if the corresponding memory block is already
891 			 * online. It is possible to observe struct pages still
892 			 * being uninitialized here so check section instead.
893 			 * In case the section is online we need to bring the
894 			 * rest of pfns (which were not backed previously)
895 			 * online too.
896 			 */
897 			if (start_pfn > has->start_pfn &&
898 			    online_section_nr(pfn_to_section_nr(start_pfn)))
899 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
900 
901 		}
902 
903 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
904 			/*
905 			 * We have some residual hot add range
906 			 * that needs to be hot added; hot add
907 			 * it now. Hot add a multiple of
908 			 * of HA_CHUNK that fully covers the pages
909 			 * we have.
910 			 */
911 			size = (has->end_pfn - has->ha_end_pfn);
912 			if (pfn_cnt <= size) {
913 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
914 				if (pfn_cnt % HA_CHUNK)
915 					size += HA_CHUNK;
916 			} else {
917 				pfn_cnt = size;
918 			}
919 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
920 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
921 			spin_lock_irqsave(&dm_device.ha_lock, flags);
922 		}
923 		/*
924 		 * If we managed to online any pages that were given to us,
925 		 * we declare success.
926 		 */
927 		res = has->covered_end_pfn - old_covered_state;
928 		break;
929 	}
930 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
931 
932 	return res;
933 }
934 
935 static unsigned long process_hot_add(unsigned long pg_start,
936 					unsigned long pfn_cnt,
937 					unsigned long rg_start,
938 					unsigned long rg_size)
939 {
940 	struct hv_hotadd_state *ha_region = NULL;
941 	int covered;
942 	unsigned long flags;
943 
944 	if (pfn_cnt == 0)
945 		return 0;
946 
947 	if (!dm_device.host_specified_ha_region) {
948 		covered = pfn_covered(pg_start, pfn_cnt);
949 		if (covered < 0)
950 			return 0;
951 
952 		if (covered)
953 			goto do_pg_range;
954 	}
955 
956 	/*
957 	 * If the host has specified a hot-add range; deal with it first.
958 	 */
959 
960 	if (rg_size != 0) {
961 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
962 		if (!ha_region)
963 			return 0;
964 
965 		INIT_LIST_HEAD(&ha_region->list);
966 		INIT_LIST_HEAD(&ha_region->gap_list);
967 
968 		ha_region->start_pfn = rg_start;
969 		ha_region->ha_end_pfn = rg_start;
970 		ha_region->covered_start_pfn = pg_start;
971 		ha_region->covered_end_pfn = pg_start;
972 		ha_region->end_pfn = rg_start + rg_size;
973 
974 		spin_lock_irqsave(&dm_device.ha_lock, flags);
975 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
976 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
977 	}
978 
979 do_pg_range:
980 	/*
981 	 * Process the page range specified; bringing them
982 	 * online if possible.
983 	 */
984 	return handle_pg_range(pg_start, pfn_cnt);
985 }
986 
987 #endif
988 
989 static void hot_add_req(struct work_struct *dummy)
990 {
991 	struct dm_hot_add_response resp;
992 #ifdef CONFIG_MEMORY_HOTPLUG
993 	unsigned long pg_start, pfn_cnt;
994 	unsigned long rg_start, rg_sz;
995 #endif
996 	struct hv_dynmem_device *dm = &dm_device;
997 
998 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
999 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1000 	resp.hdr.size = sizeof(struct dm_hot_add_response);
1001 
1002 #ifdef CONFIG_MEMORY_HOTPLUG
1003 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1004 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1005 
1006 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1007 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1008 
1009 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1010 		unsigned long region_size;
1011 		unsigned long region_start;
1012 
1013 		/*
1014 		 * The host has not specified the hot-add region.
1015 		 * Based on the hot-add page range being specified,
1016 		 * compute a hot-add region that can cover the pages
1017 		 * that need to be hot-added while ensuring the alignment
1018 		 * and size requirements of Linux as it relates to hot-add.
1019 		 */
1020 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1021 		if (pfn_cnt % HA_CHUNK)
1022 			region_size += HA_CHUNK;
1023 
1024 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1025 
1026 		rg_start = region_start;
1027 		rg_sz = region_size;
1028 	}
1029 
1030 	if (do_hot_add)
1031 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1032 						rg_start, rg_sz);
1033 
1034 	dm->num_pages_added += resp.page_count;
1035 #endif
1036 	/*
1037 	 * The result field of the response structure has the
1038 	 * following semantics:
1039 	 *
1040 	 * 1. If all or some pages hot-added: Guest should return success.
1041 	 *
1042 	 * 2. If no pages could be hot-added:
1043 	 *
1044 	 * If the guest returns success, then the host
1045 	 * will not attempt any further hot-add operations. This
1046 	 * signifies a permanent failure.
1047 	 *
1048 	 * If the guest returns failure, then this failure will be
1049 	 * treated as a transient failure and the host may retry the
1050 	 * hot-add operation after some delay.
1051 	 */
1052 	if (resp.page_count > 0)
1053 		resp.result = 1;
1054 	else if (!do_hot_add)
1055 		resp.result = 1;
1056 	else
1057 		resp.result = 0;
1058 
1059 	if (!do_hot_add || resp.page_count == 0) {
1060 		if (!allow_hibernation)
1061 			pr_err("Memory hot add failed\n");
1062 		else
1063 			pr_info("Ignore hot-add request!\n");
1064 	}
1065 
1066 	dm->state = DM_INITIALIZED;
1067 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1068 	vmbus_sendpacket(dm->dev->channel, &resp,
1069 			sizeof(struct dm_hot_add_response),
1070 			(unsigned long)NULL,
1071 			VM_PKT_DATA_INBAND, 0);
1072 }
1073 
1074 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1075 {
1076 	struct dm_info_header *info_hdr;
1077 
1078 	info_hdr = (struct dm_info_header *)msg->info;
1079 
1080 	switch (info_hdr->type) {
1081 	case INFO_TYPE_MAX_PAGE_CNT:
1082 		if (info_hdr->data_size == sizeof(__u64)) {
1083 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1084 
1085 			pr_info("Max. dynamic memory size: %llu MB\n",
1086 				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1087 			dm->max_dynamic_page_count = *max_page_count;
1088 		}
1089 
1090 		break;
1091 	default:
1092 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1093 	}
1094 }
1095 
1096 static unsigned long compute_balloon_floor(void)
1097 {
1098 	unsigned long min_pages;
1099 	unsigned long nr_pages = totalram_pages();
1100 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1101 	/* Simple continuous piecewiese linear function:
1102 	 *  max MiB -> min MiB  gradient
1103 	 *       0         0
1104 	 *      16        16
1105 	 *      32        24
1106 	 *     128        72    (1/2)
1107 	 *     512       168    (1/4)
1108 	 *    2048       360    (1/8)
1109 	 *    8192       744    (1/16)
1110 	 *   32768      1512	(1/32)
1111 	 */
1112 	if (nr_pages < MB2PAGES(128))
1113 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1114 	else if (nr_pages < MB2PAGES(512))
1115 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1116 	else if (nr_pages < MB2PAGES(2048))
1117 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1118 	else if (nr_pages < MB2PAGES(8192))
1119 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1120 	else
1121 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1122 #undef MB2PAGES
1123 	return min_pages;
1124 }
1125 
1126 /*
1127  * Compute total committed memory pages
1128  */
1129 
1130 static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1131 {
1132 	return vm_memory_committed() +
1133 		dm->num_pages_ballooned +
1134 		(dm->num_pages_added > dm->num_pages_onlined ?
1135 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1136 		compute_balloon_floor();
1137 }
1138 
1139 /*
1140  * Post our status as it relates memory pressure to the
1141  * host. Host expects the guests to post this status
1142  * periodically at 1 second intervals.
1143  *
1144  * The metrics specified in this protocol are very Windows
1145  * specific and so we cook up numbers here to convey our memory
1146  * pressure.
1147  */
1148 
1149 static void post_status(struct hv_dynmem_device *dm)
1150 {
1151 	struct dm_status status;
1152 	unsigned long now = jiffies;
1153 	unsigned long last_post = last_post_time;
1154 	unsigned long num_pages_avail, num_pages_committed;
1155 
1156 	if (pressure_report_delay > 0) {
1157 		--pressure_report_delay;
1158 		return;
1159 	}
1160 
1161 	if (!time_after(now, (last_post_time + HZ)))
1162 		return;
1163 
1164 	memset(&status, 0, sizeof(struct dm_status));
1165 	status.hdr.type = DM_STATUS_REPORT;
1166 	status.hdr.size = sizeof(struct dm_status);
1167 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1168 
1169 	/*
1170 	 * The host expects the guest to report free and committed memory.
1171 	 * Furthermore, the host expects the pressure information to include
1172 	 * the ballooned out pages. For a given amount of memory that we are
1173 	 * managing we need to compute a floor below which we should not
1174 	 * balloon. Compute this and add it to the pressure report.
1175 	 * We also need to report all offline pages (num_pages_added -
1176 	 * num_pages_onlined) as committed to the host, otherwise it can try
1177 	 * asking us to balloon them out.
1178 	 */
1179 	num_pages_avail = si_mem_available();
1180 	num_pages_committed = get_pages_committed(dm);
1181 
1182 	trace_balloon_status(num_pages_avail, num_pages_committed,
1183 			     vm_memory_committed(), dm->num_pages_ballooned,
1184 			     dm->num_pages_added, dm->num_pages_onlined);
1185 
1186 	/* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1187 	status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1188 	status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1189 
1190 	/*
1191 	 * If our transaction ID is no longer current, just don't
1192 	 * send the status. This can happen if we were interrupted
1193 	 * after we picked our transaction ID.
1194 	 */
1195 	if (status.hdr.trans_id != atomic_read(&trans_id))
1196 		return;
1197 
1198 	/*
1199 	 * If the last post time that we sampled has changed,
1200 	 * we have raced, don't post the status.
1201 	 */
1202 	if (last_post != last_post_time)
1203 		return;
1204 
1205 	last_post_time = jiffies;
1206 	vmbus_sendpacket(dm->dev->channel, &status,
1207 				sizeof(struct dm_status),
1208 				(unsigned long)NULL,
1209 				VM_PKT_DATA_INBAND, 0);
1210 
1211 }
1212 
1213 static void free_balloon_pages(struct hv_dynmem_device *dm,
1214 			 union dm_mem_page_range *range_array)
1215 {
1216 	int num_pages = range_array->finfo.page_cnt;
1217 	__u64 start_frame = range_array->finfo.start_page;
1218 	struct page *pg;
1219 	int i;
1220 
1221 	for (i = 0; i < num_pages; i++) {
1222 		pg = pfn_to_page(i + start_frame);
1223 		__ClearPageOffline(pg);
1224 		__free_page(pg);
1225 		dm->num_pages_ballooned--;
1226 		adjust_managed_page_count(pg, 1);
1227 	}
1228 }
1229 
1230 
1231 
1232 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1233 					unsigned int num_pages,
1234 					struct dm_balloon_response *bl_resp,
1235 					int alloc_unit)
1236 {
1237 	unsigned int i, j;
1238 	struct page *pg;
1239 
1240 	for (i = 0; i < num_pages / alloc_unit; i++) {
1241 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1242 			HV_HYP_PAGE_SIZE)
1243 			return i * alloc_unit;
1244 
1245 		/*
1246 		 * We execute this code in a thread context. Furthermore,
1247 		 * we don't want the kernel to try too hard.
1248 		 */
1249 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1250 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1251 				get_order(alloc_unit << PAGE_SHIFT));
1252 
1253 		if (!pg)
1254 			return i * alloc_unit;
1255 
1256 		dm->num_pages_ballooned += alloc_unit;
1257 
1258 		/*
1259 		 * If we allocatted 2M pages; split them so we
1260 		 * can free them in any order we get.
1261 		 */
1262 
1263 		if (alloc_unit != 1)
1264 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1265 
1266 		/* mark all pages offline */
1267 		for (j = 0; j < alloc_unit; j++) {
1268 			__SetPageOffline(pg + j);
1269 			adjust_managed_page_count(pg + j, -1);
1270 		}
1271 
1272 		bl_resp->range_count++;
1273 		bl_resp->range_array[i].finfo.start_page =
1274 			page_to_pfn(pg);
1275 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1276 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1277 
1278 	}
1279 
1280 	return i * alloc_unit;
1281 }
1282 
1283 static void balloon_up(struct work_struct *dummy)
1284 {
1285 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1286 	unsigned int num_ballooned = 0;
1287 	struct dm_balloon_response *bl_resp;
1288 	int alloc_unit;
1289 	int ret;
1290 	bool done = false;
1291 	int i;
1292 	long avail_pages;
1293 	unsigned long floor;
1294 
1295 	/*
1296 	 * We will attempt 2M allocations. However, if we fail to
1297 	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1298 	 */
1299 	alloc_unit = PAGES_IN_2M;
1300 
1301 	avail_pages = si_mem_available();
1302 	floor = compute_balloon_floor();
1303 
1304 	/* Refuse to balloon below the floor. */
1305 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1306 		pr_info("Balloon request will be partially fulfilled. %s\n",
1307 			avail_pages < num_pages ? "Not enough memory." :
1308 			"Balloon floor reached.");
1309 
1310 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1311 	}
1312 
1313 	while (!done) {
1314 		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1315 		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1316 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1317 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1318 		bl_resp->more_pages = 1;
1319 
1320 		num_pages -= num_ballooned;
1321 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1322 						    bl_resp, alloc_unit);
1323 
1324 		if (alloc_unit != 1 && num_ballooned == 0) {
1325 			alloc_unit = 1;
1326 			continue;
1327 		}
1328 
1329 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1330 			pr_debug("Ballooned %u out of %u requested pages.\n",
1331 				num_pages, dm_device.balloon_wrk.num_pages);
1332 
1333 			bl_resp->more_pages = 0;
1334 			done = true;
1335 			dm_device.state = DM_INITIALIZED;
1336 		}
1337 
1338 		/*
1339 		 * We are pushing a lot of data through the channel;
1340 		 * deal with transient failures caused because of the
1341 		 * lack of space in the ring buffer.
1342 		 */
1343 
1344 		do {
1345 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1346 			ret = vmbus_sendpacket(dm_device.dev->channel,
1347 						bl_resp,
1348 						bl_resp->hdr.size,
1349 						(unsigned long)NULL,
1350 						VM_PKT_DATA_INBAND, 0);
1351 
1352 			if (ret == -EAGAIN)
1353 				msleep(20);
1354 			post_status(&dm_device);
1355 		} while (ret == -EAGAIN);
1356 
1357 		if (ret) {
1358 			/*
1359 			 * Free up the memory we allocatted.
1360 			 */
1361 			pr_err("Balloon response failed\n");
1362 
1363 			for (i = 0; i < bl_resp->range_count; i++)
1364 				free_balloon_pages(&dm_device,
1365 						 &bl_resp->range_array[i]);
1366 
1367 			done = true;
1368 		}
1369 	}
1370 
1371 }
1372 
1373 static void balloon_down(struct hv_dynmem_device *dm,
1374 			struct dm_unballoon_request *req)
1375 {
1376 	union dm_mem_page_range *range_array = req->range_array;
1377 	int range_count = req->range_count;
1378 	struct dm_unballoon_response resp;
1379 	int i;
1380 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1381 
1382 	for (i = 0; i < range_count; i++) {
1383 		free_balloon_pages(dm, &range_array[i]);
1384 		complete(&dm_device.config_event);
1385 	}
1386 
1387 	pr_debug("Freed %u ballooned pages.\n",
1388 		prev_pages_ballooned - dm->num_pages_ballooned);
1389 
1390 	if (req->more_pages == 1)
1391 		return;
1392 
1393 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1394 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1395 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1396 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1397 
1398 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1399 				sizeof(struct dm_unballoon_response),
1400 				(unsigned long)NULL,
1401 				VM_PKT_DATA_INBAND, 0);
1402 
1403 	dm->state = DM_INITIALIZED;
1404 }
1405 
1406 static void balloon_onchannelcallback(void *context);
1407 
1408 static int dm_thread_func(void *dm_dev)
1409 {
1410 	struct hv_dynmem_device *dm = dm_dev;
1411 
1412 	while (!kthread_should_stop()) {
1413 		wait_for_completion_interruptible_timeout(
1414 						&dm_device.config_event, 1*HZ);
1415 		/*
1416 		 * The host expects us to post information on the memory
1417 		 * pressure every second.
1418 		 */
1419 		reinit_completion(&dm_device.config_event);
1420 		post_status(dm);
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 
1427 static void version_resp(struct hv_dynmem_device *dm,
1428 			struct dm_version_response *vresp)
1429 {
1430 	struct dm_version_request version_req;
1431 	int ret;
1432 
1433 	if (vresp->is_accepted) {
1434 		/*
1435 		 * We are done; wakeup the
1436 		 * context waiting for version
1437 		 * negotiation.
1438 		 */
1439 		complete(&dm->host_event);
1440 		return;
1441 	}
1442 	/*
1443 	 * If there are more versions to try, continue
1444 	 * with negotiations; if not
1445 	 * shutdown the service since we are not able
1446 	 * to negotiate a suitable version number
1447 	 * with the host.
1448 	 */
1449 	if (dm->next_version == 0)
1450 		goto version_error;
1451 
1452 	memset(&version_req, 0, sizeof(struct dm_version_request));
1453 	version_req.hdr.type = DM_VERSION_REQUEST;
1454 	version_req.hdr.size = sizeof(struct dm_version_request);
1455 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1456 	version_req.version.version = dm->next_version;
1457 	dm->version = version_req.version.version;
1458 
1459 	/*
1460 	 * Set the next version to try in case current version fails.
1461 	 * Win7 protocol ought to be the last one to try.
1462 	 */
1463 	switch (version_req.version.version) {
1464 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1465 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1466 		version_req.is_last_attempt = 0;
1467 		break;
1468 	default:
1469 		dm->next_version = 0;
1470 		version_req.is_last_attempt = 1;
1471 	}
1472 
1473 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1474 				sizeof(struct dm_version_request),
1475 				(unsigned long)NULL,
1476 				VM_PKT_DATA_INBAND, 0);
1477 
1478 	if (ret)
1479 		goto version_error;
1480 
1481 	return;
1482 
1483 version_error:
1484 	dm->state = DM_INIT_ERROR;
1485 	complete(&dm->host_event);
1486 }
1487 
1488 static void cap_resp(struct hv_dynmem_device *dm,
1489 			struct dm_capabilities_resp_msg *cap_resp)
1490 {
1491 	if (!cap_resp->is_accepted) {
1492 		pr_err("Capabilities not accepted by host\n");
1493 		dm->state = DM_INIT_ERROR;
1494 	}
1495 	complete(&dm->host_event);
1496 }
1497 
1498 static void balloon_onchannelcallback(void *context)
1499 {
1500 	struct hv_device *dev = context;
1501 	u32 recvlen;
1502 	u64 requestid;
1503 	struct dm_message *dm_msg;
1504 	struct dm_header *dm_hdr;
1505 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1506 	struct dm_balloon *bal_msg;
1507 	struct dm_hot_add *ha_msg;
1508 	union dm_mem_page_range *ha_pg_range;
1509 	union dm_mem_page_range *ha_region;
1510 
1511 	memset(recv_buffer, 0, sizeof(recv_buffer));
1512 	vmbus_recvpacket(dev->channel, recv_buffer,
1513 			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1514 
1515 	if (recvlen > 0) {
1516 		dm_msg = (struct dm_message *)recv_buffer;
1517 		dm_hdr = &dm_msg->hdr;
1518 
1519 		switch (dm_hdr->type) {
1520 		case DM_VERSION_RESPONSE:
1521 			version_resp(dm,
1522 				 (struct dm_version_response *)dm_msg);
1523 			break;
1524 
1525 		case DM_CAPABILITIES_RESPONSE:
1526 			cap_resp(dm,
1527 				 (struct dm_capabilities_resp_msg *)dm_msg);
1528 			break;
1529 
1530 		case DM_BALLOON_REQUEST:
1531 			if (allow_hibernation) {
1532 				pr_info("Ignore balloon-up request!\n");
1533 				break;
1534 			}
1535 
1536 			if (dm->state == DM_BALLOON_UP)
1537 				pr_warn("Currently ballooning\n");
1538 			bal_msg = (struct dm_balloon *)recv_buffer;
1539 			dm->state = DM_BALLOON_UP;
1540 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1541 			schedule_work(&dm_device.balloon_wrk.wrk);
1542 			break;
1543 
1544 		case DM_UNBALLOON_REQUEST:
1545 			if (allow_hibernation) {
1546 				pr_info("Ignore balloon-down request!\n");
1547 				break;
1548 			}
1549 
1550 			dm->state = DM_BALLOON_DOWN;
1551 			balloon_down(dm,
1552 				 (struct dm_unballoon_request *)recv_buffer);
1553 			break;
1554 
1555 		case DM_MEM_HOT_ADD_REQUEST:
1556 			if (dm->state == DM_HOT_ADD)
1557 				pr_warn("Currently hot-adding\n");
1558 			dm->state = DM_HOT_ADD;
1559 			ha_msg = (struct dm_hot_add *)recv_buffer;
1560 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1561 				/*
1562 				 * This is a normal hot-add request specifying
1563 				 * hot-add memory.
1564 				 */
1565 				dm->host_specified_ha_region = false;
1566 				ha_pg_range = &ha_msg->range;
1567 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1568 				dm->ha_wrk.ha_region_range.page_range = 0;
1569 			} else {
1570 				/*
1571 				 * Host is specifying that we first hot-add
1572 				 * a region and then partially populate this
1573 				 * region.
1574 				 */
1575 				dm->host_specified_ha_region = true;
1576 				ha_pg_range = &ha_msg->range;
1577 				ha_region = &ha_pg_range[1];
1578 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1579 				dm->ha_wrk.ha_region_range = *ha_region;
1580 			}
1581 			schedule_work(&dm_device.ha_wrk.wrk);
1582 			break;
1583 
1584 		case DM_INFO_MESSAGE:
1585 			process_info(dm, (struct dm_info_msg *)dm_msg);
1586 			break;
1587 
1588 		default:
1589 			pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1590 
1591 		}
1592 	}
1593 
1594 }
1595 
1596 /* Hyper-V only supports reporting 2MB pages or higher */
1597 #define HV_MIN_PAGE_REPORTING_ORDER	9
1598 #define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER)
1599 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1600 		    struct scatterlist *sgl, unsigned int nents)
1601 {
1602 	unsigned long flags;
1603 	struct hv_memory_hint *hint;
1604 	int i;
1605 	u64 status;
1606 	struct scatterlist *sg;
1607 
1608 	WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1609 	WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN);
1610 	local_irq_save(flags);
1611 	hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1612 	if (!hint) {
1613 		local_irq_restore(flags);
1614 		return -ENOSPC;
1615 	}
1616 
1617 	hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1618 	hint->reserved = 0;
1619 	for_each_sg(sgl, sg, nents, i) {
1620 		union hv_gpa_page_range *range;
1621 
1622 		range = &hint->ranges[i];
1623 		range->address_space = 0;
1624 		/* page reporting only reports 2MB pages or higher */
1625 		range->page.largepage = 1;
1626 		range->page.additional_pages =
1627 			(sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1;
1628 		range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1629 		range->base_large_pfn =
1630 			page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER;
1631 	}
1632 
1633 	status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1634 				     hint, NULL);
1635 	local_irq_restore(flags);
1636 	if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) {
1637 		pr_err("Cold memory discard hypercall failed with status %llx\n",
1638 			status);
1639 		return -EINVAL;
1640 	}
1641 
1642 	return 0;
1643 }
1644 
1645 static void enable_page_reporting(void)
1646 {
1647 	int ret;
1648 
1649 	/* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */
1650 	if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) {
1651 		pr_debug("Cold memory discard is only supported on 2MB pages and above\n");
1652 		return;
1653 	}
1654 
1655 	if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1656 		pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1657 		return;
1658 	}
1659 
1660 	BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1661 	dm_device.pr_dev_info.report = hv_free_page_report;
1662 	ret = page_reporting_register(&dm_device.pr_dev_info);
1663 	if (ret < 0) {
1664 		dm_device.pr_dev_info.report = NULL;
1665 		pr_err("Failed to enable cold memory discard: %d\n", ret);
1666 	} else {
1667 		pr_info("Cold memory discard hint enabled\n");
1668 	}
1669 }
1670 
1671 static void disable_page_reporting(void)
1672 {
1673 	if (dm_device.pr_dev_info.report) {
1674 		page_reporting_unregister(&dm_device.pr_dev_info);
1675 		dm_device.pr_dev_info.report = NULL;
1676 	}
1677 }
1678 
1679 static int ballooning_enabled(void)
1680 {
1681 	/*
1682 	 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1683 	 * since currently it's unclear to us whether an unballoon request can
1684 	 * make sure all page ranges are guest page size aligned.
1685 	 */
1686 	if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1687 		pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1688 		return 0;
1689 	}
1690 
1691 	return 1;
1692 }
1693 
1694 static int hot_add_enabled(void)
1695 {
1696 	/*
1697 	 * Disable hot add on ARM64, because we currently rely on
1698 	 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1699 	 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1700 	 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1701 	 * add_memory().
1702 	 */
1703 	if (IS_ENABLED(CONFIG_ARM64)) {
1704 		pr_info("Memory hot add disabled on ARM64\n");
1705 		return 0;
1706 	}
1707 
1708 	return 1;
1709 }
1710 
1711 static int balloon_connect_vsp(struct hv_device *dev)
1712 {
1713 	struct dm_version_request version_req;
1714 	struct dm_capabilities cap_msg;
1715 	unsigned long t;
1716 	int ret;
1717 
1718 	/*
1719 	 * max_pkt_size should be large enough for one vmbus packet header plus
1720 	 * our receive buffer size. Hyper-V sends messages up to
1721 	 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1722 	 */
1723 	dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1724 
1725 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1726 			 balloon_onchannelcallback, dev);
1727 	if (ret)
1728 		return ret;
1729 
1730 	/*
1731 	 * Initiate the hand shake with the host and negotiate
1732 	 * a version that the host can support. We start with the
1733 	 * highest version number and go down if the host cannot
1734 	 * support it.
1735 	 */
1736 	memset(&version_req, 0, sizeof(struct dm_version_request));
1737 	version_req.hdr.type = DM_VERSION_REQUEST;
1738 	version_req.hdr.size = sizeof(struct dm_version_request);
1739 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1740 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1741 	version_req.is_last_attempt = 0;
1742 	dm_device.version = version_req.version.version;
1743 
1744 	ret = vmbus_sendpacket(dev->channel, &version_req,
1745 			       sizeof(struct dm_version_request),
1746 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1747 	if (ret)
1748 		goto out;
1749 
1750 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1751 	if (t == 0) {
1752 		ret = -ETIMEDOUT;
1753 		goto out;
1754 	}
1755 
1756 	/*
1757 	 * If we could not negotiate a compatible version with the host
1758 	 * fail the probe function.
1759 	 */
1760 	if (dm_device.state == DM_INIT_ERROR) {
1761 		ret = -EPROTO;
1762 		goto out;
1763 	}
1764 
1765 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1766 		DYNMEM_MAJOR_VERSION(dm_device.version),
1767 		DYNMEM_MINOR_VERSION(dm_device.version));
1768 
1769 	/*
1770 	 * Now submit our capabilities to the host.
1771 	 */
1772 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1773 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1774 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1775 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1776 
1777 	/*
1778 	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1779 	 * currently still requires the bits to be set, so we have to add code
1780 	 * to fail the host's hot-add and balloon up/down requests, if any.
1781 	 */
1782 	cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1783 	cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1784 
1785 	/*
1786 	 * Specify our alignment requirements as it relates
1787 	 * memory hot-add. Specify 128MB alignment.
1788 	 */
1789 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1790 
1791 	/*
1792 	 * Currently the host does not use these
1793 	 * values and we set them to what is done in the
1794 	 * Windows driver.
1795 	 */
1796 	cap_msg.min_page_cnt = 0;
1797 	cap_msg.max_page_number = -1;
1798 
1799 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1800 			       sizeof(struct dm_capabilities),
1801 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1802 	if (ret)
1803 		goto out;
1804 
1805 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1806 	if (t == 0) {
1807 		ret = -ETIMEDOUT;
1808 		goto out;
1809 	}
1810 
1811 	/*
1812 	 * If the host does not like our capabilities,
1813 	 * fail the probe function.
1814 	 */
1815 	if (dm_device.state == DM_INIT_ERROR) {
1816 		ret = -EPROTO;
1817 		goto out;
1818 	}
1819 
1820 	return 0;
1821 out:
1822 	vmbus_close(dev->channel);
1823 	return ret;
1824 }
1825 
1826 /*
1827  * DEBUGFS Interface
1828  */
1829 #ifdef CONFIG_DEBUG_FS
1830 
1831 /**
1832  * hv_balloon_debug_show - shows statistics of balloon operations.
1833  * @f: pointer to the &struct seq_file.
1834  * @offset: ignored.
1835  *
1836  * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1837  *
1838  * Return: zero on success or an error code.
1839  */
1840 static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1841 {
1842 	struct hv_dynmem_device *dm = f->private;
1843 	char *sname;
1844 
1845 	seq_printf(f, "%-22s: %u.%u\n", "host_version",
1846 				DYNMEM_MAJOR_VERSION(dm->version),
1847 				DYNMEM_MINOR_VERSION(dm->version));
1848 
1849 	seq_printf(f, "%-22s:", "capabilities");
1850 	if (ballooning_enabled())
1851 		seq_puts(f, " enabled");
1852 
1853 	if (hot_add_enabled())
1854 		seq_puts(f, " hot_add");
1855 
1856 	seq_puts(f, "\n");
1857 
1858 	seq_printf(f, "%-22s: %u", "state", dm->state);
1859 	switch (dm->state) {
1860 	case DM_INITIALIZING:
1861 			sname = "Initializing";
1862 			break;
1863 	case DM_INITIALIZED:
1864 			sname = "Initialized";
1865 			break;
1866 	case DM_BALLOON_UP:
1867 			sname = "Balloon Up";
1868 			break;
1869 	case DM_BALLOON_DOWN:
1870 			sname = "Balloon Down";
1871 			break;
1872 	case DM_HOT_ADD:
1873 			sname = "Hot Add";
1874 			break;
1875 	case DM_INIT_ERROR:
1876 			sname = "Error";
1877 			break;
1878 	default:
1879 			sname = "Unknown";
1880 	}
1881 	seq_printf(f, " (%s)\n", sname);
1882 
1883 	/* HV Page Size */
1884 	seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1885 
1886 	/* Pages added with hot_add */
1887 	seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1888 
1889 	/* pages that are "onlined"/used from pages_added */
1890 	seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1891 
1892 	/* pages we have given back to host */
1893 	seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1894 
1895 	seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1896 				get_pages_committed(dm));
1897 
1898 	seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1899 				dm->max_dynamic_page_count);
1900 
1901 	return 0;
1902 }
1903 
1904 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1905 
1906 static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1907 {
1908 	debugfs_create_file("hv-balloon", 0444, NULL, b,
1909 			&hv_balloon_debug_fops);
1910 }
1911 
1912 static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1913 {
1914 	debugfs_remove(debugfs_lookup("hv-balloon", NULL));
1915 }
1916 
1917 #else
1918 
1919 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
1920 {
1921 }
1922 
1923 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1924 {
1925 }
1926 
1927 #endif	/* CONFIG_DEBUG_FS */
1928 
1929 static int balloon_probe(struct hv_device *dev,
1930 			 const struct hv_vmbus_device_id *dev_id)
1931 {
1932 	int ret;
1933 
1934 	allow_hibernation = hv_is_hibernation_supported();
1935 	if (allow_hibernation)
1936 		hot_add = false;
1937 
1938 #ifdef CONFIG_MEMORY_HOTPLUG
1939 	do_hot_add = hot_add;
1940 #else
1941 	do_hot_add = false;
1942 #endif
1943 	dm_device.dev = dev;
1944 	dm_device.state = DM_INITIALIZING;
1945 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1946 	init_completion(&dm_device.host_event);
1947 	init_completion(&dm_device.config_event);
1948 	INIT_LIST_HEAD(&dm_device.ha_region_list);
1949 	spin_lock_init(&dm_device.ha_lock);
1950 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1951 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1952 	dm_device.host_specified_ha_region = false;
1953 
1954 #ifdef CONFIG_MEMORY_HOTPLUG
1955 	set_online_page_callback(&hv_online_page);
1956 	init_completion(&dm_device.ol_waitevent);
1957 	register_memory_notifier(&hv_memory_nb);
1958 #endif
1959 
1960 	hv_set_drvdata(dev, &dm_device);
1961 
1962 	ret = balloon_connect_vsp(dev);
1963 	if (ret != 0)
1964 		goto connect_error;
1965 
1966 	enable_page_reporting();
1967 	dm_device.state = DM_INITIALIZED;
1968 
1969 	dm_device.thread =
1970 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1971 	if (IS_ERR(dm_device.thread)) {
1972 		ret = PTR_ERR(dm_device.thread);
1973 		goto probe_error;
1974 	}
1975 
1976 	hv_balloon_debugfs_init(&dm_device);
1977 
1978 	return 0;
1979 
1980 probe_error:
1981 	dm_device.state = DM_INIT_ERROR;
1982 	dm_device.thread  = NULL;
1983 	disable_page_reporting();
1984 	vmbus_close(dev->channel);
1985 connect_error:
1986 #ifdef CONFIG_MEMORY_HOTPLUG
1987 	unregister_memory_notifier(&hv_memory_nb);
1988 	restore_online_page_callback(&hv_online_page);
1989 #endif
1990 	return ret;
1991 }
1992 
1993 static int balloon_remove(struct hv_device *dev)
1994 {
1995 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1996 	struct hv_hotadd_state *has, *tmp;
1997 	struct hv_hotadd_gap *gap, *tmp_gap;
1998 	unsigned long flags;
1999 
2000 	if (dm->num_pages_ballooned != 0)
2001 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2002 
2003 	hv_balloon_debugfs_exit(dm);
2004 
2005 	cancel_work_sync(&dm->balloon_wrk.wrk);
2006 	cancel_work_sync(&dm->ha_wrk.wrk);
2007 
2008 	kthread_stop(dm->thread);
2009 
2010 	/*
2011 	 * This is to handle the case when balloon_resume()
2012 	 * call has failed and some cleanup has been done as
2013 	 * a part of the error handling.
2014 	 */
2015 	if (dm_device.state != DM_INIT_ERROR) {
2016 		disable_page_reporting();
2017 		vmbus_close(dev->channel);
2018 #ifdef CONFIG_MEMORY_HOTPLUG
2019 		unregister_memory_notifier(&hv_memory_nb);
2020 		restore_online_page_callback(&hv_online_page);
2021 #endif
2022 	}
2023 
2024 	spin_lock_irqsave(&dm_device.ha_lock, flags);
2025 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2026 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2027 			list_del(&gap->list);
2028 			kfree(gap);
2029 		}
2030 		list_del(&has->list);
2031 		kfree(has);
2032 	}
2033 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
2034 
2035 	return 0;
2036 }
2037 
2038 static int balloon_suspend(struct hv_device *hv_dev)
2039 {
2040 	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2041 
2042 	tasklet_disable(&hv_dev->channel->callback_event);
2043 
2044 	cancel_work_sync(&dm->balloon_wrk.wrk);
2045 	cancel_work_sync(&dm->ha_wrk.wrk);
2046 
2047 	if (dm->thread) {
2048 		kthread_stop(dm->thread);
2049 		dm->thread = NULL;
2050 		vmbus_close(hv_dev->channel);
2051 	}
2052 
2053 	tasklet_enable(&hv_dev->channel->callback_event);
2054 
2055 	return 0;
2056 
2057 }
2058 
2059 static int balloon_resume(struct hv_device *dev)
2060 {
2061 	int ret;
2062 
2063 	dm_device.state = DM_INITIALIZING;
2064 
2065 	ret = balloon_connect_vsp(dev);
2066 
2067 	if (ret != 0)
2068 		goto out;
2069 
2070 	dm_device.thread =
2071 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2072 	if (IS_ERR(dm_device.thread)) {
2073 		ret = PTR_ERR(dm_device.thread);
2074 		dm_device.thread = NULL;
2075 		goto close_channel;
2076 	}
2077 
2078 	dm_device.state = DM_INITIALIZED;
2079 	return 0;
2080 close_channel:
2081 	vmbus_close(dev->channel);
2082 out:
2083 	dm_device.state = DM_INIT_ERROR;
2084 	disable_page_reporting();
2085 #ifdef CONFIG_MEMORY_HOTPLUG
2086 	unregister_memory_notifier(&hv_memory_nb);
2087 	restore_online_page_callback(&hv_online_page);
2088 #endif
2089 	return ret;
2090 }
2091 
2092 static const struct hv_vmbus_device_id id_table[] = {
2093 	/* Dynamic Memory Class ID */
2094 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
2095 	{ HV_DM_GUID, },
2096 	{ },
2097 };
2098 
2099 MODULE_DEVICE_TABLE(vmbus, id_table);
2100 
2101 static  struct hv_driver balloon_drv = {
2102 	.name = "hv_balloon",
2103 	.id_table = id_table,
2104 	.probe =  balloon_probe,
2105 	.remove =  balloon_remove,
2106 	.suspend = balloon_suspend,
2107 	.resume = balloon_resume,
2108 	.driver = {
2109 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2110 	},
2111 };
2112 
2113 static int __init init_balloon_drv(void)
2114 {
2115 
2116 	return vmbus_driver_register(&balloon_drv);
2117 }
2118 
2119 module_init(init_balloon_drv);
2120 
2121 MODULE_DESCRIPTION("Hyper-V Balloon");
2122 MODULE_LICENSE("GPL");
2123