1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2012, Microsoft Corporation. 4 * 5 * Author: 6 * K. Y. Srinivasan <kys@microsoft.com> 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/cleanup.h> 12 #include <linux/kernel.h> 13 #include <linux/jiffies.h> 14 #include <linux/mman.h> 15 #include <linux/debugfs.h> 16 #include <linux/delay.h> 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kthread.h> 21 #include <linux/completion.h> 22 #include <linux/count_zeros.h> 23 #include <linux/memory_hotplug.h> 24 #include <linux/memory.h> 25 #include <linux/notifier.h> 26 #include <linux/percpu_counter.h> 27 #include <linux/page_reporting.h> 28 #include <linux/sizes.h> 29 30 #include <linux/hyperv.h> 31 #include <hyperv/hvhdk.h> 32 33 #include <asm/mshyperv.h> 34 35 #define CREATE_TRACE_POINTS 36 #include "hv_trace_balloon.h" 37 38 /* 39 * We begin with definitions supporting the Dynamic Memory protocol 40 * with the host. 41 * 42 * Begin protocol definitions. 43 */ 44 45 /* 46 * Protocol versions. The low word is the minor version, the high word the major 47 * version. 48 * 49 * History: 50 * Initial version 1.0 51 * Changed to 0.1 on 2009/03/25 52 * Changes to 0.2 on 2009/05/14 53 * Changes to 0.3 on 2009/12/03 54 * Changed to 1.0 on 2011/04/05 55 */ 56 57 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor))) 58 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16) 59 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff) 60 61 enum { 62 DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3), 63 DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0), 64 DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0), 65 66 DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1, 67 DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2, 68 DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3, 69 70 DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10 71 }; 72 73 /* 74 * Message Types 75 */ 76 77 enum dm_message_type { 78 /* 79 * Version 0.3 80 */ 81 DM_ERROR = 0, 82 DM_VERSION_REQUEST = 1, 83 DM_VERSION_RESPONSE = 2, 84 DM_CAPABILITIES_REPORT = 3, 85 DM_CAPABILITIES_RESPONSE = 4, 86 DM_STATUS_REPORT = 5, 87 DM_BALLOON_REQUEST = 6, 88 DM_BALLOON_RESPONSE = 7, 89 DM_UNBALLOON_REQUEST = 8, 90 DM_UNBALLOON_RESPONSE = 9, 91 DM_MEM_HOT_ADD_REQUEST = 10, 92 DM_MEM_HOT_ADD_RESPONSE = 11, 93 DM_VERSION_03_MAX = 11, 94 /* 95 * Version 1.0. 96 */ 97 DM_INFO_MESSAGE = 12, 98 DM_VERSION_1_MAX = 12 99 }; 100 101 /* 102 * Structures defining the dynamic memory management 103 * protocol. 104 */ 105 106 union dm_version { 107 struct { 108 __u16 minor_version; 109 __u16 major_version; 110 }; 111 __u32 version; 112 } __packed; 113 114 union dm_caps { 115 struct { 116 __u64 balloon:1; 117 __u64 hot_add:1; 118 /* 119 * To support guests that may have alignment 120 * limitations on hot-add, the guest can specify 121 * its alignment requirements; a value of n 122 * represents an alignment of 2^n in mega bytes. 123 */ 124 __u64 hot_add_alignment:4; 125 __u64 reservedz:58; 126 } cap_bits; 127 __u64 caps; 128 } __packed; 129 130 union dm_mem_page_range { 131 struct { 132 /* 133 * The PFN number of the first page in the range. 134 * 40 bits is the architectural limit of a PFN 135 * number for AMD64. 136 */ 137 __u64 start_page:40; 138 /* 139 * The number of pages in the range. 140 */ 141 __u64 page_cnt:24; 142 } finfo; 143 __u64 page_range; 144 } __packed; 145 146 /* 147 * The header for all dynamic memory messages: 148 * 149 * type: Type of the message. 150 * size: Size of the message in bytes; including the header. 151 * trans_id: The guest is responsible for manufacturing this ID. 152 */ 153 154 struct dm_header { 155 __u16 type; 156 __u16 size; 157 __u32 trans_id; 158 } __packed; 159 160 /* 161 * A generic message format for dynamic memory. 162 * Specific message formats are defined later in the file. 163 */ 164 165 struct dm_message { 166 struct dm_header hdr; 167 __u8 data[]; /* enclosed message */ 168 } __packed; 169 170 /* 171 * Specific message types supporting the dynamic memory protocol. 172 */ 173 174 /* 175 * Version negotiation message. Sent from the guest to the host. 176 * The guest is free to try different versions until the host 177 * accepts the version. 178 * 179 * dm_version: The protocol version requested. 180 * is_last_attempt: If TRUE, this is the last version guest will request. 181 * reservedz: Reserved field, set to zero. 182 */ 183 184 struct dm_version_request { 185 struct dm_header hdr; 186 union dm_version version; 187 __u32 is_last_attempt:1; 188 __u32 reservedz:31; 189 } __packed; 190 191 /* 192 * Version response message; Host to Guest and indicates 193 * if the host has accepted the version sent by the guest. 194 * 195 * is_accepted: If TRUE, host has accepted the version and the guest 196 * should proceed to the next stage of the protocol. FALSE indicates that 197 * guest should re-try with a different version. 198 * 199 * reservedz: Reserved field, set to zero. 200 */ 201 202 struct dm_version_response { 203 struct dm_header hdr; 204 __u64 is_accepted:1; 205 __u64 reservedz:63; 206 } __packed; 207 208 /* 209 * Message reporting capabilities. This is sent from the guest to the 210 * host. 211 */ 212 213 struct dm_capabilities { 214 struct dm_header hdr; 215 union dm_caps caps; 216 __u64 min_page_cnt; 217 __u64 max_page_number; 218 } __packed; 219 220 /* 221 * Response to the capabilities message. This is sent from the host to the 222 * guest. This message notifies if the host has accepted the guest's 223 * capabilities. If the host has not accepted, the guest must shutdown 224 * the service. 225 * 226 * is_accepted: Indicates if the host has accepted guest's capabilities. 227 * reservedz: Must be 0. 228 */ 229 230 struct dm_capabilities_resp_msg { 231 struct dm_header hdr; 232 __u64 is_accepted:1; 233 __u64 reservedz:63; 234 } __packed; 235 236 /* 237 * This message is used to report memory pressure from the guest. 238 * This message is not part of any transaction and there is no 239 * response to this message. 240 * 241 * num_avail: Available memory in pages. 242 * num_committed: Committed memory in pages. 243 * page_file_size: The accumulated size of all page files 244 * in the system in pages. 245 * zero_free: The number of zero and free pages. 246 * page_file_writes: The writes to the page file in pages. 247 * io_diff: An indicator of file cache efficiency or page file activity, 248 * calculated as File Cache Page Fault Count - Page Read Count. 249 * This value is in pages. 250 * 251 * Some of these metrics are Windows specific and fortunately 252 * the algorithm on the host side that computes the guest memory 253 * pressure only uses num_committed value. 254 */ 255 256 struct dm_status { 257 struct dm_header hdr; 258 __u64 num_avail; 259 __u64 num_committed; 260 __u64 page_file_size; 261 __u64 zero_free; 262 __u32 page_file_writes; 263 __u32 io_diff; 264 } __packed; 265 266 /* 267 * Message to ask the guest to allocate memory - balloon up message. 268 * This message is sent from the host to the guest. The guest may not be 269 * able to allocate as much memory as requested. 270 * 271 * num_pages: number of pages to allocate. 272 */ 273 274 struct dm_balloon { 275 struct dm_header hdr; 276 __u32 num_pages; 277 __u32 reservedz; 278 } __packed; 279 280 /* 281 * Balloon response message; this message is sent from the guest 282 * to the host in response to the balloon message. 283 * 284 * reservedz: Reserved; must be set to zero. 285 * more_pages: If FALSE, this is the last message of the transaction. 286 * if TRUE there will be at least one more message from the guest. 287 * 288 * range_count: The number of ranges in the range array. 289 * 290 * range_array: An array of page ranges returned to the host. 291 * 292 */ 293 294 struct dm_balloon_response { 295 struct dm_header hdr; 296 __u32 reservedz; 297 __u32 more_pages:1; 298 __u32 range_count:31; 299 union dm_mem_page_range range_array[]; 300 } __packed; 301 302 /* 303 * Un-balloon message; this message is sent from the host 304 * to the guest to give guest more memory. 305 * 306 * more_pages: If FALSE, this is the last message of the transaction. 307 * if TRUE there will be at least one more message from the guest. 308 * 309 * reservedz: Reserved; must be set to zero. 310 * 311 * range_count: The number of ranges in the range array. 312 * 313 * range_array: An array of page ranges returned to the host. 314 * 315 */ 316 317 struct dm_unballoon_request { 318 struct dm_header hdr; 319 __u32 more_pages:1; 320 __u32 reservedz:31; 321 __u32 range_count; 322 union dm_mem_page_range range_array[]; 323 } __packed; 324 325 /* 326 * Un-balloon response message; this message is sent from the guest 327 * to the host in response to an unballoon request. 328 * 329 */ 330 331 struct dm_unballoon_response { 332 struct dm_header hdr; 333 } __packed; 334 335 /* 336 * Hot add request message. Message sent from the host to the guest. 337 * 338 * mem_range: Memory range to hot add. 339 * 340 */ 341 342 struct dm_hot_add { 343 struct dm_header hdr; 344 union dm_mem_page_range range; 345 } __packed; 346 347 /* 348 * Hot add response message. 349 * This message is sent by the guest to report the status of a hot add request. 350 * If page_count is less than the requested page count, then the host should 351 * assume all further hot add requests will fail, since this indicates that 352 * the guest has hit an upper physical memory barrier. 353 * 354 * Hot adds may also fail due to low resources; in this case, the guest must 355 * not complete this message until the hot add can succeed, and the host must 356 * not send a new hot add request until the response is sent. 357 * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS 358 * times it fails the request. 359 * 360 * 361 * page_count: number of pages that were successfully hot added. 362 * 363 * result: result of the operation 1: success, 0: failure. 364 * 365 */ 366 367 struct dm_hot_add_response { 368 struct dm_header hdr; 369 __u32 page_count; 370 __u32 result; 371 } __packed; 372 373 /* 374 * Types of information sent from host to the guest. 375 */ 376 377 enum dm_info_type { 378 INFO_TYPE_MAX_PAGE_CNT = 0, 379 MAX_INFO_TYPE 380 }; 381 382 /* 383 * Header for the information message. 384 */ 385 386 struct dm_info_header { 387 enum dm_info_type type; 388 __u32 data_size; 389 } __packed; 390 391 /* 392 * This message is sent from the host to the guest to pass 393 * some relevant information (win8 addition). 394 * 395 * reserved: no used. 396 * info_size: size of the information blob. 397 * info: information blob. 398 */ 399 400 struct dm_info_msg { 401 struct dm_header hdr; 402 __u32 reserved; 403 __u32 info_size; 404 __u8 info[]; 405 }; 406 407 /* 408 * End protocol definitions. 409 */ 410 411 /* 412 * State to manage hot adding memory into the guest. 413 * The range start_pfn : end_pfn specifies the range 414 * that the host has asked us to hot add. The range 415 * start_pfn : ha_end_pfn specifies the range that we have 416 * currently hot added. We hot add in chunks equal to the 417 * memory block size; it is possible that we may not be able 418 * to bring online all the pages in the region. The range 419 * covered_start_pfn:covered_end_pfn defines the pages that can 420 * be brought online. 421 */ 422 423 struct hv_hotadd_state { 424 struct list_head list; 425 unsigned long start_pfn; 426 unsigned long covered_start_pfn; 427 unsigned long covered_end_pfn; 428 unsigned long ha_end_pfn; 429 unsigned long end_pfn; 430 /* 431 * A list of gaps. 432 */ 433 struct list_head gap_list; 434 }; 435 436 struct hv_hotadd_gap { 437 struct list_head list; 438 unsigned long start_pfn; 439 unsigned long end_pfn; 440 }; 441 442 struct balloon_state { 443 __u32 num_pages; 444 struct work_struct wrk; 445 }; 446 447 struct hot_add_wrk { 448 union dm_mem_page_range ha_page_range; 449 union dm_mem_page_range ha_region_range; 450 struct work_struct wrk; 451 }; 452 453 static bool allow_hibernation; 454 static bool hot_add = true; 455 static bool do_hot_add; 456 /* 457 * Delay reporting memory pressure by 458 * the specified number of seconds. 459 */ 460 static uint pressure_report_delay = 45; 461 extern unsigned int page_reporting_order; 462 #define HV_MAX_FAILURES 2 463 464 /* 465 * The last time we posted a pressure report to host. 466 */ 467 static unsigned long last_post_time; 468 469 static int hv_hypercall_multi_failure; 470 471 module_param(hot_add, bool, 0644); 472 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add"); 473 474 module_param(pressure_report_delay, uint, 0644); 475 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure"); 476 static atomic_t trans_id = ATOMIC_INIT(0); 477 478 static int dm_ring_size = VMBUS_RING_SIZE(16 * 1024); 479 480 /* 481 * Driver specific state. 482 */ 483 484 enum hv_dm_state { 485 DM_INITIALIZING = 0, 486 DM_INITIALIZED, 487 DM_BALLOON_UP, 488 DM_BALLOON_DOWN, 489 DM_HOT_ADD, 490 DM_INIT_ERROR 491 }; 492 493 static __u8 recv_buffer[HV_HYP_PAGE_SIZE]; 494 static __u8 balloon_up_send_buffer[HV_HYP_PAGE_SIZE]; 495 496 static unsigned long ha_pages_in_chunk; 497 #define HA_BYTES_IN_CHUNK (ha_pages_in_chunk << PAGE_SHIFT) 498 499 #define PAGES_IN_2M (2 * 1024 * 1024 / PAGE_SIZE) 500 501 struct hv_dynmem_device { 502 struct hv_device *dev; 503 enum hv_dm_state state; 504 struct completion host_event; 505 struct completion config_event; 506 507 /* 508 * Number of pages we have currently ballooned out. 509 */ 510 unsigned int num_pages_ballooned; 511 unsigned int num_pages_onlined; 512 unsigned int num_pages_added; 513 514 /* 515 * State to manage the ballooning (up) operation. 516 */ 517 struct balloon_state balloon_wrk; 518 519 /* 520 * State to execute the "hot-add" operation. 521 */ 522 struct hot_add_wrk ha_wrk; 523 524 /* 525 * This state tracks if the host has specified a hot-add 526 * region. 527 */ 528 bool host_specified_ha_region; 529 530 /* 531 * State to synchronize hot-add. 532 */ 533 struct completion ol_waitevent; 534 /* 535 * This thread handles hot-add 536 * requests from the host as well as notifying 537 * the host with regards to memory pressure in 538 * the guest. 539 */ 540 struct task_struct *thread; 541 542 /* 543 * Protects ha_region_list, num_pages_onlined counter and individual 544 * regions from ha_region_list. 545 */ 546 spinlock_t ha_lock; 547 548 /* 549 * A list of hot-add regions. 550 */ 551 struct list_head ha_region_list; 552 553 /* 554 * We start with the highest version we can support 555 * and downgrade based on the host; we save here the 556 * next version to try. 557 */ 558 __u32 next_version; 559 560 /* 561 * The negotiated version agreed by host. 562 */ 563 __u32 version; 564 565 struct page_reporting_dev_info pr_dev_info; 566 567 /* 568 * Maximum number of pages that can be hot_add-ed 569 */ 570 __u64 max_dynamic_page_count; 571 }; 572 573 static struct hv_dynmem_device dm_device; 574 575 static void post_status(struct hv_dynmem_device *dm); 576 577 static void enable_page_reporting(void); 578 579 static void disable_page_reporting(void); 580 581 #ifdef CONFIG_MEMORY_HOTPLUG 582 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has, 583 unsigned long pfn) 584 { 585 struct hv_hotadd_gap *gap; 586 587 /* The page is not backed. */ 588 if (pfn < has->covered_start_pfn || pfn >= has->covered_end_pfn) 589 return false; 590 591 /* Check for gaps. */ 592 list_for_each_entry(gap, &has->gap_list, list) { 593 if (pfn >= gap->start_pfn && pfn < gap->end_pfn) 594 return false; 595 } 596 597 return true; 598 } 599 600 static unsigned long hv_page_offline_check(unsigned long start_pfn, 601 unsigned long nr_pages) 602 { 603 unsigned long pfn = start_pfn, count = 0; 604 struct hv_hotadd_state *has; 605 bool found; 606 607 while (pfn < start_pfn + nr_pages) { 608 /* 609 * Search for HAS which covers the pfn and when we find one 610 * count how many consequitive PFNs are covered. 611 */ 612 found = false; 613 list_for_each_entry(has, &dm_device.ha_region_list, list) { 614 while ((pfn >= has->start_pfn) && 615 (pfn < has->end_pfn) && 616 (pfn < start_pfn + nr_pages)) { 617 found = true; 618 if (has_pfn_is_backed(has, pfn)) 619 count++; 620 pfn++; 621 } 622 } 623 624 /* 625 * This PFN is not in any HAS (e.g. we're offlining a region 626 * which was present at boot), no need to account for it. Go 627 * to the next one. 628 */ 629 if (!found) 630 pfn++; 631 } 632 633 return count; 634 } 635 636 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val, 637 void *v) 638 { 639 struct memory_notify *mem = (struct memory_notify *)v; 640 unsigned long pfn_count; 641 642 switch (val) { 643 case MEM_ONLINE: 644 case MEM_CANCEL_ONLINE: 645 complete(&dm_device.ol_waitevent); 646 break; 647 648 case MEM_OFFLINE: 649 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { 650 pfn_count = hv_page_offline_check(mem->start_pfn, 651 mem->nr_pages); 652 if (pfn_count <= dm_device.num_pages_onlined) { 653 dm_device.num_pages_onlined -= pfn_count; 654 } else { 655 /* 656 * We're offlining more pages than we 657 * managed to online. This is 658 * unexpected. In any case don't let 659 * num_pages_onlined wrap around zero. 660 */ 661 WARN_ON_ONCE(1); 662 dm_device.num_pages_onlined = 0; 663 } 664 } 665 break; 666 case MEM_GOING_ONLINE: 667 case MEM_GOING_OFFLINE: 668 case MEM_CANCEL_OFFLINE: 669 break; 670 } 671 return NOTIFY_OK; 672 } 673 674 static struct notifier_block hv_memory_nb = { 675 .notifier_call = hv_memory_notifier, 676 .priority = 0 677 }; 678 679 /* Check if the particular page is backed and can be onlined and online it. */ 680 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg) 681 { 682 if (!has_pfn_is_backed(has, page_to_pfn(pg))) { 683 if (!PageOffline(pg)) 684 __SetPageOffline(pg); 685 return; 686 } else if (!PageOffline(pg)) 687 return; 688 689 /* This frame is currently backed; online the page. */ 690 generic_online_page(pg, 0); 691 692 lockdep_assert_held(&dm_device.ha_lock); 693 dm_device.num_pages_onlined++; 694 } 695 696 static void hv_bring_pgs_online(struct hv_hotadd_state *has, 697 unsigned long start_pfn, unsigned long size) 698 { 699 int i; 700 701 pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn); 702 for (i = 0; i < size; i++) 703 hv_page_online_one(has, pfn_to_page(start_pfn + i)); 704 } 705 706 static void hv_mem_hot_add(unsigned long start, unsigned long size, 707 unsigned long pfn_count, 708 struct hv_hotadd_state *has) 709 { 710 int ret = 0; 711 int i, nid; 712 unsigned long start_pfn; 713 unsigned long processed_pfn; 714 unsigned long total_pfn = pfn_count; 715 716 for (i = 0; i < (size/ha_pages_in_chunk); i++) { 717 start_pfn = start + (i * ha_pages_in_chunk); 718 719 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { 720 has->ha_end_pfn += ha_pages_in_chunk; 721 processed_pfn = umin(total_pfn, ha_pages_in_chunk); 722 total_pfn -= processed_pfn; 723 has->covered_end_pfn += processed_pfn; 724 } 725 726 reinit_completion(&dm_device.ol_waitevent); 727 728 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn)); 729 ret = add_memory(nid, PFN_PHYS((start_pfn)), 730 HA_BYTES_IN_CHUNK, MHP_MERGE_RESOURCE); 731 732 if (ret) { 733 pr_err("hot_add memory failed error is %d\n", ret); 734 if (ret == -EEXIST) { 735 /* 736 * This error indicates that the error 737 * is not a transient failure. This is the 738 * case where the guest's physical address map 739 * precludes hot adding memory. Stop all further 740 * memory hot-add. 741 */ 742 do_hot_add = false; 743 } 744 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { 745 has->ha_end_pfn -= ha_pages_in_chunk; 746 has->covered_end_pfn -= processed_pfn; 747 } 748 break; 749 } 750 751 /* 752 * Wait for memory to get onlined. If the kernel onlined the 753 * memory when adding it, this will return directly. Otherwise, 754 * it will wait for user space to online the memory. This helps 755 * to avoid adding memory faster than it is getting onlined. As 756 * adding succeeded, it is ok to proceed even if the memory was 757 * not onlined in time. 758 */ 759 wait_for_completion_timeout(&dm_device.ol_waitevent, secs_to_jiffies(5)); 760 post_status(&dm_device); 761 } 762 } 763 764 static void hv_online_page(struct page *pg, unsigned int order) 765 { 766 struct hv_hotadd_state *has; 767 unsigned long pfn = page_to_pfn(pg); 768 769 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { 770 list_for_each_entry(has, &dm_device.ha_region_list, list) { 771 /* The page belongs to a different HAS. */ 772 if (pfn < has->start_pfn || 773 (pfn + (1UL << order) > has->end_pfn)) 774 continue; 775 776 hv_bring_pgs_online(has, pfn, 1UL << order); 777 return; 778 } 779 } 780 generic_online_page(pg, order); 781 } 782 783 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt) 784 { 785 struct hv_hotadd_state *has; 786 struct hv_hotadd_gap *gap; 787 unsigned long residual; 788 int ret = 0; 789 790 guard(spinlock_irqsave)(&dm_device.ha_lock); 791 list_for_each_entry(has, &dm_device.ha_region_list, list) { 792 /* 793 * If the pfn range we are dealing with is not in the current 794 * "hot add block", move on. 795 */ 796 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 797 continue; 798 799 /* 800 * If the current start pfn is not where the covered_end 801 * is, create a gap and update covered_end_pfn. 802 */ 803 if (has->covered_end_pfn != start_pfn) { 804 gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC); 805 if (!gap) { 806 ret = -ENOMEM; 807 break; 808 } 809 810 INIT_LIST_HEAD(&gap->list); 811 gap->start_pfn = has->covered_end_pfn; 812 gap->end_pfn = start_pfn; 813 list_add_tail(&gap->list, &has->gap_list); 814 815 has->covered_end_pfn = start_pfn; 816 } 817 818 /* 819 * If the current hot add-request extends beyond 820 * our current limit; extend it. 821 */ 822 if ((start_pfn + pfn_cnt) > has->end_pfn) { 823 /* Extend the region by multiples of ha_pages_in_chunk */ 824 residual = (start_pfn + pfn_cnt - has->end_pfn); 825 has->end_pfn += ALIGN(residual, ha_pages_in_chunk); 826 } 827 828 ret = 1; 829 break; 830 } 831 832 return ret; 833 } 834 835 static unsigned long handle_pg_range(unsigned long pg_start, 836 unsigned long pg_count) 837 { 838 unsigned long start_pfn = pg_start; 839 unsigned long pfn_cnt = pg_count; 840 unsigned long size; 841 struct hv_hotadd_state *has; 842 unsigned long pgs_ol = 0; 843 unsigned long old_covered_state; 844 unsigned long res = 0, flags; 845 846 pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count, 847 pg_start); 848 849 spin_lock_irqsave(&dm_device.ha_lock, flags); 850 list_for_each_entry(has, &dm_device.ha_region_list, list) { 851 /* 852 * If the pfn range we are dealing with is not in the current 853 * "hot add block", move on. 854 */ 855 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn) 856 continue; 857 858 old_covered_state = has->covered_end_pfn; 859 860 if (start_pfn < has->ha_end_pfn) { 861 /* 862 * This is the case where we are backing pages 863 * in an already hot added region. Bring 864 * these pages online first. 865 */ 866 pgs_ol = has->ha_end_pfn - start_pfn; 867 if (pgs_ol > pfn_cnt) 868 pgs_ol = pfn_cnt; 869 870 has->covered_end_pfn += pgs_ol; 871 pfn_cnt -= pgs_ol; 872 /* 873 * Check if the corresponding memory block is already 874 * online. It is possible to observe struct pages still 875 * being uninitialized here so check section instead. 876 * In case the section is online we need to bring the 877 * rest of pfns (which were not backed previously) 878 * online too. 879 */ 880 if (start_pfn > has->start_pfn && 881 online_section_nr(pfn_to_section_nr(start_pfn))) 882 hv_bring_pgs_online(has, start_pfn, pgs_ol); 883 } 884 885 if (has->ha_end_pfn < has->end_pfn && pfn_cnt > 0) { 886 /* 887 * We have some residual hot add range 888 * that needs to be hot added; hot add 889 * it now. Hot add a multiple of 890 * ha_pages_in_chunk that fully covers the pages 891 * we have. 892 */ 893 size = (has->end_pfn - has->ha_end_pfn); 894 if (pfn_cnt <= size) { 895 size = ALIGN(pfn_cnt, ha_pages_in_chunk); 896 } else { 897 pfn_cnt = size; 898 } 899 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 900 hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has); 901 spin_lock_irqsave(&dm_device.ha_lock, flags); 902 } 903 /* 904 * If we managed to online any pages that were given to us, 905 * we declare success. 906 */ 907 res = has->covered_end_pfn - old_covered_state; 908 break; 909 } 910 spin_unlock_irqrestore(&dm_device.ha_lock, flags); 911 912 return res; 913 } 914 915 static unsigned long process_hot_add(unsigned long pg_start, 916 unsigned long pfn_cnt, 917 unsigned long rg_start, 918 unsigned long rg_size) 919 { 920 struct hv_hotadd_state *ha_region = NULL; 921 int covered; 922 923 if (pfn_cnt == 0) 924 return 0; 925 926 if (!dm_device.host_specified_ha_region) { 927 covered = pfn_covered(pg_start, pfn_cnt); 928 if (covered < 0) 929 return 0; 930 931 if (covered) 932 goto do_pg_range; 933 } 934 935 /* 936 * If the host has specified a hot-add range; deal with it first. 937 */ 938 939 if (rg_size != 0) { 940 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL); 941 if (!ha_region) 942 return 0; 943 944 INIT_LIST_HEAD(&ha_region->list); 945 INIT_LIST_HEAD(&ha_region->gap_list); 946 947 ha_region->start_pfn = rg_start; 948 ha_region->ha_end_pfn = rg_start; 949 ha_region->covered_start_pfn = pg_start; 950 ha_region->covered_end_pfn = pg_start; 951 ha_region->end_pfn = rg_start + rg_size; 952 953 scoped_guard(spinlock_irqsave, &dm_device.ha_lock) { 954 list_add_tail(&ha_region->list, &dm_device.ha_region_list); 955 } 956 } 957 958 do_pg_range: 959 /* 960 * Process the page range specified; bringing them 961 * online if possible. 962 */ 963 return handle_pg_range(pg_start, pfn_cnt); 964 } 965 966 #endif 967 968 static void hot_add_req(struct work_struct *dummy) 969 { 970 struct dm_hot_add_response resp; 971 #ifdef CONFIG_MEMORY_HOTPLUG 972 unsigned long pg_start, pfn_cnt; 973 unsigned long rg_start, rg_sz; 974 #endif 975 struct hv_dynmem_device *dm = &dm_device; 976 977 memset(&resp, 0, sizeof(struct dm_hot_add_response)); 978 resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE; 979 resp.hdr.size = sizeof(struct dm_hot_add_response); 980 981 #ifdef CONFIG_MEMORY_HOTPLUG 982 pg_start = dm->ha_wrk.ha_page_range.finfo.start_page; 983 pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt; 984 985 rg_start = dm->ha_wrk.ha_region_range.finfo.start_page; 986 rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt; 987 988 if (rg_start == 0 && !dm->host_specified_ha_region) { 989 /* 990 * The host has not specified the hot-add region. 991 * Based on the hot-add page range being specified, 992 * compute a hot-add region that can cover the pages 993 * that need to be hot-added while ensuring the alignment 994 * and size requirements of Linux as it relates to hot-add. 995 */ 996 rg_start = ALIGN_DOWN(pg_start, ha_pages_in_chunk); 997 rg_sz = ALIGN(pfn_cnt, ha_pages_in_chunk); 998 } 999 1000 if (do_hot_add) 1001 resp.page_count = process_hot_add(pg_start, pfn_cnt, 1002 rg_start, rg_sz); 1003 1004 dm->num_pages_added += resp.page_count; 1005 #endif 1006 /* 1007 * The result field of the response structure has the 1008 * following semantics: 1009 * 1010 * 1. If all or some pages hot-added: Guest should return success. 1011 * 1012 * 2. If no pages could be hot-added: 1013 * 1014 * If the guest returns success, then the host 1015 * will not attempt any further hot-add operations. This 1016 * signifies a permanent failure. 1017 * 1018 * If the guest returns failure, then this failure will be 1019 * treated as a transient failure and the host may retry the 1020 * hot-add operation after some delay. 1021 */ 1022 if (resp.page_count > 0) 1023 resp.result = 1; 1024 else if (!do_hot_add) 1025 resp.result = 1; 1026 else 1027 resp.result = 0; 1028 1029 if (!do_hot_add || resp.page_count == 0) { 1030 if (!allow_hibernation) 1031 pr_err("Memory hot add failed\n"); 1032 else 1033 pr_info("Ignore hot-add request!\n"); 1034 } 1035 1036 dm->state = DM_INITIALIZED; 1037 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1038 vmbus_sendpacket(dm->dev->channel, &resp, 1039 sizeof(struct dm_hot_add_response), 1040 (unsigned long)NULL, 1041 VM_PKT_DATA_INBAND, 0); 1042 } 1043 1044 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg) 1045 { 1046 struct dm_info_header *info_hdr; 1047 1048 info_hdr = (struct dm_info_header *)msg->info; 1049 1050 switch (info_hdr->type) { 1051 case INFO_TYPE_MAX_PAGE_CNT: 1052 if (info_hdr->data_size == sizeof(__u64)) { 1053 __u64 *max_page_count = (__u64 *)&info_hdr[1]; 1054 1055 pr_info("Max. dynamic memory size: %llu MB\n", 1056 (*max_page_count) >> (20 - HV_HYP_PAGE_SHIFT)); 1057 dm->max_dynamic_page_count = *max_page_count; 1058 } 1059 1060 break; 1061 default: 1062 pr_warn("Received Unknown type: %d\n", info_hdr->type); 1063 } 1064 } 1065 1066 static unsigned long compute_balloon_floor(void) 1067 { 1068 unsigned long min_pages; 1069 unsigned long nr_pages = totalram_pages(); 1070 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT)) 1071 /* Simple continuous piecewiese linear function: 1072 * max MiB -> min MiB gradient 1073 * 0 0 1074 * 16 16 1075 * 32 24 1076 * 128 72 (1/2) 1077 * 512 168 (1/4) 1078 * 2048 360 (1/8) 1079 * 8192 744 (1/16) 1080 * 32768 1512 (1/32) 1081 */ 1082 if (nr_pages < MB2PAGES(128)) 1083 min_pages = MB2PAGES(8) + (nr_pages >> 1); 1084 else if (nr_pages < MB2PAGES(512)) 1085 min_pages = MB2PAGES(40) + (nr_pages >> 2); 1086 else if (nr_pages < MB2PAGES(2048)) 1087 min_pages = MB2PAGES(104) + (nr_pages >> 3); 1088 else if (nr_pages < MB2PAGES(8192)) 1089 min_pages = MB2PAGES(232) + (nr_pages >> 4); 1090 else 1091 min_pages = MB2PAGES(488) + (nr_pages >> 5); 1092 #undef MB2PAGES 1093 return min_pages; 1094 } 1095 1096 /* 1097 * Compute total committed memory pages 1098 */ 1099 1100 static unsigned long get_pages_committed(struct hv_dynmem_device *dm) 1101 { 1102 return vm_memory_committed() + 1103 dm->num_pages_ballooned + 1104 (dm->num_pages_added > dm->num_pages_onlined ? 1105 dm->num_pages_added - dm->num_pages_onlined : 0) + 1106 compute_balloon_floor(); 1107 } 1108 1109 /* 1110 * Post our status as it relates memory pressure to the 1111 * host. Host expects the guests to post this status 1112 * periodically at 1 second intervals. 1113 * 1114 * The metrics specified in this protocol are very Windows 1115 * specific and so we cook up numbers here to convey our memory 1116 * pressure. 1117 */ 1118 1119 static void post_status(struct hv_dynmem_device *dm) 1120 { 1121 struct dm_status status; 1122 unsigned long now = jiffies; 1123 unsigned long last_post = last_post_time; 1124 unsigned long num_pages_avail, num_pages_committed; 1125 1126 if (pressure_report_delay > 0) { 1127 --pressure_report_delay; 1128 return; 1129 } 1130 1131 if (!time_after(now, (last_post_time + HZ))) 1132 return; 1133 1134 memset(&status, 0, sizeof(struct dm_status)); 1135 status.hdr.type = DM_STATUS_REPORT; 1136 status.hdr.size = sizeof(struct dm_status); 1137 status.hdr.trans_id = atomic_inc_return(&trans_id); 1138 1139 /* 1140 * The host expects the guest to report free and committed memory. 1141 * Furthermore, the host expects the pressure information to include 1142 * the ballooned out pages. For a given amount of memory that we are 1143 * managing we need to compute a floor below which we should not 1144 * balloon. Compute this and add it to the pressure report. 1145 * We also need to report all offline pages (num_pages_added - 1146 * num_pages_onlined) as committed to the host, otherwise it can try 1147 * asking us to balloon them out. 1148 */ 1149 num_pages_avail = si_mem_available(); 1150 num_pages_committed = get_pages_committed(dm); 1151 1152 trace_balloon_status(num_pages_avail, num_pages_committed, 1153 vm_memory_committed(), dm->num_pages_ballooned, 1154 dm->num_pages_added, dm->num_pages_onlined); 1155 1156 /* Convert numbers of pages into numbers of HV_HYP_PAGEs. */ 1157 status.num_avail = num_pages_avail * NR_HV_HYP_PAGES_IN_PAGE; 1158 status.num_committed = num_pages_committed * NR_HV_HYP_PAGES_IN_PAGE; 1159 1160 /* 1161 * If our transaction ID is no longer current, just don't 1162 * send the status. This can happen if we were interrupted 1163 * after we picked our transaction ID. 1164 */ 1165 if (status.hdr.trans_id != atomic_read(&trans_id)) 1166 return; 1167 1168 /* 1169 * If the last post time that we sampled has changed, 1170 * we have raced, don't post the status. 1171 */ 1172 if (last_post != last_post_time) 1173 return; 1174 1175 last_post_time = jiffies; 1176 vmbus_sendpacket(dm->dev->channel, &status, 1177 sizeof(struct dm_status), 1178 (unsigned long)NULL, 1179 VM_PKT_DATA_INBAND, 0); 1180 } 1181 1182 static void free_balloon_pages(struct hv_dynmem_device *dm, 1183 union dm_mem_page_range *range_array) 1184 { 1185 int num_pages = range_array->finfo.page_cnt; 1186 __u64 start_frame = range_array->finfo.start_page; 1187 struct page *pg; 1188 int i; 1189 1190 for (i = 0; i < num_pages; i++) { 1191 pg = pfn_to_page(i + start_frame); 1192 __ClearPageOffline(pg); 1193 __free_page(pg); 1194 dm->num_pages_ballooned--; 1195 adjust_managed_page_count(pg, 1); 1196 } 1197 } 1198 1199 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm, 1200 unsigned int num_pages, 1201 struct dm_balloon_response *bl_resp, 1202 int alloc_unit) 1203 { 1204 unsigned int i, j; 1205 struct page *pg; 1206 1207 for (i = 0; i < num_pages / alloc_unit; i++) { 1208 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) > 1209 HV_HYP_PAGE_SIZE) 1210 return i * alloc_unit; 1211 1212 /* 1213 * We execute this code in a thread context. Furthermore, 1214 * we don't want the kernel to try too hard. 1215 */ 1216 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY | 1217 __GFP_NOMEMALLOC | __GFP_NOWARN, 1218 get_order(alloc_unit << PAGE_SHIFT)); 1219 1220 if (!pg) 1221 return i * alloc_unit; 1222 1223 dm->num_pages_ballooned += alloc_unit; 1224 1225 /* 1226 * If we allocatted 2M pages; split them so we 1227 * can free them in any order we get. 1228 */ 1229 1230 if (alloc_unit != 1) 1231 split_page(pg, get_order(alloc_unit << PAGE_SHIFT)); 1232 1233 /* mark all pages offline */ 1234 for (j = 0; j < alloc_unit; j++) { 1235 __SetPageOffline(pg + j); 1236 adjust_managed_page_count(pg + j, -1); 1237 } 1238 1239 bl_resp->range_count++; 1240 bl_resp->range_array[i].finfo.start_page = 1241 page_to_pfn(pg); 1242 bl_resp->range_array[i].finfo.page_cnt = alloc_unit; 1243 bl_resp->hdr.size += sizeof(union dm_mem_page_range); 1244 } 1245 1246 return i * alloc_unit; 1247 } 1248 1249 static void balloon_up(struct work_struct *dummy) 1250 { 1251 unsigned int num_pages = dm_device.balloon_wrk.num_pages; 1252 unsigned int num_ballooned = 0; 1253 struct dm_balloon_response *bl_resp; 1254 int alloc_unit; 1255 int ret; 1256 bool done = false; 1257 int i; 1258 long avail_pages; 1259 unsigned long floor; 1260 1261 /* 1262 * We will attempt 2M allocations. However, if we fail to 1263 * allocate 2M chunks, we will go back to PAGE_SIZE allocations. 1264 */ 1265 alloc_unit = PAGES_IN_2M; 1266 1267 avail_pages = si_mem_available(); 1268 floor = compute_balloon_floor(); 1269 1270 /* Refuse to balloon below the floor. */ 1271 if (avail_pages < num_pages || avail_pages - num_pages < floor) { 1272 pr_info("Balloon request will be partially fulfilled. %s\n", 1273 avail_pages < num_pages ? "Not enough memory." : 1274 "Balloon floor reached."); 1275 1276 num_pages = avail_pages > floor ? (avail_pages - floor) : 0; 1277 } 1278 1279 while (!done) { 1280 memset(balloon_up_send_buffer, 0, HV_HYP_PAGE_SIZE); 1281 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer; 1282 bl_resp->hdr.type = DM_BALLOON_RESPONSE; 1283 bl_resp->hdr.size = sizeof(struct dm_balloon_response); 1284 bl_resp->more_pages = 1; 1285 1286 num_pages -= num_ballooned; 1287 num_ballooned = alloc_balloon_pages(&dm_device, num_pages, 1288 bl_resp, alloc_unit); 1289 1290 if (alloc_unit != 1 && num_ballooned == 0) { 1291 alloc_unit = 1; 1292 continue; 1293 } 1294 1295 if (num_ballooned == 0 || num_ballooned == num_pages) { 1296 pr_debug("Ballooned %u out of %u requested pages.\n", 1297 num_pages, dm_device.balloon_wrk.num_pages); 1298 1299 bl_resp->more_pages = 0; 1300 done = true; 1301 dm_device.state = DM_INITIALIZED; 1302 } 1303 1304 /* 1305 * We are pushing a lot of data through the channel; 1306 * deal with transient failures caused because of the 1307 * lack of space in the ring buffer. 1308 */ 1309 1310 do { 1311 bl_resp->hdr.trans_id = atomic_inc_return(&trans_id); 1312 ret = vmbus_sendpacket(dm_device.dev->channel, 1313 bl_resp, 1314 bl_resp->hdr.size, 1315 (unsigned long)NULL, 1316 VM_PKT_DATA_INBAND, 0); 1317 1318 if (ret == -EAGAIN) 1319 msleep(20); 1320 post_status(&dm_device); 1321 } while (ret == -EAGAIN); 1322 1323 if (ret) { 1324 /* 1325 * Free up the memory we allocatted. 1326 */ 1327 pr_err("Balloon response failed\n"); 1328 1329 for (i = 0; i < bl_resp->range_count; i++) 1330 free_balloon_pages(&dm_device, 1331 &bl_resp->range_array[i]); 1332 1333 done = true; 1334 } 1335 } 1336 } 1337 1338 static void balloon_down(struct hv_dynmem_device *dm, 1339 struct dm_unballoon_request *req) 1340 { 1341 union dm_mem_page_range *range_array = req->range_array; 1342 int range_count = req->range_count; 1343 struct dm_unballoon_response resp; 1344 int i; 1345 unsigned int prev_pages_ballooned = dm->num_pages_ballooned; 1346 1347 for (i = 0; i < range_count; i++) { 1348 free_balloon_pages(dm, &range_array[i]); 1349 complete(&dm_device.config_event); 1350 } 1351 1352 pr_debug("Freed %u ballooned pages.\n", 1353 prev_pages_ballooned - dm->num_pages_ballooned); 1354 1355 if (req->more_pages == 1) 1356 return; 1357 1358 memset(&resp, 0, sizeof(struct dm_unballoon_response)); 1359 resp.hdr.type = DM_UNBALLOON_RESPONSE; 1360 resp.hdr.trans_id = atomic_inc_return(&trans_id); 1361 resp.hdr.size = sizeof(struct dm_unballoon_response); 1362 1363 vmbus_sendpacket(dm_device.dev->channel, &resp, 1364 sizeof(struct dm_unballoon_response), 1365 (unsigned long)NULL, 1366 VM_PKT_DATA_INBAND, 0); 1367 1368 dm->state = DM_INITIALIZED; 1369 } 1370 1371 static void balloon_onchannelcallback(void *context); 1372 1373 static int dm_thread_func(void *dm_dev) 1374 { 1375 struct hv_dynmem_device *dm = dm_dev; 1376 1377 while (!kthread_should_stop()) { 1378 wait_for_completion_interruptible_timeout(&dm_device.config_event, 1379 secs_to_jiffies(1)); 1380 /* 1381 * The host expects us to post information on the memory 1382 * pressure every second. 1383 */ 1384 reinit_completion(&dm_device.config_event); 1385 post_status(dm); 1386 /* 1387 * disable free page reporting if multiple hypercall 1388 * failure flag set. It is not done in the page_reporting 1389 * callback context as that causes a deadlock between 1390 * page_reporting_process() and page_reporting_unregister() 1391 */ 1392 if (hv_hypercall_multi_failure >= HV_MAX_FAILURES) { 1393 pr_err("Multiple failures in cold memory discard hypercall, disabling page reporting\n"); 1394 disable_page_reporting(); 1395 /* Reset the flag after disabling reporting */ 1396 hv_hypercall_multi_failure = 0; 1397 } 1398 } 1399 1400 return 0; 1401 } 1402 1403 static void version_resp(struct hv_dynmem_device *dm, 1404 struct dm_version_response *vresp) 1405 { 1406 struct dm_version_request version_req; 1407 int ret; 1408 1409 if (vresp->is_accepted) { 1410 /* 1411 * We are done; wakeup the 1412 * context waiting for version 1413 * negotiation. 1414 */ 1415 complete(&dm->host_event); 1416 return; 1417 } 1418 /* 1419 * If there are more versions to try, continue 1420 * with negotiations; if not 1421 * shutdown the service since we are not able 1422 * to negotiate a suitable version number 1423 * with the host. 1424 */ 1425 if (dm->next_version == 0) 1426 goto version_error; 1427 1428 memset(&version_req, 0, sizeof(struct dm_version_request)); 1429 version_req.hdr.type = DM_VERSION_REQUEST; 1430 version_req.hdr.size = sizeof(struct dm_version_request); 1431 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1432 version_req.version.version = dm->next_version; 1433 dm->version = version_req.version.version; 1434 1435 /* 1436 * Set the next version to try in case current version fails. 1437 * Win7 protocol ought to be the last one to try. 1438 */ 1439 switch (version_req.version.version) { 1440 case DYNMEM_PROTOCOL_VERSION_WIN8: 1441 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7; 1442 version_req.is_last_attempt = 0; 1443 break; 1444 default: 1445 dm->next_version = 0; 1446 version_req.is_last_attempt = 1; 1447 } 1448 1449 ret = vmbus_sendpacket(dm->dev->channel, &version_req, 1450 sizeof(struct dm_version_request), 1451 (unsigned long)NULL, 1452 VM_PKT_DATA_INBAND, 0); 1453 1454 if (ret) 1455 goto version_error; 1456 1457 return; 1458 1459 version_error: 1460 dm->state = DM_INIT_ERROR; 1461 complete(&dm->host_event); 1462 } 1463 1464 static void cap_resp(struct hv_dynmem_device *dm, 1465 struct dm_capabilities_resp_msg *cap_resp) 1466 { 1467 if (!cap_resp->is_accepted) { 1468 pr_err("Capabilities not accepted by host\n"); 1469 dm->state = DM_INIT_ERROR; 1470 } 1471 complete(&dm->host_event); 1472 } 1473 1474 static void balloon_onchannelcallback(void *context) 1475 { 1476 struct hv_device *dev = context; 1477 u32 recvlen; 1478 u64 requestid; 1479 struct dm_message *dm_msg; 1480 struct dm_header *dm_hdr; 1481 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 1482 struct dm_balloon *bal_msg; 1483 struct dm_hot_add *ha_msg; 1484 union dm_mem_page_range *ha_pg_range; 1485 union dm_mem_page_range *ha_region; 1486 1487 memset(recv_buffer, 0, sizeof(recv_buffer)); 1488 vmbus_recvpacket(dev->channel, recv_buffer, 1489 HV_HYP_PAGE_SIZE, &recvlen, &requestid); 1490 1491 if (recvlen > 0) { 1492 dm_msg = (struct dm_message *)recv_buffer; 1493 dm_hdr = &dm_msg->hdr; 1494 1495 switch (dm_hdr->type) { 1496 case DM_VERSION_RESPONSE: 1497 version_resp(dm, 1498 (struct dm_version_response *)dm_msg); 1499 break; 1500 1501 case DM_CAPABILITIES_RESPONSE: 1502 cap_resp(dm, 1503 (struct dm_capabilities_resp_msg *)dm_msg); 1504 break; 1505 1506 case DM_BALLOON_REQUEST: 1507 if (allow_hibernation) { 1508 pr_info("Ignore balloon-up request!\n"); 1509 break; 1510 } 1511 1512 if (dm->state == DM_BALLOON_UP) 1513 pr_warn("Currently ballooning\n"); 1514 bal_msg = (struct dm_balloon *)recv_buffer; 1515 dm->state = DM_BALLOON_UP; 1516 dm_device.balloon_wrk.num_pages = bal_msg->num_pages; 1517 schedule_work(&dm_device.balloon_wrk.wrk); 1518 break; 1519 1520 case DM_UNBALLOON_REQUEST: 1521 if (allow_hibernation) { 1522 pr_info("Ignore balloon-down request!\n"); 1523 break; 1524 } 1525 1526 dm->state = DM_BALLOON_DOWN; 1527 balloon_down(dm, 1528 (struct dm_unballoon_request *)recv_buffer); 1529 break; 1530 1531 case DM_MEM_HOT_ADD_REQUEST: 1532 if (dm->state == DM_HOT_ADD) 1533 pr_warn("Currently hot-adding\n"); 1534 dm->state = DM_HOT_ADD; 1535 ha_msg = (struct dm_hot_add *)recv_buffer; 1536 if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) { 1537 /* 1538 * This is a normal hot-add request specifying 1539 * hot-add memory. 1540 */ 1541 dm->host_specified_ha_region = false; 1542 ha_pg_range = &ha_msg->range; 1543 dm->ha_wrk.ha_page_range = *ha_pg_range; 1544 dm->ha_wrk.ha_region_range.page_range = 0; 1545 } else { 1546 /* 1547 * Host is specifying that we first hot-add 1548 * a region and then partially populate this 1549 * region. 1550 */ 1551 dm->host_specified_ha_region = true; 1552 ha_pg_range = &ha_msg->range; 1553 ha_region = &ha_pg_range[1]; 1554 dm->ha_wrk.ha_page_range = *ha_pg_range; 1555 dm->ha_wrk.ha_region_range = *ha_region; 1556 } 1557 schedule_work(&dm_device.ha_wrk.wrk); 1558 break; 1559 1560 case DM_INFO_MESSAGE: 1561 process_info(dm, (struct dm_info_msg *)dm_msg); 1562 break; 1563 1564 default: 1565 pr_warn_ratelimited("Unhandled message: type: %d\n", dm_hdr->type); 1566 } 1567 } 1568 } 1569 1570 #define HV_LARGE_REPORTING_ORDER 9 1571 #define HV_LARGE_REPORTING_LEN (HV_HYP_PAGE_SIZE << \ 1572 HV_LARGE_REPORTING_ORDER) 1573 static int hv_free_page_report(struct page_reporting_dev_info *pr_dev_info, 1574 struct scatterlist *sgl, unsigned int nents) 1575 { 1576 unsigned long flags; 1577 struct hv_memory_hint *hint; 1578 int i, order; 1579 u64 status; 1580 struct scatterlist *sg; 1581 1582 WARN_ON_ONCE(nents > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES); 1583 WARN_ON_ONCE(sgl->length < (HV_HYP_PAGE_SIZE << page_reporting_order)); 1584 local_irq_save(flags); 1585 hint = *this_cpu_ptr(hyperv_pcpu_input_arg); 1586 if (!hint) { 1587 local_irq_restore(flags); 1588 return -ENOSPC; 1589 } 1590 1591 hint->heat_type = HV_EXTMEM_HEAT_HINT_COLD_DISCARD; 1592 hint->reserved = 0; 1593 for_each_sg(sgl, sg, nents, i) { 1594 union hv_gpa_page_range *range; 1595 1596 range = &hint->ranges[i]; 1597 range->address_space = 0; 1598 order = get_order(sg->length); 1599 /* 1600 * Hyper-V expects the additional_pages field in the units 1601 * of one of these 3 sizes, 4Kbytes, 2Mbytes or 1Gbytes. 1602 * This is dictated by the values of the fields page.largesize 1603 * and page_size. 1604 * This code however, only uses 4Kbytes and 2Mbytes units 1605 * and not 1Gbytes unit. 1606 */ 1607 1608 /* page reporting for pages 2MB or higher */ 1609 if (order >= HV_LARGE_REPORTING_ORDER) { 1610 range->page.largepage = 1; 1611 range->page_size = HV_GPA_PAGE_RANGE_PAGE_SIZE_2MB; 1612 range->base_large_pfn = page_to_hvpfn( 1613 sg_page(sg)) >> HV_LARGE_REPORTING_ORDER; 1614 range->page.additional_pages = 1615 (sg->length / HV_LARGE_REPORTING_LEN) - 1; 1616 } else { 1617 /* Page reporting for pages below 2MB */ 1618 range->page.basepfn = page_to_hvpfn(sg_page(sg)); 1619 range->page.largepage = false; 1620 range->page.additional_pages = 1621 (sg->length / HV_HYP_PAGE_SIZE) - 1; 1622 } 1623 } 1624 1625 status = hv_do_rep_hypercall(HV_EXT_CALL_MEMORY_HEAT_HINT, nents, 0, 1626 hint, NULL); 1627 local_irq_restore(flags); 1628 if (!hv_result_success(status)) { 1629 pr_err("Cold memory discard hypercall failed with status %llx\n", 1630 status); 1631 if (hv_hypercall_multi_failure > 0) 1632 hv_hypercall_multi_failure++; 1633 1634 if (hv_result(status) == HV_STATUS_INVALID_PARAMETER) { 1635 pr_err("Underlying Hyper-V does not support order less than 9. Hypercall failed\n"); 1636 pr_err("Defaulting to page_reporting_order %d\n", 1637 pageblock_order); 1638 page_reporting_order = pageblock_order; 1639 hv_hypercall_multi_failure++; 1640 return -EINVAL; 1641 } 1642 1643 return -EINVAL; 1644 } 1645 1646 return 0; 1647 } 1648 1649 static void enable_page_reporting(void) 1650 { 1651 int ret; 1652 1653 if (!hv_query_ext_cap(HV_EXT_CAPABILITY_MEMORY_COLD_DISCARD_HINT)) { 1654 pr_debug("Cold memory discard hint not supported by Hyper-V\n"); 1655 return; 1656 } 1657 1658 BUILD_BUG_ON(PAGE_REPORTING_CAPACITY > HV_MEMORY_HINT_MAX_GPA_PAGE_RANGES); 1659 dm_device.pr_dev_info.report = hv_free_page_report; 1660 /* 1661 * We let the page_reporting_order parameter decide the order 1662 * in the page_reporting code 1663 */ 1664 dm_device.pr_dev_info.order = 0; 1665 ret = page_reporting_register(&dm_device.pr_dev_info); 1666 if (ret < 0) { 1667 dm_device.pr_dev_info.report = NULL; 1668 pr_err("Failed to enable cold memory discard: %d\n", ret); 1669 } else { 1670 pr_info("Cold memory discard hint enabled with order %d\n", 1671 page_reporting_order); 1672 } 1673 } 1674 1675 static void disable_page_reporting(void) 1676 { 1677 if (dm_device.pr_dev_info.report) { 1678 page_reporting_unregister(&dm_device.pr_dev_info); 1679 dm_device.pr_dev_info.report = NULL; 1680 } 1681 } 1682 1683 static int ballooning_enabled(void) 1684 { 1685 /* 1686 * Disable ballooning if the page size is not 4k (HV_HYP_PAGE_SIZE), 1687 * since currently it's unclear to us whether an unballoon request can 1688 * make sure all page ranges are guest page size aligned. 1689 */ 1690 if (PAGE_SIZE != HV_HYP_PAGE_SIZE) { 1691 pr_info("Ballooning disabled because page size is not 4096 bytes\n"); 1692 return 0; 1693 } 1694 1695 return 1; 1696 } 1697 1698 static int hot_add_enabled(void) 1699 { 1700 /* 1701 * Disable hot add on ARM64, because we currently rely on 1702 * memory_add_physaddr_to_nid() to get a node id of a hot add range, 1703 * however ARM64's memory_add_physaddr_to_nid() always return 0 and 1704 * DM_MEM_HOT_ADD_REQUEST doesn't have the NUMA node information for 1705 * add_memory(). 1706 */ 1707 if (IS_ENABLED(CONFIG_ARM64)) { 1708 pr_info("Memory hot add disabled on ARM64\n"); 1709 return 0; 1710 } 1711 1712 return 1; 1713 } 1714 1715 static int balloon_connect_vsp(struct hv_device *dev) 1716 { 1717 struct dm_version_request version_req; 1718 struct dm_capabilities cap_msg; 1719 unsigned long t; 1720 int ret; 1721 1722 /* 1723 * max_pkt_size should be large enough for one vmbus packet header plus 1724 * our receive buffer size. Hyper-V sends messages up to 1725 * HV_HYP_PAGE_SIZE bytes long on balloon channel. 1726 */ 1727 dev->channel->max_pkt_size = HV_HYP_PAGE_SIZE * 2; 1728 1729 ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0, 1730 balloon_onchannelcallback, dev); 1731 if (ret) 1732 return ret; 1733 1734 /* 1735 * Initiate the hand shake with the host and negotiate 1736 * a version that the host can support. We start with the 1737 * highest version number and go down if the host cannot 1738 * support it. 1739 */ 1740 memset(&version_req, 0, sizeof(struct dm_version_request)); 1741 version_req.hdr.type = DM_VERSION_REQUEST; 1742 version_req.hdr.size = sizeof(struct dm_version_request); 1743 version_req.hdr.trans_id = atomic_inc_return(&trans_id); 1744 version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10; 1745 version_req.is_last_attempt = 0; 1746 dm_device.version = version_req.version.version; 1747 1748 ret = vmbus_sendpacket(dev->channel, &version_req, 1749 sizeof(struct dm_version_request), 1750 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); 1751 if (ret) 1752 goto out; 1753 1754 t = wait_for_completion_timeout(&dm_device.host_event, secs_to_jiffies(5)); 1755 if (t == 0) { 1756 ret = -ETIMEDOUT; 1757 goto out; 1758 } 1759 1760 /* 1761 * If we could not negotiate a compatible version with the host 1762 * fail the probe function. 1763 */ 1764 if (dm_device.state == DM_INIT_ERROR) { 1765 ret = -EPROTO; 1766 goto out; 1767 } 1768 1769 pr_info("Using Dynamic Memory protocol version %u.%u\n", 1770 DYNMEM_MAJOR_VERSION(dm_device.version), 1771 DYNMEM_MINOR_VERSION(dm_device.version)); 1772 1773 /* 1774 * Now submit our capabilities to the host. 1775 */ 1776 memset(&cap_msg, 0, sizeof(struct dm_capabilities)); 1777 cap_msg.hdr.type = DM_CAPABILITIES_REPORT; 1778 cap_msg.hdr.size = sizeof(struct dm_capabilities); 1779 cap_msg.hdr.trans_id = atomic_inc_return(&trans_id); 1780 1781 /* 1782 * When hibernation (i.e. virtual ACPI S4 state) is enabled, the host 1783 * currently still requires the bits to be set, so we have to add code 1784 * to fail the host's hot-add and balloon up/down requests, if any. 1785 */ 1786 cap_msg.caps.cap_bits.balloon = ballooning_enabled(); 1787 cap_msg.caps.cap_bits.hot_add = hot_add_enabled(); 1788 1789 /* 1790 * Specify our alignment requirements for memory hot-add. The value is 1791 * the log base 2 of the number of megabytes in a chunk. For example, 1792 * with 256 MiB chunks, the value is 8. The number of MiB in a chunk 1793 * must be a power of 2. 1794 */ 1795 cap_msg.caps.cap_bits.hot_add_alignment = 1796 ilog2(HA_BYTES_IN_CHUNK / SZ_1M); 1797 1798 /* 1799 * Currently the host does not use these 1800 * values and we set them to what is done in the 1801 * Windows driver. 1802 */ 1803 cap_msg.min_page_cnt = 0; 1804 cap_msg.max_page_number = -1; 1805 1806 ret = vmbus_sendpacket(dev->channel, &cap_msg, 1807 sizeof(struct dm_capabilities), 1808 (unsigned long)NULL, VM_PKT_DATA_INBAND, 0); 1809 if (ret) 1810 goto out; 1811 1812 t = wait_for_completion_timeout(&dm_device.host_event, secs_to_jiffies(5)); 1813 if (t == 0) { 1814 ret = -ETIMEDOUT; 1815 goto out; 1816 } 1817 1818 /* 1819 * If the host does not like our capabilities, 1820 * fail the probe function. 1821 */ 1822 if (dm_device.state == DM_INIT_ERROR) { 1823 ret = -EPROTO; 1824 goto out; 1825 } 1826 1827 return 0; 1828 out: 1829 vmbus_close(dev->channel); 1830 return ret; 1831 } 1832 1833 /* 1834 * DEBUGFS Interface 1835 */ 1836 #ifdef CONFIG_DEBUG_FS 1837 1838 /** 1839 * hv_balloon_debug_show - shows statistics of balloon operations. 1840 * @f: pointer to the &struct seq_file. 1841 * @offset: ignored. 1842 * 1843 * Provides the statistics that can be accessed in hv-balloon in the debugfs. 1844 * 1845 * Return: zero on success or an error code. 1846 */ 1847 static int hv_balloon_debug_show(struct seq_file *f, void *offset) 1848 { 1849 struct hv_dynmem_device *dm = f->private; 1850 char *sname; 1851 1852 seq_printf(f, "%-22s: %u.%u\n", "host_version", 1853 DYNMEM_MAJOR_VERSION(dm->version), 1854 DYNMEM_MINOR_VERSION(dm->version)); 1855 1856 seq_printf(f, "%-22s:", "capabilities"); 1857 if (ballooning_enabled()) 1858 seq_puts(f, " enabled"); 1859 1860 if (hot_add_enabled()) 1861 seq_puts(f, " hot_add"); 1862 1863 seq_puts(f, "\n"); 1864 1865 seq_printf(f, "%-22s: %u", "state", dm->state); 1866 switch (dm->state) { 1867 case DM_INITIALIZING: 1868 sname = "Initializing"; 1869 break; 1870 case DM_INITIALIZED: 1871 sname = "Initialized"; 1872 break; 1873 case DM_BALLOON_UP: 1874 sname = "Balloon Up"; 1875 break; 1876 case DM_BALLOON_DOWN: 1877 sname = "Balloon Down"; 1878 break; 1879 case DM_HOT_ADD: 1880 sname = "Hot Add"; 1881 break; 1882 case DM_INIT_ERROR: 1883 sname = "Error"; 1884 break; 1885 default: 1886 sname = "Unknown"; 1887 } 1888 seq_printf(f, " (%s)\n", sname); 1889 1890 /* HV Page Size */ 1891 seq_printf(f, "%-22s: %ld\n", "page_size", HV_HYP_PAGE_SIZE); 1892 1893 /* Pages added with hot_add */ 1894 seq_printf(f, "%-22s: %u\n", "pages_added", dm->num_pages_added); 1895 1896 /* pages that are "onlined"/used from pages_added */ 1897 seq_printf(f, "%-22s: %u\n", "pages_onlined", dm->num_pages_onlined); 1898 1899 /* pages we have given back to host */ 1900 seq_printf(f, "%-22s: %u\n", "pages_ballooned", dm->num_pages_ballooned); 1901 1902 seq_printf(f, "%-22s: %lu\n", "total_pages_committed", 1903 get_pages_committed(dm)); 1904 1905 seq_printf(f, "%-22s: %llu\n", "max_dynamic_page_count", 1906 dm->max_dynamic_page_count); 1907 1908 return 0; 1909 } 1910 1911 DEFINE_SHOW_ATTRIBUTE(hv_balloon_debug); 1912 1913 static void hv_balloon_debugfs_init(struct hv_dynmem_device *b) 1914 { 1915 debugfs_create_file("hv-balloon", 0444, NULL, b, 1916 &hv_balloon_debug_fops); 1917 } 1918 1919 static void hv_balloon_debugfs_exit(struct hv_dynmem_device *b) 1920 { 1921 debugfs_lookup_and_remove("hv-balloon", NULL); 1922 } 1923 1924 #else 1925 1926 static inline void hv_balloon_debugfs_init(struct hv_dynmem_device *b) 1927 { 1928 } 1929 1930 static inline void hv_balloon_debugfs_exit(struct hv_dynmem_device *b) 1931 { 1932 } 1933 1934 #endif /* CONFIG_DEBUG_FS */ 1935 1936 static int balloon_probe(struct hv_device *dev, 1937 const struct hv_vmbus_device_id *dev_id) 1938 { 1939 int ret; 1940 1941 allow_hibernation = hv_is_hibernation_supported(); 1942 if (allow_hibernation) 1943 hot_add = false; 1944 1945 #ifdef CONFIG_MEMORY_HOTPLUG 1946 /* 1947 * Hot-add must operate in chunks that are of size equal to the 1948 * memory block size because that's what the core add_memory() 1949 * interface requires. The Hyper-V interface requires that the memory 1950 * block size be a power of 2, which is guaranteed by the check in 1951 * memory_dev_init(). 1952 */ 1953 ha_pages_in_chunk = memory_block_size_bytes() / PAGE_SIZE; 1954 do_hot_add = hot_add; 1955 #else 1956 /* 1957 * Without MEMORY_HOTPLUG, the guest returns a failure status for all 1958 * hot add requests from Hyper-V, and the chunk size is used only to 1959 * specify alignment to Hyper-V as required by the host/guest protocol. 1960 * Somewhat arbitrarily, use 128 MiB. 1961 */ 1962 ha_pages_in_chunk = SZ_128M / PAGE_SIZE; 1963 do_hot_add = false; 1964 #endif 1965 dm_device.dev = dev; 1966 dm_device.state = DM_INITIALIZING; 1967 dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8; 1968 init_completion(&dm_device.host_event); 1969 init_completion(&dm_device.config_event); 1970 INIT_LIST_HEAD(&dm_device.ha_region_list); 1971 spin_lock_init(&dm_device.ha_lock); 1972 INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up); 1973 INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req); 1974 dm_device.host_specified_ha_region = false; 1975 1976 #ifdef CONFIG_MEMORY_HOTPLUG 1977 set_online_page_callback(&hv_online_page); 1978 init_completion(&dm_device.ol_waitevent); 1979 register_memory_notifier(&hv_memory_nb); 1980 #endif 1981 1982 hv_set_drvdata(dev, &dm_device); 1983 1984 ret = balloon_connect_vsp(dev); 1985 if (ret != 0) 1986 goto connect_error; 1987 1988 enable_page_reporting(); 1989 dm_device.state = DM_INITIALIZED; 1990 1991 dm_device.thread = 1992 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 1993 if (IS_ERR(dm_device.thread)) { 1994 ret = PTR_ERR(dm_device.thread); 1995 goto probe_error; 1996 } 1997 1998 hv_balloon_debugfs_init(&dm_device); 1999 2000 return 0; 2001 2002 probe_error: 2003 dm_device.state = DM_INIT_ERROR; 2004 dm_device.thread = NULL; 2005 disable_page_reporting(); 2006 vmbus_close(dev->channel); 2007 connect_error: 2008 #ifdef CONFIG_MEMORY_HOTPLUG 2009 unregister_memory_notifier(&hv_memory_nb); 2010 restore_online_page_callback(&hv_online_page); 2011 #endif 2012 return ret; 2013 } 2014 2015 static void balloon_remove(struct hv_device *dev) 2016 { 2017 struct hv_dynmem_device *dm = hv_get_drvdata(dev); 2018 struct hv_hotadd_state *has, *tmp; 2019 struct hv_hotadd_gap *gap, *tmp_gap; 2020 2021 if (dm->num_pages_ballooned != 0) 2022 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned); 2023 2024 hv_balloon_debugfs_exit(dm); 2025 2026 cancel_work_sync(&dm->balloon_wrk.wrk); 2027 cancel_work_sync(&dm->ha_wrk.wrk); 2028 2029 kthread_stop(dm->thread); 2030 2031 /* 2032 * This is to handle the case when balloon_resume() 2033 * call has failed and some cleanup has been done as 2034 * a part of the error handling. 2035 */ 2036 if (dm_device.state != DM_INIT_ERROR) { 2037 disable_page_reporting(); 2038 vmbus_close(dev->channel); 2039 #ifdef CONFIG_MEMORY_HOTPLUG 2040 unregister_memory_notifier(&hv_memory_nb); 2041 restore_online_page_callback(&hv_online_page); 2042 #endif 2043 } 2044 2045 guard(spinlock_irqsave)(&dm_device.ha_lock); 2046 list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) { 2047 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) { 2048 list_del(&gap->list); 2049 kfree(gap); 2050 } 2051 list_del(&has->list); 2052 kfree(has); 2053 } 2054 } 2055 2056 static int balloon_suspend(struct hv_device *hv_dev) 2057 { 2058 struct hv_dynmem_device *dm = hv_get_drvdata(hv_dev); 2059 2060 tasklet_disable(&hv_dev->channel->callback_event); 2061 2062 cancel_work_sync(&dm->balloon_wrk.wrk); 2063 cancel_work_sync(&dm->ha_wrk.wrk); 2064 2065 if (dm->thread) { 2066 kthread_stop(dm->thread); 2067 dm->thread = NULL; 2068 vmbus_close(hv_dev->channel); 2069 } 2070 2071 tasklet_enable(&hv_dev->channel->callback_event); 2072 2073 return 0; 2074 } 2075 2076 static int balloon_resume(struct hv_device *dev) 2077 { 2078 int ret; 2079 2080 dm_device.state = DM_INITIALIZING; 2081 2082 ret = balloon_connect_vsp(dev); 2083 2084 if (ret != 0) 2085 goto out; 2086 2087 dm_device.thread = 2088 kthread_run(dm_thread_func, &dm_device, "hv_balloon"); 2089 if (IS_ERR(dm_device.thread)) { 2090 ret = PTR_ERR(dm_device.thread); 2091 dm_device.thread = NULL; 2092 goto close_channel; 2093 } 2094 2095 dm_device.state = DM_INITIALIZED; 2096 return 0; 2097 close_channel: 2098 vmbus_close(dev->channel); 2099 out: 2100 dm_device.state = DM_INIT_ERROR; 2101 disable_page_reporting(); 2102 #ifdef CONFIG_MEMORY_HOTPLUG 2103 unregister_memory_notifier(&hv_memory_nb); 2104 restore_online_page_callback(&hv_online_page); 2105 #endif 2106 return ret; 2107 } 2108 2109 static const struct hv_vmbus_device_id id_table[] = { 2110 /* Dynamic Memory Class ID */ 2111 /* 525074DC-8985-46e2-8057-A307DC18A502 */ 2112 { HV_DM_GUID, }, 2113 { }, 2114 }; 2115 2116 MODULE_DEVICE_TABLE(vmbus, id_table); 2117 2118 static struct hv_driver balloon_drv = { 2119 .name = "hv_balloon", 2120 .id_table = id_table, 2121 .probe = balloon_probe, 2122 .remove = balloon_remove, 2123 .suspend = balloon_suspend, 2124 .resume = balloon_resume, 2125 .driver = { 2126 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2127 }, 2128 }; 2129 2130 static int __init init_balloon_drv(void) 2131 { 2132 return vmbus_driver_register(&balloon_drv); 2133 } 2134 2135 module_init(init_balloon_drv); 2136 2137 MODULE_DESCRIPTION("Hyper-V Balloon"); 2138 MODULE_LICENSE("GPL"); 2139