1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2012, Microsoft Corporation. 4 * 5 * Author: 6 * K. Y. Srinivasan <kys@microsoft.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/jiffies.h> 13 #include <linux/mman.h> 14 #include <linux/delay.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/kthread.h> 19 #include <linux/completion.h> 20 #include <linux/count_zeros.h> 21 #include <linux/memory_hotplug.h> 22 #include <linux/memory.h> 23 #include <linux/notifier.h> 24 #include <linux/percpu_counter.h> 25 #include <linux/page_reporting.h> 26 27 #include <linux/hyperv.h> 28 #include <asm/hyperv-tlfs.h> 29 30 #include <asm/mshyperv.h> 31 32 #define CREATE_TRACE_POINTS 33 #include "hv_trace_balloon.h" 34 35 /* 36 * We begin with definitions supporting the Dynamic Memory protocol 37 * with the host. 38 * 39 * Begin protocol definitions. 40 */ 41 42 43 44 /* 45 * Protocol versions. The low word is the minor version, the high word the major 46 * version. 47 * 48 * History: 49 * Initial version 1.0 50 * Changed to 0.1 on 2009/03/25 51 * Changes to 0.2 on 2009/05/14 52 * Changes to 0.3 on 2009/12/03 53 * Changed to 1.0 on 2011/04/05 54 */ 55 56 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 57 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 58 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 59 60 enum { 61 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 62 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 63 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), 64 65 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 66 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 67 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, 68 69 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 70 }; 71 72 73 74 /* 75 * Message Types 76 */ 77 78 enum dm_message_type { 79 /* 80 * Version 0.3 81 */ 82 DM_ERROR = 0, 83 DM_VERSION_REQUEST = 1, 84 DM_VERSION_RESPONSE = 2, 85 DM_CAPABILITIES_REPORT = 3, 86 DM_CAPABILITIES_RESPONSE = 4, 87 DM_STATUS_REPORT = 5, 88 DM_BALLOON_REQUEST = 6, 89 DM_BALLOON_RESPONSE = 7, 90 DM_UNBALLOON_REQUEST = 8, 91 DM_UNBALLOON_RESPONSE = 9, 92 DM_MEM_HOT_ADD_REQUEST = 10, 93 DM_MEM_HOT_ADD_RESPONSE = 11, 94 DM_VERSION_03_MAX = 11, 95 /* 96 * Version 1.0. 97 */ 98 DM_INFO_MESSAGE = 12, 99 DM_VERSION_1_MAX = 12 100 }; 101 102 103 /* 104 * Structures defining the dynamic memory management 105 * protocol. 106 */ 107 108 union dm_version { 109 struct { 110 __u16 minor_version; 111 __u16 major_version; 112 }; 113 __u32 version; 114 } __packed; 115 116 117 union dm_caps { 118 struct { 119 __u64 balloon:1; 120 __u64 hot_add:1; 121 /* 122 * To support guests that may have alignment 123 * limitations on hot-add, the guest can specify 124 * its alignment requirements; a value of n 125 * represents an alignment of 2^n in mega bytes. 126 */ 127 __u64 hot_add_alignment:4; 128 __u64 reservedz:58; 129 } cap_bits; 130 __u64 caps; 131 } __packed; 132 133 union dm_mem_page_range { 134 struct { 135 /* 136 * The PFN number of the first page in the range. 137 * 40 bits is the architectural limit of a PFN 138 * number for AMD64. 139 */ 140 __u64 start_page:40; 141 /* 142 * The number of pages in the range. 143 */ 144 __u64 page_cnt:24; 145 } finfo; 146 __u64 page_range; 147 } __packed; 148 149 150 151 /* 152 * The header for all dynamic memory messages: 153 * 154 * type: Type of the message. 155 * size: Size of the message in bytes; including the header. 156 * trans_id: The guest is responsible for manufacturing this ID. 157 */ 158 159 struct dm_header { 160 __u16 type; 161 __u16 size; 162 __u32 trans_id; 163 } __packed; 164 165 /* 166 * A generic message format for dynamic memory. 167 * Specific message formats are defined later in the file. 168 */ 169 170 struct dm_message { 171 struct dm_header hdr; 172 __u8 data[]; /* enclosed message */ 173 } __packed; 174 175 176 /* 177 * Specific message types supporting the dynamic memory protocol. 178 */ 179 180 /* 181 * Version negotiation message. Sent from the guest to the host. 182 * The guest is free to try different versions until the host 183 * accepts the version. 184 * 185 * dm_version: The protocol version requested. 186 * is_last_attempt: If TRUE, this is the last version guest will request. 187 * reservedz: Reserved field, set to zero. 188 */ 189 190 struct dm_version_request { 191 struct dm_header hdr; 192 union dm_version version; 193 __u32 is_last_attempt:1; 194 __u32 reservedz:31; 195 } __packed; 196 197 /* 198 * Version response message; Host to Guest and indicates 199 * if the host has accepted the version sent by the guest. 200 * 201 * is_accepted: If TRUE, host has accepted the version and the guest 202 * should proceed to the next stage of the protocol. FALSE indicates that 203 * guest should re-try with a different version. 204 * 205 * reservedz: Reserved field, set to zero. 206 */ 207 208 struct dm_version_response { 209 struct dm_header hdr; 210 __u64 is_accepted:1; 211 __u64 reservedz:63; 212 } __packed; 213 214 /* 215 * Message reporting capabilities. This is sent from the guest to the 216 * host. 217 */ 218 219 struct dm_capabilities { 220 struct dm_header hdr; 221 union dm_caps caps; 222 __u64 min_page_cnt; 223 __u64 max_page_number; 224 } __packed; 225 226 /* 227 * Response to the capabilities message. This is sent from the host to the 228 * guest. This message notifies if the host has accepted the guest's 229 * capabilities. If the host has not accepted, the guest must shutdown 230 * the service. 231 * 232 * is_accepted: Indicates if the host has accepted guest's capabilities. 233 * reservedz: Must be 0. 234 */ 235 236 struct dm_capabilities_resp_msg { 237 struct dm_header hdr; 238 __u64 is_accepted:1; 239 __u64 reservedz:63; 240 } __packed; 241 242 /* 243 * This message is used to report memory pressure from the guest. 244 * This message is not part of any transaction and there is no 245 * response to this message. 246 * 247 * num_avail: Available memory in pages. 248 * num_committed: Committed memory in pages. 249 * page_file_size: The accumulated size of all page files 250 * in the system in pages. 251 * zero_free: The nunber of zero and free pages. 252 * page_file_writes: The writes to the page file in pages. 253 * io_diff: An indicator of file cache efficiency or page file activity, 254 * calculated as File Cache Page Fault Count - Page Read Count. 255 * This value is in pages. 256 * 257 * Some of these metrics are Windows specific and fortunately 258 * the algorithm on the host side that computes the guest memory 259 * pressure only uses num_committed value. 260 */ 261 262 struct dm_status { 263 struct dm_header hdr; 264 __u64 num_avail; 265 __u64 num_committed; 266 __u64 page_file_size; 267 __u64 zero_free; 268 __u32 page_file_writes; 269 __u32 io_diff; 270 } __packed; 271 272 273 /* 274 * Message to ask the guest to allocate memory - balloon up message. 275 * This message is sent from the host to the guest. The guest may not be 276 * able to allocate as much memory as requested. 277 * 278 * num_pages: number of pages to allocate. 279 */ 280 281 struct dm_balloon { 282 struct dm_header hdr; 283 __u32 num_pages; 284 __u32 reservedz; 285 } __packed; 286 287 288 /* 289 * Balloon response message; this message is sent from the guest 290 * to the host in response to the balloon message. 291 * 292 * reservedz: Reserved; must be set to zero. 293 * more_pages: If FALSE, this is the last message of the transaction. 294 * if TRUE there will atleast one more message from the guest. 295 * 296 * range_count: The number of ranges in the range array. 297 * 298 * range_array: An array of page ranges returned to the host. 299 * 300 */ 301 302 struct dm_balloon_response { 303 struct dm_header hdr; 304 __u32 reservedz; 305 __u32 more_pages:1; 306 __u32 range_count:31; 307 union dm_mem_page_range range_array[]; 308 } __packed; 309 310 /* 311 * Un-balloon message; this message is sent from the host 312 * to the guest to give guest more memory. 313 * 314 * more_pages: If FALSE, this is the last message of the transaction. 315 * if TRUE there will atleast one more message from the guest. 316 * 317 * reservedz: Reserved; must be set to zero. 318 * 319 * range_count: The number of ranges in the range array. 320 * 321 * range_array: An array of page ranges returned to the host. 322 * 323 */ 324 325 struct dm_unballoon_request { 326 struct dm_header hdr; 327 __u32 more_pages:1; 328 __u32 reservedz:31; 329 __u32 range_count; 330 union dm_mem_page_range range_array[]; 331 } __packed; 332 333 /* 334 * Un-balloon response message; this message is sent from the guest 335 * to the host in response to an unballoon request. 336 * 337 */ 338 339 struct dm_unballoon_response { 340 struct dm_header hdr; 341 } __packed; 342 343 344 /* 345 * Hot add request message. Message sent from the host to the guest. 346 * 347 * mem_range: Memory range to hot add. 348 * 349 */ 350 351 struct dm_hot_add { 352 struct dm_header hdr; 353 union dm_mem_page_range range; 354 } __packed; 355 356 /* 357 * Hot add response message. 358 * This message is sent by the guest to report the status of a hot add request. 359 * If page_count is less than the requested page count, then the host should 360 * assume all further hot add requests will fail, since this indicates that 361 * the guest has hit an upper physical memory barrier. 362 * 363 * Hot adds may also fail due to low resources; in this case, the guest must 364 * not complete this message until the hot add can succeed, and the host must 365 * not send a new hot add request until the response is sent. 366 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 367 * times it fails the request. 368 * 369 * 370 * page_count: number of pages that were successfully hot added. 371 * 372 * result: result of the operation 1: success, 0: failure. 373 * 374 */ 375 376 struct dm_hot_add_response { 377 struct dm_header hdr; 378 __u32 page_count; 379 __u32 result; 380 } __packed; 381 382 /* 383 * Types of information sent from host to the guest. 384 */ 385 386 enum dm_info_type { 387 INFO_TYPE_MAX_PAGE_CNT = 0, 388 MAX_INFO_TYPE 389 }; 390 391 392 /* 393 * Header for the information message. 394 */ 395 396 struct dm_info_header { 397 enum dm_info_type type; 398 __u32 data_size; 399 } __packed; 400 401 /* 402 * This message is sent from the host to the guest to pass 403 * some relevant information (win8 addition). 404 * 405 * reserved: no used. 406 * info_size: size of the information blob. 407 * info: information blob. 408 */ 409 410 struct dm_info_msg { 411 struct dm_header hdr; 412 __u32 reserved; 413 __u32 info_size; 414 __u8 info[]; 415 }; 416 417 /* 418 * End protocol definitions. 419 */ 420 421 /* 422 * State to manage hot adding memory into the guest. 423 * The range start_pfn : end_pfn specifies the range 424 * that the host has asked us to hot add. The range 425 * start_pfn : ha_end_pfn specifies the range that we have 426 * currently hot added. We hot add in multiples of 128M 427 * chunks; it is possible that we may not be able to bring 428 * online all the pages in the region. The range 429 * covered_start_pfn:covered_end_pfn defines the pages that can 430 * be brough online. 431 */ 432 433 struct hv_hotadd_state { 434 struct list_head list; 435 unsigned long start_pfn; 436 unsigned long covered_start_pfn; 437 unsigned long covered_end_pfn; 438 unsigned long ha_end_pfn; 439 unsigned long end_pfn; 440 /* 441 * A list of gaps. 442 */ 443 struct list_head gap_list; 444 }; 445 446 struct hv_hotadd_gap { 447 struct list_head list; 448 unsigned long start_pfn; 449 unsigned long end_pfn; 450 }; 451 452 struct balloon_state { 453 __u32 num_pages; 454 struct work_struct wrk; 455 }; 456 457 struct hot_add_wrk { 458 union dm_mem_page_range ha_page_range; 459 union dm_mem_page_range ha_region_range; 460 struct work_struct wrk; 461 }; 462 463 static bool allow_hibernation; 464 static bool hot_add = true; 465 static bool do_hot_add; 466 /* 467 * Delay reporting memory pressure by 468 * the specified number of seconds. 469 */ 470 static uint pressure_report_delay = 45; 471 472 /* 473 * The last time we posted a pressure report to host. 474 */ 475 static unsigned long last_post_time; 476 477 module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); 478 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 479 480 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); 481 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 482 static atomic_t trans_id = ATOMIC_INIT(0); 483 484 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024); 485 486 /* 487 * Driver specific state. 488 */ 489 490 enum hv_dm_state { 491 DM_INITIALIZING = 0, 492 DM_INITIALIZED, 493 DM_BALLOON_UP, 494 DM_BALLOON_DOWN, 495 DM_HOT_ADD, 496 DM_INIT_ERROR 497 }; 498 499 500 static __u8 recv_buffer[HV_HYP_PAGE_SIZE]; 501 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE]; 502 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE) 503 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE) 504 505 struct hv_dynmem_device { 506 struct hv_device *dev; 507 enum hv_dm_state state; 508 struct completion host_event; 509 struct completion config_event; 510 511 /* 512 * Number of pages we have currently ballooned out. 513 */ 514 unsigned int num_pages_ballooned; 515 unsigned int num_pages_onlined; 516 unsigned int num_pages_added; 517 518 /* 519 * State to manage the ballooning (up) operation. 520 */ 521 struct balloon_state balloon_wrk; 522 523 /* 524 * State to execute the "hot-add" operation. 525 */ 526 struct hot_add_wrk ha_wrk; 527 528 /* 529 * This state tracks if the host has specified a hot-add 530 * region. 531 */ 532 bool host_specified_ha_region; 533 534 /* 535 * State to synchronize hot-add. 536 */ 537 struct completion ol_waitevent; 538 /* 539 * This thread handles hot-add 540 * requests from the host as well as notifying 541 * the host with regards to memory pressure in 542 * the guest. 543 */ 544 struct task_struct *thread; 545 546 /* 547 * Protects ha_region_list, num_pages_onlined counter and individual 548 * regions from ha_region_list. 549 */ 550 spinlock_t ha_lock; 551 552 /* 553 * A list of hot-add regions. 554 */ 555 struct list_head ha_region_list; 556 557 /* 558 * We start with the highest version we can support 559 * and downgrade based on the host; we save here the 560 * next version to try. 561 */ 562 __u32 next_version; 563 564 /* 565 * The negotiated version agreed by host. 566 */ 567 __u32 version; 568 569 struct page_reporting_dev_info pr_dev_info; 570 }; 571 572 static struct hv_dynmem_device dm_device; 573 574 static void post_status(struct hv_dynmem_device *dm); 575 576 #ifdef CONFIG_MEMORY_HOTPLUG 577 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has, 578 unsigned long pfn) 579 { 580 struct hv_hotadd_gap *gap; 581 582 /* The page is not backed. */ 583 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn)) 584 return false; 585 586 /* Check for gaps. */ 587 list_for_each_entry(gap, &has->gap_list, list) { 588 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn)) 589 return false; 590 } 591 592 return true; 593 } 594 595 static unsigned long hv_page_offline_check(unsigned long start_pfn, 596 unsigned long nr_pages) 597 { 598 unsigned long pfn = start_pfn, count = 0; 599 struct hv_hotadd_state *has; 600 bool found; 601 602 while (pfn < start_pfn + nr_pages) { 603 /* 604 * Search for HAS which covers the pfn and when we find one 605 * count how many consequitive PFNs are covered. 606 */ 607 found = false; 608 list_for_each_entry(has, &dm_device.ha_region_list, list) { 609 while ((pfn >= has->start_pfn) && 610 (pfn < has->end_pfn) && 611 (pfn < start_pfn + nr_pages)) { 612 found = true; 613 if (has_pfn_is_backed(has, pfn)) 614 count++; 615 pfn++; 616 } 617 } 618 619 /* 620 * This PFN is not in any HAS (e.g. we're offlining a region 621 * which was present at boot), no need to account for it. Go 622 * to the next one. 623 */ 624 if (!found) 625 pfn++; 626 } 627 628 return count; 629 } 630 631 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 632 void *v) 633 { 634 struct memory_notify *mem = (struct memory_notify *)v; 635 unsigned long flags, pfn_count; 636 637 switch (val) { 638 case MEM_ONLINE: 639 case MEM_CANCEL_ONLINE: 640 complete(&dm_device.ol_waitevent); 641 break; 642 643 case MEM_OFFLINE: 644 spin_lock_irqsave(&dm_device.ha_lock, flags); 645 pfn_count = hv_page_offline_check(mem->start_pfn, 646 mem->nr_pages); 647 if (pfn_count <= dm_device.num_pages_onlined) { 648 dm_device.num_pages_onlined -= pfn_count; 649 } else { 650 /* 651 * We're offlining more pages than we managed to online. 652 * This is unexpected. In any case don't let 653 * num_pages_onlined wrap around zero. 654 */ 655 WARN_ON_ONCE(1); 656 dm_device.num_pages_onlined = 0; 657 } 658 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 659 break; 660 case MEM_GOING_ONLINE: 661 case MEM_GOING_OFFLINE: 662 case MEM_CANCEL_OFFLINE: 663 break; 664 } 665 return NOTIFY_OK; 666 } 667 668 static struct notifier_block hv_memory_nb = { 669 .notifier_call = hv_memory_notifier, 670 .priority = 0 671 }; 672 673 /* Check if the particular page is backed and can be onlined and online it. */ 674 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) 675 { 676 if (!has_pfn_is_backed(has, page_to_pfn(pg))) { 677 if (!PageOffline(pg)) 678 __SetPageOffline(pg); 679 return; 680 } 681 if (PageOffline(pg)) 682 __ClearPageOffline(pg); 683 684 /* This frame is currently backed; online the page. */ 685 generic_online_page(pg, 0); 686 687 lockdep_assert_held(&dm_device.ha_lock); 688 dm_device.num_pages_onlined++; 689 } 690 691 static void hv_bring_pgs_online(struct hv_hotadd_state *has, 692 unsigned long start_pfn, unsigned long size) 693 { 694 int i; 695 696 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn); 697 for (i = 0; i < size; i++) 698 hv_page_online_one(has, pfn_to_page(start_pfn + i)); 699 } 700 701 static void hv_mem_hot_add(unsigned long start, unsigned long size, 702 unsigned long pfn_count, 703 struct hv_hotadd_state *has) 704 { 705 int ret = 0; 706 int i, nid; 707 unsigned long start_pfn; 708 unsigned long processed_pfn; 709 unsigned long total_pfn = pfn_count; 710 unsigned long flags; 711 712 for (i = 0; i < (size/HA_CHUNK); i++) { 713 start_pfn = start + (i * HA_CHUNK); 714 715 spin_lock_irqsave(&dm_device.ha_lock, flags); 716 has->ha_end_pfn += HA_CHUNK; 717 718 if (total_pfn > HA_CHUNK) { 719 processed_pfn = HA_CHUNK; 720 total_pfn -= HA_CHUNK; 721 } else { 722 processed_pfn = total_pfn; 723 total_pfn = 0; 724 } 725 726 has->covered_end_pfn += processed_pfn; 727 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 728 729 reinit_completion(&dm_device.ol_waitevent); 730 731 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 732 ret = add_memory(nid, PFN_PHYS((start_pfn)), 733 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE); 734 735 if (ret) { 736 pr_err("hot_add memory failed error is %d\n", ret); 737 if (ret == -EEXIST) { 738 /* 739 * This error indicates that the error 740 * is not a transient failure. This is the 741 * case where the guest's physical address map 742 * precludes hot adding memory. Stop all further 743 * memory hot-add. 744 */ 745 do_hot_add = false; 746 } 747 spin_lock_irqsave(&dm_device.ha_lock, flags); 748 has->ha_end_pfn -= HA_CHUNK; 749 has->covered_end_pfn -= processed_pfn; 750 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 751 break; 752 } 753 754 /* 755 * Wait for memory to get onlined. If the kernel onlined the 756 * memory when adding it, this will return directly. Otherwise, 757 * it will wait for user space to online the memory. This helps 758 * to avoid adding memory faster than it is getting onlined. As 759 * adding succeeded, it is ok to proceed even if the memory was 760 * not onlined in time. 761 */ 762 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ); 763 post_status(&dm_device); 764 } 765 } 766 767 static void hv_online_page(struct page *pg, unsigned int order) 768 { 769 struct hv_hotadd_state *has; 770 unsigned long flags; 771 unsigned long pfn = page_to_pfn(pg); 772 773 spin_lock_irqsave(&dm_device.ha_lock, flags); 774 list_for_each_entry(has, &dm_device.ha_region_list, list) { 775 /* The page belongs to a different HAS. */ 776 if ((pfn < has->start_pfn) || 777 (pfn + (1UL << order) > has->end_pfn)) 778 continue; 779 780 hv_bring_pgs_online(has, pfn, 1UL << order); 781 break; 782 } 783 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 784 } 785 786 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 787 { 788 struct hv_hotadd_state *has; 789 struct hv_hotadd_gap *gap; 790 unsigned long residual, new_inc; 791 int ret = 0; 792 unsigned long flags; 793 794 spin_lock_irqsave(&dm_device.ha_lock, flags); 795 list_for_each_entry(has, &dm_device.ha_region_list, list) { 796 /* 797 * If the pfn range we are dealing with is not in the current 798 * "hot add block", move on. 799 */ 800 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 801 continue; 802 803 /* 804 * If the current start pfn is not where the covered_end 805 * is, create a gap and update covered_end_pfn. 806 */ 807 if (has->covered_end_pfn != start_pfn) { 808 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); 809 if (!gap) { 810 ret = -ENOMEM; 811 break; 812 } 813 814 INIT_LIST_HEAD(&gap->list); 815 gap->start_pfn = has->covered_end_pfn; 816 gap->end_pfn = start_pfn; 817 list_add_tail(&gap->list, &has->gap_list); 818 819 has->covered_end_pfn = start_pfn; 820 } 821 822 /* 823 * If the current hot add-request extends beyond 824 * our current limit; extend it. 825 */ 826 if ((start_pfn + pfn_cnt) > has->end_pfn) { 827 residual = (start_pfn + pfn_cnt - has->end_pfn); 828 /* 829 * Extend the region by multiples of HA_CHUNK. 830 */ 831 new_inc = (residual / HA_CHUNK) * HA_CHUNK; 832 if (residual % HA_CHUNK) 833 new_inc += HA_CHUNK; 834 835 has->end_pfn += new_inc; 836 } 837 838 ret = 1; 839 break; 840 } 841 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 842 843 return ret; 844 } 845 846 static unsigned long handle_pg_range(unsigned long pg_start, 847 unsigned long pg_count) 848 { 849 unsigned long start_pfn = pg_start; 850 unsigned long pfn_cnt = pg_count; 851 unsigned long size; 852 struct hv_hotadd_state *has; 853 unsigned long pgs_ol = 0; 854 unsigned long old_covered_state; 855 unsigned long res = 0, flags; 856 857 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count, 858 pg_start); 859 860 spin_lock_irqsave(&dm_device.ha_lock, flags); 861 list_for_each_entry(has, &dm_device.ha_region_list, list) { 862 /* 863 * If the pfn range we are dealing with is not in the current 864 * "hot add block", move on. 865 */ 866 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 867 continue; 868 869 old_covered_state = has->covered_end_pfn; 870 871 if (start_pfn < has->ha_end_pfn) { 872 /* 873 * This is the case where we are backing pages 874 * in an already hot added region. Bring 875 * these pages online first. 876 */ 877 pgs_ol = has->ha_end_pfn - start_pfn; 878 if (pgs_ol > pfn_cnt) 879 pgs_ol = pfn_cnt; 880 881 has->covered_end_pfn += pgs_ol; 882 pfn_cnt -= pgs_ol; 883 /* 884 * Check if the corresponding memory block is already 885 * online. It is possible to observe struct pages still 886 * being uninitialized here so check section instead. 887 * In case the section is online we need to bring the 888 * rest of pfns (which were not backed previously) 889 * online too. 890 */ 891 if (start_pfn > has->start_pfn && 892 online_section_nr(pfn_to_section_nr(start_pfn))) 893 hv_bring_pgs_online(has, start_pfn, pgs_ol); 894 895 } 896 897 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { 898 /* 899 * We have some residual hot add range 900 * that needs to be hot added; hot add 901 * it now. Hot add a multiple of 902 * of HA_CHUNK that fully covers the pages 903 * we have. 904 */ 905 size = (has->end_pfn - has->ha_end_pfn); 906 if (pfn_cnt <= size) { 907 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); 908 if (pfn_cnt % HA_CHUNK) 909 size += HA_CHUNK; 910 } else { 911 pfn_cnt = size; 912 } 913 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 914 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 915 spin_lock_irqsave(&dm_device.ha_lock, flags); 916 } 917 /* 918 * If we managed to online any pages that were given to us, 919 * we declare success. 920 */ 921 res = has->covered_end_pfn - old_covered_state; 922 break; 923 } 924 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 925 926 return res; 927 } 928 929 static unsigned long process_hot_add(unsigned long pg_start, 930 unsigned long pfn_cnt, 931 unsigned long rg_start, 932 unsigned long rg_size) 933 { 934 struct hv_hotadd_state *ha_region = NULL; 935 int covered; 936 unsigned long flags; 937 938 if (pfn_cnt == 0) 939 return 0; 940 941 if (!dm_device.host_specified_ha_region) { 942 covered = pfn_covered(pg_start, pfn_cnt); 943 if (covered < 0) 944 return 0; 945 946 if (covered) 947 goto do_pg_range; 948 } 949 950 /* 951 * If the host has specified a hot-add range; deal with it first. 952 */ 953 954 if (rg_size != 0) { 955 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 956 if (!ha_region) 957 return 0; 958 959 INIT_LIST_HEAD(&ha_region->list); 960 INIT_LIST_HEAD(&ha_region->gap_list); 961 962 ha_region->start_pfn = rg_start; 963 ha_region->ha_end_pfn = rg_start; 964 ha_region->covered_start_pfn = pg_start; 965 ha_region->covered_end_pfn = pg_start; 966 ha_region->end_pfn = rg_start + rg_size; 967 968 spin_lock_irqsave(&dm_device.ha_lock, flags); 969 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 970 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 971 } 972 973 do_pg_range: 974 /* 975 * Process the page range specified; bringing them 976 * online if possible. 977 */ 978 return handle_pg_range(pg_start, pfn_cnt); 979 } 980 981 #endif 982 983 static void hot_add_req(struct work_struct *dummy) 984 { 985 struct dm_hot_add_response resp; 986 #ifdef CONFIG_MEMORY_HOTPLUG 987 unsigned long pg_start, pfn_cnt; 988 unsigned long rg_start, rg_sz; 989 #endif 990 struct hv_dynmem_device *dm = &dm_device; 991 992 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 993 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 994 resp.hdr.size = sizeof(struct dm_hot_add_response); 995 996 #ifdef CONFIG_MEMORY_HOTPLUG 997 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 998 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 999 1000 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 1001 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 1002 1003 if ((rg_start == 0) && (!dm->host_specified_ha_region)) { 1004 unsigned long region_size; 1005 unsigned long region_start; 1006 1007 /* 1008 * The host has not specified the hot-add region. 1009 * Based on the hot-add page range being specified, 1010 * compute a hot-add region that can cover the pages 1011 * that need to be hot-added while ensuring the alignment 1012 * and size requirements of Linux as it relates to hot-add. 1013 */ 1014 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; 1015 if (pfn_cnt % HA_CHUNK) 1016 region_size += HA_CHUNK; 1017 1018 region_start = (pg_start / HA_CHUNK) * HA_CHUNK; 1019 1020 rg_start = region_start; 1021 rg_sz = region_size; 1022 } 1023 1024 if (do_hot_add) 1025 resp.page_count = process_hot_add(pg_start, pfn_cnt, 1026 rg_start, rg_sz); 1027 1028 dm->num_pages_added += resp.page_count; 1029 #endif 1030 /* 1031 * The result field of the response structure has the 1032 * following semantics: 1033 * 1034 * 1. If all or some pages hot-added: Guest should return success. 1035 * 1036 * 2. If no pages could be hot-added: 1037 * 1038 * If the guest returns success, then the host 1039 * will not attempt any further hot-add operations. This 1040 * signifies a permanent failure. 1041 * 1042 * If the guest returns failure, then this failure will be 1043 * treated as a transient failure and the host may retry the 1044 * hot-add operation after some delay. 1045 */ 1046 if (resp.page_count > 0) 1047 resp.result = 1; 1048 else if (!do_hot_add) 1049 resp.result = 1; 1050 else 1051 resp.result = 0; 1052 1053 if (!do_hot_add || resp.page_count == 0) { 1054 if (!allow_hibernation) 1055 pr_err("Memory hot add failed\n"); 1056 else 1057 pr_info("Ignore hot-add request!\n"); 1058 } 1059 1060 dm->state = DM_INITIALIZED; 1061 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1062 vmbus_sendpacket(dm->dev->channel, &resp, 1063 sizeof(struct dm_hot_add_response), 1064 (unsigned long)NULL, 1065 VM_PKT_DATA_INBAND, 0); 1066 } 1067 1068 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 1069 { 1070 struct dm_info_header *info_hdr; 1071 1072 info_hdr = (struct dm_info_header *)msg->info; 1073 1074 switch (info_hdr->type) { 1075 case INFO_TYPE_MAX_PAGE_CNT: 1076 if (info_hdr->data_size == sizeof(__u64)) { 1077 __u64 *max_page_count = (__u64 *)&info_hdr[1]; 1078 1079 pr_info("Max. dynamic memory size: %llu MB\n", 1080 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT)); 1081 } 1082 1083 break; 1084 default: 1085 pr_warn("Received Unknown type: %d\n", info_hdr->type); 1086 } 1087 } 1088 1089 static unsigned long compute_balloon_floor(void) 1090 { 1091 unsigned long min_pages; 1092 unsigned long nr_pages = totalram_pages(); 1093 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 1094 /* Simple continuous piecewiese linear function: 1095 * max MiB -> min MiB gradient 1096 * 0 0 1097 * 16 16 1098 * 32 24 1099 * 128 72 (1/2) 1100 * 512 168 (1/4) 1101 * 2048 360 (1/8) 1102 * 8192 744 (1/16) 1103 * 32768 1512 (1/32) 1104 */ 1105 if (nr_pages < MB2PAGES(128)) 1106 min_pages = MB2PAGES(8) + (nr_pages >> 1); 1107 else if (nr_pages < MB2PAGES(512)) 1108 min_pages = MB2PAGES(40) + (nr_pages >> 2); 1109 else if (nr_pages < MB2PAGES(2048)) 1110 min_pages = MB2PAGES(104) + (nr_pages >> 3); 1111 else if (nr_pages < MB2PAGES(8192)) 1112 min_pages = MB2PAGES(232) + (nr_pages >> 4); 1113 else 1114 min_pages = MB2PAGES(488) + (nr_pages >> 5); 1115 #undef MB2PAGES 1116 return min_pages; 1117 } 1118 1119 /* 1120 * Post our status as it relates memory pressure to the 1121 * host. Host expects the guests to post this status 1122 * periodically at 1 second intervals. 1123 * 1124 * The metrics specified in this protocol are very Windows 1125 * specific and so we cook up numbers here to convey our memory 1126 * pressure. 1127 */ 1128 1129 static void post_status(struct hv_dynmem_device *dm) 1130 { 1131 struct dm_status status; 1132 unsigned long now = jiffies; 1133 unsigned long last_post = last_post_time; 1134 unsigned long num_pages_avail, num_pages_committed; 1135 1136 if (pressure_report_delay > 0) { 1137 --pressure_report_delay; 1138 return; 1139 } 1140 1141 if (!time_after(now, (last_post_time + HZ))) 1142 return; 1143 1144 memset(&status, 0, sizeof(struct dm_status)); 1145 status.hdr.type = DM_STATUS_REPORT; 1146 status.hdr.size = sizeof(struct dm_status); 1147 status.hdr.trans_id = atomic_inc_return(&trans_id); 1148 1149 /* 1150 * The host expects the guest to report free and committed memory. 1151 * Furthermore, the host expects the pressure information to include 1152 * the ballooned out pages. For a given amount of memory that we are 1153 * managing we need to compute a floor below which we should not 1154 * balloon. Compute this and add it to the pressure report. 1155 * We also need to report all offline pages (num_pages_added - 1156 * num_pages_onlined) as committed to the host, otherwise it can try 1157 * asking us to balloon them out. 1158 */ 1159 num_pages_avail = si_mem_available(); 1160 num_pages_committed = vm_memory_committed() + 1161 dm->num_pages_ballooned + 1162 (dm->num_pages_added > dm->num_pages_onlined ? 1163 dm->num_pages_added - dm->num_pages_onlined : 0) + 1164 compute_balloon_floor(); 1165 1166 trace_balloon_status(num_pages_avail, num_pages_committed, 1167 vm_memory_committed(), dm->num_pages_ballooned, 1168 dm->num_pages_added, dm->num_pages_onlined); 1169 1170 /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */ 1171 status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE; 1172 status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE; 1173 1174 /* 1175 * If our transaction ID is no longer current, just don't 1176 * send the status. This can happen if we were interrupted 1177 * after we picked our transaction ID. 1178 */ 1179 if (status.hdr.trans_id != atomic_read(&trans_id)) 1180 return; 1181 1182 /* 1183 * If the last post time that we sampled has changed, 1184 * we have raced, don't post the status. 1185 */ 1186 if (last_post != last_post_time) 1187 return; 1188 1189 last_post_time = jiffies; 1190 vmbus_sendpacket(dm->dev->channel, &status, 1191 sizeof(struct dm_status), 1192 (unsigned long)NULL, 1193 VM_PKT_DATA_INBAND, 0); 1194 1195 } 1196 1197 static void free_balloon_pages(struct hv_dynmem_device *dm, 1198 union dm_mem_page_range *range_array) 1199 { 1200 int num_pages = range_array->finfo.page_cnt; 1201 __u64 start_frame = range_array->finfo.start_page; 1202 struct page *pg; 1203 int i; 1204 1205 for (i = 0; i < num_pages; i++) { 1206 pg = pfn_to_page(i + start_frame); 1207 __ClearPageOffline(pg); 1208 __free_page(pg); 1209 dm->num_pages_ballooned--; 1210 adjust_managed_page_count(pg, 1); 1211 } 1212 } 1213 1214 1215 1216 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, 1217 unsigned int num_pages, 1218 struct dm_balloon_response *bl_resp, 1219 int alloc_unit) 1220 { 1221 unsigned int i, j; 1222 struct page *pg; 1223 1224 for (i = 0; i < num_pages / alloc_unit; i++) { 1225 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1226 HV_HYP_PAGE_SIZE) 1227 return i * alloc_unit; 1228 1229 /* 1230 * We execute this code in a thread context. Furthermore, 1231 * we don't want the kernel to try too hard. 1232 */ 1233 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1234 __GFP_NOMEMALLOC | __GFP_NOWARN, 1235 get_order(alloc_unit << PAGE_SHIFT)); 1236 1237 if (!pg) 1238 return i * alloc_unit; 1239 1240 dm->num_pages_ballooned += alloc_unit; 1241 1242 /* 1243 * If we allocatted 2M pages; split them so we 1244 * can free them in any order we get. 1245 */ 1246 1247 if (alloc_unit != 1) 1248 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1249 1250 /* mark all pages offline */ 1251 for (j = 0; j < alloc_unit; j++) { 1252 __SetPageOffline(pg + j); 1253 adjust_managed_page_count(pg + j, -1); 1254 } 1255 1256 bl_resp->range_count++; 1257 bl_resp->range_array[i].finfo.start_page = 1258 page_to_pfn(pg); 1259 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1260 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1261 1262 } 1263 1264 return i * alloc_unit; 1265 } 1266 1267 static void balloon_up(struct work_struct *dummy) 1268 { 1269 unsigned int num_pages = dm_device.balloon_wrk.num_pages; 1270 unsigned int num_ballooned = 0; 1271 struct dm_balloon_response *bl_resp; 1272 int alloc_unit; 1273 int ret; 1274 bool done = false; 1275 int i; 1276 long avail_pages; 1277 unsigned long floor; 1278 1279 /* 1280 * We will attempt 2M allocations. However, if we fail to 1281 * allocate 2M chunks, we will go back to PAGE_SIZE allocations. 1282 */ 1283 alloc_unit = PAGES_IN_2M; 1284 1285 avail_pages = si_mem_available(); 1286 floor = compute_balloon_floor(); 1287 1288 /* Refuse to balloon below the floor. */ 1289 if (avail_pages < num_pages || avail_pages - num_pages < floor) { 1290 pr_info("Balloon request will be partially fulfilled. %s\n", 1291 avail_pages < num_pages ? "Not enough memory." : 1292 "Balloon floor reached."); 1293 1294 num_pages = avail_pages > floor ? (avail_pages - floor) : 0; 1295 } 1296 1297 while (!done) { 1298 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE); 1299 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer; 1300 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1301 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1302 bl_resp->more_pages = 1; 1303 1304 num_pages -= num_ballooned; 1305 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1306 bl_resp, alloc_unit); 1307 1308 if (alloc_unit != 1 && num_ballooned == 0) { 1309 alloc_unit = 1; 1310 continue; 1311 } 1312 1313 if (num_ballooned == 0 || num_ballooned == num_pages) { 1314 pr_debug("Ballooned %u out of %u requested pages.\n", 1315 num_pages, dm_device.balloon_wrk.num_pages); 1316 1317 bl_resp->more_pages = 0; 1318 done = true; 1319 dm_device.state = DM_INITIALIZED; 1320 } 1321 1322 /* 1323 * We are pushing a lot of data through the channel; 1324 * deal with transient failures caused because of the 1325 * lack of space in the ring buffer. 1326 */ 1327 1328 do { 1329 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1330 ret = vmbus_sendpacket(dm_device.dev->channel, 1331 bl_resp, 1332 bl_resp->hdr.size, 1333 (unsigned long)NULL, 1334 VM_PKT_DATA_INBAND, 0); 1335 1336 if (ret == -EAGAIN) 1337 msleep(20); 1338 post_status(&dm_device); 1339 } while (ret == -EAGAIN); 1340 1341 if (ret) { 1342 /* 1343 * Free up the memory we allocatted. 1344 */ 1345 pr_err("Balloon response failed\n"); 1346 1347 for (i = 0; i < bl_resp->range_count; i++) 1348 free_balloon_pages(&dm_device, 1349 &bl_resp->range_array[i]); 1350 1351 done = true; 1352 } 1353 } 1354 1355 } 1356 1357 static void balloon_down(struct hv_dynmem_device *dm, 1358 struct dm_unballoon_request *req) 1359 { 1360 union dm_mem_page_range *range_array = req->range_array; 1361 int range_count = req->range_count; 1362 struct dm_unballoon_response resp; 1363 int i; 1364 unsigned int prev_pages_ballooned = dm->num_pages_ballooned; 1365 1366 for (i = 0; i < range_count; i++) { 1367 free_balloon_pages(dm, &range_array[i]); 1368 complete(&dm_device.config_event); 1369 } 1370 1371 pr_debug("Freed %u ballooned pages.\n", 1372 prev_pages_ballooned - dm->num_pages_ballooned); 1373 1374 if (req->more_pages == 1) 1375 return; 1376 1377 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1378 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1379 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1380 resp.hdr.size = sizeof(struct dm_unballoon_response); 1381 1382 vmbus_sendpacket(dm_device.dev->channel, &resp, 1383 sizeof(struct dm_unballoon_response), 1384 (unsigned long)NULL, 1385 VM_PKT_DATA_INBAND, 0); 1386 1387 dm->state = DM_INITIALIZED; 1388 } 1389 1390 static void balloon_onchannelcallback(void *context); 1391 1392 static int dm_thread_func(void *dm_dev) 1393 { 1394 struct hv_dynmem_device *dm = dm_dev; 1395 1396 while (!kthread_should_stop()) { 1397 wait_for_completion_interruptible_timeout( 1398 &dm_device.config_event, 1*HZ); 1399 /* 1400 * The host expects us to post information on the memory 1401 * pressure every second. 1402 */ 1403 reinit_completion(&dm_device.config_event); 1404 post_status(dm); 1405 } 1406 1407 return 0; 1408 } 1409 1410 1411 static void version_resp(struct hv_dynmem_device *dm, 1412 struct dm_version_response *vresp) 1413 { 1414 struct dm_version_request version_req; 1415 int ret; 1416 1417 if (vresp->is_accepted) { 1418 /* 1419 * We are done; wakeup the 1420 * context waiting for version 1421 * negotiation. 1422 */ 1423 complete(&dm->host_event); 1424 return; 1425 } 1426 /* 1427 * If there are more versions to try, continue 1428 * with negotiations; if not 1429 * shutdown the service since we are not able 1430 * to negotiate a suitable version number 1431 * with the host. 1432 */ 1433 if (dm->next_version == 0) 1434 goto version_error; 1435 1436 memset(&version_req, 0, sizeof(struct dm_version_request)); 1437 version_req.hdr.type = DM_VERSION_REQUEST; 1438 version_req.hdr.size = sizeof(struct dm_version_request); 1439 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1440 version_req.version.version = dm->next_version; 1441 dm->version = version_req.version.version; 1442 1443 /* 1444 * Set the next version to try in case current version fails. 1445 * Win7 protocol ought to be the last one to try. 1446 */ 1447 switch (version_req.version.version) { 1448 case DYNMEM_PROTOCOL_VERSION_WIN8: 1449 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1450 version_req.is_last_attempt = 0; 1451 break; 1452 default: 1453 dm->next_version = 0; 1454 version_req.is_last_attempt = 1; 1455 } 1456 1457 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1458 sizeof(struct dm_version_request), 1459 (unsigned long)NULL, 1460 VM_PKT_DATA_INBAND, 0); 1461 1462 if (ret) 1463 goto version_error; 1464 1465 return; 1466 1467 version_error: 1468 dm->state = DM_INIT_ERROR; 1469 complete(&dm->host_event); 1470 } 1471 1472 static void cap_resp(struct hv_dynmem_device *dm, 1473 struct dm_capabilities_resp_msg *cap_resp) 1474 { 1475 if (!cap_resp->is_accepted) { 1476 pr_err("Capabilities not accepted by host\n"); 1477 dm->state = DM_INIT_ERROR; 1478 } 1479 complete(&dm->host_event); 1480 } 1481 1482 static void balloon_onchannelcallback(void *context) 1483 { 1484 struct hv_device *dev = context; 1485 u32 recvlen; 1486 u64 requestid; 1487 struct dm_message *dm_msg; 1488 struct dm_header *dm_hdr; 1489 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1490 struct dm_balloon *bal_msg; 1491 struct dm_hot_add *ha_msg; 1492 union dm_mem_page_range *ha_pg_range; 1493 union dm_mem_page_range *ha_region; 1494 1495 memset(recv_buffer, 0, sizeof(recv_buffer)); 1496 vmbus_recvpacket(dev->channel, recv_buffer, 1497 HV_HYP_PAGE_SIZE, &recvlen, &requestid); 1498 1499 if (recvlen > 0) { 1500 dm_msg = (struct dm_message *)recv_buffer; 1501 dm_hdr = &dm_msg->hdr; 1502 1503 switch (dm_hdr->type) { 1504 case DM_VERSION_RESPONSE: 1505 version_resp(dm, 1506 (struct dm_version_response *)dm_msg); 1507 break; 1508 1509 case DM_CAPABILITIES_RESPONSE: 1510 cap_resp(dm, 1511 (struct dm_capabilities_resp_msg *)dm_msg); 1512 break; 1513 1514 case DM_BALLOON_REQUEST: 1515 if (allow_hibernation) { 1516 pr_info("Ignore balloon-up request!\n"); 1517 break; 1518 } 1519 1520 if (dm->state == DM_BALLOON_UP) 1521 pr_warn("Currently ballooning\n"); 1522 bal_msg = (struct dm_balloon *)recv_buffer; 1523 dm->state = DM_BALLOON_UP; 1524 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1525 schedule_work(&dm_device.balloon_wrk.wrk); 1526 break; 1527 1528 case DM_UNBALLOON_REQUEST: 1529 if (allow_hibernation) { 1530 pr_info("Ignore balloon-down request!\n"); 1531 break; 1532 } 1533 1534 dm->state = DM_BALLOON_DOWN; 1535 balloon_down(dm, 1536 (struct dm_unballoon_request *)recv_buffer); 1537 break; 1538 1539 case DM_MEM_HOT_ADD_REQUEST: 1540 if (dm->state == DM_HOT_ADD) 1541 pr_warn("Currently hot-adding\n"); 1542 dm->state = DM_HOT_ADD; 1543 ha_msg = (struct dm_hot_add *)recv_buffer; 1544 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1545 /* 1546 * This is a normal hot-add request specifying 1547 * hot-add memory. 1548 */ 1549 dm->host_specified_ha_region = false; 1550 ha_pg_range = &ha_msg->range; 1551 dm->ha_wrk.ha_page_range = *ha_pg_range; 1552 dm->ha_wrk.ha_region_range.page_range = 0; 1553 } else { 1554 /* 1555 * Host is specifying that we first hot-add 1556 * a region and then partially populate this 1557 * region. 1558 */ 1559 dm->host_specified_ha_region = true; 1560 ha_pg_range = &ha_msg->range; 1561 ha_region = &ha_pg_range[1]; 1562 dm->ha_wrk.ha_page_range = *ha_pg_range; 1563 dm->ha_wrk.ha_region_range = *ha_region; 1564 } 1565 schedule_work(&dm_device.ha_wrk.wrk); 1566 break; 1567 1568 case DM_INFO_MESSAGE: 1569 process_info(dm, (struct dm_info_msg *)dm_msg); 1570 break; 1571 1572 default: 1573 pr_warn("Unhandled message: type: %d\n", dm_hdr->type); 1574 1575 } 1576 } 1577 1578 } 1579 1580 /* Hyper-V only supports reporting 2MB pages or higher */ 1581 #define HV_MIN_PAGE_REPORTING_ORDER 9 1582 #define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER) 1583 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info, 1584 struct scatterlist *sgl, unsigned int nents) 1585 { 1586 unsigned long flags; 1587 struct hv_memory_hint *hint; 1588 int i; 1589 u64 status; 1590 struct scatterlist *sg; 1591 1592 WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES); 1593 WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN); 1594 local_irq_save(flags); 1595 hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg); 1596 if (!hint) { 1597 local_irq_restore(flags); 1598 return -ENOSPC; 1599 } 1600 1601 hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD; 1602 hint->reserved = 0; 1603 for_each_sg(sgl, sg, nents, i) { 1604 union hv_gpa_page_range *range; 1605 1606 range = &hint->ranges[i]; 1607 range->address_space = 0; 1608 /* page reporting only reports 2MB pages or higher */ 1609 range->page.largepage = 1; 1610 range->page.additional_pages = 1611 (sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1; 1612 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB; 1613 range->base_large_pfn = 1614 page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER; 1615 } 1616 1617 status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0, 1618 hint, NULL); 1619 local_irq_restore(flags); 1620 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) { 1621 pr_err("Cold memory discard hypercall failed with status %llx\n", 1622 status); 1623 return -EINVAL; 1624 } 1625 1626 return 0; 1627 } 1628 1629 static void enable_page_reporting(void) 1630 { 1631 int ret; 1632 1633 /* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */ 1634 if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) { 1635 pr_debug("Cold memory discard is only supported on 2MB pages and above\n"); 1636 return; 1637 } 1638 1639 if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) { 1640 pr_debug("Cold memory discard hint not supported by Hyper-V\n"); 1641 return; 1642 } 1643 1644 BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES); 1645 dm_device.pr_dev_info.report = hv_free_page_report; 1646 ret = page_reporting_register(&dm_device.pr_dev_info); 1647 if (ret < 0) { 1648 dm_device.pr_dev_info.report = NULL; 1649 pr_err("Failed to enable cold memory discard: %d\n", ret); 1650 } else { 1651 pr_info("Cold memory discard hint enabled\n"); 1652 } 1653 } 1654 1655 static void disable_page_reporting(void) 1656 { 1657 if (dm_device.pr_dev_info.report) { 1658 page_reporting_unregister(&dm_device.pr_dev_info); 1659 dm_device.pr_dev_info.report = NULL; 1660 } 1661 } 1662 1663 static int balloon_connect_vsp(struct hv_device *dev) 1664 { 1665 struct dm_version_request version_req; 1666 struct dm_capabilities cap_msg; 1667 unsigned long t; 1668 int ret; 1669 1670 /* 1671 * max_pkt_size should be large enough for one vmbus packet header plus 1672 * our receive buffer size. Hyper-V sends messages up to 1673 * HV_HYP_PAGE_SIZE bytes long on balloon channel. 1674 */ 1675 dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2; 1676 1677 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1678 balloon_onchannelcallback, dev); 1679 if (ret) 1680 return ret; 1681 1682 /* 1683 * Initiate the hand shake with the host and negotiate 1684 * a version that the host can support. We start with the 1685 * highest version number and go down if the host cannot 1686 * support it. 1687 */ 1688 memset(&version_req, 0, sizeof(struct dm_version_request)); 1689 version_req.hdr.type = DM_VERSION_REQUEST; 1690 version_req.hdr.size = sizeof(struct dm_version_request); 1691 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1692 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; 1693 version_req.is_last_attempt = 0; 1694 dm_device.version = version_req.version.version; 1695 1696 ret = vmbus_sendpacket(dev->channel, &version_req, 1697 sizeof(struct dm_version_request), 1698 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); 1699 if (ret) 1700 goto out; 1701 1702 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1703 if (t == 0) { 1704 ret = -ETIMEDOUT; 1705 goto out; 1706 } 1707 1708 /* 1709 * If we could not negotiate a compatible version with the host 1710 * fail the probe function. 1711 */ 1712 if (dm_device.state == DM_INIT_ERROR) { 1713 ret = -EPROTO; 1714 goto out; 1715 } 1716 1717 pr_info("Using Dynamic Memory protocol version %u.%u\n", 1718 DYNMEM_MAJOR_VERSION(dm_device.version), 1719 DYNMEM_MINOR_VERSION(dm_device.version)); 1720 1721 /* 1722 * Now submit our capabilities to the host. 1723 */ 1724 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1725 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1726 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1727 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1728 1729 /* 1730 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host 1731 * currently still requires the bits to be set, so we have to add code 1732 * to fail the host's hot-add and balloon up/down requests, if any. 1733 */ 1734 cap_msg.caps.cap_bits.balloon = 1; 1735 cap_msg.caps.cap_bits.hot_add = 1; 1736 1737 /* 1738 * Specify our alignment requirements as it relates 1739 * memory hot-add. Specify 128MB alignment. 1740 */ 1741 cap_msg.caps.cap_bits.hot_add_alignment = 7; 1742 1743 /* 1744 * Currently the host does not use these 1745 * values and we set them to what is done in the 1746 * Windows driver. 1747 */ 1748 cap_msg.min_page_cnt = 0; 1749 cap_msg.max_page_number = -1; 1750 1751 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1752 sizeof(struct dm_capabilities), 1753 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); 1754 if (ret) 1755 goto out; 1756 1757 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1758 if (t == 0) { 1759 ret = -ETIMEDOUT; 1760 goto out; 1761 } 1762 1763 /* 1764 * If the host does not like our capabilities, 1765 * fail the probe function. 1766 */ 1767 if (dm_device.state == DM_INIT_ERROR) { 1768 ret = -EPROTO; 1769 goto out; 1770 } 1771 1772 return 0; 1773 out: 1774 vmbus_close(dev->channel); 1775 return ret; 1776 } 1777 1778 static int balloon_probe(struct hv_device *dev, 1779 const struct hv_vmbus_device_id *dev_id) 1780 { 1781 int ret; 1782 1783 allow_hibernation = hv_is_hibernation_supported(); 1784 if (allow_hibernation) 1785 hot_add = false; 1786 1787 #ifdef CONFIG_MEMORY_HOTPLUG 1788 do_hot_add = hot_add; 1789 #else 1790 do_hot_add = false; 1791 #endif 1792 dm_device.dev = dev; 1793 dm_device.state = DM_INITIALIZING; 1794 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; 1795 init_completion(&dm_device.host_event); 1796 init_completion(&dm_device.config_event); 1797 INIT_LIST_HEAD(&dm_device.ha_region_list); 1798 spin_lock_init(&dm_device.ha_lock); 1799 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1800 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1801 dm_device.host_specified_ha_region = false; 1802 1803 #ifdef CONFIG_MEMORY_HOTPLUG 1804 set_online_page_callback(&hv_online_page); 1805 init_completion(&dm_device.ol_waitevent); 1806 register_memory_notifier(&hv_memory_nb); 1807 #endif 1808 1809 hv_set_drvdata(dev, &dm_device); 1810 1811 ret = balloon_connect_vsp(dev); 1812 if (ret != 0) 1813 return ret; 1814 1815 enable_page_reporting(); 1816 dm_device.state = DM_INITIALIZED; 1817 1818 dm_device.thread = 1819 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1820 if (IS_ERR(dm_device.thread)) { 1821 ret = PTR_ERR(dm_device.thread); 1822 goto probe_error; 1823 } 1824 1825 return 0; 1826 1827 probe_error: 1828 dm_device.state = DM_INIT_ERROR; 1829 dm_device.thread = NULL; 1830 disable_page_reporting(); 1831 vmbus_close(dev->channel); 1832 #ifdef CONFIG_MEMORY_HOTPLUG 1833 unregister_memory_notifier(&hv_memory_nb); 1834 restore_online_page_callback(&hv_online_page); 1835 #endif 1836 return ret; 1837 } 1838 1839 static int balloon_remove(struct hv_device *dev) 1840 { 1841 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1842 struct hv_hotadd_state *has, *tmp; 1843 struct hv_hotadd_gap *gap, *tmp_gap; 1844 unsigned long flags; 1845 1846 if (dm->num_pages_ballooned != 0) 1847 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 1848 1849 cancel_work_sync(&dm->balloon_wrk.wrk); 1850 cancel_work_sync(&dm->ha_wrk.wrk); 1851 1852 kthread_stop(dm->thread); 1853 disable_page_reporting(); 1854 vmbus_close(dev->channel); 1855 #ifdef CONFIG_MEMORY_HOTPLUG 1856 unregister_memory_notifier(&hv_memory_nb); 1857 restore_online_page_callback(&hv_online_page); 1858 #endif 1859 spin_lock_irqsave(&dm_device.ha_lock, flags); 1860 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { 1861 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { 1862 list_del(&gap->list); 1863 kfree(gap); 1864 } 1865 list_del(&has->list); 1866 kfree(has); 1867 } 1868 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 1869 1870 return 0; 1871 } 1872 1873 static int balloon_suspend(struct hv_device *hv_dev) 1874 { 1875 struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev); 1876 1877 tasklet_disable(&hv_dev->channel->callback_event); 1878 1879 cancel_work_sync(&dm->balloon_wrk.wrk); 1880 cancel_work_sync(&dm->ha_wrk.wrk); 1881 1882 if (dm->thread) { 1883 kthread_stop(dm->thread); 1884 dm->thread = NULL; 1885 vmbus_close(hv_dev->channel); 1886 } 1887 1888 tasklet_enable(&hv_dev->channel->callback_event); 1889 1890 return 0; 1891 1892 } 1893 1894 static int balloon_resume(struct hv_device *dev) 1895 { 1896 int ret; 1897 1898 dm_device.state = DM_INITIALIZING; 1899 1900 ret = balloon_connect_vsp(dev); 1901 1902 if (ret != 0) 1903 goto out; 1904 1905 dm_device.thread = 1906 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1907 if (IS_ERR(dm_device.thread)) { 1908 ret = PTR_ERR(dm_device.thread); 1909 dm_device.thread = NULL; 1910 goto close_channel; 1911 } 1912 1913 dm_device.state = DM_INITIALIZED; 1914 return 0; 1915 close_channel: 1916 vmbus_close(dev->channel); 1917 out: 1918 dm_device.state = DM_INIT_ERROR; 1919 #ifdef CONFIG_MEMORY_HOTPLUG 1920 unregister_memory_notifier(&hv_memory_nb); 1921 restore_online_page_callback(&hv_online_page); 1922 #endif 1923 return ret; 1924 } 1925 1926 static const struct hv_vmbus_device_id id_table[] = { 1927 /* Dynamic Memory Class ID */ 1928 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 1929 { HV_DM_GUID, }, 1930 { }, 1931 }; 1932 1933 MODULE_DEVICE_TABLE(vmbus, id_table); 1934 1935 static struct hv_driver balloon_drv = { 1936 .name = "hv_balloon", 1937 .id_table = id_table, 1938 .probe = balloon_probe, 1939 .remove = balloon_remove, 1940 .suspend = balloon_suspend, 1941 .resume = balloon_resume, 1942 .driver = { 1943 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1944 }, 1945 }; 1946 1947 static int __init init_balloon_drv(void) 1948 { 1949 1950 return vmbus_driver_register(&balloon_drv); 1951 } 1952 1953 module_init(init_balloon_drv); 1954 1955 MODULE_DESCRIPTION("Hyper-V Balloon"); 1956 MODULE_LICENSE("GPL"); 1957