xref: /linux/drivers/hv/hv.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2009, Microsoft Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Authors:
18  *   Haiyang Zhang <haiyangz@microsoft.com>
19  *   Hank Janssen  <hjanssen@microsoft.com>
20  *
21  */
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/hyperv.h>
29 #include <linux/version.h>
30 #include <linux/interrupt.h>
31 #include <linux/clockchips.h>
32 #include <asm/hyperv.h>
33 #include <asm/mshyperv.h>
34 #include "hyperv_vmbus.h"
35 
36 /* The one and only */
37 struct hv_context hv_context = {
38 	.synic_initialized	= false,
39 	.hypercall_page		= NULL,
40 };
41 
42 #define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
43 #define HV_MAX_MAX_DELTA_TICKS 0xffffffff
44 #define HV_MIN_DELTA_TICKS 1
45 
46 /*
47  * query_hypervisor_info - Get version info of the windows hypervisor
48  */
49 unsigned int host_info_eax;
50 unsigned int host_info_ebx;
51 unsigned int host_info_ecx;
52 unsigned int host_info_edx;
53 
54 static int query_hypervisor_info(void)
55 {
56 	unsigned int eax;
57 	unsigned int ebx;
58 	unsigned int ecx;
59 	unsigned int edx;
60 	unsigned int max_leaf;
61 	unsigned int op;
62 
63 	/*
64 	* Its assumed that this is called after confirming that Viridian
65 	* is present. Query id and revision.
66 	*/
67 	eax = 0;
68 	ebx = 0;
69 	ecx = 0;
70 	edx = 0;
71 	op = HVCPUID_VENDOR_MAXFUNCTION;
72 	cpuid(op, &eax, &ebx, &ecx, &edx);
73 
74 	max_leaf = eax;
75 
76 	if (max_leaf >= HVCPUID_VERSION) {
77 		eax = 0;
78 		ebx = 0;
79 		ecx = 0;
80 		edx = 0;
81 		op = HVCPUID_VERSION;
82 		cpuid(op, &eax, &ebx, &ecx, &edx);
83 		host_info_eax = eax;
84 		host_info_ebx = ebx;
85 		host_info_ecx = ecx;
86 		host_info_edx = edx;
87 	}
88 	return max_leaf;
89 }
90 
91 /*
92  * do_hypercall- Invoke the specified hypercall
93  */
94 static u64 do_hypercall(u64 control, void *input, void *output)
95 {
96 	u64 input_address = (input) ? virt_to_phys(input) : 0;
97 	u64 output_address = (output) ? virt_to_phys(output) : 0;
98 	void *hypercall_page = hv_context.hypercall_page;
99 #ifdef CONFIG_X86_64
100 	u64 hv_status = 0;
101 
102 	if (!hypercall_page)
103 		return (u64)ULLONG_MAX;
104 
105 	__asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
106 	__asm__ __volatile__("call *%3" : "=a" (hv_status) :
107 			     "c" (control), "d" (input_address),
108 			     "m" (hypercall_page));
109 
110 	return hv_status;
111 
112 #else
113 
114 	u32 control_hi = control >> 32;
115 	u32 control_lo = control & 0xFFFFFFFF;
116 	u32 hv_status_hi = 1;
117 	u32 hv_status_lo = 1;
118 	u32 input_address_hi = input_address >> 32;
119 	u32 input_address_lo = input_address & 0xFFFFFFFF;
120 	u32 output_address_hi = output_address >> 32;
121 	u32 output_address_lo = output_address & 0xFFFFFFFF;
122 
123 	if (!hypercall_page)
124 		return (u64)ULLONG_MAX;
125 
126 	__asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
127 			      "=a"(hv_status_lo) : "d" (control_hi),
128 			      "a" (control_lo), "b" (input_address_hi),
129 			      "c" (input_address_lo), "D"(output_address_hi),
130 			      "S"(output_address_lo), "m" (hypercall_page));
131 
132 	return hv_status_lo | ((u64)hv_status_hi << 32);
133 #endif /* !x86_64 */
134 }
135 
136 #ifdef CONFIG_X86_64
137 static cycle_t read_hv_clock_tsc(struct clocksource *arg)
138 {
139 	cycle_t current_tick;
140 	struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page;
141 
142 	if (tsc_pg->tsc_sequence != -1) {
143 		/*
144 		 * Use the tsc page to compute the value.
145 		 */
146 
147 		while (1) {
148 			cycle_t tmp;
149 			u32 sequence = tsc_pg->tsc_sequence;
150 			u64 cur_tsc;
151 			u64 scale = tsc_pg->tsc_scale;
152 			s64 offset = tsc_pg->tsc_offset;
153 
154 			rdtscll(cur_tsc);
155 			/* current_tick = ((cur_tsc *scale) >> 64) + offset */
156 			asm("mulq %3"
157 				: "=d" (current_tick), "=a" (tmp)
158 				: "a" (cur_tsc), "r" (scale));
159 
160 			current_tick += offset;
161 			if (tsc_pg->tsc_sequence == sequence)
162 				return current_tick;
163 
164 			if (tsc_pg->tsc_sequence != -1)
165 				continue;
166 			/*
167 			 * Fallback using MSR method.
168 			 */
169 			break;
170 		}
171 	}
172 	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
173 	return current_tick;
174 }
175 
176 static struct clocksource hyperv_cs_tsc = {
177 		.name           = "hyperv_clocksource_tsc_page",
178 		.rating         = 425,
179 		.read           = read_hv_clock_tsc,
180 		.mask           = CLOCKSOURCE_MASK(64),
181 		.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
182 };
183 #endif
184 
185 
186 /*
187  * hv_init - Main initialization routine.
188  *
189  * This routine must be called before any other routines in here are called
190  */
191 int hv_init(void)
192 {
193 	int max_leaf;
194 	union hv_x64_msr_hypercall_contents hypercall_msr;
195 	union hv_x64_msr_hypercall_contents tsc_msr;
196 	void *virtaddr = NULL;
197 	void *va_tsc = NULL;
198 
199 	memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
200 	memset(hv_context.synic_message_page, 0,
201 	       sizeof(void *) * NR_CPUS);
202 	memset(hv_context.post_msg_page, 0,
203 	       sizeof(void *) * NR_CPUS);
204 	memset(hv_context.vp_index, 0,
205 	       sizeof(int) * NR_CPUS);
206 	memset(hv_context.event_dpc, 0,
207 	       sizeof(void *) * NR_CPUS);
208 	memset(hv_context.clk_evt, 0,
209 	       sizeof(void *) * NR_CPUS);
210 
211 	max_leaf = query_hypervisor_info();
212 
213 	/*
214 	 * Write our OS ID.
215 	 */
216 	hv_context.guestid = generate_guest_id(0, LINUX_VERSION_CODE, 0);
217 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, hv_context.guestid);
218 
219 	/* See if the hypercall page is already set */
220 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
221 
222 	virtaddr = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_EXEC);
223 
224 	if (!virtaddr)
225 		goto cleanup;
226 
227 	hypercall_msr.enable = 1;
228 
229 	hypercall_msr.guest_physical_address = vmalloc_to_pfn(virtaddr);
230 	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
231 
232 	/* Confirm that hypercall page did get setup. */
233 	hypercall_msr.as_uint64 = 0;
234 	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
235 
236 	if (!hypercall_msr.enable)
237 		goto cleanup;
238 
239 	hv_context.hypercall_page = virtaddr;
240 
241 #ifdef CONFIG_X86_64
242 	if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
243 		va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
244 		if (!va_tsc)
245 			goto cleanup;
246 		hv_context.tsc_page = va_tsc;
247 
248 		rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
249 
250 		tsc_msr.enable = 1;
251 		tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc);
252 
253 		wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
254 		clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
255 	}
256 #endif
257 	return 0;
258 
259 cleanup:
260 	if (virtaddr) {
261 		if (hypercall_msr.enable) {
262 			hypercall_msr.as_uint64 = 0;
263 			wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
264 		}
265 
266 		vfree(virtaddr);
267 	}
268 
269 	return -ENOTSUPP;
270 }
271 
272 /*
273  * hv_cleanup - Cleanup routine.
274  *
275  * This routine is called normally during driver unloading or exiting.
276  */
277 void hv_cleanup(void)
278 {
279 	union hv_x64_msr_hypercall_contents hypercall_msr;
280 
281 	/* Reset our OS id */
282 	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
283 
284 	if (hv_context.hypercall_page) {
285 		hypercall_msr.as_uint64 = 0;
286 		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
287 		vfree(hv_context.hypercall_page);
288 		hv_context.hypercall_page = NULL;
289 	}
290 
291 #ifdef CONFIG_X86_64
292 	/*
293 	 * Cleanup the TSC page based CS.
294 	 */
295 	if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
296 		clocksource_change_rating(&hyperv_cs_tsc, 10);
297 		clocksource_unregister(&hyperv_cs_tsc);
298 
299 		hypercall_msr.as_uint64 = 0;
300 		wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
301 		vfree(hv_context.tsc_page);
302 		hv_context.tsc_page = NULL;
303 	}
304 #endif
305 }
306 
307 /*
308  * hv_post_message - Post a message using the hypervisor message IPC.
309  *
310  * This involves a hypercall.
311  */
312 int hv_post_message(union hv_connection_id connection_id,
313 		  enum hv_message_type message_type,
314 		  void *payload, size_t payload_size)
315 {
316 
317 	struct hv_input_post_message *aligned_msg;
318 	u16 status;
319 
320 	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
321 		return -EMSGSIZE;
322 
323 	aligned_msg = (struct hv_input_post_message *)
324 			hv_context.post_msg_page[get_cpu()];
325 
326 	aligned_msg->connectionid = connection_id;
327 	aligned_msg->reserved = 0;
328 	aligned_msg->message_type = message_type;
329 	aligned_msg->payload_size = payload_size;
330 	memcpy((void *)aligned_msg->payload, payload, payload_size);
331 
332 	status = do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL)
333 		& 0xFFFF;
334 
335 	put_cpu();
336 	return status;
337 }
338 
339 
340 /*
341  * hv_signal_event -
342  * Signal an event on the specified connection using the hypervisor event IPC.
343  *
344  * This involves a hypercall.
345  */
346 u16 hv_signal_event(void *con_id)
347 {
348 	u16 status;
349 
350 	status = (do_hypercall(HVCALL_SIGNAL_EVENT, con_id, NULL) & 0xFFFF);
351 
352 	return status;
353 }
354 
355 static int hv_ce_set_next_event(unsigned long delta,
356 				struct clock_event_device *evt)
357 {
358 	cycle_t current_tick;
359 
360 	WARN_ON(!clockevent_state_oneshot(evt));
361 
362 	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
363 	current_tick += delta;
364 	wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick);
365 	return 0;
366 }
367 
368 static int hv_ce_shutdown(struct clock_event_device *evt)
369 {
370 	wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0);
371 	wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0);
372 
373 	return 0;
374 }
375 
376 static int hv_ce_set_oneshot(struct clock_event_device *evt)
377 {
378 	union hv_timer_config timer_cfg;
379 
380 	timer_cfg.enable = 1;
381 	timer_cfg.auto_enable = 1;
382 	timer_cfg.sintx = VMBUS_MESSAGE_SINT;
383 	wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
384 
385 	return 0;
386 }
387 
388 static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
389 {
390 	dev->name = "Hyper-V clockevent";
391 	dev->features = CLOCK_EVT_FEAT_ONESHOT;
392 	dev->cpumask = cpumask_of(cpu);
393 	dev->rating = 1000;
394 	/*
395 	 * Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
396 	 * result in clockevents_config_and_register() taking additional
397 	 * references to the hv_vmbus module making it impossible to unload.
398 	 */
399 
400 	dev->set_state_shutdown = hv_ce_shutdown;
401 	dev->set_state_oneshot = hv_ce_set_oneshot;
402 	dev->set_next_event = hv_ce_set_next_event;
403 }
404 
405 
406 int hv_synic_alloc(void)
407 {
408 	size_t size = sizeof(struct tasklet_struct);
409 	size_t ced_size = sizeof(struct clock_event_device);
410 	int cpu;
411 
412 	hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids,
413 					 GFP_ATOMIC);
414 	if (hv_context.hv_numa_map == NULL) {
415 		pr_err("Unable to allocate NUMA map\n");
416 		goto err;
417 	}
418 
419 	for_each_online_cpu(cpu) {
420 		hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
421 		if (hv_context.event_dpc[cpu] == NULL) {
422 			pr_err("Unable to allocate event dpc\n");
423 			goto err;
424 		}
425 		tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu);
426 
427 		hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC);
428 		if (hv_context.clk_evt[cpu] == NULL) {
429 			pr_err("Unable to allocate clock event device\n");
430 			goto err;
431 		}
432 
433 		hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu);
434 
435 		hv_context.synic_message_page[cpu] =
436 			(void *)get_zeroed_page(GFP_ATOMIC);
437 
438 		if (hv_context.synic_message_page[cpu] == NULL) {
439 			pr_err("Unable to allocate SYNIC message page\n");
440 			goto err;
441 		}
442 
443 		hv_context.synic_event_page[cpu] =
444 			(void *)get_zeroed_page(GFP_ATOMIC);
445 
446 		if (hv_context.synic_event_page[cpu] == NULL) {
447 			pr_err("Unable to allocate SYNIC event page\n");
448 			goto err;
449 		}
450 
451 		hv_context.post_msg_page[cpu] =
452 			(void *)get_zeroed_page(GFP_ATOMIC);
453 
454 		if (hv_context.post_msg_page[cpu] == NULL) {
455 			pr_err("Unable to allocate post msg page\n");
456 			goto err;
457 		}
458 	}
459 
460 	return 0;
461 err:
462 	return -ENOMEM;
463 }
464 
465 static void hv_synic_free_cpu(int cpu)
466 {
467 	kfree(hv_context.event_dpc[cpu]);
468 	kfree(hv_context.clk_evt[cpu]);
469 	if (hv_context.synic_event_page[cpu])
470 		free_page((unsigned long)hv_context.synic_event_page[cpu]);
471 	if (hv_context.synic_message_page[cpu])
472 		free_page((unsigned long)hv_context.synic_message_page[cpu]);
473 	if (hv_context.post_msg_page[cpu])
474 		free_page((unsigned long)hv_context.post_msg_page[cpu]);
475 }
476 
477 void hv_synic_free(void)
478 {
479 	int cpu;
480 
481 	kfree(hv_context.hv_numa_map);
482 	for_each_online_cpu(cpu)
483 		hv_synic_free_cpu(cpu);
484 }
485 
486 /*
487  * hv_synic_init - Initialize the Synthethic Interrupt Controller.
488  *
489  * If it is already initialized by another entity (ie x2v shim), we need to
490  * retrieve the initialized message and event pages.  Otherwise, we create and
491  * initialize the message and event pages.
492  */
493 void hv_synic_init(void *arg)
494 {
495 	u64 version;
496 	union hv_synic_simp simp;
497 	union hv_synic_siefp siefp;
498 	union hv_synic_sint shared_sint;
499 	union hv_synic_scontrol sctrl;
500 	u64 vp_index;
501 
502 	int cpu = smp_processor_id();
503 
504 	if (!hv_context.hypercall_page)
505 		return;
506 
507 	/* Check the version */
508 	rdmsrl(HV_X64_MSR_SVERSION, version);
509 
510 	/* Setup the Synic's message page */
511 	rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
512 	simp.simp_enabled = 1;
513 	simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
514 		>> PAGE_SHIFT;
515 
516 	wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
517 
518 	/* Setup the Synic's event page */
519 	rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
520 	siefp.siefp_enabled = 1;
521 	siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
522 		>> PAGE_SHIFT;
523 
524 	wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
525 
526 	/* Setup the shared SINT. */
527 	rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
528 
529 	shared_sint.as_uint64 = 0;
530 	shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
531 	shared_sint.masked = false;
532 	shared_sint.auto_eoi = true;
533 
534 	wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
535 
536 	/* Enable the global synic bit */
537 	rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
538 	sctrl.enable = 1;
539 
540 	wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
541 
542 	hv_context.synic_initialized = true;
543 
544 	/*
545 	 * Setup the mapping between Hyper-V's notion
546 	 * of cpuid and Linux' notion of cpuid.
547 	 * This array will be indexed using Linux cpuid.
548 	 */
549 	rdmsrl(HV_X64_MSR_VP_INDEX, vp_index);
550 	hv_context.vp_index[cpu] = (u32)vp_index;
551 
552 	INIT_LIST_HEAD(&hv_context.percpu_list[cpu]);
553 
554 	/*
555 	 * Register the per-cpu clockevent source.
556 	 */
557 	if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
558 		clockevents_config_and_register(hv_context.clk_evt[cpu],
559 						HV_TIMER_FREQUENCY,
560 						HV_MIN_DELTA_TICKS,
561 						HV_MAX_MAX_DELTA_TICKS);
562 	return;
563 }
564 
565 /*
566  * hv_synic_clockevents_cleanup - Cleanup clockevent devices
567  */
568 void hv_synic_clockevents_cleanup(void)
569 {
570 	int cpu;
571 
572 	if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE))
573 		return;
574 
575 	for_each_online_cpu(cpu)
576 		clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
577 }
578 
579 /*
580  * hv_synic_cleanup - Cleanup routine for hv_synic_init().
581  */
582 void hv_synic_cleanup(void *arg)
583 {
584 	union hv_synic_sint shared_sint;
585 	union hv_synic_simp simp;
586 	union hv_synic_siefp siefp;
587 	union hv_synic_scontrol sctrl;
588 	int cpu = smp_processor_id();
589 
590 	if (!hv_context.synic_initialized)
591 		return;
592 
593 	/* Turn off clockevent device */
594 	if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
595 		hv_ce_shutdown(hv_context.clk_evt[cpu]);
596 
597 	rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
598 
599 	shared_sint.masked = 1;
600 
601 	/* Need to correctly cleanup in the case of SMP!!! */
602 	/* Disable the interrupt */
603 	wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
604 
605 	rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
606 	simp.simp_enabled = 0;
607 	simp.base_simp_gpa = 0;
608 
609 	wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
610 
611 	rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
612 	siefp.siefp_enabled = 0;
613 	siefp.base_siefp_gpa = 0;
614 
615 	wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
616 
617 	/* Disable the global synic bit */
618 	rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
619 	sctrl.enable = 0;
620 	wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
621 }
622