1 /* 2 * Copyright (c) 2012, Microsoft Corporation. 3 * 4 * Author: 5 * K. Y. Srinivasan <kys@microsoft.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published 9 * by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but 12 * WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 14 * NON INFRINGEMENT. See the GNU General Public License for more 15 * details. 16 * 17 */ 18 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/kernel.h> 22 #include <linux/jiffies.h> 23 #include <linux/mman.h> 24 #include <linux/delay.h> 25 #include <linux/init.h> 26 #include <linux/module.h> 27 #include <linux/slab.h> 28 #include <linux/kthread.h> 29 #include <linux/completion.h> 30 #include <linux/memory_hotplug.h> 31 #include <linux/memory.h> 32 #include <linux/notifier.h> 33 #include <linux/percpu_counter.h> 34 35 #include <linux/hyperv.h> 36 37 /* 38 * We begin with definitions supporting the Dynamic Memory protocol 39 * with the host. 40 * 41 * Begin protocol definitions. 42 */ 43 44 45 46 /* 47 * Protocol versions. The low word is the minor version, the high word the major 48 * version. 49 * 50 * History: 51 * Initial version 1.0 52 * Changed to 0.1 on 2009/03/25 53 * Changes to 0.2 on 2009/05/14 54 * Changes to 0.3 on 2009/12/03 55 * Changed to 1.0 on 2011/04/05 56 */ 57 58 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 59 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 60 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 61 62 enum { 63 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 64 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 65 66 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 67 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 68 69 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN8 70 }; 71 72 73 74 /* 75 * Message Types 76 */ 77 78 enum dm_message_type { 79 /* 80 * Version 0.3 81 */ 82 DM_ERROR = 0, 83 DM_VERSION_REQUEST = 1, 84 DM_VERSION_RESPONSE = 2, 85 DM_CAPABILITIES_REPORT = 3, 86 DM_CAPABILITIES_RESPONSE = 4, 87 DM_STATUS_REPORT = 5, 88 DM_BALLOON_REQUEST = 6, 89 DM_BALLOON_RESPONSE = 7, 90 DM_UNBALLOON_REQUEST = 8, 91 DM_UNBALLOON_RESPONSE = 9, 92 DM_MEM_HOT_ADD_REQUEST = 10, 93 DM_MEM_HOT_ADD_RESPONSE = 11, 94 DM_VERSION_03_MAX = 11, 95 /* 96 * Version 1.0. 97 */ 98 DM_INFO_MESSAGE = 12, 99 DM_VERSION_1_MAX = 12 100 }; 101 102 103 /* 104 * Structures defining the dynamic memory management 105 * protocol. 106 */ 107 108 union dm_version { 109 struct { 110 __u16 minor_version; 111 __u16 major_version; 112 }; 113 __u32 version; 114 } __packed; 115 116 117 union dm_caps { 118 struct { 119 __u64 balloon:1; 120 __u64 hot_add:1; 121 /* 122 * To support guests that may have alignment 123 * limitations on hot-add, the guest can specify 124 * its alignment requirements; a value of n 125 * represents an alignment of 2^n in mega bytes. 126 */ 127 __u64 hot_add_alignment:4; 128 __u64 reservedz:58; 129 } cap_bits; 130 __u64 caps; 131 } __packed; 132 133 union dm_mem_page_range { 134 struct { 135 /* 136 * The PFN number of the first page in the range. 137 * 40 bits is the architectural limit of a PFN 138 * number for AMD64. 139 */ 140 __u64 start_page:40; 141 /* 142 * The number of pages in the range. 143 */ 144 __u64 page_cnt:24; 145 } finfo; 146 __u64 page_range; 147 } __packed; 148 149 150 151 /* 152 * The header for all dynamic memory messages: 153 * 154 * type: Type of the message. 155 * size: Size of the message in bytes; including the header. 156 * trans_id: The guest is responsible for manufacturing this ID. 157 */ 158 159 struct dm_header { 160 __u16 type; 161 __u16 size; 162 __u32 trans_id; 163 } __packed; 164 165 /* 166 * A generic message format for dynamic memory. 167 * Specific message formats are defined later in the file. 168 */ 169 170 struct dm_message { 171 struct dm_header hdr; 172 __u8 data[]; /* enclosed message */ 173 } __packed; 174 175 176 /* 177 * Specific message types supporting the dynamic memory protocol. 178 */ 179 180 /* 181 * Version negotiation message. Sent from the guest to the host. 182 * The guest is free to try different versions until the host 183 * accepts the version. 184 * 185 * dm_version: The protocol version requested. 186 * is_last_attempt: If TRUE, this is the last version guest will request. 187 * reservedz: Reserved field, set to zero. 188 */ 189 190 struct dm_version_request { 191 struct dm_header hdr; 192 union dm_version version; 193 __u32 is_last_attempt:1; 194 __u32 reservedz:31; 195 } __packed; 196 197 /* 198 * Version response message; Host to Guest and indicates 199 * if the host has accepted the version sent by the guest. 200 * 201 * is_accepted: If TRUE, host has accepted the version and the guest 202 * should proceed to the next stage of the protocol. FALSE indicates that 203 * guest should re-try with a different version. 204 * 205 * reservedz: Reserved field, set to zero. 206 */ 207 208 struct dm_version_response { 209 struct dm_header hdr; 210 __u64 is_accepted:1; 211 __u64 reservedz:63; 212 } __packed; 213 214 /* 215 * Message reporting capabilities. This is sent from the guest to the 216 * host. 217 */ 218 219 struct dm_capabilities { 220 struct dm_header hdr; 221 union dm_caps caps; 222 __u64 min_page_cnt; 223 __u64 max_page_number; 224 } __packed; 225 226 /* 227 * Response to the capabilities message. This is sent from the host to the 228 * guest. This message notifies if the host has accepted the guest's 229 * capabilities. If the host has not accepted, the guest must shutdown 230 * the service. 231 * 232 * is_accepted: Indicates if the host has accepted guest's capabilities. 233 * reservedz: Must be 0. 234 */ 235 236 struct dm_capabilities_resp_msg { 237 struct dm_header hdr; 238 __u64 is_accepted:1; 239 __u64 reservedz:63; 240 } __packed; 241 242 /* 243 * This message is used to report memory pressure from the guest. 244 * This message is not part of any transaction and there is no 245 * response to this message. 246 * 247 * num_avail: Available memory in pages. 248 * num_committed: Committed memory in pages. 249 * page_file_size: The accumulated size of all page files 250 * in the system in pages. 251 * zero_free: The nunber of zero and free pages. 252 * page_file_writes: The writes to the page file in pages. 253 * io_diff: An indicator of file cache efficiency or page file activity, 254 * calculated as File Cache Page Fault Count - Page Read Count. 255 * This value is in pages. 256 * 257 * Some of these metrics are Windows specific and fortunately 258 * the algorithm on the host side that computes the guest memory 259 * pressure only uses num_committed value. 260 */ 261 262 struct dm_status { 263 struct dm_header hdr; 264 __u64 num_avail; 265 __u64 num_committed; 266 __u64 page_file_size; 267 __u64 zero_free; 268 __u32 page_file_writes; 269 __u32 io_diff; 270 } __packed; 271 272 273 /* 274 * Message to ask the guest to allocate memory - balloon up message. 275 * This message is sent from the host to the guest. The guest may not be 276 * able to allocate as much memory as requested. 277 * 278 * num_pages: number of pages to allocate. 279 */ 280 281 struct dm_balloon { 282 struct dm_header hdr; 283 __u32 num_pages; 284 __u32 reservedz; 285 } __packed; 286 287 288 /* 289 * Balloon response message; this message is sent from the guest 290 * to the host in response to the balloon message. 291 * 292 * reservedz: Reserved; must be set to zero. 293 * more_pages: If FALSE, this is the last message of the transaction. 294 * if TRUE there will atleast one more message from the guest. 295 * 296 * range_count: The number of ranges in the range array. 297 * 298 * range_array: An array of page ranges returned to the host. 299 * 300 */ 301 302 struct dm_balloon_response { 303 struct dm_header hdr; 304 __u32 reservedz; 305 __u32 more_pages:1; 306 __u32 range_count:31; 307 union dm_mem_page_range range_array[]; 308 } __packed; 309 310 /* 311 * Un-balloon message; this message is sent from the host 312 * to the guest to give guest more memory. 313 * 314 * more_pages: If FALSE, this is the last message of the transaction. 315 * if TRUE there will atleast one more message from the guest. 316 * 317 * reservedz: Reserved; must be set to zero. 318 * 319 * range_count: The number of ranges in the range array. 320 * 321 * range_array: An array of page ranges returned to the host. 322 * 323 */ 324 325 struct dm_unballoon_request { 326 struct dm_header hdr; 327 __u32 more_pages:1; 328 __u32 reservedz:31; 329 __u32 range_count; 330 union dm_mem_page_range range_array[]; 331 } __packed; 332 333 /* 334 * Un-balloon response message; this message is sent from the guest 335 * to the host in response to an unballoon request. 336 * 337 */ 338 339 struct dm_unballoon_response { 340 struct dm_header hdr; 341 } __packed; 342 343 344 /* 345 * Hot add request message. Message sent from the host to the guest. 346 * 347 * mem_range: Memory range to hot add. 348 * 349 * On Linux we currently don't support this since we cannot hot add 350 * arbitrary granularity of memory. 351 */ 352 353 struct dm_hot_add { 354 struct dm_header hdr; 355 union dm_mem_page_range range; 356 } __packed; 357 358 /* 359 * Hot add response message. 360 * This message is sent by the guest to report the status of a hot add request. 361 * If page_count is less than the requested page count, then the host should 362 * assume all further hot add requests will fail, since this indicates that 363 * the guest has hit an upper physical memory barrier. 364 * 365 * Hot adds may also fail due to low resources; in this case, the guest must 366 * not complete this message until the hot add can succeed, and the host must 367 * not send a new hot add request until the response is sent. 368 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 369 * times it fails the request. 370 * 371 * 372 * page_count: number of pages that were successfully hot added. 373 * 374 * result: result of the operation 1: success, 0: failure. 375 * 376 */ 377 378 struct dm_hot_add_response { 379 struct dm_header hdr; 380 __u32 page_count; 381 __u32 result; 382 } __packed; 383 384 /* 385 * Types of information sent from host to the guest. 386 */ 387 388 enum dm_info_type { 389 INFO_TYPE_MAX_PAGE_CNT = 0, 390 MAX_INFO_TYPE 391 }; 392 393 394 /* 395 * Header for the information message. 396 */ 397 398 struct dm_info_header { 399 enum dm_info_type type; 400 __u32 data_size; 401 } __packed; 402 403 /* 404 * This message is sent from the host to the guest to pass 405 * some relevant information (win8 addition). 406 * 407 * reserved: no used. 408 * info_size: size of the information blob. 409 * info: information blob. 410 */ 411 412 struct dm_info_msg { 413 struct dm_header hdr; 414 __u32 reserved; 415 __u32 info_size; 416 __u8 info[]; 417 }; 418 419 /* 420 * End protocol definitions. 421 */ 422 423 /* 424 * State to manage hot adding memory into the guest. 425 * The range start_pfn : end_pfn specifies the range 426 * that the host has asked us to hot add. The range 427 * start_pfn : ha_end_pfn specifies the range that we have 428 * currently hot added. We hot add in multiples of 128M 429 * chunks; it is possible that we may not be able to bring 430 * online all the pages in the region. The range 431 * covered_start_pfn : covered_end_pfn defines the pages that can 432 * be brough online. 433 */ 434 435 struct hv_hotadd_state { 436 struct list_head list; 437 unsigned long start_pfn; 438 unsigned long covered_start_pfn; 439 unsigned long covered_end_pfn; 440 unsigned long ha_end_pfn; 441 unsigned long end_pfn; 442 }; 443 444 struct balloon_state { 445 __u32 num_pages; 446 struct work_struct wrk; 447 }; 448 449 struct hot_add_wrk { 450 union dm_mem_page_range ha_page_range; 451 union dm_mem_page_range ha_region_range; 452 struct work_struct wrk; 453 }; 454 455 static bool hot_add = true; 456 static bool do_hot_add; 457 /* 458 * Delay reporting memory pressure by 459 * the specified number of seconds. 460 */ 461 static uint pressure_report_delay = 45; 462 463 /* 464 * The last time we posted a pressure report to host. 465 */ 466 static unsigned long last_post_time; 467 468 module_param(hot_add, bool, (S_IRUGO | S_IWUSR)); 469 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 470 471 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR)); 472 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 473 static atomic_t trans_id = ATOMIC_INIT(0); 474 475 static int dm_ring_size = (5 * PAGE_SIZE); 476 477 /* 478 * Driver specific state. 479 */ 480 481 enum hv_dm_state { 482 DM_INITIALIZING = 0, 483 DM_INITIALIZED, 484 DM_BALLOON_UP, 485 DM_BALLOON_DOWN, 486 DM_HOT_ADD, 487 DM_INIT_ERROR 488 }; 489 490 491 static __u8 recv_buffer[PAGE_SIZE]; 492 static __u8 *send_buffer; 493 #define PAGES_IN_2M 512 494 #define HA_CHUNK (32 * 1024) 495 496 struct hv_dynmem_device { 497 struct hv_device *dev; 498 enum hv_dm_state state; 499 struct completion host_event; 500 struct completion config_event; 501 502 /* 503 * Number of pages we have currently ballooned out. 504 */ 505 unsigned int num_pages_ballooned; 506 507 /* 508 * State to manage the ballooning (up) operation. 509 */ 510 struct balloon_state balloon_wrk; 511 512 /* 513 * State to execute the "hot-add" operation. 514 */ 515 struct hot_add_wrk ha_wrk; 516 517 /* 518 * This state tracks if the host has specified a hot-add 519 * region. 520 */ 521 bool host_specified_ha_region; 522 523 /* 524 * State to synchronize hot-add. 525 */ 526 struct completion ol_waitevent; 527 bool ha_waiting; 528 /* 529 * This thread handles hot-add 530 * requests from the host as well as notifying 531 * the host with regards to memory pressure in 532 * the guest. 533 */ 534 struct task_struct *thread; 535 536 struct mutex ha_region_mutex; 537 struct completion waiter_event; 538 539 /* 540 * A list of hot-add regions. 541 */ 542 struct list_head ha_region_list; 543 544 /* 545 * We start with the highest version we can support 546 * and downgrade based on the host; we save here the 547 * next version to try. 548 */ 549 __u32 next_version; 550 }; 551 552 static struct hv_dynmem_device dm_device; 553 554 static void post_status(struct hv_dynmem_device *dm); 555 556 #ifdef CONFIG_MEMORY_HOTPLUG 557 static void acquire_region_mutex(bool trylock) 558 { 559 if (trylock) { 560 reinit_completion(&dm_device.waiter_event); 561 while (!mutex_trylock(&dm_device.ha_region_mutex)) 562 wait_for_completion(&dm_device.waiter_event); 563 } else { 564 mutex_lock(&dm_device.ha_region_mutex); 565 } 566 } 567 568 static void release_region_mutex(bool trylock) 569 { 570 if (trylock) { 571 mutex_unlock(&dm_device.ha_region_mutex); 572 } else { 573 mutex_unlock(&dm_device.ha_region_mutex); 574 complete(&dm_device.waiter_event); 575 } 576 } 577 578 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 579 void *v) 580 { 581 switch (val) { 582 case MEM_GOING_ONLINE: 583 acquire_region_mutex(true); 584 break; 585 586 case MEM_ONLINE: 587 case MEM_CANCEL_ONLINE: 588 release_region_mutex(true); 589 if (dm_device.ha_waiting) { 590 dm_device.ha_waiting = false; 591 complete(&dm_device.ol_waitevent); 592 } 593 break; 594 595 case MEM_GOING_OFFLINE: 596 case MEM_OFFLINE: 597 case MEM_CANCEL_OFFLINE: 598 break; 599 } 600 return NOTIFY_OK; 601 } 602 603 static struct notifier_block hv_memory_nb = { 604 .notifier_call = hv_memory_notifier, 605 .priority = 0 606 }; 607 608 609 static void hv_bring_pgs_online(unsigned long start_pfn, unsigned long size) 610 { 611 int i; 612 613 for (i = 0; i < size; i++) { 614 struct page *pg; 615 pg = pfn_to_page(start_pfn + i); 616 __online_page_set_limits(pg); 617 __online_page_increment_counters(pg); 618 __online_page_free(pg); 619 } 620 } 621 622 static void hv_mem_hot_add(unsigned long start, unsigned long size, 623 unsigned long pfn_count, 624 struct hv_hotadd_state *has) 625 { 626 int ret = 0; 627 int i, nid; 628 unsigned long start_pfn; 629 unsigned long processed_pfn; 630 unsigned long total_pfn = pfn_count; 631 632 for (i = 0; i < (size/HA_CHUNK); i++) { 633 start_pfn = start + (i * HA_CHUNK); 634 has->ha_end_pfn += HA_CHUNK; 635 636 if (total_pfn > HA_CHUNK) { 637 processed_pfn = HA_CHUNK; 638 total_pfn -= HA_CHUNK; 639 } else { 640 processed_pfn = total_pfn; 641 total_pfn = 0; 642 } 643 644 has->covered_end_pfn += processed_pfn; 645 646 init_completion(&dm_device.ol_waitevent); 647 dm_device.ha_waiting = true; 648 649 release_region_mutex(false); 650 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 651 ret = add_memory(nid, PFN_PHYS((start_pfn)), 652 (HA_CHUNK << PAGE_SHIFT)); 653 654 if (ret) { 655 pr_info("hot_add memory failed error is %d\n", ret); 656 if (ret == -EEXIST) { 657 /* 658 * This error indicates that the error 659 * is not a transient failure. This is the 660 * case where the guest's physical address map 661 * precludes hot adding memory. Stop all further 662 * memory hot-add. 663 */ 664 do_hot_add = false; 665 } 666 has->ha_end_pfn -= HA_CHUNK; 667 has->covered_end_pfn -= processed_pfn; 668 break; 669 } 670 671 /* 672 * Wait for the memory block to be onlined. 673 * Since the hot add has succeeded, it is ok to 674 * proceed even if the pages in the hot added region 675 * have not been "onlined" within the allowed time. 676 */ 677 wait_for_completion_timeout(&dm_device.ol_waitevent, 5*HZ); 678 acquire_region_mutex(false); 679 post_status(&dm_device); 680 } 681 682 return; 683 } 684 685 static void hv_online_page(struct page *pg) 686 { 687 struct list_head *cur; 688 struct hv_hotadd_state *has; 689 unsigned long cur_start_pgp; 690 unsigned long cur_end_pgp; 691 692 list_for_each(cur, &dm_device.ha_region_list) { 693 has = list_entry(cur, struct hv_hotadd_state, list); 694 cur_start_pgp = (unsigned long) 695 pfn_to_page(has->covered_start_pfn); 696 cur_end_pgp = (unsigned long)pfn_to_page(has->covered_end_pfn); 697 698 if (((unsigned long)pg >= cur_start_pgp) && 699 ((unsigned long)pg < cur_end_pgp)) { 700 /* 701 * This frame is currently backed; online the 702 * page. 703 */ 704 __online_page_set_limits(pg); 705 __online_page_increment_counters(pg); 706 __online_page_free(pg); 707 has->covered_start_pfn++; 708 } 709 } 710 } 711 712 static bool pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 713 { 714 struct list_head *cur; 715 struct hv_hotadd_state *has; 716 unsigned long residual, new_inc; 717 718 if (list_empty(&dm_device.ha_region_list)) 719 return false; 720 721 list_for_each(cur, &dm_device.ha_region_list) { 722 has = list_entry(cur, struct hv_hotadd_state, list); 723 724 /* 725 * If the pfn range we are dealing with is not in the current 726 * "hot add block", move on. 727 */ 728 if ((start_pfn >= has->end_pfn)) 729 continue; 730 /* 731 * If the current hot add-request extends beyond 732 * our current limit; extend it. 733 */ 734 if ((start_pfn + pfn_cnt) > has->end_pfn) { 735 residual = (start_pfn + pfn_cnt - has->end_pfn); 736 /* 737 * Extend the region by multiples of HA_CHUNK. 738 */ 739 new_inc = (residual / HA_CHUNK) * HA_CHUNK; 740 if (residual % HA_CHUNK) 741 new_inc += HA_CHUNK; 742 743 has->end_pfn += new_inc; 744 } 745 746 /* 747 * If the current start pfn is not where the covered_end 748 * is, update it. 749 */ 750 751 if (has->covered_end_pfn != start_pfn) { 752 has->covered_end_pfn = start_pfn; 753 has->covered_start_pfn = start_pfn; 754 } 755 return true; 756 757 } 758 759 return false; 760 } 761 762 static unsigned long handle_pg_range(unsigned long pg_start, 763 unsigned long pg_count) 764 { 765 unsigned long start_pfn = pg_start; 766 unsigned long pfn_cnt = pg_count; 767 unsigned long size; 768 struct list_head *cur; 769 struct hv_hotadd_state *has; 770 unsigned long pgs_ol = 0; 771 unsigned long old_covered_state; 772 773 if (list_empty(&dm_device.ha_region_list)) 774 return 0; 775 776 list_for_each(cur, &dm_device.ha_region_list) { 777 has = list_entry(cur, struct hv_hotadd_state, list); 778 779 /* 780 * If the pfn range we are dealing with is not in the current 781 * "hot add block", move on. 782 */ 783 if ((start_pfn >= has->end_pfn)) 784 continue; 785 786 old_covered_state = has->covered_end_pfn; 787 788 if (start_pfn < has->ha_end_pfn) { 789 /* 790 * This is the case where we are backing pages 791 * in an already hot added region. Bring 792 * these pages online first. 793 */ 794 pgs_ol = has->ha_end_pfn - start_pfn; 795 if (pgs_ol > pfn_cnt) 796 pgs_ol = pfn_cnt; 797 hv_bring_pgs_online(start_pfn, pgs_ol); 798 has->covered_end_pfn += pgs_ol; 799 has->covered_start_pfn += pgs_ol; 800 pfn_cnt -= pgs_ol; 801 } 802 803 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) { 804 /* 805 * We have some residual hot add range 806 * that needs to be hot added; hot add 807 * it now. Hot add a multiple of 808 * of HA_CHUNK that fully covers the pages 809 * we have. 810 */ 811 size = (has->end_pfn - has->ha_end_pfn); 812 if (pfn_cnt <= size) { 813 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK); 814 if (pfn_cnt % HA_CHUNK) 815 size += HA_CHUNK; 816 } else { 817 pfn_cnt = size; 818 } 819 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 820 } 821 /* 822 * If we managed to online any pages that were given to us, 823 * we declare success. 824 */ 825 return has->covered_end_pfn - old_covered_state; 826 827 } 828 829 return 0; 830 } 831 832 static unsigned long process_hot_add(unsigned long pg_start, 833 unsigned long pfn_cnt, 834 unsigned long rg_start, 835 unsigned long rg_size) 836 { 837 struct hv_hotadd_state *ha_region = NULL; 838 839 if (pfn_cnt == 0) 840 return 0; 841 842 if (!dm_device.host_specified_ha_region) 843 if (pfn_covered(pg_start, pfn_cnt)) 844 goto do_pg_range; 845 846 /* 847 * If the host has specified a hot-add range; deal with it first. 848 */ 849 850 if (rg_size != 0) { 851 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 852 if (!ha_region) 853 return 0; 854 855 INIT_LIST_HEAD(&ha_region->list); 856 857 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 858 ha_region->start_pfn = rg_start; 859 ha_region->ha_end_pfn = rg_start; 860 ha_region->covered_start_pfn = pg_start; 861 ha_region->covered_end_pfn = pg_start; 862 ha_region->end_pfn = rg_start + rg_size; 863 } 864 865 do_pg_range: 866 /* 867 * Process the page range specified; bringing them 868 * online if possible. 869 */ 870 return handle_pg_range(pg_start, pfn_cnt); 871 } 872 873 #endif 874 875 static void hot_add_req(struct work_struct *dummy) 876 { 877 struct dm_hot_add_response resp; 878 #ifdef CONFIG_MEMORY_HOTPLUG 879 unsigned long pg_start, pfn_cnt; 880 unsigned long rg_start, rg_sz; 881 #endif 882 struct hv_dynmem_device *dm = &dm_device; 883 884 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 885 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 886 resp.hdr.size = sizeof(struct dm_hot_add_response); 887 888 #ifdef CONFIG_MEMORY_HOTPLUG 889 acquire_region_mutex(false); 890 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 891 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 892 893 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 894 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 895 896 if ((rg_start == 0) && (!dm->host_specified_ha_region)) { 897 unsigned long region_size; 898 unsigned long region_start; 899 900 /* 901 * The host has not specified the hot-add region. 902 * Based on the hot-add page range being specified, 903 * compute a hot-add region that can cover the pages 904 * that need to be hot-added while ensuring the alignment 905 * and size requirements of Linux as it relates to hot-add. 906 */ 907 region_start = pg_start; 908 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK; 909 if (pfn_cnt % HA_CHUNK) 910 region_size += HA_CHUNK; 911 912 region_start = (pg_start / HA_CHUNK) * HA_CHUNK; 913 914 rg_start = region_start; 915 rg_sz = region_size; 916 } 917 918 if (do_hot_add) 919 resp.page_count = process_hot_add(pg_start, pfn_cnt, 920 rg_start, rg_sz); 921 release_region_mutex(false); 922 #endif 923 /* 924 * The result field of the response structure has the 925 * following semantics: 926 * 927 * 1. If all or some pages hot-added: Guest should return success. 928 * 929 * 2. If no pages could be hot-added: 930 * 931 * If the guest returns success, then the host 932 * will not attempt any further hot-add operations. This 933 * signifies a permanent failure. 934 * 935 * If the guest returns failure, then this failure will be 936 * treated as a transient failure and the host may retry the 937 * hot-add operation after some delay. 938 */ 939 if (resp.page_count > 0) 940 resp.result = 1; 941 else if (!do_hot_add) 942 resp.result = 1; 943 else 944 resp.result = 0; 945 946 if (!do_hot_add || (resp.page_count == 0)) 947 pr_info("Memory hot add failed\n"); 948 949 dm->state = DM_INITIALIZED; 950 resp.hdr.trans_id = atomic_inc_return(&trans_id); 951 vmbus_sendpacket(dm->dev->channel, &resp, 952 sizeof(struct dm_hot_add_response), 953 (unsigned long)NULL, 954 VM_PKT_DATA_INBAND, 0); 955 } 956 957 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 958 { 959 struct dm_info_header *info_hdr; 960 961 info_hdr = (struct dm_info_header *)msg->info; 962 963 switch (info_hdr->type) { 964 case INFO_TYPE_MAX_PAGE_CNT: 965 pr_info("Received INFO_TYPE_MAX_PAGE_CNT\n"); 966 pr_info("Data Size is %d\n", info_hdr->data_size); 967 break; 968 default: 969 pr_info("Received Unknown type: %d\n", info_hdr->type); 970 } 971 } 972 973 static unsigned long compute_balloon_floor(void) 974 { 975 unsigned long min_pages; 976 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 977 /* Simple continuous piecewiese linear function: 978 * max MiB -> min MiB gradient 979 * 0 0 980 * 16 16 981 * 32 24 982 * 128 72 (1/2) 983 * 512 168 (1/4) 984 * 2048 360 (1/8) 985 * 8192 768 (1/16) 986 * 32768 1536 (1/32) 987 */ 988 if (totalram_pages < MB2PAGES(128)) 989 min_pages = MB2PAGES(8) + (totalram_pages >> 1); 990 else if (totalram_pages < MB2PAGES(512)) 991 min_pages = MB2PAGES(40) + (totalram_pages >> 2); 992 else if (totalram_pages < MB2PAGES(2048)) 993 min_pages = MB2PAGES(104) + (totalram_pages >> 3); 994 else if (totalram_pages < MB2PAGES(8192)) 995 min_pages = MB2PAGES(256) + (totalram_pages >> 4); 996 else 997 min_pages = MB2PAGES(512) + (totalram_pages >> 5); 998 #undef MB2PAGES 999 return min_pages; 1000 } 1001 1002 /* 1003 * Post our status as it relates memory pressure to the 1004 * host. Host expects the guests to post this status 1005 * periodically at 1 second intervals. 1006 * 1007 * The metrics specified in this protocol are very Windows 1008 * specific and so we cook up numbers here to convey our memory 1009 * pressure. 1010 */ 1011 1012 static void post_status(struct hv_dynmem_device *dm) 1013 { 1014 struct dm_status status; 1015 struct sysinfo val; 1016 unsigned long now = jiffies; 1017 unsigned long last_post = last_post_time; 1018 1019 if (pressure_report_delay > 0) { 1020 --pressure_report_delay; 1021 return; 1022 } 1023 1024 if (!time_after(now, (last_post_time + HZ))) 1025 return; 1026 1027 si_meminfo(&val); 1028 memset(&status, 0, sizeof(struct dm_status)); 1029 status.hdr.type = DM_STATUS_REPORT; 1030 status.hdr.size = sizeof(struct dm_status); 1031 status.hdr.trans_id = atomic_inc_return(&trans_id); 1032 1033 /* 1034 * The host expects the guest to report free memory. 1035 * Further, the host expects the pressure information to 1036 * include the ballooned out pages. 1037 * For a given amount of memory that we are managing, we 1038 * need to compute a floor below which we should not balloon. 1039 * Compute this and add it to the pressure report. 1040 */ 1041 status.num_avail = val.freeram; 1042 status.num_committed = vm_memory_committed() + 1043 dm->num_pages_ballooned + 1044 compute_balloon_floor(); 1045 1046 /* 1047 * If our transaction ID is no longer current, just don't 1048 * send the status. This can happen if we were interrupted 1049 * after we picked our transaction ID. 1050 */ 1051 if (status.hdr.trans_id != atomic_read(&trans_id)) 1052 return; 1053 1054 /* 1055 * If the last post time that we sampled has changed, 1056 * we have raced, don't post the status. 1057 */ 1058 if (last_post != last_post_time) 1059 return; 1060 1061 last_post_time = jiffies; 1062 vmbus_sendpacket(dm->dev->channel, &status, 1063 sizeof(struct dm_status), 1064 (unsigned long)NULL, 1065 VM_PKT_DATA_INBAND, 0); 1066 1067 } 1068 1069 static void free_balloon_pages(struct hv_dynmem_device *dm, 1070 union dm_mem_page_range *range_array) 1071 { 1072 int num_pages = range_array->finfo.page_cnt; 1073 __u64 start_frame = range_array->finfo.start_page; 1074 struct page *pg; 1075 int i; 1076 1077 for (i = 0; i < num_pages; i++) { 1078 pg = pfn_to_page(i + start_frame); 1079 __free_page(pg); 1080 dm->num_pages_ballooned--; 1081 } 1082 } 1083 1084 1085 1086 static int alloc_balloon_pages(struct hv_dynmem_device *dm, int num_pages, 1087 struct dm_balloon_response *bl_resp, int alloc_unit, 1088 bool *alloc_error) 1089 { 1090 int i = 0; 1091 struct page *pg; 1092 1093 if (num_pages < alloc_unit) 1094 return 0; 1095 1096 for (i = 0; (i * alloc_unit) < num_pages; i++) { 1097 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1098 PAGE_SIZE) 1099 return i * alloc_unit; 1100 1101 /* 1102 * We execute this code in a thread context. Furthermore, 1103 * we don't want the kernel to try too hard. 1104 */ 1105 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1106 __GFP_NOMEMALLOC | __GFP_NOWARN, 1107 get_order(alloc_unit << PAGE_SHIFT)); 1108 1109 if (!pg) { 1110 *alloc_error = true; 1111 return i * alloc_unit; 1112 } 1113 1114 1115 dm->num_pages_ballooned += alloc_unit; 1116 1117 /* 1118 * If we allocatted 2M pages; split them so we 1119 * can free them in any order we get. 1120 */ 1121 1122 if (alloc_unit != 1) 1123 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1124 1125 bl_resp->range_count++; 1126 bl_resp->range_array[i].finfo.start_page = 1127 page_to_pfn(pg); 1128 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1129 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1130 1131 } 1132 1133 return num_pages; 1134 } 1135 1136 1137 1138 static void balloon_up(struct work_struct *dummy) 1139 { 1140 int num_pages = dm_device.balloon_wrk.num_pages; 1141 int num_ballooned = 0; 1142 struct dm_balloon_response *bl_resp; 1143 int alloc_unit; 1144 int ret; 1145 bool alloc_error; 1146 bool done = false; 1147 int i; 1148 1149 /* The host balloons pages in 2M granularity. */ 1150 WARN_ON_ONCE(num_pages % PAGES_IN_2M != 0); 1151 1152 /* 1153 * We will attempt 2M allocations. However, if we fail to 1154 * allocate 2M chunks, we will go back to 4k allocations. 1155 */ 1156 alloc_unit = 512; 1157 1158 while (!done) { 1159 bl_resp = (struct dm_balloon_response *)send_buffer; 1160 memset(send_buffer, 0, PAGE_SIZE); 1161 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1162 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1163 bl_resp->more_pages = 1; 1164 1165 1166 num_pages -= num_ballooned; 1167 alloc_error = false; 1168 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1169 bl_resp, alloc_unit, 1170 &alloc_error); 1171 1172 if (alloc_unit != 1 && num_ballooned == 0) { 1173 alloc_unit = 1; 1174 continue; 1175 } 1176 1177 if ((alloc_unit == 1 && alloc_error) || 1178 (num_ballooned == num_pages)) { 1179 bl_resp->more_pages = 0; 1180 done = true; 1181 dm_device.state = DM_INITIALIZED; 1182 } 1183 1184 /* 1185 * We are pushing a lot of data through the channel; 1186 * deal with transient failures caused because of the 1187 * lack of space in the ring buffer. 1188 */ 1189 1190 do { 1191 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1192 ret = vmbus_sendpacket(dm_device.dev->channel, 1193 bl_resp, 1194 bl_resp->hdr.size, 1195 (unsigned long)NULL, 1196 VM_PKT_DATA_INBAND, 0); 1197 1198 if (ret == -EAGAIN) 1199 msleep(20); 1200 post_status(&dm_device); 1201 } while (ret == -EAGAIN); 1202 1203 if (ret) { 1204 /* 1205 * Free up the memory we allocatted. 1206 */ 1207 pr_info("Balloon response failed\n"); 1208 1209 for (i = 0; i < bl_resp->range_count; i++) 1210 free_balloon_pages(&dm_device, 1211 &bl_resp->range_array[i]); 1212 1213 done = true; 1214 } 1215 } 1216 1217 } 1218 1219 static void balloon_down(struct hv_dynmem_device *dm, 1220 struct dm_unballoon_request *req) 1221 { 1222 union dm_mem_page_range *range_array = req->range_array; 1223 int range_count = req->range_count; 1224 struct dm_unballoon_response resp; 1225 int i; 1226 1227 for (i = 0; i < range_count; i++) { 1228 free_balloon_pages(dm, &range_array[i]); 1229 complete(&dm_device.config_event); 1230 } 1231 1232 if (req->more_pages == 1) 1233 return; 1234 1235 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1236 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1237 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1238 resp.hdr.size = sizeof(struct dm_unballoon_response); 1239 1240 vmbus_sendpacket(dm_device.dev->channel, &resp, 1241 sizeof(struct dm_unballoon_response), 1242 (unsigned long)NULL, 1243 VM_PKT_DATA_INBAND, 0); 1244 1245 dm->state = DM_INITIALIZED; 1246 } 1247 1248 static void balloon_onchannelcallback(void *context); 1249 1250 static int dm_thread_func(void *dm_dev) 1251 { 1252 struct hv_dynmem_device *dm = dm_dev; 1253 1254 while (!kthread_should_stop()) { 1255 wait_for_completion_interruptible_timeout( 1256 &dm_device.config_event, 1*HZ); 1257 /* 1258 * The host expects us to post information on the memory 1259 * pressure every second. 1260 */ 1261 reinit_completion(&dm_device.config_event); 1262 post_status(dm); 1263 } 1264 1265 return 0; 1266 } 1267 1268 1269 static void version_resp(struct hv_dynmem_device *dm, 1270 struct dm_version_response *vresp) 1271 { 1272 struct dm_version_request version_req; 1273 int ret; 1274 1275 if (vresp->is_accepted) { 1276 /* 1277 * We are done; wakeup the 1278 * context waiting for version 1279 * negotiation. 1280 */ 1281 complete(&dm->host_event); 1282 return; 1283 } 1284 /* 1285 * If there are more versions to try, continue 1286 * with negotiations; if not 1287 * shutdown the service since we are not able 1288 * to negotiate a suitable version number 1289 * with the host. 1290 */ 1291 if (dm->next_version == 0) 1292 goto version_error; 1293 1294 dm->next_version = 0; 1295 memset(&version_req, 0, sizeof(struct dm_version_request)); 1296 version_req.hdr.type = DM_VERSION_REQUEST; 1297 version_req.hdr.size = sizeof(struct dm_version_request); 1298 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1299 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN7; 1300 version_req.is_last_attempt = 1; 1301 1302 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1303 sizeof(struct dm_version_request), 1304 (unsigned long)NULL, 1305 VM_PKT_DATA_INBAND, 0); 1306 1307 if (ret) 1308 goto version_error; 1309 1310 return; 1311 1312 version_error: 1313 dm->state = DM_INIT_ERROR; 1314 complete(&dm->host_event); 1315 } 1316 1317 static void cap_resp(struct hv_dynmem_device *dm, 1318 struct dm_capabilities_resp_msg *cap_resp) 1319 { 1320 if (!cap_resp->is_accepted) { 1321 pr_info("Capabilities not accepted by host\n"); 1322 dm->state = DM_INIT_ERROR; 1323 } 1324 complete(&dm->host_event); 1325 } 1326 1327 static void balloon_onchannelcallback(void *context) 1328 { 1329 struct hv_device *dev = context; 1330 u32 recvlen; 1331 u64 requestid; 1332 struct dm_message *dm_msg; 1333 struct dm_header *dm_hdr; 1334 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1335 struct dm_balloon *bal_msg; 1336 struct dm_hot_add *ha_msg; 1337 union dm_mem_page_range *ha_pg_range; 1338 union dm_mem_page_range *ha_region; 1339 1340 memset(recv_buffer, 0, sizeof(recv_buffer)); 1341 vmbus_recvpacket(dev->channel, recv_buffer, 1342 PAGE_SIZE, &recvlen, &requestid); 1343 1344 if (recvlen > 0) { 1345 dm_msg = (struct dm_message *)recv_buffer; 1346 dm_hdr = &dm_msg->hdr; 1347 1348 switch (dm_hdr->type) { 1349 case DM_VERSION_RESPONSE: 1350 version_resp(dm, 1351 (struct dm_version_response *)dm_msg); 1352 break; 1353 1354 case DM_CAPABILITIES_RESPONSE: 1355 cap_resp(dm, 1356 (struct dm_capabilities_resp_msg *)dm_msg); 1357 break; 1358 1359 case DM_BALLOON_REQUEST: 1360 if (dm->state == DM_BALLOON_UP) 1361 pr_warn("Currently ballooning\n"); 1362 bal_msg = (struct dm_balloon *)recv_buffer; 1363 dm->state = DM_BALLOON_UP; 1364 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1365 schedule_work(&dm_device.balloon_wrk.wrk); 1366 break; 1367 1368 case DM_UNBALLOON_REQUEST: 1369 dm->state = DM_BALLOON_DOWN; 1370 balloon_down(dm, 1371 (struct dm_unballoon_request *)recv_buffer); 1372 break; 1373 1374 case DM_MEM_HOT_ADD_REQUEST: 1375 if (dm->state == DM_HOT_ADD) 1376 pr_warn("Currently hot-adding\n"); 1377 dm->state = DM_HOT_ADD; 1378 ha_msg = (struct dm_hot_add *)recv_buffer; 1379 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1380 /* 1381 * This is a normal hot-add request specifying 1382 * hot-add memory. 1383 */ 1384 ha_pg_range = &ha_msg->range; 1385 dm->ha_wrk.ha_page_range = *ha_pg_range; 1386 dm->ha_wrk.ha_region_range.page_range = 0; 1387 } else { 1388 /* 1389 * Host is specifying that we first hot-add 1390 * a region and then partially populate this 1391 * region. 1392 */ 1393 dm->host_specified_ha_region = true; 1394 ha_pg_range = &ha_msg->range; 1395 ha_region = &ha_pg_range[1]; 1396 dm->ha_wrk.ha_page_range = *ha_pg_range; 1397 dm->ha_wrk.ha_region_range = *ha_region; 1398 } 1399 schedule_work(&dm_device.ha_wrk.wrk); 1400 break; 1401 1402 case DM_INFO_MESSAGE: 1403 process_info(dm, (struct dm_info_msg *)dm_msg); 1404 break; 1405 1406 default: 1407 pr_err("Unhandled message: type: %d\n", dm_hdr->type); 1408 1409 } 1410 } 1411 1412 } 1413 1414 static int balloon_probe(struct hv_device *dev, 1415 const struct hv_vmbus_device_id *dev_id) 1416 { 1417 int ret, t; 1418 struct dm_version_request version_req; 1419 struct dm_capabilities cap_msg; 1420 1421 do_hot_add = hot_add; 1422 1423 /* 1424 * First allocate a send buffer. 1425 */ 1426 1427 send_buffer = kmalloc(PAGE_SIZE, GFP_KERNEL); 1428 if (!send_buffer) 1429 return -ENOMEM; 1430 1431 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1432 balloon_onchannelcallback, dev); 1433 1434 if (ret) 1435 goto probe_error0; 1436 1437 dm_device.dev = dev; 1438 dm_device.state = DM_INITIALIZING; 1439 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1440 init_completion(&dm_device.host_event); 1441 init_completion(&dm_device.config_event); 1442 init_completion(&dm_device.waiter_event); 1443 INIT_LIST_HEAD(&dm_device.ha_region_list); 1444 mutex_init(&dm_device.ha_region_mutex); 1445 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1446 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1447 dm_device.host_specified_ha_region = false; 1448 1449 dm_device.thread = 1450 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1451 if (IS_ERR(dm_device.thread)) { 1452 ret = PTR_ERR(dm_device.thread); 1453 goto probe_error1; 1454 } 1455 1456 #ifdef CONFIG_MEMORY_HOTPLUG 1457 set_online_page_callback(&hv_online_page); 1458 register_memory_notifier(&hv_memory_nb); 1459 #endif 1460 1461 hv_set_drvdata(dev, &dm_device); 1462 /* 1463 * Initiate the hand shake with the host and negotiate 1464 * a version that the host can support. We start with the 1465 * highest version number and go down if the host cannot 1466 * support it. 1467 */ 1468 memset(&version_req, 0, sizeof(struct dm_version_request)); 1469 version_req.hdr.type = DM_VERSION_REQUEST; 1470 version_req.hdr.size = sizeof(struct dm_version_request); 1471 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1472 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN8; 1473 version_req.is_last_attempt = 0; 1474 1475 ret = vmbus_sendpacket(dev->channel, &version_req, 1476 sizeof(struct dm_version_request), 1477 (unsigned long)NULL, 1478 VM_PKT_DATA_INBAND, 0); 1479 if (ret) 1480 goto probe_error2; 1481 1482 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1483 if (t == 0) { 1484 ret = -ETIMEDOUT; 1485 goto probe_error2; 1486 } 1487 1488 /* 1489 * If we could not negotiate a compatible version with the host 1490 * fail the probe function. 1491 */ 1492 if (dm_device.state == DM_INIT_ERROR) { 1493 ret = -ETIMEDOUT; 1494 goto probe_error2; 1495 } 1496 /* 1497 * Now submit our capabilities to the host. 1498 */ 1499 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1500 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1501 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1502 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1503 1504 cap_msg.caps.cap_bits.balloon = 1; 1505 cap_msg.caps.cap_bits.hot_add = 1; 1506 1507 /* 1508 * Specify our alignment requirements as it relates 1509 * memory hot-add. Specify 128MB alignment. 1510 */ 1511 cap_msg.caps.cap_bits.hot_add_alignment = 7; 1512 1513 /* 1514 * Currently the host does not use these 1515 * values and we set them to what is done in the 1516 * Windows driver. 1517 */ 1518 cap_msg.min_page_cnt = 0; 1519 cap_msg.max_page_number = -1; 1520 1521 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1522 sizeof(struct dm_capabilities), 1523 (unsigned long)NULL, 1524 VM_PKT_DATA_INBAND, 0); 1525 if (ret) 1526 goto probe_error2; 1527 1528 t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ); 1529 if (t == 0) { 1530 ret = -ETIMEDOUT; 1531 goto probe_error2; 1532 } 1533 1534 /* 1535 * If the host does not like our capabilities, 1536 * fail the probe function. 1537 */ 1538 if (dm_device.state == DM_INIT_ERROR) { 1539 ret = -ETIMEDOUT; 1540 goto probe_error2; 1541 } 1542 1543 dm_device.state = DM_INITIALIZED; 1544 1545 return 0; 1546 1547 probe_error2: 1548 #ifdef CONFIG_MEMORY_HOTPLUG 1549 restore_online_page_callback(&hv_online_page); 1550 #endif 1551 kthread_stop(dm_device.thread); 1552 1553 probe_error1: 1554 vmbus_close(dev->channel); 1555 probe_error0: 1556 kfree(send_buffer); 1557 return ret; 1558 } 1559 1560 static int balloon_remove(struct hv_device *dev) 1561 { 1562 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1563 struct list_head *cur, *tmp; 1564 struct hv_hotadd_state *has; 1565 1566 if (dm->num_pages_ballooned != 0) 1567 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 1568 1569 cancel_work_sync(&dm->balloon_wrk.wrk); 1570 cancel_work_sync(&dm->ha_wrk.wrk); 1571 1572 vmbus_close(dev->channel); 1573 kthread_stop(dm->thread); 1574 kfree(send_buffer); 1575 #ifdef CONFIG_MEMORY_HOTPLUG 1576 restore_online_page_callback(&hv_online_page); 1577 unregister_memory_notifier(&hv_memory_nb); 1578 #endif 1579 list_for_each_safe(cur, tmp, &dm->ha_region_list) { 1580 has = list_entry(cur, struct hv_hotadd_state, list); 1581 list_del(&has->list); 1582 kfree(has); 1583 } 1584 1585 return 0; 1586 } 1587 1588 static const struct hv_vmbus_device_id id_table[] = { 1589 /* Dynamic Memory Class ID */ 1590 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 1591 { HV_DM_GUID, }, 1592 { }, 1593 }; 1594 1595 MODULE_DEVICE_TABLE(vmbus, id_table); 1596 1597 static struct hv_driver balloon_drv = { 1598 .name = "hv_balloon", 1599 .id_table = id_table, 1600 .probe = balloon_probe, 1601 .remove = balloon_remove, 1602 }; 1603 1604 static int __init init_balloon_drv(void) 1605 { 1606 1607 return vmbus_driver_register(&balloon_drv); 1608 } 1609 1610 module_init(init_balloon_drv); 1611 1612 MODULE_DESCRIPTION("Hyper-V Balloon"); 1613 MODULE_LICENSE("GPL"); 1614