xref: /linux/drivers/hv/hv_balloon.c (revision 63cfd210034c772fad047afa13dd5a4664b0a72e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/debugfs.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/kthread.h>
20 #include <linux/completion.h>
21 #include <linux/count_zeros.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/memory.h>
24 #include <linux/notifier.h>
25 #include <linux/percpu_counter.h>
26 #include <linux/page_reporting.h>
27 
28 #include <linux/hyperv.h>
29 #include <asm/hyperv-tlfs.h>
30 
31 #include <asm/mshyperv.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include "hv_trace_balloon.h"
35 
36 /*
37  * We begin with definitions supporting the Dynamic Memory protocol
38  * with the host.
39  *
40  * Begin protocol definitions.
41  */
42 
43 
44 
45 /*
46  * Protocol versions. The low word is the minor version, the high word the major
47  * version.
48  *
49  * History:
50  * Initial version 1.0
51  * Changed to 0.1 on 2009/03/25
52  * Changes to 0.2 on 2009/05/14
53  * Changes to 0.3 on 2009/12/03
54  * Changed to 1.0 on 2011/04/05
55  */
56 
57 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
58 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
59 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
60 
61 enum {
62 	DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
63 	DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
64 	DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
65 
66 	DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
67 	DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
68 	DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
69 
70 	DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
71 };
72 
73 
74 
75 /*
76  * Message Types
77  */
78 
79 enum dm_message_type {
80 	/*
81 	 * Version 0.3
82 	 */
83 	DM_ERROR			= 0,
84 	DM_VERSION_REQUEST		= 1,
85 	DM_VERSION_RESPONSE		= 2,
86 	DM_CAPABILITIES_REPORT		= 3,
87 	DM_CAPABILITIES_RESPONSE	= 4,
88 	DM_STATUS_REPORT		= 5,
89 	DM_BALLOON_REQUEST		= 6,
90 	DM_BALLOON_RESPONSE		= 7,
91 	DM_UNBALLOON_REQUEST		= 8,
92 	DM_UNBALLOON_RESPONSE		= 9,
93 	DM_MEM_HOT_ADD_REQUEST		= 10,
94 	DM_MEM_HOT_ADD_RESPONSE		= 11,
95 	DM_VERSION_03_MAX		= 11,
96 	/*
97 	 * Version 1.0.
98 	 */
99 	DM_INFO_MESSAGE			= 12,
100 	DM_VERSION_1_MAX		= 12
101 };
102 
103 
104 /*
105  * Structures defining the dynamic memory management
106  * protocol.
107  */
108 
109 union dm_version {
110 	struct {
111 		__u16 minor_version;
112 		__u16 major_version;
113 	};
114 	__u32 version;
115 } __packed;
116 
117 
118 union dm_caps {
119 	struct {
120 		__u64 balloon:1;
121 		__u64 hot_add:1;
122 		/*
123 		 * To support guests that may have alignment
124 		 * limitations on hot-add, the guest can specify
125 		 * its alignment requirements; a value of n
126 		 * represents an alignment of 2^n in mega bytes.
127 		 */
128 		__u64 hot_add_alignment:4;
129 		__u64 reservedz:58;
130 	} cap_bits;
131 	__u64 caps;
132 } __packed;
133 
134 union dm_mem_page_range {
135 	struct  {
136 		/*
137 		 * The PFN number of the first page in the range.
138 		 * 40 bits is the architectural limit of a PFN
139 		 * number for AMD64.
140 		 */
141 		__u64 start_page:40;
142 		/*
143 		 * The number of pages in the range.
144 		 */
145 		__u64 page_cnt:24;
146 	} finfo;
147 	__u64  page_range;
148 } __packed;
149 
150 
151 
152 /*
153  * The header for all dynamic memory messages:
154  *
155  * type: Type of the message.
156  * size: Size of the message in bytes; including the header.
157  * trans_id: The guest is responsible for manufacturing this ID.
158  */
159 
160 struct dm_header {
161 	__u16 type;
162 	__u16 size;
163 	__u32 trans_id;
164 } __packed;
165 
166 /*
167  * A generic message format for dynamic memory.
168  * Specific message formats are defined later in the file.
169  */
170 
171 struct dm_message {
172 	struct dm_header hdr;
173 	__u8 data[]; /* enclosed message */
174 } __packed;
175 
176 
177 /*
178  * Specific message types supporting the dynamic memory protocol.
179  */
180 
181 /*
182  * Version negotiation message. Sent from the guest to the host.
183  * The guest is free to try different versions until the host
184  * accepts the version.
185  *
186  * dm_version: The protocol version requested.
187  * is_last_attempt: If TRUE, this is the last version guest will request.
188  * reservedz: Reserved field, set to zero.
189  */
190 
191 struct dm_version_request {
192 	struct dm_header hdr;
193 	union dm_version version;
194 	__u32 is_last_attempt:1;
195 	__u32 reservedz:31;
196 } __packed;
197 
198 /*
199  * Version response message; Host to Guest and indicates
200  * if the host has accepted the version sent by the guest.
201  *
202  * is_accepted: If TRUE, host has accepted the version and the guest
203  * should proceed to the next stage of the protocol. FALSE indicates that
204  * guest should re-try with a different version.
205  *
206  * reservedz: Reserved field, set to zero.
207  */
208 
209 struct dm_version_response {
210 	struct dm_header hdr;
211 	__u64 is_accepted:1;
212 	__u64 reservedz:63;
213 } __packed;
214 
215 /*
216  * Message reporting capabilities. This is sent from the guest to the
217  * host.
218  */
219 
220 struct dm_capabilities {
221 	struct dm_header hdr;
222 	union dm_caps caps;
223 	__u64 min_page_cnt;
224 	__u64 max_page_number;
225 } __packed;
226 
227 /*
228  * Response to the capabilities message. This is sent from the host to the
229  * guest. This message notifies if the host has accepted the guest's
230  * capabilities. If the host has not accepted, the guest must shutdown
231  * the service.
232  *
233  * is_accepted: Indicates if the host has accepted guest's capabilities.
234  * reservedz: Must be 0.
235  */
236 
237 struct dm_capabilities_resp_msg {
238 	struct dm_header hdr;
239 	__u64 is_accepted:1;
240 	__u64 reservedz:63;
241 } __packed;
242 
243 /*
244  * This message is used to report memory pressure from the guest.
245  * This message is not part of any transaction and there is no
246  * response to this message.
247  *
248  * num_avail: Available memory in pages.
249  * num_committed: Committed memory in pages.
250  * page_file_size: The accumulated size of all page files
251  *		   in the system in pages.
252  * zero_free: The number of zero and free pages.
253  * page_file_writes: The writes to the page file in pages.
254  * io_diff: An indicator of file cache efficiency or page file activity,
255  *	    calculated as File Cache Page Fault Count - Page Read Count.
256  *	    This value is in pages.
257  *
258  * Some of these metrics are Windows specific and fortunately
259  * the algorithm on the host side that computes the guest memory
260  * pressure only uses num_committed value.
261  */
262 
263 struct dm_status {
264 	struct dm_header hdr;
265 	__u64 num_avail;
266 	__u64 num_committed;
267 	__u64 page_file_size;
268 	__u64 zero_free;
269 	__u32 page_file_writes;
270 	__u32 io_diff;
271 } __packed;
272 
273 
274 /*
275  * Message to ask the guest to allocate memory - balloon up message.
276  * This message is sent from the host to the guest. The guest may not be
277  * able to allocate as much memory as requested.
278  *
279  * num_pages: number of pages to allocate.
280  */
281 
282 struct dm_balloon {
283 	struct dm_header hdr;
284 	__u32 num_pages;
285 	__u32 reservedz;
286 } __packed;
287 
288 
289 /*
290  * Balloon response message; this message is sent from the guest
291  * to the host in response to the balloon message.
292  *
293  * reservedz: Reserved; must be set to zero.
294  * more_pages: If FALSE, this is the last message of the transaction.
295  * if TRUE there will atleast one more message from the guest.
296  *
297  * range_count: The number of ranges in the range array.
298  *
299  * range_array: An array of page ranges returned to the host.
300  *
301  */
302 
303 struct dm_balloon_response {
304 	struct dm_header hdr;
305 	__u32 reservedz;
306 	__u32 more_pages:1;
307 	__u32 range_count:31;
308 	union dm_mem_page_range range_array[];
309 } __packed;
310 
311 /*
312  * Un-balloon message; this message is sent from the host
313  * to the guest to give guest more memory.
314  *
315  * more_pages: If FALSE, this is the last message of the transaction.
316  * if TRUE there will atleast one more message from the guest.
317  *
318  * reservedz: Reserved; must be set to zero.
319  *
320  * range_count: The number of ranges in the range array.
321  *
322  * range_array: An array of page ranges returned to the host.
323  *
324  */
325 
326 struct dm_unballoon_request {
327 	struct dm_header hdr;
328 	__u32 more_pages:1;
329 	__u32 reservedz:31;
330 	__u32 range_count;
331 	union dm_mem_page_range range_array[];
332 } __packed;
333 
334 /*
335  * Un-balloon response message; this message is sent from the guest
336  * to the host in response to an unballoon request.
337  *
338  */
339 
340 struct dm_unballoon_response {
341 	struct dm_header hdr;
342 } __packed;
343 
344 
345 /*
346  * Hot add request message. Message sent from the host to the guest.
347  *
348  * mem_range: Memory range to hot add.
349  *
350  */
351 
352 struct dm_hot_add {
353 	struct dm_header hdr;
354 	union dm_mem_page_range range;
355 } __packed;
356 
357 /*
358  * Hot add response message.
359  * This message is sent by the guest to report the status of a hot add request.
360  * If page_count is less than the requested page count, then the host should
361  * assume all further hot add requests will fail, since this indicates that
362  * the guest has hit an upper physical memory barrier.
363  *
364  * Hot adds may also fail due to low resources; in this case, the guest must
365  * not complete this message until the hot add can succeed, and the host must
366  * not send a new hot add request until the response is sent.
367  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
368  * times it fails the request.
369  *
370  *
371  * page_count: number of pages that were successfully hot added.
372  *
373  * result: result of the operation 1: success, 0: failure.
374  *
375  */
376 
377 struct dm_hot_add_response {
378 	struct dm_header hdr;
379 	__u32 page_count;
380 	__u32 result;
381 } __packed;
382 
383 /*
384  * Types of information sent from host to the guest.
385  */
386 
387 enum dm_info_type {
388 	INFO_TYPE_MAX_PAGE_CNT = 0,
389 	MAX_INFO_TYPE
390 };
391 
392 
393 /*
394  * Header for the information message.
395  */
396 
397 struct dm_info_header {
398 	enum dm_info_type type;
399 	__u32 data_size;
400 } __packed;
401 
402 /*
403  * This message is sent from the host to the guest to pass
404  * some relevant information (win8 addition).
405  *
406  * reserved: no used.
407  * info_size: size of the information blob.
408  * info: information blob.
409  */
410 
411 struct dm_info_msg {
412 	struct dm_header hdr;
413 	__u32 reserved;
414 	__u32 info_size;
415 	__u8  info[];
416 };
417 
418 /*
419  * End protocol definitions.
420  */
421 
422 /*
423  * State to manage hot adding memory into the guest.
424  * The range start_pfn : end_pfn specifies the range
425  * that the host has asked us to hot add. The range
426  * start_pfn : ha_end_pfn specifies the range that we have
427  * currently hot added. We hot add in multiples of 128M
428  * chunks; it is possible that we may not be able to bring
429  * online all the pages in the region. The range
430  * covered_start_pfn:covered_end_pfn defines the pages that can
431  * be brough online.
432  */
433 
434 struct hv_hotadd_state {
435 	struct list_head list;
436 	unsigned long start_pfn;
437 	unsigned long covered_start_pfn;
438 	unsigned long covered_end_pfn;
439 	unsigned long ha_end_pfn;
440 	unsigned long end_pfn;
441 	/*
442 	 * A list of gaps.
443 	 */
444 	struct list_head gap_list;
445 };
446 
447 struct hv_hotadd_gap {
448 	struct list_head list;
449 	unsigned long start_pfn;
450 	unsigned long end_pfn;
451 };
452 
453 struct balloon_state {
454 	__u32 num_pages;
455 	struct work_struct wrk;
456 };
457 
458 struct hot_add_wrk {
459 	union dm_mem_page_range ha_page_range;
460 	union dm_mem_page_range ha_region_range;
461 	struct work_struct wrk;
462 };
463 
464 static bool allow_hibernation;
465 static bool hot_add = true;
466 static bool do_hot_add;
467 /*
468  * Delay reporting memory pressure by
469  * the specified number of seconds.
470  */
471 static uint pressure_report_delay = 45;
472 extern unsigned int page_reporting_order;
473 #define HV_MAX_FAILURES	2
474 
475 /*
476  * The last time we posted a pressure report to host.
477  */
478 static unsigned long last_post_time;
479 
480 static int hv_hypercall_multi_failure;
481 
482 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
483 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
484 
485 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
486 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
487 static atomic_t trans_id = ATOMIC_INIT(0);
488 
489 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024);
490 
491 /*
492  * Driver specific state.
493  */
494 
495 enum hv_dm_state {
496 	DM_INITIALIZING = 0,
497 	DM_INITIALIZED,
498 	DM_BALLOON_UP,
499 	DM_BALLOON_DOWN,
500 	DM_HOT_ADD,
501 	DM_INIT_ERROR
502 };
503 
504 
505 static __u8 recv_buffer[HV_HYP_PAGE_SIZE];
506 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE];
507 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE)
508 #define HA_CHUNK (128 * 1024 * 1024 / PAGE_SIZE)
509 
510 struct hv_dynmem_device {
511 	struct hv_device *dev;
512 	enum hv_dm_state state;
513 	struct completion host_event;
514 	struct completion config_event;
515 
516 	/*
517 	 * Number of pages we have currently ballooned out.
518 	 */
519 	unsigned int num_pages_ballooned;
520 	unsigned int num_pages_onlined;
521 	unsigned int num_pages_added;
522 
523 	/*
524 	 * State to manage the ballooning (up) operation.
525 	 */
526 	struct balloon_state balloon_wrk;
527 
528 	/*
529 	 * State to execute the "hot-add" operation.
530 	 */
531 	struct hot_add_wrk ha_wrk;
532 
533 	/*
534 	 * This state tracks if the host has specified a hot-add
535 	 * region.
536 	 */
537 	bool host_specified_ha_region;
538 
539 	/*
540 	 * State to synchronize hot-add.
541 	 */
542 	struct completion  ol_waitevent;
543 	/*
544 	 * This thread handles hot-add
545 	 * requests from the host as well as notifying
546 	 * the host with regards to memory pressure in
547 	 * the guest.
548 	 */
549 	struct task_struct *thread;
550 
551 	/*
552 	 * Protects ha_region_list, num_pages_onlined counter and individual
553 	 * regions from ha_region_list.
554 	 */
555 	spinlock_t ha_lock;
556 
557 	/*
558 	 * A list of hot-add regions.
559 	 */
560 	struct list_head ha_region_list;
561 
562 	/*
563 	 * We start with the highest version we can support
564 	 * and downgrade based on the host; we save here the
565 	 * next version to try.
566 	 */
567 	__u32 next_version;
568 
569 	/*
570 	 * The negotiated version agreed by host.
571 	 */
572 	__u32 version;
573 
574 	struct page_reporting_dev_info pr_dev_info;
575 
576 	/*
577 	 * Maximum number of pages that can be hot_add-ed
578 	 */
579 	__u64 max_dynamic_page_count;
580 };
581 
582 static struct hv_dynmem_device dm_device;
583 
584 static void post_status(struct hv_dynmem_device *dm);
585 
586 static void enable_page_reporting(void);
587 
588 static void disable_page_reporting(void);
589 
590 #ifdef CONFIG_MEMORY_HOTPLUG
591 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
592 				     unsigned long pfn)
593 {
594 	struct hv_hotadd_gap *gap;
595 
596 	/* The page is not backed. */
597 	if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
598 		return false;
599 
600 	/* Check for gaps. */
601 	list_for_each_entry(gap, &has->gap_list, list) {
602 		if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
603 			return false;
604 	}
605 
606 	return true;
607 }
608 
609 static unsigned long hv_page_offline_check(unsigned long start_pfn,
610 					   unsigned long nr_pages)
611 {
612 	unsigned long pfn = start_pfn, count = 0;
613 	struct hv_hotadd_state *has;
614 	bool found;
615 
616 	while (pfn < start_pfn + nr_pages) {
617 		/*
618 		 * Search for HAS which covers the pfn and when we find one
619 		 * count how many consequitive PFNs are covered.
620 		 */
621 		found = false;
622 		list_for_each_entry(has, &dm_device.ha_region_list, list) {
623 			while ((pfn >= has->start_pfn) &&
624 			       (pfn < has->end_pfn) &&
625 			       (pfn < start_pfn + nr_pages)) {
626 				found = true;
627 				if (has_pfn_is_backed(has, pfn))
628 					count++;
629 				pfn++;
630 			}
631 		}
632 
633 		/*
634 		 * This PFN is not in any HAS (e.g. we're offlining a region
635 		 * which was present at boot), no need to account for it. Go
636 		 * to the next one.
637 		 */
638 		if (!found)
639 			pfn++;
640 	}
641 
642 	return count;
643 }
644 
645 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
646 			      void *v)
647 {
648 	struct memory_notify *mem = (struct memory_notify *)v;
649 	unsigned long flags, pfn_count;
650 
651 	switch (val) {
652 	case MEM_ONLINE:
653 	case MEM_CANCEL_ONLINE:
654 		complete(&dm_device.ol_waitevent);
655 		break;
656 
657 	case MEM_OFFLINE:
658 		spin_lock_irqsave(&dm_device.ha_lock, flags);
659 		pfn_count = hv_page_offline_check(mem->start_pfn,
660 						  mem->nr_pages);
661 		if (pfn_count <= dm_device.num_pages_onlined) {
662 			dm_device.num_pages_onlined -= pfn_count;
663 		} else {
664 			/*
665 			 * We're offlining more pages than we managed to online.
666 			 * This is unexpected. In any case don't let
667 			 * num_pages_onlined wrap around zero.
668 			 */
669 			WARN_ON_ONCE(1);
670 			dm_device.num_pages_onlined = 0;
671 		}
672 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
673 		break;
674 	case MEM_GOING_ONLINE:
675 	case MEM_GOING_OFFLINE:
676 	case MEM_CANCEL_OFFLINE:
677 		break;
678 	}
679 	return NOTIFY_OK;
680 }
681 
682 static struct notifier_block hv_memory_nb = {
683 	.notifier_call = hv_memory_notifier,
684 	.priority = 0
685 };
686 
687 /* Check if the particular page is backed and can be onlined and online it. */
688 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
689 {
690 	if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
691 		if (!PageOffline(pg))
692 			__SetPageOffline(pg);
693 		return;
694 	}
695 	if (PageOffline(pg))
696 		__ClearPageOffline(pg);
697 
698 	/* This frame is currently backed; online the page. */
699 	generic_online_page(pg, 0);
700 
701 	lockdep_assert_held(&dm_device.ha_lock);
702 	dm_device.num_pages_onlined++;
703 }
704 
705 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
706 				unsigned long start_pfn, unsigned long size)
707 {
708 	int i;
709 
710 	pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
711 	for (i = 0; i < size; i++)
712 		hv_page_online_one(has, pfn_to_page(start_pfn + i));
713 }
714 
715 static void hv_mem_hot_add(unsigned long start, unsigned long size,
716 				unsigned long pfn_count,
717 				struct hv_hotadd_state *has)
718 {
719 	int ret = 0;
720 	int i, nid;
721 	unsigned long start_pfn;
722 	unsigned long processed_pfn;
723 	unsigned long total_pfn = pfn_count;
724 	unsigned long flags;
725 
726 	for (i = 0; i < (size/HA_CHUNK); i++) {
727 		start_pfn = start + (i * HA_CHUNK);
728 
729 		spin_lock_irqsave(&dm_device.ha_lock, flags);
730 		has->ha_end_pfn +=  HA_CHUNK;
731 
732 		if (total_pfn > HA_CHUNK) {
733 			processed_pfn = HA_CHUNK;
734 			total_pfn -= HA_CHUNK;
735 		} else {
736 			processed_pfn = total_pfn;
737 			total_pfn = 0;
738 		}
739 
740 		has->covered_end_pfn +=  processed_pfn;
741 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
742 
743 		reinit_completion(&dm_device.ol_waitevent);
744 
745 		nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
746 		ret = add_memory(nid, PFN_PHYS((start_pfn)),
747 				(HA_CHUNK << PAGE_SHIFT), MHP_MERGE_RESOURCE);
748 
749 		if (ret) {
750 			pr_err("hot_add memory failed error is %d\n", ret);
751 			if (ret == -EEXIST) {
752 				/*
753 				 * This error indicates that the error
754 				 * is not a transient failure. This is the
755 				 * case where the guest's physical address map
756 				 * precludes hot adding memory. Stop all further
757 				 * memory hot-add.
758 				 */
759 				do_hot_add = false;
760 			}
761 			spin_lock_irqsave(&dm_device.ha_lock, flags);
762 			has->ha_end_pfn -= HA_CHUNK;
763 			has->covered_end_pfn -=  processed_pfn;
764 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
765 			break;
766 		}
767 
768 		/*
769 		 * Wait for memory to get onlined. If the kernel onlined the
770 		 * memory when adding it, this will return directly. Otherwise,
771 		 * it will wait for user space to online the memory. This helps
772 		 * to avoid adding memory faster than it is getting onlined. As
773 		 * adding succeeded, it is ok to proceed even if the memory was
774 		 * not onlined in time.
775 		 */
776 		wait_for_completion_timeout(&dm_device.ol_waitevent, 5 * HZ);
777 		post_status(&dm_device);
778 	}
779 }
780 
781 static void hv_online_page(struct page *pg, unsigned int order)
782 {
783 	struct hv_hotadd_state *has;
784 	unsigned long flags;
785 	unsigned long pfn = page_to_pfn(pg);
786 
787 	spin_lock_irqsave(&dm_device.ha_lock, flags);
788 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
789 		/* The page belongs to a different HAS. */
790 		if ((pfn < has->start_pfn) ||
791 				(pfn + (1UL << order) > has->end_pfn))
792 			continue;
793 
794 		hv_bring_pgs_online(has, pfn, 1UL << order);
795 		break;
796 	}
797 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
798 }
799 
800 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
801 {
802 	struct hv_hotadd_state *has;
803 	struct hv_hotadd_gap *gap;
804 	unsigned long residual, new_inc;
805 	int ret = 0;
806 	unsigned long flags;
807 
808 	spin_lock_irqsave(&dm_device.ha_lock, flags);
809 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
810 		/*
811 		 * If the pfn range we are dealing with is not in the current
812 		 * "hot add block", move on.
813 		 */
814 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
815 			continue;
816 
817 		/*
818 		 * If the current start pfn is not where the covered_end
819 		 * is, create a gap and update covered_end_pfn.
820 		 */
821 		if (has->covered_end_pfn != start_pfn) {
822 			gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
823 			if (!gap) {
824 				ret = -ENOMEM;
825 				break;
826 			}
827 
828 			INIT_LIST_HEAD(&gap->list);
829 			gap->start_pfn = has->covered_end_pfn;
830 			gap->end_pfn = start_pfn;
831 			list_add_tail(&gap->list, &has->gap_list);
832 
833 			has->covered_end_pfn = start_pfn;
834 		}
835 
836 		/*
837 		 * If the current hot add-request extends beyond
838 		 * our current limit; extend it.
839 		 */
840 		if ((start_pfn + pfn_cnt) > has->end_pfn) {
841 			residual = (start_pfn + pfn_cnt - has->end_pfn);
842 			/*
843 			 * Extend the region by multiples of HA_CHUNK.
844 			 */
845 			new_inc = (residual / HA_CHUNK) * HA_CHUNK;
846 			if (residual % HA_CHUNK)
847 				new_inc += HA_CHUNK;
848 
849 			has->end_pfn += new_inc;
850 		}
851 
852 		ret = 1;
853 		break;
854 	}
855 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
856 
857 	return ret;
858 }
859 
860 static unsigned long handle_pg_range(unsigned long pg_start,
861 					unsigned long pg_count)
862 {
863 	unsigned long start_pfn = pg_start;
864 	unsigned long pfn_cnt = pg_count;
865 	unsigned long size;
866 	struct hv_hotadd_state *has;
867 	unsigned long pgs_ol = 0;
868 	unsigned long old_covered_state;
869 	unsigned long res = 0, flags;
870 
871 	pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
872 		pg_start);
873 
874 	spin_lock_irqsave(&dm_device.ha_lock, flags);
875 	list_for_each_entry(has, &dm_device.ha_region_list, list) {
876 		/*
877 		 * If the pfn range we are dealing with is not in the current
878 		 * "hot add block", move on.
879 		 */
880 		if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
881 			continue;
882 
883 		old_covered_state = has->covered_end_pfn;
884 
885 		if (start_pfn < has->ha_end_pfn) {
886 			/*
887 			 * This is the case where we are backing pages
888 			 * in an already hot added region. Bring
889 			 * these pages online first.
890 			 */
891 			pgs_ol = has->ha_end_pfn - start_pfn;
892 			if (pgs_ol > pfn_cnt)
893 				pgs_ol = pfn_cnt;
894 
895 			has->covered_end_pfn +=  pgs_ol;
896 			pfn_cnt -= pgs_ol;
897 			/*
898 			 * Check if the corresponding memory block is already
899 			 * online. It is possible to observe struct pages still
900 			 * being uninitialized here so check section instead.
901 			 * In case the section is online we need to bring the
902 			 * rest of pfns (which were not backed previously)
903 			 * online too.
904 			 */
905 			if (start_pfn > has->start_pfn &&
906 			    online_section_nr(pfn_to_section_nr(start_pfn)))
907 				hv_bring_pgs_online(has, start_pfn, pgs_ol);
908 
909 		}
910 
911 		if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
912 			/*
913 			 * We have some residual hot add range
914 			 * that needs to be hot added; hot add
915 			 * it now. Hot add a multiple of
916 			 * HA_CHUNK that fully covers the pages
917 			 * we have.
918 			 */
919 			size = (has->end_pfn - has->ha_end_pfn);
920 			if (pfn_cnt <= size) {
921 				size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
922 				if (pfn_cnt % HA_CHUNK)
923 					size += HA_CHUNK;
924 			} else {
925 				pfn_cnt = size;
926 			}
927 			spin_unlock_irqrestore(&dm_device.ha_lock, flags);
928 			hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
929 			spin_lock_irqsave(&dm_device.ha_lock, flags);
930 		}
931 		/*
932 		 * If we managed to online any pages that were given to us,
933 		 * we declare success.
934 		 */
935 		res = has->covered_end_pfn - old_covered_state;
936 		break;
937 	}
938 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
939 
940 	return res;
941 }
942 
943 static unsigned long process_hot_add(unsigned long pg_start,
944 					unsigned long pfn_cnt,
945 					unsigned long rg_start,
946 					unsigned long rg_size)
947 {
948 	struct hv_hotadd_state *ha_region = NULL;
949 	int covered;
950 	unsigned long flags;
951 
952 	if (pfn_cnt == 0)
953 		return 0;
954 
955 	if (!dm_device.host_specified_ha_region) {
956 		covered = pfn_covered(pg_start, pfn_cnt);
957 		if (covered < 0)
958 			return 0;
959 
960 		if (covered)
961 			goto do_pg_range;
962 	}
963 
964 	/*
965 	 * If the host has specified a hot-add range; deal with it first.
966 	 */
967 
968 	if (rg_size != 0) {
969 		ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
970 		if (!ha_region)
971 			return 0;
972 
973 		INIT_LIST_HEAD(&ha_region->list);
974 		INIT_LIST_HEAD(&ha_region->gap_list);
975 
976 		ha_region->start_pfn = rg_start;
977 		ha_region->ha_end_pfn = rg_start;
978 		ha_region->covered_start_pfn = pg_start;
979 		ha_region->covered_end_pfn = pg_start;
980 		ha_region->end_pfn = rg_start + rg_size;
981 
982 		spin_lock_irqsave(&dm_device.ha_lock, flags);
983 		list_add_tail(&ha_region->list, &dm_device.ha_region_list);
984 		spin_unlock_irqrestore(&dm_device.ha_lock, flags);
985 	}
986 
987 do_pg_range:
988 	/*
989 	 * Process the page range specified; bringing them
990 	 * online if possible.
991 	 */
992 	return handle_pg_range(pg_start, pfn_cnt);
993 }
994 
995 #endif
996 
997 static void hot_add_req(struct work_struct *dummy)
998 {
999 	struct dm_hot_add_response resp;
1000 #ifdef CONFIG_MEMORY_HOTPLUG
1001 	unsigned long pg_start, pfn_cnt;
1002 	unsigned long rg_start, rg_sz;
1003 #endif
1004 	struct hv_dynmem_device *dm = &dm_device;
1005 
1006 	memset(&resp, 0, sizeof(struct dm_hot_add_response));
1007 	resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
1008 	resp.hdr.size = sizeof(struct dm_hot_add_response);
1009 
1010 #ifdef CONFIG_MEMORY_HOTPLUG
1011 	pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1012 	pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1013 
1014 	rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1015 	rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1016 
1017 	if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1018 		unsigned long region_size;
1019 		unsigned long region_start;
1020 
1021 		/*
1022 		 * The host has not specified the hot-add region.
1023 		 * Based on the hot-add page range being specified,
1024 		 * compute a hot-add region that can cover the pages
1025 		 * that need to be hot-added while ensuring the alignment
1026 		 * and size requirements of Linux as it relates to hot-add.
1027 		 */
1028 		region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1029 		if (pfn_cnt % HA_CHUNK)
1030 			region_size += HA_CHUNK;
1031 
1032 		region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1033 
1034 		rg_start = region_start;
1035 		rg_sz = region_size;
1036 	}
1037 
1038 	if (do_hot_add)
1039 		resp.page_count = process_hot_add(pg_start, pfn_cnt,
1040 						rg_start, rg_sz);
1041 
1042 	dm->num_pages_added += resp.page_count;
1043 #endif
1044 	/*
1045 	 * The result field of the response structure has the
1046 	 * following semantics:
1047 	 *
1048 	 * 1. If all or some pages hot-added: Guest should return success.
1049 	 *
1050 	 * 2. If no pages could be hot-added:
1051 	 *
1052 	 * If the guest returns success, then the host
1053 	 * will not attempt any further hot-add operations. This
1054 	 * signifies a permanent failure.
1055 	 *
1056 	 * If the guest returns failure, then this failure will be
1057 	 * treated as a transient failure and the host may retry the
1058 	 * hot-add operation after some delay.
1059 	 */
1060 	if (resp.page_count > 0)
1061 		resp.result = 1;
1062 	else if (!do_hot_add)
1063 		resp.result = 1;
1064 	else
1065 		resp.result = 0;
1066 
1067 	if (!do_hot_add || resp.page_count == 0) {
1068 		if (!allow_hibernation)
1069 			pr_err("Memory hot add failed\n");
1070 		else
1071 			pr_info("Ignore hot-add request!\n");
1072 	}
1073 
1074 	dm->state = DM_INITIALIZED;
1075 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1076 	vmbus_sendpacket(dm->dev->channel, &resp,
1077 			sizeof(struct dm_hot_add_response),
1078 			(unsigned long)NULL,
1079 			VM_PKT_DATA_INBAND, 0);
1080 }
1081 
1082 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1083 {
1084 	struct dm_info_header *info_hdr;
1085 
1086 	info_hdr = (struct dm_info_header *)msg->info;
1087 
1088 	switch (info_hdr->type) {
1089 	case INFO_TYPE_MAX_PAGE_CNT:
1090 		if (info_hdr->data_size == sizeof(__u64)) {
1091 			__u64 *max_page_count = (__u64 *)&info_hdr[1];
1092 
1093 			pr_info("Max. dynamic memory size: %llu MB\n",
1094 				(*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT));
1095 			dm->max_dynamic_page_count = *max_page_count;
1096 		}
1097 
1098 		break;
1099 	default:
1100 		pr_warn("Received Unknown type: %d\n", info_hdr->type);
1101 	}
1102 }
1103 
1104 static unsigned long compute_balloon_floor(void)
1105 {
1106 	unsigned long min_pages;
1107 	unsigned long nr_pages = totalram_pages();
1108 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1109 	/* Simple continuous piecewiese linear function:
1110 	 *  max MiB -> min MiB  gradient
1111 	 *       0         0
1112 	 *      16        16
1113 	 *      32        24
1114 	 *     128        72    (1/2)
1115 	 *     512       168    (1/4)
1116 	 *    2048       360    (1/8)
1117 	 *    8192       744    (1/16)
1118 	 *   32768      1512	(1/32)
1119 	 */
1120 	if (nr_pages < MB2PAGES(128))
1121 		min_pages = MB2PAGES(8) + (nr_pages >> 1);
1122 	else if (nr_pages < MB2PAGES(512))
1123 		min_pages = MB2PAGES(40) + (nr_pages >> 2);
1124 	else if (nr_pages < MB2PAGES(2048))
1125 		min_pages = MB2PAGES(104) + (nr_pages >> 3);
1126 	else if (nr_pages < MB2PAGES(8192))
1127 		min_pages = MB2PAGES(232) + (nr_pages >> 4);
1128 	else
1129 		min_pages = MB2PAGES(488) + (nr_pages >> 5);
1130 #undef MB2PAGES
1131 	return min_pages;
1132 }
1133 
1134 /*
1135  * Compute total committed memory pages
1136  */
1137 
1138 static unsigned long get_pages_committed(struct hv_dynmem_device *dm)
1139 {
1140 	return vm_memory_committed() +
1141 		dm->num_pages_ballooned +
1142 		(dm->num_pages_added > dm->num_pages_onlined ?
1143 		 dm->num_pages_added - dm->num_pages_onlined : 0) +
1144 		compute_balloon_floor();
1145 }
1146 
1147 /*
1148  * Post our status as it relates memory pressure to the
1149  * host. Host expects the guests to post this status
1150  * periodically at 1 second intervals.
1151  *
1152  * The metrics specified in this protocol are very Windows
1153  * specific and so we cook up numbers here to convey our memory
1154  * pressure.
1155  */
1156 
1157 static void post_status(struct hv_dynmem_device *dm)
1158 {
1159 	struct dm_status status;
1160 	unsigned long now = jiffies;
1161 	unsigned long last_post = last_post_time;
1162 	unsigned long num_pages_avail, num_pages_committed;
1163 
1164 	if (pressure_report_delay > 0) {
1165 		--pressure_report_delay;
1166 		return;
1167 	}
1168 
1169 	if (!time_after(now, (last_post_time + HZ)))
1170 		return;
1171 
1172 	memset(&status, 0, sizeof(struct dm_status));
1173 	status.hdr.type = DM_STATUS_REPORT;
1174 	status.hdr.size = sizeof(struct dm_status);
1175 	status.hdr.trans_id = atomic_inc_return(&trans_id);
1176 
1177 	/*
1178 	 * The host expects the guest to report free and committed memory.
1179 	 * Furthermore, the host expects the pressure information to include
1180 	 * the ballooned out pages. For a given amount of memory that we are
1181 	 * managing we need to compute a floor below which we should not
1182 	 * balloon. Compute this and add it to the pressure report.
1183 	 * We also need to report all offline pages (num_pages_added -
1184 	 * num_pages_onlined) as committed to the host, otherwise it can try
1185 	 * asking us to balloon them out.
1186 	 */
1187 	num_pages_avail = si_mem_available();
1188 	num_pages_committed = get_pages_committed(dm);
1189 
1190 	trace_balloon_status(num_pages_avail, num_pages_committed,
1191 			     vm_memory_committed(), dm->num_pages_ballooned,
1192 			     dm->num_pages_added, dm->num_pages_onlined);
1193 
1194 	/* Convert numbers of pages into numbers of HV_HYP_PAGEs. */
1195 	status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE;
1196 	status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE;
1197 
1198 	/*
1199 	 * If our transaction ID is no longer current, just don't
1200 	 * send the status. This can happen if we were interrupted
1201 	 * after we picked our transaction ID.
1202 	 */
1203 	if (status.hdr.trans_id != atomic_read(&trans_id))
1204 		return;
1205 
1206 	/*
1207 	 * If the last post time that we sampled has changed,
1208 	 * we have raced, don't post the status.
1209 	 */
1210 	if (last_post != last_post_time)
1211 		return;
1212 
1213 	last_post_time = jiffies;
1214 	vmbus_sendpacket(dm->dev->channel, &status,
1215 				sizeof(struct dm_status),
1216 				(unsigned long)NULL,
1217 				VM_PKT_DATA_INBAND, 0);
1218 
1219 }
1220 
1221 static void free_balloon_pages(struct hv_dynmem_device *dm,
1222 			 union dm_mem_page_range *range_array)
1223 {
1224 	int num_pages = range_array->finfo.page_cnt;
1225 	__u64 start_frame = range_array->finfo.start_page;
1226 	struct page *pg;
1227 	int i;
1228 
1229 	for (i = 0; i < num_pages; i++) {
1230 		pg = pfn_to_page(i + start_frame);
1231 		__ClearPageOffline(pg);
1232 		__free_page(pg);
1233 		dm->num_pages_ballooned--;
1234 		adjust_managed_page_count(pg, 1);
1235 	}
1236 }
1237 
1238 
1239 
1240 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1241 					unsigned int num_pages,
1242 					struct dm_balloon_response *bl_resp,
1243 					int alloc_unit)
1244 {
1245 	unsigned int i, j;
1246 	struct page *pg;
1247 
1248 	for (i = 0; i < num_pages / alloc_unit; i++) {
1249 		if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1250 			HV_HYP_PAGE_SIZE)
1251 			return i * alloc_unit;
1252 
1253 		/*
1254 		 * We execute this code in a thread context. Furthermore,
1255 		 * we don't want the kernel to try too hard.
1256 		 */
1257 		pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1258 				__GFP_NOMEMALLOC | __GFP_NOWARN,
1259 				get_order(alloc_unit << PAGE_SHIFT));
1260 
1261 		if (!pg)
1262 			return i * alloc_unit;
1263 
1264 		dm->num_pages_ballooned += alloc_unit;
1265 
1266 		/*
1267 		 * If we allocatted 2M pages; split them so we
1268 		 * can free them in any order we get.
1269 		 */
1270 
1271 		if (alloc_unit != 1)
1272 			split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1273 
1274 		/* mark all pages offline */
1275 		for (j = 0; j < alloc_unit; j++) {
1276 			__SetPageOffline(pg + j);
1277 			adjust_managed_page_count(pg + j, -1);
1278 		}
1279 
1280 		bl_resp->range_count++;
1281 		bl_resp->range_array[i].finfo.start_page =
1282 			page_to_pfn(pg);
1283 		bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1284 		bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1285 
1286 	}
1287 
1288 	return i * alloc_unit;
1289 }
1290 
1291 static void balloon_up(struct work_struct *dummy)
1292 {
1293 	unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1294 	unsigned int num_ballooned = 0;
1295 	struct dm_balloon_response *bl_resp;
1296 	int alloc_unit;
1297 	int ret;
1298 	bool done = false;
1299 	int i;
1300 	long avail_pages;
1301 	unsigned long floor;
1302 
1303 	/*
1304 	 * We will attempt 2M allocations. However, if we fail to
1305 	 * allocate 2M chunks, we will go back to PAGE_SIZE allocations.
1306 	 */
1307 	alloc_unit = PAGES_IN_2M;
1308 
1309 	avail_pages = si_mem_available();
1310 	floor = compute_balloon_floor();
1311 
1312 	/* Refuse to balloon below the floor. */
1313 	if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1314 		pr_info("Balloon request will be partially fulfilled. %s\n",
1315 			avail_pages < num_pages ? "Not enough memory." :
1316 			"Balloon floor reached.");
1317 
1318 		num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1319 	}
1320 
1321 	while (!done) {
1322 		memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE);
1323 		bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1324 		bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1325 		bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1326 		bl_resp->more_pages = 1;
1327 
1328 		num_pages -= num_ballooned;
1329 		num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1330 						    bl_resp, alloc_unit);
1331 
1332 		if (alloc_unit != 1 && num_ballooned == 0) {
1333 			alloc_unit = 1;
1334 			continue;
1335 		}
1336 
1337 		if (num_ballooned == 0 || num_ballooned == num_pages) {
1338 			pr_debug("Ballooned %u out of %u requested pages.\n",
1339 				num_pages, dm_device.balloon_wrk.num_pages);
1340 
1341 			bl_resp->more_pages = 0;
1342 			done = true;
1343 			dm_device.state = DM_INITIALIZED;
1344 		}
1345 
1346 		/*
1347 		 * We are pushing a lot of data through the channel;
1348 		 * deal with transient failures caused because of the
1349 		 * lack of space in the ring buffer.
1350 		 */
1351 
1352 		do {
1353 			bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1354 			ret = vmbus_sendpacket(dm_device.dev->channel,
1355 						bl_resp,
1356 						bl_resp->hdr.size,
1357 						(unsigned long)NULL,
1358 						VM_PKT_DATA_INBAND, 0);
1359 
1360 			if (ret == -EAGAIN)
1361 				msleep(20);
1362 			post_status(&dm_device);
1363 		} while (ret == -EAGAIN);
1364 
1365 		if (ret) {
1366 			/*
1367 			 * Free up the memory we allocatted.
1368 			 */
1369 			pr_err("Balloon response failed\n");
1370 
1371 			for (i = 0; i < bl_resp->range_count; i++)
1372 				free_balloon_pages(&dm_device,
1373 						 &bl_resp->range_array[i]);
1374 
1375 			done = true;
1376 		}
1377 	}
1378 
1379 }
1380 
1381 static void balloon_down(struct hv_dynmem_device *dm,
1382 			struct dm_unballoon_request *req)
1383 {
1384 	union dm_mem_page_range *range_array = req->range_array;
1385 	int range_count = req->range_count;
1386 	struct dm_unballoon_response resp;
1387 	int i;
1388 	unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1389 
1390 	for (i = 0; i < range_count; i++) {
1391 		free_balloon_pages(dm, &range_array[i]);
1392 		complete(&dm_device.config_event);
1393 	}
1394 
1395 	pr_debug("Freed %u ballooned pages.\n",
1396 		prev_pages_ballooned - dm->num_pages_ballooned);
1397 
1398 	if (req->more_pages == 1)
1399 		return;
1400 
1401 	memset(&resp, 0, sizeof(struct dm_unballoon_response));
1402 	resp.hdr.type = DM_UNBALLOON_RESPONSE;
1403 	resp.hdr.trans_id = atomic_inc_return(&trans_id);
1404 	resp.hdr.size = sizeof(struct dm_unballoon_response);
1405 
1406 	vmbus_sendpacket(dm_device.dev->channel, &resp,
1407 				sizeof(struct dm_unballoon_response),
1408 				(unsigned long)NULL,
1409 				VM_PKT_DATA_INBAND, 0);
1410 
1411 	dm->state = DM_INITIALIZED;
1412 }
1413 
1414 static void balloon_onchannelcallback(void *context);
1415 
1416 static int dm_thread_func(void *dm_dev)
1417 {
1418 	struct hv_dynmem_device *dm = dm_dev;
1419 
1420 	while (!kthread_should_stop()) {
1421 		wait_for_completion_interruptible_timeout(
1422 						&dm_device.config_event, 1*HZ);
1423 		/*
1424 		 * The host expects us to post information on the memory
1425 		 * pressure every second.
1426 		 */
1427 		reinit_completion(&dm_device.config_event);
1428 		post_status(dm);
1429 		/*
1430 		 * disable free page reporting if multiple hypercall
1431 		 * failure flag set. It is not done in the page_reporting
1432 		 * callback context as that causes a deadlock between
1433 		 * page_reporting_process() and page_reporting_unregister()
1434 		 */
1435 		if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) {
1436 			pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n");
1437 			disable_page_reporting();
1438 			/* Reset the flag after disabling reporting */
1439 			hv_hypercall_multi_failure = 0;
1440 		}
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 
1447 static void version_resp(struct hv_dynmem_device *dm,
1448 			struct dm_version_response *vresp)
1449 {
1450 	struct dm_version_request version_req;
1451 	int ret;
1452 
1453 	if (vresp->is_accepted) {
1454 		/*
1455 		 * We are done; wakeup the
1456 		 * context waiting for version
1457 		 * negotiation.
1458 		 */
1459 		complete(&dm->host_event);
1460 		return;
1461 	}
1462 	/*
1463 	 * If there are more versions to try, continue
1464 	 * with negotiations; if not
1465 	 * shutdown the service since we are not able
1466 	 * to negotiate a suitable version number
1467 	 * with the host.
1468 	 */
1469 	if (dm->next_version == 0)
1470 		goto version_error;
1471 
1472 	memset(&version_req, 0, sizeof(struct dm_version_request));
1473 	version_req.hdr.type = DM_VERSION_REQUEST;
1474 	version_req.hdr.size = sizeof(struct dm_version_request);
1475 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1476 	version_req.version.version = dm->next_version;
1477 	dm->version = version_req.version.version;
1478 
1479 	/*
1480 	 * Set the next version to try in case current version fails.
1481 	 * Win7 protocol ought to be the last one to try.
1482 	 */
1483 	switch (version_req.version.version) {
1484 	case DYNMEM_PROTOCOL_VERSION_WIN8:
1485 		dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1486 		version_req.is_last_attempt = 0;
1487 		break;
1488 	default:
1489 		dm->next_version = 0;
1490 		version_req.is_last_attempt = 1;
1491 	}
1492 
1493 	ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1494 				sizeof(struct dm_version_request),
1495 				(unsigned long)NULL,
1496 				VM_PKT_DATA_INBAND, 0);
1497 
1498 	if (ret)
1499 		goto version_error;
1500 
1501 	return;
1502 
1503 version_error:
1504 	dm->state = DM_INIT_ERROR;
1505 	complete(&dm->host_event);
1506 }
1507 
1508 static void cap_resp(struct hv_dynmem_device *dm,
1509 			struct dm_capabilities_resp_msg *cap_resp)
1510 {
1511 	if (!cap_resp->is_accepted) {
1512 		pr_err("Capabilities not accepted by host\n");
1513 		dm->state = DM_INIT_ERROR;
1514 	}
1515 	complete(&dm->host_event);
1516 }
1517 
1518 static void balloon_onchannelcallback(void *context)
1519 {
1520 	struct hv_device *dev = context;
1521 	u32 recvlen;
1522 	u64 requestid;
1523 	struct dm_message *dm_msg;
1524 	struct dm_header *dm_hdr;
1525 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1526 	struct dm_balloon *bal_msg;
1527 	struct dm_hot_add *ha_msg;
1528 	union dm_mem_page_range *ha_pg_range;
1529 	union dm_mem_page_range *ha_region;
1530 
1531 	memset(recv_buffer, 0, sizeof(recv_buffer));
1532 	vmbus_recvpacket(dev->channel, recv_buffer,
1533 			 HV_HYP_PAGE_SIZE, &recvlen, &requestid);
1534 
1535 	if (recvlen > 0) {
1536 		dm_msg = (struct dm_message *)recv_buffer;
1537 		dm_hdr = &dm_msg->hdr;
1538 
1539 		switch (dm_hdr->type) {
1540 		case DM_VERSION_RESPONSE:
1541 			version_resp(dm,
1542 				 (struct dm_version_response *)dm_msg);
1543 			break;
1544 
1545 		case DM_CAPABILITIES_RESPONSE:
1546 			cap_resp(dm,
1547 				 (struct dm_capabilities_resp_msg *)dm_msg);
1548 			break;
1549 
1550 		case DM_BALLOON_REQUEST:
1551 			if (allow_hibernation) {
1552 				pr_info("Ignore balloon-up request!\n");
1553 				break;
1554 			}
1555 
1556 			if (dm->state == DM_BALLOON_UP)
1557 				pr_warn("Currently ballooning\n");
1558 			bal_msg = (struct dm_balloon *)recv_buffer;
1559 			dm->state = DM_BALLOON_UP;
1560 			dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1561 			schedule_work(&dm_device.balloon_wrk.wrk);
1562 			break;
1563 
1564 		case DM_UNBALLOON_REQUEST:
1565 			if (allow_hibernation) {
1566 				pr_info("Ignore balloon-down request!\n");
1567 				break;
1568 			}
1569 
1570 			dm->state = DM_BALLOON_DOWN;
1571 			balloon_down(dm,
1572 				 (struct dm_unballoon_request *)recv_buffer);
1573 			break;
1574 
1575 		case DM_MEM_HOT_ADD_REQUEST:
1576 			if (dm->state == DM_HOT_ADD)
1577 				pr_warn("Currently hot-adding\n");
1578 			dm->state = DM_HOT_ADD;
1579 			ha_msg = (struct dm_hot_add *)recv_buffer;
1580 			if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1581 				/*
1582 				 * This is a normal hot-add request specifying
1583 				 * hot-add memory.
1584 				 */
1585 				dm->host_specified_ha_region = false;
1586 				ha_pg_range = &ha_msg->range;
1587 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1588 				dm->ha_wrk.ha_region_range.page_range = 0;
1589 			} else {
1590 				/*
1591 				 * Host is specifying that we first hot-add
1592 				 * a region and then partially populate this
1593 				 * region.
1594 				 */
1595 				dm->host_specified_ha_region = true;
1596 				ha_pg_range = &ha_msg->range;
1597 				ha_region = &ha_pg_range[1];
1598 				dm->ha_wrk.ha_page_range = *ha_pg_range;
1599 				dm->ha_wrk.ha_region_range = *ha_region;
1600 			}
1601 			schedule_work(&dm_device.ha_wrk.wrk);
1602 			break;
1603 
1604 		case DM_INFO_MESSAGE:
1605 			process_info(dm, (struct dm_info_msg *)dm_msg);
1606 			break;
1607 
1608 		default:
1609 			pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type);
1610 
1611 		}
1612 	}
1613 
1614 }
1615 
1616 #define HV_LARGE_REPORTING_ORDER	9
1617 #define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \
1618 		HV_LARGE_REPORTING_ORDER)
1619 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info,
1620 		    struct scatterlist *sgl, unsigned int nents)
1621 {
1622 	unsigned long flags;
1623 	struct hv_memory_hint *hint;
1624 	int i, order;
1625 	u64 status;
1626 	struct scatterlist *sg;
1627 
1628 	WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1629 	WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order));
1630 	local_irq_save(flags);
1631 	hint = *(struct hv_memory_hint **)this_cpu_ptr(hyperv_pcpu_input_arg);
1632 	if (!hint) {
1633 		local_irq_restore(flags);
1634 		return -ENOSPC;
1635 	}
1636 
1637 	hint->type = HV_EXT_MEMORY_HEAT_HINT_TYPE_COLD_DISCARD;
1638 	hint->reserved = 0;
1639 	for_each_sg(sgl, sg, nents, i) {
1640 		union hv_gpa_page_range *range;
1641 
1642 		range = &hint->ranges[i];
1643 		range->address_space = 0;
1644 		order = get_order(sg->length);
1645 		/*
1646 		 * Hyper-V expects the additional_pages field in the units
1647 		 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes.
1648 		 * This is dictated by the values of the fields page.largesize
1649 		 * and page_size.
1650 		 * This code however, only uses 4Kbytes and 2Mbytes units
1651 		 * and not 1Gbytes unit.
1652 		 */
1653 
1654 		/* page reporting for pages 2MB or higher */
1655 		if (order >= HV_LARGE_REPORTING_ORDER ) {
1656 			range->page.largepage = 1;
1657 			range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB;
1658 			range->base_large_pfn = page_to_hvpfn(
1659 					sg_page(sg)) >> HV_LARGE_REPORTING_ORDER;
1660 			range->page.additional_pages =
1661 				(sg->length / HV_LARGE_REPORTING_LEN) - 1;
1662 		} else {
1663 			/* Page reporting for pages below 2MB */
1664 			range->page.basepfn = page_to_hvpfn(sg_page(sg));
1665 			range->page.largepage = false;
1666 			range->page.additional_pages =
1667 				(sg->length / HV_HYP_PAGE_SIZE) - 1;
1668 		}
1669 
1670 	}
1671 
1672 	status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0,
1673 				     hint, NULL);
1674 	local_irq_restore(flags);
1675 	if (!hv_result_success(status)) {
1676 
1677 		pr_err("Cold memory discard hypercall failed with status %llx\n",
1678 				status);
1679 		if (hv_hypercall_multi_failure > 0)
1680 			hv_hypercall_multi_failure++;
1681 
1682 		if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) {
1683 			pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n");
1684 			pr_err("Defaulting to page_reporting_order %d\n",
1685 					pageblock_order);
1686 			page_reporting_order = pageblock_order;
1687 			hv_hypercall_multi_failure++;
1688 			return -EINVAL;
1689 		}
1690 
1691 		return -EINVAL;
1692 	}
1693 
1694 	return 0;
1695 }
1696 
1697 static void enable_page_reporting(void)
1698 {
1699 	int ret;
1700 
1701 	if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) {
1702 		pr_debug("Cold memory discard hint not supported by Hyper-V\n");
1703 		return;
1704 	}
1705 
1706 	BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES);
1707 	dm_device.pr_dev_info.report = hv_free_page_report;
1708 	/*
1709 	 * We let the page_reporting_order parameter decide the order
1710 	 * in the page_reporting code
1711 	 */
1712 	dm_device.pr_dev_info.order = 0;
1713 	ret = page_reporting_register(&dm_device.pr_dev_info);
1714 	if (ret < 0) {
1715 		dm_device.pr_dev_info.report = NULL;
1716 		pr_err("Failed to enable cold memory discard: %d\n", ret);
1717 	} else {
1718 		pr_info("Cold memory discard hint enabled with order %d\n",
1719 				page_reporting_order);
1720 	}
1721 }
1722 
1723 static void disable_page_reporting(void)
1724 {
1725 	if (dm_device.pr_dev_info.report) {
1726 		page_reporting_unregister(&dm_device.pr_dev_info);
1727 		dm_device.pr_dev_info.report = NULL;
1728 	}
1729 }
1730 
1731 static int ballooning_enabled(void)
1732 {
1733 	/*
1734 	 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE),
1735 	 * since currently it's unclear to us whether an unballoon request can
1736 	 * make sure all page ranges are guest page size aligned.
1737 	 */
1738 	if (PAGE_SIZE != HV_HYP_PAGE_SIZE) {
1739 		pr_info("Ballooning disabled because page size is not 4096 bytes\n");
1740 		return 0;
1741 	}
1742 
1743 	return 1;
1744 }
1745 
1746 static int hot_add_enabled(void)
1747 {
1748 	/*
1749 	 * Disable hot add on ARM64, because we currently rely on
1750 	 * memory_add_physaddr_to_nid() to get a node id of a hot add range,
1751 	 * however ARM64's memory_add_physaddr_to_nid() always return 0 and
1752 	 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for
1753 	 * add_memory().
1754 	 */
1755 	if (IS_ENABLED(CONFIG_ARM64)) {
1756 		pr_info("Memory hot add disabled on ARM64\n");
1757 		return 0;
1758 	}
1759 
1760 	return 1;
1761 }
1762 
1763 static int balloon_connect_vsp(struct hv_device *dev)
1764 {
1765 	struct dm_version_request version_req;
1766 	struct dm_capabilities cap_msg;
1767 	unsigned long t;
1768 	int ret;
1769 
1770 	/*
1771 	 * max_pkt_size should be large enough for one vmbus packet header plus
1772 	 * our receive buffer size. Hyper-V sends messages up to
1773 	 * HV_HYP_PAGE_SIZE bytes long on balloon channel.
1774 	 */
1775 	dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2;
1776 
1777 	ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1778 			 balloon_onchannelcallback, dev);
1779 	if (ret)
1780 		return ret;
1781 
1782 	/*
1783 	 * Initiate the hand shake with the host and negotiate
1784 	 * a version that the host can support. We start with the
1785 	 * highest version number and go down if the host cannot
1786 	 * support it.
1787 	 */
1788 	memset(&version_req, 0, sizeof(struct dm_version_request));
1789 	version_req.hdr.type = DM_VERSION_REQUEST;
1790 	version_req.hdr.size = sizeof(struct dm_version_request);
1791 	version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1792 	version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1793 	version_req.is_last_attempt = 0;
1794 	dm_device.version = version_req.version.version;
1795 
1796 	ret = vmbus_sendpacket(dev->channel, &version_req,
1797 			       sizeof(struct dm_version_request),
1798 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1799 	if (ret)
1800 		goto out;
1801 
1802 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1803 	if (t == 0) {
1804 		ret = -ETIMEDOUT;
1805 		goto out;
1806 	}
1807 
1808 	/*
1809 	 * If we could not negotiate a compatible version with the host
1810 	 * fail the probe function.
1811 	 */
1812 	if (dm_device.state == DM_INIT_ERROR) {
1813 		ret = -EPROTO;
1814 		goto out;
1815 	}
1816 
1817 	pr_info("Using Dynamic Memory protocol version %u.%u\n",
1818 		DYNMEM_MAJOR_VERSION(dm_device.version),
1819 		DYNMEM_MINOR_VERSION(dm_device.version));
1820 
1821 	/*
1822 	 * Now submit our capabilities to the host.
1823 	 */
1824 	memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1825 	cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1826 	cap_msg.hdr.size = sizeof(struct dm_capabilities);
1827 	cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1828 
1829 	/*
1830 	 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host
1831 	 * currently still requires the bits to be set, so we have to add code
1832 	 * to fail the host's hot-add and balloon up/down requests, if any.
1833 	 */
1834 	cap_msg.caps.cap_bits.balloon = ballooning_enabled();
1835 	cap_msg.caps.cap_bits.hot_add = hot_add_enabled();
1836 
1837 	/*
1838 	 * Specify our alignment requirements as it relates
1839 	 * memory hot-add. Specify 128MB alignment.
1840 	 */
1841 	cap_msg.caps.cap_bits.hot_add_alignment = 7;
1842 
1843 	/*
1844 	 * Currently the host does not use these
1845 	 * values and we set them to what is done in the
1846 	 * Windows driver.
1847 	 */
1848 	cap_msg.min_page_cnt = 0;
1849 	cap_msg.max_page_number = -1;
1850 
1851 	ret = vmbus_sendpacket(dev->channel, &cap_msg,
1852 			       sizeof(struct dm_capabilities),
1853 			       (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1854 	if (ret)
1855 		goto out;
1856 
1857 	t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1858 	if (t == 0) {
1859 		ret = -ETIMEDOUT;
1860 		goto out;
1861 	}
1862 
1863 	/*
1864 	 * If the host does not like our capabilities,
1865 	 * fail the probe function.
1866 	 */
1867 	if (dm_device.state == DM_INIT_ERROR) {
1868 		ret = -EPROTO;
1869 		goto out;
1870 	}
1871 
1872 	return 0;
1873 out:
1874 	vmbus_close(dev->channel);
1875 	return ret;
1876 }
1877 
1878 /*
1879  * DEBUGFS Interface
1880  */
1881 #ifdef CONFIG_DEBUG_FS
1882 
1883 /**
1884  * hv_balloon_debug_show - shows statistics of balloon operations.
1885  * @f: pointer to the &struct seq_file.
1886  * @offset: ignored.
1887  *
1888  * Provides the statistics that can be accessed in hv-balloon in the debugfs.
1889  *
1890  * Return: zero on success or an error code.
1891  */
1892 static int hv_balloon_debug_show(struct seq_file *f, void *offset)
1893 {
1894 	struct hv_dynmem_device *dm = f->private;
1895 	char *sname;
1896 
1897 	seq_printf(f, "%-22s: %u.%u\n", "host_version",
1898 				DYNMEM_MAJOR_VERSION(dm->version),
1899 				DYNMEM_MINOR_VERSION(dm->version));
1900 
1901 	seq_printf(f, "%-22s:", "capabilities");
1902 	if (ballooning_enabled())
1903 		seq_puts(f, " enabled");
1904 
1905 	if (hot_add_enabled())
1906 		seq_puts(f, " hot_add");
1907 
1908 	seq_puts(f, "\n");
1909 
1910 	seq_printf(f, "%-22s: %u", "state", dm->state);
1911 	switch (dm->state) {
1912 	case DM_INITIALIZING:
1913 			sname = "Initializing";
1914 			break;
1915 	case DM_INITIALIZED:
1916 			sname = "Initialized";
1917 			break;
1918 	case DM_BALLOON_UP:
1919 			sname = "Balloon Up";
1920 			break;
1921 	case DM_BALLOON_DOWN:
1922 			sname = "Balloon Down";
1923 			break;
1924 	case DM_HOT_ADD:
1925 			sname = "Hot Add";
1926 			break;
1927 	case DM_INIT_ERROR:
1928 			sname = "Error";
1929 			break;
1930 	default:
1931 			sname = "Unknown";
1932 	}
1933 	seq_printf(f, " (%s)\n", sname);
1934 
1935 	/* HV Page Size */
1936 	seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE);
1937 
1938 	/* Pages added with hot_add */
1939 	seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added);
1940 
1941 	/* pages that are "onlined"/used from pages_added */
1942 	seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined);
1943 
1944 	/* pages we have given back to host */
1945 	seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned);
1946 
1947 	seq_printf(f, "%-22s: %lu\n", "total_pages_committed",
1948 				get_pages_committed(dm));
1949 
1950 	seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count",
1951 				dm->max_dynamic_page_count);
1952 
1953 	return 0;
1954 }
1955 
1956 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug);
1957 
1958 static void  hv_balloon_debugfs_init(struct hv_dynmem_device *b)
1959 {
1960 	debugfs_create_file("hv-balloon", 0444, NULL, b,
1961 			&hv_balloon_debug_fops);
1962 }
1963 
1964 static void  hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1965 {
1966 	debugfs_lookup_and_remove("hv-balloon", NULL);
1967 }
1968 
1969 #else
1970 
1971 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device  *b)
1972 {
1973 }
1974 
1975 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b)
1976 {
1977 }
1978 
1979 #endif	/* CONFIG_DEBUG_FS */
1980 
1981 static int balloon_probe(struct hv_device *dev,
1982 			 const struct hv_vmbus_device_id *dev_id)
1983 {
1984 	int ret;
1985 
1986 	allow_hibernation = hv_is_hibernation_supported();
1987 	if (allow_hibernation)
1988 		hot_add = false;
1989 
1990 #ifdef CONFIG_MEMORY_HOTPLUG
1991 	do_hot_add = hot_add;
1992 #else
1993 	do_hot_add = false;
1994 #endif
1995 	dm_device.dev = dev;
1996 	dm_device.state = DM_INITIALIZING;
1997 	dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1998 	init_completion(&dm_device.host_event);
1999 	init_completion(&dm_device.config_event);
2000 	INIT_LIST_HEAD(&dm_device.ha_region_list);
2001 	spin_lock_init(&dm_device.ha_lock);
2002 	INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
2003 	INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
2004 	dm_device.host_specified_ha_region = false;
2005 
2006 #ifdef CONFIG_MEMORY_HOTPLUG
2007 	set_online_page_callback(&hv_online_page);
2008 	init_completion(&dm_device.ol_waitevent);
2009 	register_memory_notifier(&hv_memory_nb);
2010 #endif
2011 
2012 	hv_set_drvdata(dev, &dm_device);
2013 
2014 	ret = balloon_connect_vsp(dev);
2015 	if (ret != 0)
2016 		goto connect_error;
2017 
2018 	enable_page_reporting();
2019 	dm_device.state = DM_INITIALIZED;
2020 
2021 	dm_device.thread =
2022 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2023 	if (IS_ERR(dm_device.thread)) {
2024 		ret = PTR_ERR(dm_device.thread);
2025 		goto probe_error;
2026 	}
2027 
2028 	hv_balloon_debugfs_init(&dm_device);
2029 
2030 	return 0;
2031 
2032 probe_error:
2033 	dm_device.state = DM_INIT_ERROR;
2034 	dm_device.thread  = NULL;
2035 	disable_page_reporting();
2036 	vmbus_close(dev->channel);
2037 connect_error:
2038 #ifdef CONFIG_MEMORY_HOTPLUG
2039 	unregister_memory_notifier(&hv_memory_nb);
2040 	restore_online_page_callback(&hv_online_page);
2041 #endif
2042 	return ret;
2043 }
2044 
2045 static void balloon_remove(struct hv_device *dev)
2046 {
2047 	struct hv_dynmem_device *dm = hv_get_drvdata(dev);
2048 	struct hv_hotadd_state *has, *tmp;
2049 	struct hv_hotadd_gap *gap, *tmp_gap;
2050 	unsigned long flags;
2051 
2052 	if (dm->num_pages_ballooned != 0)
2053 		pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
2054 
2055 	hv_balloon_debugfs_exit(dm);
2056 
2057 	cancel_work_sync(&dm->balloon_wrk.wrk);
2058 	cancel_work_sync(&dm->ha_wrk.wrk);
2059 
2060 	kthread_stop(dm->thread);
2061 
2062 	/*
2063 	 * This is to handle the case when balloon_resume()
2064 	 * call has failed and some cleanup has been done as
2065 	 * a part of the error handling.
2066 	 */
2067 	if (dm_device.state != DM_INIT_ERROR) {
2068 		disable_page_reporting();
2069 		vmbus_close(dev->channel);
2070 #ifdef CONFIG_MEMORY_HOTPLUG
2071 		unregister_memory_notifier(&hv_memory_nb);
2072 		restore_online_page_callback(&hv_online_page);
2073 #endif
2074 	}
2075 
2076 	spin_lock_irqsave(&dm_device.ha_lock, flags);
2077 	list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
2078 		list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
2079 			list_del(&gap->list);
2080 			kfree(gap);
2081 		}
2082 		list_del(&has->list);
2083 		kfree(has);
2084 	}
2085 	spin_unlock_irqrestore(&dm_device.ha_lock, flags);
2086 }
2087 
2088 static int balloon_suspend(struct hv_device *hv_dev)
2089 {
2090 	struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev);
2091 
2092 	tasklet_disable(&hv_dev->channel->callback_event);
2093 
2094 	cancel_work_sync(&dm->balloon_wrk.wrk);
2095 	cancel_work_sync(&dm->ha_wrk.wrk);
2096 
2097 	if (dm->thread) {
2098 		kthread_stop(dm->thread);
2099 		dm->thread = NULL;
2100 		vmbus_close(hv_dev->channel);
2101 	}
2102 
2103 	tasklet_enable(&hv_dev->channel->callback_event);
2104 
2105 	return 0;
2106 
2107 }
2108 
2109 static int balloon_resume(struct hv_device *dev)
2110 {
2111 	int ret;
2112 
2113 	dm_device.state = DM_INITIALIZING;
2114 
2115 	ret = balloon_connect_vsp(dev);
2116 
2117 	if (ret != 0)
2118 		goto out;
2119 
2120 	dm_device.thread =
2121 		 kthread_run(dm_thread_func, &dm_device, "hv_balloon");
2122 	if (IS_ERR(dm_device.thread)) {
2123 		ret = PTR_ERR(dm_device.thread);
2124 		dm_device.thread = NULL;
2125 		goto close_channel;
2126 	}
2127 
2128 	dm_device.state = DM_INITIALIZED;
2129 	return 0;
2130 close_channel:
2131 	vmbus_close(dev->channel);
2132 out:
2133 	dm_device.state = DM_INIT_ERROR;
2134 	disable_page_reporting();
2135 #ifdef CONFIG_MEMORY_HOTPLUG
2136 	unregister_memory_notifier(&hv_memory_nb);
2137 	restore_online_page_callback(&hv_online_page);
2138 #endif
2139 	return ret;
2140 }
2141 
2142 static const struct hv_vmbus_device_id id_table[] = {
2143 	/* Dynamic Memory Class ID */
2144 	/* 525074DC-8985-46e2-8057-A307DC18A502 */
2145 	{ HV_DM_GUID, },
2146 	{ },
2147 };
2148 
2149 MODULE_DEVICE_TABLE(vmbus, id_table);
2150 
2151 static  struct hv_driver balloon_drv = {
2152 	.name = "hv_balloon",
2153 	.id_table = id_table,
2154 	.probe =  balloon_probe,
2155 	.remove =  balloon_remove,
2156 	.suspend = balloon_suspend,
2157 	.resume = balloon_resume,
2158 	.driver = {
2159 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2160 	},
2161 };
2162 
2163 static int __init init_balloon_drv(void)
2164 {
2165 
2166 	return vmbus_driver_register(&balloon_drv);
2167 }
2168 
2169 module_init(init_balloon_drv);
2170 
2171 MODULE_DESCRIPTION("Hyper-V Balloon");
2172 MODULE_LICENSE("GPL");
2173