1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2012, Microsoft Corporation. 4 * 5 * Author: 6 * K. Y. Srinivasan <kys@microsoft.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/jiffies.h> 13 #include <linux/mman.h> 14 #include <linux/delay.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/kthread.h> 19 #include <linux/completion.h> 20 #include <linux/memory_hotplug.h> 21 #include <linux/memory.h> 22 #include <linux/notifier.h> 23 #include <linux/percpu_counter.h> 24 #include <linux/page_reporting.h> 25 26 #include <linux/hyperv.h> 27 #include <asm/hyperv-tlfs.h> 28 29 #include <asm/mshyperv.h> 30 31 #define CREATE_TRACE_POINTS 32 #include "hv_trace_balloon.h" 33 34 /* 35 * We begin with definitions supporting the Dynamic Memory protocol 36 * with the host. 37 * 38 * Begin protocol definitions. 39 */ 40 41 42 43 /* 44 * Protocol versions. The low word is the minor version, the high word the major 45 * version. 46 * 47 * History: 48 * Initial version 1.0 49 * Changed to 0.1 on 2009/03/25 50 * Changes to 0.2 on 2009/05/14 51 * Changes to 0.3 on 2009/12/03 52 * Changed to 1.0 on 2011/04/05 53 */ 54 55 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 56 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 57 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 58 59 enum { 60 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 61 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 62 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), 63 64 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 65 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 66 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, 67 68 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 69 }; 70 71 72 73 /* 74 * Message Types 75 */ 76 77 enum dm_message_type { 78 /* 79 * Version 0.3 80 */ 81 DM_ERROR = 0, 82 DM_VERSION_REQUEST = 1, 83 DM_VERSION_RESPONSE = 2, 84 DM_CAPABILITIES_REPORT = 3, 85 DM_CAPABILITIES_RESPONSE = 4, 86 DM_STATUS_REPORT = 5, 87 DM_BALLOON_REQUEST = 6, 88 DM_BALLOON_RESPONSE = 7, 89 DM_UNBALLOON_REQUEST = 8, 90 DM_UNBALLOON_RESPONSE = 9, 91 DM_MEM_HOT_ADD_REQUEST = 10, 92 DM_MEM_HOT_ADD_RESPONSE = 11, 93 DM_VERSION_03_MAX = 11, 94 /* 95 * Version 1.0. 96 */ 97 DM_INFO_MESSAGE = 12, 98 DM_VERSION_1_MAX = 12 99 }; 100 101 102 /* 103 * Structures defining the dynamic memory management 104 * protocol. 105 */ 106 107 union dm_version { 108 struct { 109 __u16 minor_version; 110 __u16 major_version; 111 }; 112 __u32 version; 113 } __packed; 114 115 116 union dm_caps { 117 struct { 118 __u64 balloon:1; 119 __u64 hot_add:1; 120 /* 121 * To support guests that may have alignment 122 * limitations on hot-add, the guest can specify 123 * its alignment requirements; a value of n 124 * represents an alignment of 2^n in mega bytes. 125 */ 126 __u64 hot_add_alignment:4; 127 __u64 reservedz:58; 128 } cap_bits; 129 __u64 caps; 130 } __packed; 131 132 union dm_mem_page_range { 133 struct { 134 /* 135 * The PFN number of the first page in the range. 136 * 40 bits is the architectural limit of a PFN 137 * number for AMD64. 138 */ 139 __u64 start_page:40; 140 /* 141 * The number of pages in the range. 142 */ 143 __u64 page_cnt:24; 144 } finfo; 145 __u64 page_range; 146 } __packed; 147 148 149 150 /* 151 * The header for all dynamic memory messages: 152 * 153 * type: Type of the message. 154 * size: Size of the message in bytes; including the header. 155 * trans_id: The guest is responsible for manufacturing this ID. 156 */ 157 158 struct dm_header { 159 __u16 type; 160 __u16 size; 161 __u32 trans_id; 162 } __packed; 163 164 /* 165 * A generic message format for dynamic memory. 166 * Specific message formats are defined later in the file. 167 */ 168 169 struct dm_message { 170 struct dm_header hdr; 171 __u8 data[]; /* enclosed message */ 172 } __packed; 173 174 175 /* 176 * Specific message types supporting the dynamic memory protocol. 177 */ 178 179 /* 180 * Version negotiation message. Sent from the guest to the host. 181 * The guest is free to try different versions until the host 182 * accepts the version. 183 * 184 * dm_version: The protocol version requested. 185 * is_last_attempt: If TRUE, this is the last version guest will request. 186 * reservedz: Reserved field, set to zero. 187 */ 188 189 struct dm_version_request { 190 struct dm_header hdr; 191 union dm_version version; 192 __u32 is_last_attempt:1; 193 __u32 reservedz:31; 194 } __packed; 195 196 /* 197 * Version response message; Host to Guest and indicates 198 * if the host has accepted the version sent by the guest. 199 * 200 * is_accepted: If TRUE, host has accepted the version and the guest 201 * should proceed to the next stage of the protocol. FALSE indicates that 202 * guest should re-try with a different version. 203 * 204 * reservedz: Reserved field, set to zero. 205 */ 206 207 struct dm_version_response { 208 struct dm_header hdr; 209 __u64 is_accepted:1; 210 __u64 reservedz:63; 211 } __packed; 212 213 /* 214 * Message reporting capabilities. This is sent from the guest to the 215 * host. 216 */ 217 218 struct dm_capabilities { 219 struct dm_header hdr; 220 union dm_caps caps; 221 __u64 min_page_cnt; 222 __u64 max_page_number; 223 } __packed; 224 225 /* 226 * Response to the capabilities message. This is sent from the host to the 227 * guest. This message notifies if the host has accepted the guest's 228 * capabilities. If the host has not accepted, the guest must shutdown 229 * the service. 230 * 231 * is_accepted: Indicates if the host has accepted guest's capabilities. 232 * reservedz: Must be 0. 233 */ 234 235 struct dm_capabilities_resp_msg { 236 struct dm_header hdr; 237 __u64 is_accepted:1; 238 __u64 reservedz:63; 239 } __packed; 240 241 /* 242 * This message is used to report memory pressure from the guest. 243 * This message is not part of any transaction and there is no 244 * response to this message. 245 * 246 * num_avail: Available memory in pages. 247 * num_committed: Committed memory in pages. 248 * page_file_size: The accumulated size of all page files 249 * in the system in pages. 250 * zero_free: The nunber of zero and free pages. 251 * page_file_writes: The writes to the page file in pages. 252 * io_diff: An indicator of file cache efficiency or page file activity, 253 * calculated as File Cache Page Fault Count - Page Read Count. 254 * This value is in pages. 255 * 256 * Some of these metrics are Windows specific and fortunately 257 * the algorithm on the host side that computes the guest memory 258 * pressure only uses num_committed value. 259 */ 260 261 struct dm_status { 262 struct dm_header hdr; 263 __u64 num_avail; 264 __u64 num_committed; 265 __u64 page_file_size; 266 __u64 zero_free; 267 __u32 page_file_writes; 268 __u32 io_diff; 269 } __packed; 270 271 272 /* 273 * Message to ask the guest to allocate memory - balloon up message. 274 * This message is sent from the host to the guest. The guest may not be 275 * able to allocate as much memory as requested. 276 * 277 * num_pages: number of pages to allocate. 278 */ 279 280 struct dm_balloon { 281 struct dm_header hdr; 282 __u32 num_pages; 283 __u32 reservedz; 284 } __packed; 285 286 287 /* 288 * Balloon response message; this message is sent from the guest 289 * to the host in response to the balloon message. 290 * 291 * reservedz: Reserved; must be set to zero. 292 * more_pages: If FALSE, this is the last message of the transaction. 293 * if TRUE there will atleast one more message from the guest. 294 * 295 * range_count: The number of ranges in the range array. 296 * 297 * range_array: An array of page ranges returned to the host. 298 * 299 */ 300 301 struct dm_balloon_response { 302 struct dm_header hdr; 303 __u32 reservedz; 304 __u32 more_pages:1; 305 __u32 range_count:31; 306 union dm_mem_page_range range_array[]; 307 } __packed; 308 309 /* 310 * Un-balloon message; this message is sent from the host 311 * to the guest to give guest more memory. 312 * 313 * more_pages: If FALSE, this is the last message of the transaction. 314 * if TRUE there will atleast one more message from the guest. 315 * 316 * reservedz: Reserved; must be set to zero. 317 * 318 * range_count: The number of ranges in the range array. 319 * 320 * range_array: An array of page ranges returned to the host. 321 * 322 */ 323 324 struct dm_unballoon_request { 325 struct dm_header hdr; 326 __u32 more_pages:1; 327 __u32 reservedz:31; 328 __u32 range_count; 329 union dm_mem_page_range range_array[]; 330 } __packed; 331 332 /* 333 * Un-balloon response message; this message is sent from the guest 334 * to the host in response to an unballoon request. 335 * 336 */ 337 338 struct dm_unballoon_response { 339 struct dm_header hdr; 340 } __packed; 341 342 343 /* 344 * Hot add request message. Message sent from the host to the guest. 345 * 346 * mem_range: Memory range to hot add. 347 * 348 */ 349 350 struct dm_hot_add { 351 struct dm_header hdr; 352 union dm_mem_page_range range; 353 } __packed; 354 355 /* 356 * Hot add response message. 357 * This message is sent by the guest to report the status of a hot add request. 358 * If page_count is less than the requested page count, then the host should 359 * assume all further hot add requests will fail, since this indicates that 360 * the guest has hit an upper physical memory barrier. 361 * 362 * Hot adds may also fail due to low resources; in this case, the guest must 363 * not complete this message until the hot add can succeed, and the host must 364 * not send a new hot add request until the response is sent. 365 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 366 * times it fails the request. 367 * 368 * 369 * page_count: number of pages that were successfully hot added. 370 * 371 * result: result of the operation 1: success, 0: failure. 372 * 373 */ 374 375 struct dm_hot_add_response { 376 struct dm_header hdr; 377 __u32 page_count; 378 __u32 result; 379 } __packed; 380 381 /* 382 * Types of information sent from host to the guest. 383 */ 384 385 enum dm_info_type { 386 INFO_TYPE_MAX_PAGE_CNT = 0, 387 MAX_INFO_TYPE 388 }; 389 390 391 /* 392 * Header for the information message. 393 */ 394 395 struct dm_info_header { 396 enum dm_info_type type; 397 __u32 data_size; 398 } __packed; 399 400 /* 401 * This message is sent from the host to the guest to pass 402 * some relevant information (win8 addition). 403 * 404 * reserved: no used. 405 * info_size: size of the information blob. 406 * info: information blob. 407 */ 408 409 struct dm_info_msg { 410 struct dm_header hdr; 411 __u32 reserved; 412 __u32 info_size; 413 __u8 info[]; 414 }; 415 416 /* 417 * End protocol definitions. 418 */ 419 420 /* 421 * State to manage hot adding memory into the guest. 422 * The range start_pfn : end_pfn specifies the range 423 * that the host has asked us to hot add. The range 424 * start_pfn : ha_end_pfn specifies the range that we have 425 * currently hot added. We hot add in multiples of 128M 426 * chunks; it is possible that we may not be able to bring 427 * online all the pages in the region. The range 428 * covered_start_pfn:covered_end_pfn defines the pages that can 429 * be brough online. 430 */ 431 432 struct hv_hotadd_state { 433 struct list_head list; 434 unsigned long start_pfn; 435 unsigned long covered_start_pfn; 436 unsigned long covered_end_pfn; 437 unsigned long ha_end_pfn; 438 unsigned long end_pfn; 439 /* 440 * A list of gaps. 441 */ 442 struct list_head gap_list; 443 }; 444 445 struct hv_hotadd_gap { 446 struct list_head list; 447 unsigned long start_pfn; 448 unsigned long end_pfn; 449 }; 450 451 struct balloon_state { 452 __u32 num_pages; 453 struct work_struct wrk; 454 }; 455 456 struct hot_add_wrk { 457 union dm_mem_page_range ha_page_range; 458 union dm_mem_page_range ha_region_range; 459 struct work_struct wrk; 460 }; 461 462 static bool allow_hibernation; 463 static bool hot_add = true; 464 static bool do_hot_add; 465 /* 466 * Delay reporting memory pressure by 467 * the specified number of seconds. 468 */ 469 static uint pressure_report_delay = 45; 470 471 /* 472 * The last time we posted a pressure report to host. 473 */ 474 static unsigned long last_post_time; 475 476 module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); 477 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 478 479 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); 480 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 481 static atomic_t trans_id = ATOMIC_INIT(0); 482 483 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024); 484 485 /* 486 * Driver specific state. 487 */ 488 489 enum hv_dm_state { 490 DM_INITIALIZING = 0, 491 DM_INITIALIZED, 492 DM_BALLOON_UP, 493 DM_BALLOON_DOWN, 494 DM_HOT_ADD, 495 DM_INIT_ERROR 496 }; 497 498 499 static __u8 recv_buffer[HV_HYP_PAGE_SIZE]; 500 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE]; 501 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE) 502 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE) 503 504 struct hv_dynmem_device { 505 struct hv_device *dev; 506 enum hv_dm_state state; 507 struct completion host_event; 508 struct completion config_event; 509 510 /* 511 * Number of pages we have currently ballooned out. 512 */ 513 unsigned int num_pages_ballooned; 514 unsigned int num_pages_onlined; 515 unsigned int num_pages_added; 516 517 /* 518 * State to manage the ballooning (up) operation. 519 */ 520 struct balloon_state balloon_wrk; 521 522 /* 523 * State to execute the "hot-add" operation. 524 */ 525 struct hot_add_wrk ha_wrk; 526 527 /* 528 * This state tracks if the host has specified a hot-add 529 * region. 530 */ 531 bool host_specified_ha_region; 532 533 /* 534 * State to synchronize hot-add. 535 */ 536 struct completion ol_waitevent; 537 /* 538 * This thread handles hot-add 539 * requests from the host as well as notifying 540 * the host with regards to memory pressure in 541 * the guest. 542 */ 543 struct task_struct *thread; 544 545 /* 546 * Protects ha_region_list, num_pages_onlined counter and individual 547 * regions from ha_region_list. 548 */ 549 spinlock_t ha_lock; 550 551 /* 552 * A list of hot-add regions. 553 */ 554 struct list_head ha_region_list; 555 556 /* 557 * We start with the highest version we can support 558 * and downgrade based on the host; we save here the 559 * next version to try. 560 */ 561 __u32 next_version; 562 563 /* 564 * The negotiated version agreed by host. 565 */ 566 __u32 version; 567 568 struct page_reporting_dev_info pr_dev_info; 569 }; 570 571 static struct hv_dynmem_device dm_device; 572 573 static void post_status(struct hv_dynmem_device *dm); 574 575 #ifdef CONFIG_MEMORY_HOTPLUG 576 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has, 577 unsigned long pfn) 578 { 579 struct hv_hotadd_gap *gap; 580 581 /* The page is not backed. */ 582 if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn)) 583 return false; 584 585 /* Check for gaps. */ 586 list_for_each_entry(gap, &has->gap_list, list) { 587 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn)) 588 return false; 589 } 590 591 return true; 592 } 593 594 static unsigned long hv_page_offline_check(unsigned long start_pfn, 595 unsigned long nr_pages) 596 { 597 unsigned long pfn = start_pfn, count = 0; 598 struct hv_hotadd_state *has; 599 bool found; 600 601 while (pfn < start_pfn + nr_pages) { 602 /* 603 * Search for HAS which covers the pfn and when we find one 604 * count how many consequitive PFNs are covered. 605 */ 606 found = false; 607 list_for_each_entry(has, &dm_device.ha_region_list, list) { 608 while ((pfn >= has->start_pfn) && 609 (pfn < has->end_pfn) && 610 (pfn < start_pfn + nr_pages)) { 611 found = true; 612 if (has_pfn_is_backed(has, pfn)) 613 count++; 614 pfn++; 615 } 616 } 617 618 /* 619 * This PFN is not in any HAS (e.g. we're offlining a region 620 * which was present at boot), no need to account for it. Go 621 * to the next one. 622 */ 623 if (!found) 624 pfn++; 625 } 626 627 return count; 628 } 629 630 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 631 void *v) 632 { 633 struct memory_notify *mem = (struct memory_notify *)v; 634 unsigned long flags, pfn_count; 635 636 switch (val) { 637 case MEM_ONLINE: 638 case MEM_CANCEL_ONLINE: 639 complete(&dm_device.ol_waitevent); 640 break; 641 642 case MEM_OFFLINE: 643 spin_lock_irqsave(&dm_device.ha_lock, flags); 644 pfn_count = hv_page_offline_check(mem->start_pfn, 645 mem->nr_pages); 646 if (pfn_count <= dm_device.num_pages_onlined) { 647 dm_device.num_pages_onlined -= pfn_count; 648 } else { 649 /* 650 * We're offlining more pages than we managed to online. 651 * This is unexpected. In any case don't let 652 * num_pages_onlined wrap around zero. 653 */ 654 WARN_ON_ONCE(1); 655 dm_device.num_pages_onlined = 0; 656 } 657 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 658 break; 659 case MEM_GOING_ONLINE: 660 case MEM_GOING_OFFLINE: 661 case MEM_CANCEL_OFFLINE: 662 break; 663 } 664 return NOTIFY_OK; 665 } 666 667 static struct notifier_block hv_memory_nb = { 668 .notifier_call = hv_memory_notifier, 669 .priority = 0 670 }; 671 672 /* Check if the particular page is backed and can be onlined and online it. */ 673 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) 674 { 675 if (!has_pfn_is_backed(has, page_to_pfn(pg))) { 676 if (!PageOffline(pg)) 677 __SetPageOffline(pg); 678 return; 679 } 680 if (PageOffline(pg)) 681 __ClearPageOffline(pg); 682 683 /* This frame is currently backed; online the page. */ 684 generic_online_page(pg, 0); 685 686 lockdep_assert_held(&dm_device.ha_lock); 687 dm_device.num_pages_onlined++; 688 } 689 690 static void hv_bring_pgs_online(struct hv_hotadd_state *has, 691 unsigned long start_pfn, unsigned long size) 692 { 693 int i; 694 695 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn); 696 for (i = 0; i < size; i++) 697 hv_page_online_one(has, pfn_to_page(start_pfn + i)); 698 } 699 700 static void hv_mem_hot_add(unsigned long start, unsigned long size, 701 unsigned long pfn_count, 702 struct hv_hotadd_state *has) 703 { 704 int ret = 0; 705 int i, nid; 706 unsigned long start_pfn; 707 unsigned long processed_pfn; 708 unsigned long total_pfn = pfn_count; 709 unsigned long flags; 710 711 for (i = 0; i < (size/HA_CHUNK); i++) { 712 start_pfn = start + (i * HA_CHUNK); 713 714 spin_lock_irqsave(&dm_device.ha_lock, flags); 715 has->ha_end_pfn += HA_CHUNK; 716 717 if (total_pfn > HA_CHUNK) { 718 processed_pfn = HA_CHUNK; 719 total_pfn -= HA_CHUNK; 720 } else { 721 processed_pfn = total_pfn; 722 total_pfn = 0; 723 } 724 725 has->covered_end_pfn += processed_pfn; 726 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 727 728 reinit_completion(&dm_device.ol_waitevent); 729 730 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 731 ret = add_memory(nid, PFN_PHYS((start_pfn)), 732 (HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE); 733 734 if (ret) { 735 pr_err("hot_add memory failed error is %d\n", ret); 736 if (ret == -EEXIST) { 737 /* 738 * This error indicates that the error 739 * is not a transient failure. This is the 740 * case where the guest's physical address map 741 * precludes hot adding memory. Stop all further 742 * memory hot-add. 743 */ 744 do_hot_add = false; 745 } 746 spin_lock_irqsave(&dm_device.ha_lock, flags); 747 has->ha_end_pfn -= HA_CHUNK; 748 has->covered_end_pfn -= processed_pfn; 749 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 750 break; 751 } 752 753 /* 754 * Wait for memory to get onlined. If the kernel onlined the 755 * memory when adding it, this will return directly. Otherwise, 756 * it will wait for user space to online the memory. This helps 757 * to avoid adding memory faster than it is getting onlined. As 758 * adding succeeded, it is ok to proceed even if the memory was 759 * not onlined in time. 760 */ 761 wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ); 762 post_status(&dm_device); 763 } 764 } 765 766 static void hv_online_page(struct page *pg, unsigned int order) 767 { 768 struct hv_hotadd_state *has; 769 unsigned long flags; 770 unsigned long pfn = page_to_pfn(pg); 771 772 spin_lock_irqsave(&dm_device.ha_lock, flags); 773 list_for_each_entry(has, &dm_device.ha_region_list, list) { 774 /* The page belongs to a different HAS. */ 775 if ((pfn < has->start_pfn) || 776 (pfn + (1UL << order) > has->end_pfn)) 777 continue; 778 779 hv_bring_pgs_online(has, pfn, 1UL << order); 780 break; 781 } 782 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 783 } 784 785 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 786 { 787 struct hv_hotadd_state *has; 788 struct hv_hotadd_gap *gap; 789 unsigned long residual, new_inc; 790 int ret = 0; 791 unsigned long flags; 792 793 spin_lock_irqsave(&dm_device.ha_lock, flags); 794 list_for_each_entry(has, &dm_device.ha_region_list, list) { 795 /* 796 * If the pfn range we are dealing with is not in the current 797 * "hot add block", move on. 798 */ 799 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 800 continue; 801 802 /* 803 * If the current start pfn is not where the covered_end 804 * is, create a gap and update covered_end_pfn. 805 */ 806 if (has->covered_end_pfn != start_pfn) { 807 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); 808 if (!gap) { 809 ret = -ENOMEM; 810 break; 811 } 812 813 INIT_LIST_HEAD(&gap->list); 814 gap->start_pfn = has->covered_end_pfn; 815 gap->end_pfn = start_pfn; 816 list_add_tail(&gap->list, &has->gap_list); 817 818 has->covered_end_pfn = start_pfn; 819 } 820 821 /* 822 * If the current hot add-request extends beyond 823 * our current limit; extend it. 824 */ 825 if ((start_pfn + pfn_cnt) > has->end_pfn) { 826 residual = (start_pfn + pfn_cnt - has->end_pfn); 827 /* 828 * Extend the region by multiples of HA_CHUNK. 829 */ 830 new_inc = (residual / HA_CHUNK) * HA_CHUNK; 831 if (residual % HA_CHUNK) 832 new_inc += HA_CHUNK; 833 834 has->end_pfn += new_inc; 835 } 836 837 ret = 1; 838 break; 839 } 840 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 841 842 return ret; 843 } 844 845 static unsigned long handle_pg_range(unsigned long pg_start, 846 unsigned long pg_count) 847 { 848 unsigned long start_pfn = pg_start; 849 unsigned long pfn_cnt = pg_count; 850 unsigned long size; 851 struct hv_hotadd_state *has; 852 unsigned long pgs_ol = 0; 853 unsigned long old_covered_state; 854 unsigned long res = 0, flags; 855 856 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count, 857 pg_start); 858 859 spin_lock_irqsave(&dm_device.ha_lock, flags); 860 list_for_each_entry(has, &dm_device.ha_region_list, list) { 861 /* 862 * If the pfn range we are dealing with is not in the current 863 * "hot add block", move on. 864 */ 865 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 866 continue; 867 868 old_covered_state = has->covered_end_pfn; 869 870 if (start_pfn < has->ha_end_pfn) { 871 /* 872 * This is the case where we are backing pages 873 * in an already hot added region. Bring 874 * these pages online first. 875 */ 876 pgs_ol = has->ha_end_pfn - start_pfn; 877 if (pgs_ol > pfn_cnt) 878 pgs_ol = pfn_cnt; 879 880 has->covered_end_pfn += pgs_ol; 881 pfn_cnt -= pgs_ol; 882 /* 883 * Check if the corresponding memory block is already 884 * online. It is possible to observe struct pages still 885 * being uninitialized here so check section instead. 886 * In case the section is online we need to bring the 887 * rest of pfns (which were not backed previously) 888 * online too. 889 */ 890 if (start_pfn > has->start_pfn && 891 online_section_nr(pfn_to_section_nr(start_pfn))) 892 hv_bring_pgs_online(has, start_pfn, pgs_ol); 893 894 } 895 896 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { 897 /* 898 * We have some residual hot add range 899 * that needs to be hot added; hot add 900 * it now. Hot add a multiple of 901 * of HA_CHUNK that fully covers the pages 902 * we have. 903 */ 904 size = (has->end_pfn - has->ha_end_pfn); 905 if (pfn_cnt <= size) { 906 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); 907 if (pfn_cnt % HA_CHUNK) 908 size += HA_CHUNK; 909 } else { 910 pfn_cnt = size; 911 } 912 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 913 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 914 spin_lock_irqsave(&dm_device.ha_lock, flags); 915 } 916 /* 917 * If we managed to online any pages that were given to us, 918 * we declare success. 919 */ 920 res = has->covered_end_pfn - old_covered_state; 921 break; 922 } 923 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 924 925 return res; 926 } 927 928 static unsigned long process_hot_add(unsigned long pg_start, 929 unsigned long pfn_cnt, 930 unsigned long rg_start, 931 unsigned long rg_size) 932 { 933 struct hv_hotadd_state *ha_region = NULL; 934 int covered; 935 unsigned long flags; 936 937 if (pfn_cnt == 0) 938 return 0; 939 940 if (!dm_device.host_specified_ha_region) { 941 covered = pfn_covered(pg_start, pfn_cnt); 942 if (covered < 0) 943 return 0; 944 945 if (covered) 946 goto do_pg_range; 947 } 948 949 /* 950 * If the host has specified a hot-add range; deal with it first. 951 */ 952 953 if (rg_size != 0) { 954 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 955 if (!ha_region) 956 return 0; 957 958 INIT_LIST_HEAD(&ha_region->list); 959 INIT_LIST_HEAD(&ha_region->gap_list); 960 961 ha_region->start_pfn = rg_start; 962 ha_region->ha_end_pfn = rg_start; 963 ha_region->covered_start_pfn = pg_start; 964 ha_region->covered_end_pfn = pg_start; 965 ha_region->end_pfn = rg_start + rg_size; 966 967 spin_lock_irqsave(&dm_device.ha_lock, flags); 968 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 969 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 970 } 971 972 do_pg_range: 973 /* 974 * Process the page range specified; bringing them 975 * online if possible. 976 */ 977 return handle_pg_range(pg_start, pfn_cnt); 978 } 979 980 #endif 981 982 static void hot_add_req(struct work_struct *dummy) 983 { 984 struct dm_hot_add_response resp; 985 #ifdef CONFIG_MEMORY_HOTPLUG 986 unsigned long pg_start, pfn_cnt; 987 unsigned long rg_start, rg_sz; 988 #endif 989 struct hv_dynmem_device *dm = &dm_device; 990 991 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 992 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 993 resp.hdr.size = sizeof(struct dm_hot_add_response); 994 995 #ifdef CONFIG_MEMORY_HOTPLUG 996 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 997 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 998 999 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 1000 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 1001 1002 if ((rg_start == 0) && (!dm->host_specified_ha_region)) { 1003 unsigned long region_size; 1004 unsigned long region_start; 1005 1006 /* 1007 * The host has not specified the hot-add region. 1008 * Based on the hot-add page range being specified, 1009 * compute a hot-add region that can cover the pages 1010 * that need to be hot-added while ensuring the alignment 1011 * and size requirements of Linux as it relates to hot-add. 1012 */ 1013 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; 1014 if (pfn_cnt % HA_CHUNK) 1015 region_size += HA_CHUNK; 1016 1017 region_start = (pg_start / HA_CHUNK) * HA_CHUNK; 1018 1019 rg_start = region_start; 1020 rg_sz = region_size; 1021 } 1022 1023 if (do_hot_add) 1024 resp.page_count = process_hot_add(pg_start, pfn_cnt, 1025 rg_start, rg_sz); 1026 1027 dm->num_pages_added += resp.page_count; 1028 #endif 1029 /* 1030 * The result field of the response structure has the 1031 * following semantics: 1032 * 1033 * 1. If all or some pages hot-added: Guest should return success. 1034 * 1035 * 2. If no pages could be hot-added: 1036 * 1037 * If the guest returns success, then the host 1038 * will not attempt any further hot-add operations. This 1039 * signifies a permanent failure. 1040 * 1041 * If the guest returns failure, then this failure will be 1042 * treated as a transient failure and the host may retry the 1043 * hot-add operation after some delay. 1044 */ 1045 if (resp.page_count > 0) 1046 resp.result = 1; 1047 else if (!do_hot_add) 1048 resp.result = 1; 1049 else 1050 resp.result = 0; 1051 1052 if (!do_hot_add || resp.page_count == 0) { 1053 if (!allow_hibernation) 1054 pr_err("Memory hot add failed\n"); 1055 else 1056 pr_info("Ignore hot-add request!\n"); 1057 } 1058 1059 dm->state = DM_INITIALIZED; 1060 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1061 vmbus_sendpacket(dm->dev->channel, &resp, 1062 sizeof(struct dm_hot_add_response), 1063 (unsigned long)NULL, 1064 VM_PKT_DATA_INBAND, 0); 1065 } 1066 1067 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 1068 { 1069 struct dm_info_header *info_hdr; 1070 1071 info_hdr = (struct dm_info_header *)msg->info; 1072 1073 switch (info_hdr->type) { 1074 case INFO_TYPE_MAX_PAGE_CNT: 1075 if (info_hdr->data_size == sizeof(__u64)) { 1076 __u64 *max_page_count = (__u64 *)&info_hdr[1]; 1077 1078 pr_info("Max. dynamic memory size: %llu MB\n", 1079 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT)); 1080 } 1081 1082 break; 1083 default: 1084 pr_warn("Received Unknown type: %d\n", info_hdr->type); 1085 } 1086 } 1087 1088 static unsigned long compute_balloon_floor(void) 1089 { 1090 unsigned long min_pages; 1091 unsigned long nr_pages = totalram_pages(); 1092 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 1093 /* Simple continuous piecewiese linear function: 1094 * max MiB -> min MiB gradient 1095 * 0 0 1096 * 16 16 1097 * 32 24 1098 * 128 72 (1/2) 1099 * 512 168 (1/4) 1100 * 2048 360 (1/8) 1101 * 8192 744 (1/16) 1102 * 32768 1512 (1/32) 1103 */ 1104 if (nr_pages < MB2PAGES(128)) 1105 min_pages = MB2PAGES(8) + (nr_pages >> 1); 1106 else if (nr_pages < MB2PAGES(512)) 1107 min_pages = MB2PAGES(40) + (nr_pages >> 2); 1108 else if (nr_pages < MB2PAGES(2048)) 1109 min_pages = MB2PAGES(104) + (nr_pages >> 3); 1110 else if (nr_pages < MB2PAGES(8192)) 1111 min_pages = MB2PAGES(232) + (nr_pages >> 4); 1112 else 1113 min_pages = MB2PAGES(488) + (nr_pages >> 5); 1114 #undef MB2PAGES 1115 return min_pages; 1116 } 1117 1118 /* 1119 * Post our status as it relates memory pressure to the 1120 * host. Host expects the guests to post this status 1121 * periodically at 1 second intervals. 1122 * 1123 * The metrics specified in this protocol are very Windows 1124 * specific and so we cook up numbers here to convey our memory 1125 * pressure. 1126 */ 1127 1128 static void post_status(struct hv_dynmem_device *dm) 1129 { 1130 struct dm_status status; 1131 unsigned long now = jiffies; 1132 unsigned long last_post = last_post_time; 1133 1134 if (pressure_report_delay > 0) { 1135 --pressure_report_delay; 1136 return; 1137 } 1138 1139 if (!time_after(now, (last_post_time + HZ))) 1140 return; 1141 1142 memset(&status, 0, sizeof(struct dm_status)); 1143 status.hdr.type = DM_STATUS_REPORT; 1144 status.hdr.size = sizeof(struct dm_status); 1145 status.hdr.trans_id = atomic_inc_return(&trans_id); 1146 1147 /* 1148 * The host expects the guest to report free and committed memory. 1149 * Furthermore, the host expects the pressure information to include 1150 * the ballooned out pages. For a given amount of memory that we are 1151 * managing we need to compute a floor below which we should not 1152 * balloon. Compute this and add it to the pressure report. 1153 * We also need to report all offline pages (num_pages_added - 1154 * num_pages_onlined) as committed to the host, otherwise it can try 1155 * asking us to balloon them out. 1156 */ 1157 status.num_avail = si_mem_available(); 1158 status.num_committed = vm_memory_committed() + 1159 dm->num_pages_ballooned + 1160 (dm->num_pages_added > dm->num_pages_onlined ? 1161 dm->num_pages_added - dm->num_pages_onlined : 0) + 1162 compute_balloon_floor(); 1163 1164 trace_balloon_status(status.num_avail, status.num_committed, 1165 vm_memory_committed(), dm->num_pages_ballooned, 1166 dm->num_pages_added, dm->num_pages_onlined); 1167 /* 1168 * If our transaction ID is no longer current, just don't 1169 * send the status. This can happen if we were interrupted 1170 * after we picked our transaction ID. 1171 */ 1172 if (status.hdr.trans_id != atomic_read(&trans_id)) 1173 return; 1174 1175 /* 1176 * If the last post time that we sampled has changed, 1177 * we have raced, don't post the status. 1178 */ 1179 if (last_post != last_post_time) 1180 return; 1181 1182 last_post_time = jiffies; 1183 vmbus_sendpacket(dm->dev->channel, &status, 1184 sizeof(struct dm_status), 1185 (unsigned long)NULL, 1186 VM_PKT_DATA_INBAND, 0); 1187 1188 } 1189 1190 static void free_balloon_pages(struct hv_dynmem_device *dm, 1191 union dm_mem_page_range *range_array) 1192 { 1193 int num_pages = range_array->finfo.page_cnt; 1194 __u64 start_frame = range_array->finfo.start_page; 1195 struct page *pg; 1196 int i; 1197 1198 for (i = 0; i < num_pages; i++) { 1199 pg = pfn_to_page(i + start_frame); 1200 __ClearPageOffline(pg); 1201 __free_page(pg); 1202 dm->num_pages_ballooned--; 1203 adjust_managed_page_count(pg, 1); 1204 } 1205 } 1206 1207 1208 1209 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, 1210 unsigned int num_pages, 1211 struct dm_balloon_response *bl_resp, 1212 int alloc_unit) 1213 { 1214 unsigned int i, j; 1215 struct page *pg; 1216 1217 for (i = 0; i < num_pages / alloc_unit; i++) { 1218 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1219 HV_HYP_PAGE_SIZE) 1220 return i * alloc_unit; 1221 1222 /* 1223 * We execute this code in a thread context. Furthermore, 1224 * we don't want the kernel to try too hard. 1225 */ 1226 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1227 __GFP_NOMEMALLOC | __GFP_NOWARN, 1228 get_order(alloc_unit << PAGE_SHIFT)); 1229 1230 if (!pg) 1231 return i * alloc_unit; 1232 1233 dm->num_pages_ballooned += alloc_unit; 1234 1235 /* 1236 * If we allocatted 2M pages; split them so we 1237 * can free them in any order we get. 1238 */ 1239 1240 if (alloc_unit != 1) 1241 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1242 1243 /* mark all pages offline */ 1244 for (j = 0; j < alloc_unit; j++) { 1245 __SetPageOffline(pg + j); 1246 adjust_managed_page_count(pg + j, -1); 1247 } 1248 1249 bl_resp->range_count++; 1250 bl_resp->range_array[i].finfo.start_page = 1251 page_to_pfn(pg); 1252 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1253 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1254 1255 } 1256 1257 return i * alloc_unit; 1258 } 1259 1260 static void balloon_up(struct work_struct *dummy) 1261 { 1262 unsigned int num_pages = dm_device.balloon_wrk.num_pages; 1263 unsigned int num_ballooned = 0; 1264 struct dm_balloon_response *bl_resp; 1265 int alloc_unit; 1266 int ret; 1267 bool done = false; 1268 int i; 1269 long avail_pages; 1270 unsigned long floor; 1271 1272 /* 1273 * We will attempt 2M allocations. However, if we fail to 1274 * allocate 2M chunks, we will go back to PAGE_SIZE allocations. 1275 */ 1276 alloc_unit = PAGES_IN_2M; 1277 1278 avail_pages = si_mem_available(); 1279 floor = compute_balloon_floor(); 1280 1281 /* Refuse to balloon below the floor. */ 1282 if (avail_pages < num_pages || avail_pages - num_pages < floor) { 1283 pr_info("Balloon request will be partially fulfilled. %s\n", 1284 avail_pages < num_pages ? "Not enough memory." : 1285 "Balloon floor reached."); 1286 1287 num_pages = avail_pages > floor ? (avail_pages - floor) : 0; 1288 } 1289 1290 while (!done) { 1291 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE); 1292 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer; 1293 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1294 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1295 bl_resp->more_pages = 1; 1296 1297 num_pages -= num_ballooned; 1298 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1299 bl_resp, alloc_unit); 1300 1301 if (alloc_unit != 1 && num_ballooned == 0) { 1302 alloc_unit = 1; 1303 continue; 1304 } 1305 1306 if (num_ballooned == 0 || num_ballooned == num_pages) { 1307 pr_debug("Ballooned %u out of %u requested pages.\n", 1308 num_pages, dm_device.balloon_wrk.num_pages); 1309 1310 bl_resp->more_pages = 0; 1311 done = true; 1312 dm_device.state = DM_INITIALIZED; 1313 } 1314 1315 /* 1316 * We are pushing a lot of data through the channel; 1317 * deal with transient failures caused because of the 1318 * lack of space in the ring buffer. 1319 */ 1320 1321 do { 1322 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1323 ret = vmbus_sendpacket(dm_device.dev->channel, 1324 bl_resp, 1325 bl_resp->hdr.size, 1326 (unsigned long)NULL, 1327 VM_PKT_DATA_INBAND, 0); 1328 1329 if (ret == -EAGAIN) 1330 msleep(20); 1331 post_status(&dm_device); 1332 } while (ret == -EAGAIN); 1333 1334 if (ret) { 1335 /* 1336 * Free up the memory we allocatted. 1337 */ 1338 pr_err("Balloon response failed\n"); 1339 1340 for (i = 0; i < bl_resp->range_count; i++) 1341 free_balloon_pages(&dm_device, 1342 &bl_resp->range_array[i]); 1343 1344 done = true; 1345 } 1346 } 1347 1348 } 1349 1350 static void balloon_down(struct hv_dynmem_device *dm, 1351 struct dm_unballoon_request *req) 1352 { 1353 union dm_mem_page_range *range_array = req->range_array; 1354 int range_count = req->range_count; 1355 struct dm_unballoon_response resp; 1356 int i; 1357 unsigned int prev_pages_ballooned = dm->num_pages_ballooned; 1358 1359 for (i = 0; i < range_count; i++) { 1360 free_balloon_pages(dm, &range_array[i]); 1361 complete(&dm_device.config_event); 1362 } 1363 1364 pr_debug("Freed %u ballooned pages.\n", 1365 prev_pages_ballooned - dm->num_pages_ballooned); 1366 1367 if (req->more_pages == 1) 1368 return; 1369 1370 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1371 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1372 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1373 resp.hdr.size = sizeof(struct dm_unballoon_response); 1374 1375 vmbus_sendpacket(dm_device.dev->channel, &resp, 1376 sizeof(struct dm_unballoon_response), 1377 (unsigned long)NULL, 1378 VM_PKT_DATA_INBAND, 0); 1379 1380 dm->state = DM_INITIALIZED; 1381 } 1382 1383 static void balloon_onchannelcallback(void *context); 1384 1385 static int dm_thread_func(void *dm_dev) 1386 { 1387 struct hv_dynmem_device *dm = dm_dev; 1388 1389 while (!kthread_should_stop()) { 1390 wait_for_completion_interruptible_timeout( 1391 &dm_device.config_event, 1*HZ); 1392 /* 1393 * The host expects us to post information on the memory 1394 * pressure every second. 1395 */ 1396 reinit_completion(&dm_device.config_event); 1397 post_status(dm); 1398 } 1399 1400 return 0; 1401 } 1402 1403 1404 static void version_resp(struct hv_dynmem_device *dm, 1405 struct dm_version_response *vresp) 1406 { 1407 struct dm_version_request version_req; 1408 int ret; 1409 1410 if (vresp->is_accepted) { 1411 /* 1412 * We are done; wakeup the 1413 * context waiting for version 1414 * negotiation. 1415 */ 1416 complete(&dm->host_event); 1417 return; 1418 } 1419 /* 1420 * If there are more versions to try, continue 1421 * with negotiations; if not 1422 * shutdown the service since we are not able 1423 * to negotiate a suitable version number 1424 * with the host. 1425 */ 1426 if (dm->next_version == 0) 1427 goto version_error; 1428 1429 memset(&version_req, 0, sizeof(struct dm_version_request)); 1430 version_req.hdr.type = DM_VERSION_REQUEST; 1431 version_req.hdr.size = sizeof(struct dm_version_request); 1432 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1433 version_req.version.version = dm->next_version; 1434 dm->version = version_req.version.version; 1435 1436 /* 1437 * Set the next version to try in case current version fails. 1438 * Win7 protocol ought to be the last one to try. 1439 */ 1440 switch (version_req.version.version) { 1441 case DYNMEM_PROTOCOL_VERSION_WIN8: 1442 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1443 version_req.is_last_attempt = 0; 1444 break; 1445 default: 1446 dm->next_version = 0; 1447 version_req.is_last_attempt = 1; 1448 } 1449 1450 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1451 sizeof(struct dm_version_request), 1452 (unsigned long)NULL, 1453 VM_PKT_DATA_INBAND, 0); 1454 1455 if (ret) 1456 goto version_error; 1457 1458 return; 1459 1460 version_error: 1461 dm->state = DM_INIT_ERROR; 1462 complete(&dm->host_event); 1463 } 1464 1465 static void cap_resp(struct hv_dynmem_device *dm, 1466 struct dm_capabilities_resp_msg *cap_resp) 1467 { 1468 if (!cap_resp->is_accepted) { 1469 pr_err("Capabilities not accepted by host\n"); 1470 dm->state = DM_INIT_ERROR; 1471 } 1472 complete(&dm->host_event); 1473 } 1474 1475 static void balloon_onchannelcallback(void *context) 1476 { 1477 struct hv_device *dev = context; 1478 u32 recvlen; 1479 u64 requestid; 1480 struct dm_message *dm_msg; 1481 struct dm_header *dm_hdr; 1482 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1483 struct dm_balloon *bal_msg; 1484 struct dm_hot_add *ha_msg; 1485 union dm_mem_page_range *ha_pg_range; 1486 union dm_mem_page_range *ha_region; 1487 1488 memset(recv_buffer, 0, sizeof(recv_buffer)); 1489 vmbus_recvpacket(dev->channel, recv_buffer, 1490 HV_HYP_PAGE_SIZE, &recvlen, &requestid); 1491 1492 if (recvlen > 0) { 1493 dm_msg = (struct dm_message *)recv_buffer; 1494 dm_hdr = &dm_msg->hdr; 1495 1496 switch (dm_hdr->type) { 1497 case DM_VERSION_RESPONSE: 1498 version_resp(dm, 1499 (struct dm_version_response *)dm_msg); 1500 break; 1501 1502 case DM_CAPABILITIES_RESPONSE: 1503 cap_resp(dm, 1504 (struct dm_capabilities_resp_msg *)dm_msg); 1505 break; 1506 1507 case DM_BALLOON_REQUEST: 1508 if (allow_hibernation) { 1509 pr_info("Ignore balloon-up request!\n"); 1510 break; 1511 } 1512 1513 if (dm->state == DM_BALLOON_UP) 1514 pr_warn("Currently ballooning\n"); 1515 bal_msg = (struct dm_balloon *)recv_buffer; 1516 dm->state = DM_BALLOON_UP; 1517 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1518 schedule_work(&dm_device.balloon_wrk.wrk); 1519 break; 1520 1521 case DM_UNBALLOON_REQUEST: 1522 if (allow_hibernation) { 1523 pr_info("Ignore balloon-down request!\n"); 1524 break; 1525 } 1526 1527 dm->state = DM_BALLOON_DOWN; 1528 balloon_down(dm, 1529 (struct dm_unballoon_request *)recv_buffer); 1530 break; 1531 1532 case DM_MEM_HOT_ADD_REQUEST: 1533 if (dm->state == DM_HOT_ADD) 1534 pr_warn("Currently hot-adding\n"); 1535 dm->state = DM_HOT_ADD; 1536 ha_msg = (struct dm_hot_add *)recv_buffer; 1537 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1538 /* 1539 * This is a normal hot-add request specifying 1540 * hot-add memory. 1541 */ 1542 dm->host_specified_ha_region = false; 1543 ha_pg_range = &ha_msg->range; 1544 dm->ha_wrk.ha_page_range = *ha_pg_range; 1545 dm->ha_wrk.ha_region_range.page_range = 0; 1546 } else { 1547 /* 1548 * Host is specifying that we first hot-add 1549 * a region and then partially populate this 1550 * region. 1551 */ 1552 dm->host_specified_ha_region = true; 1553 ha_pg_range = &ha_msg->range; 1554 ha_region = &ha_pg_range[1]; 1555 dm->ha_wrk.ha_page_range = *ha_pg_range; 1556 dm->ha_wrk.ha_region_range = *ha_region; 1557 } 1558 schedule_work(&dm_device.ha_wrk.wrk); 1559 break; 1560 1561 case DM_INFO_MESSAGE: 1562 process_info(dm, (struct dm_info_msg *)dm_msg); 1563 break; 1564 1565 default: 1566 pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type); 1567 1568 } 1569 } 1570 1571 } 1572 1573 /* Hyper-V only supports reporting 2MB pages or higher */ 1574 #define HV_MIN_PAGE_REPORTING_ORDER 9 1575 #define HV_MIN_PAGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << HV_MIN_PAGE_REPORTING_ORDER) 1576 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info, 1577 struct scatterlist *sgl, unsigned int nents) 1578 { 1579 unsigned long flags; 1580 struct hv_memory_hint *hint; 1581 int i; 1582 u64 status; 1583 struct scatterlist *sg; 1584 1585 WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES); 1586 WARN_ON_ONCE(sgl->length < HV_MIN_PAGE_REPORTING_LEN); 1587 local_irq_save(flags); 1588 hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg); 1589 if (!hint) { 1590 local_irq_restore(flags); 1591 return -ENOSPC; 1592 } 1593 1594 hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD; 1595 hint->reserved = 0; 1596 for_each_sg(sgl, sg, nents, i) { 1597 union hv_gpa_page_range *range; 1598 1599 range = &hint->ranges[i]; 1600 range->address_space = 0; 1601 /* page reporting only reports 2MB pages or higher */ 1602 range->page.largepage = 1; 1603 range->page.additional_pages = 1604 (sg->length / HV_MIN_PAGE_REPORTING_LEN) - 1; 1605 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB; 1606 range->base_large_pfn = 1607 page_to_hvpfn(sg_page(sg)) >> HV_MIN_PAGE_REPORTING_ORDER; 1608 } 1609 1610 status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0, 1611 hint, NULL); 1612 local_irq_restore(flags); 1613 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS) { 1614 pr_err("Cold memory discard hypercall failed with status %llx\n", 1615 status); 1616 return -EINVAL; 1617 } 1618 1619 return 0; 1620 } 1621 1622 static void enable_page_reporting(void) 1623 { 1624 int ret; 1625 1626 /* Essentially, validating 'PAGE_REPORTING_MIN_ORDER' is big enough. */ 1627 if (pageblock_order < HV_MIN_PAGE_REPORTING_ORDER) { 1628 pr_debug("Cold memory discard is only supported on 2MB pages and above\n"); 1629 return; 1630 } 1631 1632 if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) { 1633 pr_debug("Cold memory discard hint not supported by Hyper-V\n"); 1634 return; 1635 } 1636 1637 BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES); 1638 dm_device.pr_dev_info.report = hv_free_page_report; 1639 ret = page_reporting_register(&dm_device.pr_dev_info); 1640 if (ret < 0) { 1641 dm_device.pr_dev_info.report = NULL; 1642 pr_err("Failed to enable cold memory discard: %d\n", ret); 1643 } else { 1644 pr_info("Cold memory discard hint enabled\n"); 1645 } 1646 } 1647 1648 static void disable_page_reporting(void) 1649 { 1650 if (dm_device.pr_dev_info.report) { 1651 page_reporting_unregister(&dm_device.pr_dev_info); 1652 dm_device.pr_dev_info.report = NULL; 1653 } 1654 } 1655 1656 static int balloon_connect_vsp(struct hv_device *dev) 1657 { 1658 struct dm_version_request version_req; 1659 struct dm_capabilities cap_msg; 1660 unsigned long t; 1661 int ret; 1662 1663 /* 1664 * max_pkt_size should be large enough for one vmbus packet header plus 1665 * our receive buffer size. Hyper-V sends messages up to 1666 * HV_HYP_PAGE_SIZE bytes long on balloon channel. 1667 */ 1668 dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2; 1669 1670 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1671 balloon_onchannelcallback, dev); 1672 if (ret) 1673 return ret; 1674 1675 /* 1676 * Initiate the hand shake with the host and negotiate 1677 * a version that the host can support. We start with the 1678 * highest version number and go down if the host cannot 1679 * support it. 1680 */ 1681 memset(&version_req, 0, sizeof(struct dm_version_request)); 1682 version_req.hdr.type = DM_VERSION_REQUEST; 1683 version_req.hdr.size = sizeof(struct dm_version_request); 1684 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1685 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; 1686 version_req.is_last_attempt = 0; 1687 dm_device.version = version_req.version.version; 1688 1689 ret = vmbus_sendpacket(dev->channel, &version_req, 1690 sizeof(struct dm_version_request), 1691 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); 1692 if (ret) 1693 goto out; 1694 1695 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1696 if (t == 0) { 1697 ret = -ETIMEDOUT; 1698 goto out; 1699 } 1700 1701 /* 1702 * If we could not negotiate a compatible version with the host 1703 * fail the probe function. 1704 */ 1705 if (dm_device.state == DM_INIT_ERROR) { 1706 ret = -EPROTO; 1707 goto out; 1708 } 1709 1710 pr_info("Using Dynamic Memory protocol version %u.%u\n", 1711 DYNMEM_MAJOR_VERSION(dm_device.version), 1712 DYNMEM_MINOR_VERSION(dm_device.version)); 1713 1714 /* 1715 * Now submit our capabilities to the host. 1716 */ 1717 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1718 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1719 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1720 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1721 1722 /* 1723 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host 1724 * currently still requires the bits to be set, so we have to add code 1725 * to fail the host's hot-add and balloon up/down requests, if any. 1726 */ 1727 cap_msg.caps.cap_bits.balloon = 1; 1728 cap_msg.caps.cap_bits.hot_add = 1; 1729 1730 /* 1731 * Specify our alignment requirements as it relates 1732 * memory hot-add. Specify 128MB alignment. 1733 */ 1734 cap_msg.caps.cap_bits.hot_add_alignment = 7; 1735 1736 /* 1737 * Currently the host does not use these 1738 * values and we set them to what is done in the 1739 * Windows driver. 1740 */ 1741 cap_msg.min_page_cnt = 0; 1742 cap_msg.max_page_number = -1; 1743 1744 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1745 sizeof(struct dm_capabilities), 1746 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); 1747 if (ret) 1748 goto out; 1749 1750 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1751 if (t == 0) { 1752 ret = -ETIMEDOUT; 1753 goto out; 1754 } 1755 1756 /* 1757 * If the host does not like our capabilities, 1758 * fail the probe function. 1759 */ 1760 if (dm_device.state == DM_INIT_ERROR) { 1761 ret = -EPROTO; 1762 goto out; 1763 } 1764 1765 return 0; 1766 out: 1767 vmbus_close(dev->channel); 1768 return ret; 1769 } 1770 1771 static int balloon_probe(struct hv_device *dev, 1772 const struct hv_vmbus_device_id *dev_id) 1773 { 1774 int ret; 1775 1776 allow_hibernation = hv_is_hibernation_supported(); 1777 if (allow_hibernation) 1778 hot_add = false; 1779 1780 #ifdef CONFIG_MEMORY_HOTPLUG 1781 do_hot_add = hot_add; 1782 #else 1783 do_hot_add = false; 1784 #endif 1785 dm_device.dev = dev; 1786 dm_device.state = DM_INITIALIZING; 1787 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; 1788 init_completion(&dm_device.host_event); 1789 init_completion(&dm_device.config_event); 1790 INIT_LIST_HEAD(&dm_device.ha_region_list); 1791 spin_lock_init(&dm_device.ha_lock); 1792 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1793 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1794 dm_device.host_specified_ha_region = false; 1795 1796 #ifdef CONFIG_MEMORY_HOTPLUG 1797 set_online_page_callback(&hv_online_page); 1798 init_completion(&dm_device.ol_waitevent); 1799 register_memory_notifier(&hv_memory_nb); 1800 #endif 1801 1802 hv_set_drvdata(dev, &dm_device); 1803 1804 ret = balloon_connect_vsp(dev); 1805 if (ret != 0) 1806 return ret; 1807 1808 enable_page_reporting(); 1809 dm_device.state = DM_INITIALIZED; 1810 1811 dm_device.thread = 1812 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1813 if (IS_ERR(dm_device.thread)) { 1814 ret = PTR_ERR(dm_device.thread); 1815 goto probe_error; 1816 } 1817 1818 return 0; 1819 1820 probe_error: 1821 dm_device.state = DM_INIT_ERROR; 1822 dm_device.thread = NULL; 1823 disable_page_reporting(); 1824 vmbus_close(dev->channel); 1825 #ifdef CONFIG_MEMORY_HOTPLUG 1826 unregister_memory_notifier(&hv_memory_nb); 1827 restore_online_page_callback(&hv_online_page); 1828 #endif 1829 return ret; 1830 } 1831 1832 static int balloon_remove(struct hv_device *dev) 1833 { 1834 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1835 struct hv_hotadd_state *has, *tmp; 1836 struct hv_hotadd_gap *gap, *tmp_gap; 1837 unsigned long flags; 1838 1839 if (dm->num_pages_ballooned != 0) 1840 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 1841 1842 cancel_work_sync(&dm->balloon_wrk.wrk); 1843 cancel_work_sync(&dm->ha_wrk.wrk); 1844 1845 kthread_stop(dm->thread); 1846 disable_page_reporting(); 1847 vmbus_close(dev->channel); 1848 #ifdef CONFIG_MEMORY_HOTPLUG 1849 unregister_memory_notifier(&hv_memory_nb); 1850 restore_online_page_callback(&hv_online_page); 1851 #endif 1852 spin_lock_irqsave(&dm_device.ha_lock, flags); 1853 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { 1854 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { 1855 list_del(&gap->list); 1856 kfree(gap); 1857 } 1858 list_del(&has->list); 1859 kfree(has); 1860 } 1861 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 1862 1863 return 0; 1864 } 1865 1866 static int balloon_suspend(struct hv_device *hv_dev) 1867 { 1868 struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev); 1869 1870 tasklet_disable(&hv_dev->channel->callback_event); 1871 1872 cancel_work_sync(&dm->balloon_wrk.wrk); 1873 cancel_work_sync(&dm->ha_wrk.wrk); 1874 1875 if (dm->thread) { 1876 kthread_stop(dm->thread); 1877 dm->thread = NULL; 1878 vmbus_close(hv_dev->channel); 1879 } 1880 1881 tasklet_enable(&hv_dev->channel->callback_event); 1882 1883 return 0; 1884 1885 } 1886 1887 static int balloon_resume(struct hv_device *dev) 1888 { 1889 int ret; 1890 1891 dm_device.state = DM_INITIALIZING; 1892 1893 ret = balloon_connect_vsp(dev); 1894 1895 if (ret != 0) 1896 goto out; 1897 1898 dm_device.thread = 1899 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1900 if (IS_ERR(dm_device.thread)) { 1901 ret = PTR_ERR(dm_device.thread); 1902 dm_device.thread = NULL; 1903 goto close_channel; 1904 } 1905 1906 dm_device.state = DM_INITIALIZED; 1907 return 0; 1908 close_channel: 1909 vmbus_close(dev->channel); 1910 out: 1911 dm_device.state = DM_INIT_ERROR; 1912 #ifdef CONFIG_MEMORY_HOTPLUG 1913 unregister_memory_notifier(&hv_memory_nb); 1914 restore_online_page_callback(&hv_online_page); 1915 #endif 1916 return ret; 1917 } 1918 1919 static const struct hv_vmbus_device_id id_table[] = { 1920 /* Dynamic Memory Class ID */ 1921 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 1922 { HV_DM_GUID, }, 1923 { }, 1924 }; 1925 1926 MODULE_DEVICE_TABLE(vmbus, id_table); 1927 1928 static struct hv_driver balloon_drv = { 1929 .name = "hv_balloon", 1930 .id_table = id_table, 1931 .probe = balloon_probe, 1932 .remove = balloon_remove, 1933 .suspend = balloon_suspend, 1934 .resume = balloon_resume, 1935 .driver = { 1936 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1937 }, 1938 }; 1939 1940 static int __init init_balloon_drv(void) 1941 { 1942 1943 return vmbus_driver_register(&balloon_drv); 1944 } 1945 1946 module_init(init_balloon_drv); 1947 1948 MODULE_DESCRIPTION("Hyper-V Balloon"); 1949 MODULE_LICENSE("GPL"); 1950