1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/interrupt.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/mm.h> 16 #include <linux/slab.h> 17 #include <linux/list.h> 18 #include <linux/module.h> 19 #include <linux/completion.h> 20 #include <linux/delay.h> 21 #include <linux/cpu.h> 22 #include <linux/hyperv.h> 23 #include <asm/mshyperv.h> 24 #include <linux/sched/isolation.h> 25 26 #include "hyperv_vmbus.h" 27 28 static void init_vp_index(struct vmbus_channel *channel); 29 30 const struct vmbus_device vmbus_devs[] = { 31 /* IDE */ 32 { .dev_type = HV_IDE, 33 HV_IDE_GUID, 34 .perf_device = true, 35 .allowed_in_isolated = false, 36 }, 37 38 /* SCSI */ 39 { .dev_type = HV_SCSI, 40 HV_SCSI_GUID, 41 .perf_device = true, 42 .allowed_in_isolated = true, 43 }, 44 45 /* Fibre Channel */ 46 { .dev_type = HV_FC, 47 HV_SYNTHFC_GUID, 48 .perf_device = true, 49 .allowed_in_isolated = false, 50 }, 51 52 /* Synthetic NIC */ 53 { .dev_type = HV_NIC, 54 HV_NIC_GUID, 55 .perf_device = true, 56 .allowed_in_isolated = true, 57 }, 58 59 /* Network Direct */ 60 { .dev_type = HV_ND, 61 HV_ND_GUID, 62 .perf_device = true, 63 .allowed_in_isolated = false, 64 }, 65 66 /* PCIE */ 67 { .dev_type = HV_PCIE, 68 HV_PCIE_GUID, 69 .perf_device = false, 70 .allowed_in_isolated = true, 71 }, 72 73 /* Synthetic Frame Buffer */ 74 { .dev_type = HV_FB, 75 HV_SYNTHVID_GUID, 76 .perf_device = false, 77 .allowed_in_isolated = false, 78 }, 79 80 /* Synthetic Keyboard */ 81 { .dev_type = HV_KBD, 82 HV_KBD_GUID, 83 .perf_device = false, 84 .allowed_in_isolated = false, 85 }, 86 87 /* Synthetic MOUSE */ 88 { .dev_type = HV_MOUSE, 89 HV_MOUSE_GUID, 90 .perf_device = false, 91 .allowed_in_isolated = false, 92 }, 93 94 /* KVP */ 95 { .dev_type = HV_KVP, 96 HV_KVP_GUID, 97 .perf_device = false, 98 .allowed_in_isolated = false, 99 }, 100 101 /* Time Synch */ 102 { .dev_type = HV_TS, 103 HV_TS_GUID, 104 .perf_device = false, 105 .allowed_in_isolated = true, 106 }, 107 108 /* Heartbeat */ 109 { .dev_type = HV_HB, 110 HV_HEART_BEAT_GUID, 111 .perf_device = false, 112 .allowed_in_isolated = true, 113 }, 114 115 /* Shutdown */ 116 { .dev_type = HV_SHUTDOWN, 117 HV_SHUTDOWN_GUID, 118 .perf_device = false, 119 .allowed_in_isolated = true, 120 }, 121 122 /* File copy */ 123 /* fcopy always uses 16KB ring buffer size and is working well for last many years */ 124 { .pref_ring_size = 0x4000, 125 .dev_type = HV_FCOPY, 126 HV_FCOPY_GUID, 127 .perf_device = false, 128 .allowed_in_isolated = false, 129 }, 130 131 /* Backup */ 132 { .dev_type = HV_BACKUP, 133 HV_VSS_GUID, 134 .perf_device = false, 135 .allowed_in_isolated = false, 136 }, 137 138 /* Dynamic Memory */ 139 { .dev_type = HV_DM, 140 HV_DM_GUID, 141 .perf_device = false, 142 .allowed_in_isolated = false, 143 }, 144 145 /* 146 * Unknown GUID 147 * 64 KB ring buffer + 4 KB header should be sufficient size for any Hyper-V device apart 148 * from HV_NIC and HV_SCSI. This case avoid the fallback for unknown devices to allocate 149 * much bigger (2 MB) of ring size. 150 */ 151 { .pref_ring_size = 0x11000, 152 .dev_type = HV_UNKNOWN, 153 .perf_device = false, 154 .allowed_in_isolated = false, 155 }, 156 }; 157 EXPORT_SYMBOL_GPL(vmbus_devs); 158 159 static const struct { 160 guid_t guid; 161 } vmbus_unsupported_devs[] = { 162 { HV_AVMA1_GUID }, 163 { HV_AVMA2_GUID }, 164 { HV_RDV_GUID }, 165 { HV_IMC_GUID }, 166 }; 167 168 /* 169 * The rescinded channel may be blocked waiting for a response from the host; 170 * take care of that. 171 */ 172 static void vmbus_rescind_cleanup(struct vmbus_channel *channel) 173 { 174 struct vmbus_channel_msginfo *msginfo; 175 unsigned long flags; 176 177 178 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 179 channel->rescind = true; 180 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 181 msglistentry) { 182 183 if (msginfo->waiting_channel == channel) { 184 complete(&msginfo->waitevent); 185 break; 186 } 187 } 188 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 189 } 190 191 static bool is_unsupported_vmbus_devs(const guid_t *guid) 192 { 193 int i; 194 195 for (i = 0; i < ARRAY_SIZE(vmbus_unsupported_devs); i++) 196 if (guid_equal(guid, &vmbus_unsupported_devs[i].guid)) 197 return true; 198 return false; 199 } 200 201 static u16 hv_get_dev_type(const struct vmbus_channel *channel) 202 { 203 const guid_t *guid = &channel->offermsg.offer.if_type; 204 u16 i; 205 206 if (is_hvsock_channel(channel) || is_unsupported_vmbus_devs(guid)) 207 return HV_UNKNOWN; 208 209 for (i = HV_IDE; i < HV_UNKNOWN; i++) { 210 if (guid_equal(guid, &vmbus_devs[i].guid)) 211 return i; 212 } 213 pr_info("Unknown GUID: %pUl\n", guid); 214 return i; 215 } 216 217 /** 218 * vmbus_prep_negotiate_resp() - Create default response for Negotiate message 219 * @icmsghdrp: Pointer to msg header structure 220 * @buf: Raw buffer channel data 221 * @buflen: Length of the raw buffer channel data. 222 * @fw_version: The framework versions we can support. 223 * @fw_vercnt: The size of @fw_version. 224 * @srv_version: The service versions we can support. 225 * @srv_vercnt: The size of @srv_version. 226 * @nego_fw_version: The selected framework version. 227 * @nego_srv_version: The selected service version. 228 * 229 * Note: Versions are given in decreasing order. 230 * 231 * Set up and fill in default negotiate response message. 232 * Mainly used by Hyper-V drivers. 233 */ 234 bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, 235 u32 buflen, const int *fw_version, int fw_vercnt, 236 const int *srv_version, int srv_vercnt, 237 int *nego_fw_version, int *nego_srv_version) 238 { 239 int icframe_major, icframe_minor; 240 int icmsg_major, icmsg_minor; 241 int fw_major, fw_minor; 242 int srv_major, srv_minor; 243 int i, j; 244 bool found_match = false; 245 struct icmsg_negotiate *negop; 246 247 /* Check that there's enough space for icframe_vercnt, icmsg_vercnt */ 248 if (buflen < ICMSG_HDR + offsetof(struct icmsg_negotiate, reserved)) { 249 pr_err_ratelimited("Invalid icmsg negotiate\n"); 250 return false; 251 } 252 253 icmsghdrp->icmsgsize = 0x10; 254 negop = (struct icmsg_negotiate *)&buf[ICMSG_HDR]; 255 256 icframe_major = negop->icframe_vercnt; 257 icframe_minor = 0; 258 259 icmsg_major = negop->icmsg_vercnt; 260 icmsg_minor = 0; 261 262 /* Validate negop packet */ 263 if (icframe_major > IC_VERSION_NEGOTIATION_MAX_VER_COUNT || 264 icmsg_major > IC_VERSION_NEGOTIATION_MAX_VER_COUNT || 265 ICMSG_NEGOTIATE_PKT_SIZE(icframe_major, icmsg_major) > buflen) { 266 pr_err_ratelimited("Invalid icmsg negotiate - icframe_major: %u, icmsg_major: %u\n", 267 icframe_major, icmsg_major); 268 goto fw_error; 269 } 270 271 /* 272 * Select the framework version number we will 273 * support. 274 */ 275 276 for (i = 0; i < fw_vercnt; i++) { 277 fw_major = (fw_version[i] >> 16); 278 fw_minor = (fw_version[i] & 0xFFFF); 279 280 for (j = 0; j < negop->icframe_vercnt; j++) { 281 if ((negop->icversion_data[j].major == fw_major) && 282 (negop->icversion_data[j].minor == fw_minor)) { 283 icframe_major = negop->icversion_data[j].major; 284 icframe_minor = negop->icversion_data[j].minor; 285 found_match = true; 286 break; 287 } 288 } 289 290 if (found_match) 291 break; 292 } 293 294 if (!found_match) 295 goto fw_error; 296 297 found_match = false; 298 299 for (i = 0; i < srv_vercnt; i++) { 300 srv_major = (srv_version[i] >> 16); 301 srv_minor = (srv_version[i] & 0xFFFF); 302 303 for (j = negop->icframe_vercnt; 304 (j < negop->icframe_vercnt + negop->icmsg_vercnt); 305 j++) { 306 307 if ((negop->icversion_data[j].major == srv_major) && 308 (negop->icversion_data[j].minor == srv_minor)) { 309 310 icmsg_major = negop->icversion_data[j].major; 311 icmsg_minor = negop->icversion_data[j].minor; 312 found_match = true; 313 break; 314 } 315 } 316 317 if (found_match) 318 break; 319 } 320 321 /* 322 * Respond with the framework and service 323 * version numbers we can support. 324 */ 325 326 fw_error: 327 if (!found_match) { 328 negop->icframe_vercnt = 0; 329 negop->icmsg_vercnt = 0; 330 } else { 331 negop->icframe_vercnt = 1; 332 negop->icmsg_vercnt = 1; 333 } 334 335 if (nego_fw_version) 336 *nego_fw_version = (icframe_major << 16) | icframe_minor; 337 338 if (nego_srv_version) 339 *nego_srv_version = (icmsg_major << 16) | icmsg_minor; 340 341 negop->icversion_data[0].major = icframe_major; 342 negop->icversion_data[0].minor = icframe_minor; 343 negop->icversion_data[1].major = icmsg_major; 344 negop->icversion_data[1].minor = icmsg_minor; 345 return found_match; 346 } 347 EXPORT_SYMBOL_GPL(vmbus_prep_negotiate_resp); 348 349 /* 350 * alloc_channel - Allocate and initialize a vmbus channel object 351 */ 352 static struct vmbus_channel *alloc_channel(void) 353 { 354 struct vmbus_channel *channel; 355 356 channel = kzalloc(sizeof(*channel), GFP_ATOMIC); 357 if (!channel) 358 return NULL; 359 360 spin_lock_init(&channel->sched_lock); 361 init_completion(&channel->rescind_event); 362 363 INIT_LIST_HEAD(&channel->sc_list); 364 365 tasklet_init(&channel->callback_event, 366 vmbus_on_event, (unsigned long)channel); 367 368 hv_ringbuffer_pre_init(channel); 369 370 return channel; 371 } 372 373 /* 374 * free_channel - Release the resources used by the vmbus channel object 375 */ 376 static void free_channel(struct vmbus_channel *channel) 377 { 378 tasklet_kill(&channel->callback_event); 379 vmbus_remove_channel_attr_group(channel); 380 381 kobject_put(&channel->kobj); 382 } 383 384 void vmbus_channel_map_relid(struct vmbus_channel *channel) 385 { 386 if (WARN_ON(channel->offermsg.child_relid >= MAX_CHANNEL_RELIDS)) 387 return; 388 /* 389 * The mapping of the channel's relid is visible from the CPUs that 390 * execute vmbus_chan_sched() by the time that vmbus_chan_sched() will 391 * execute: 392 * 393 * (a) In the "normal (i.e., not resuming from hibernation)" path, 394 * the full barrier in virt_store_mb() guarantees that the store 395 * is propagated to all CPUs before the add_channel_work work 396 * is queued. In turn, add_channel_work is queued before the 397 * channel's ring buffer is allocated/initialized and the 398 * OPENCHANNEL message for the channel is sent in vmbus_open(). 399 * Hyper-V won't start sending the interrupts for the channel 400 * before the OPENCHANNEL message is acked. The memory barrier 401 * in vmbus_chan_sched() -> sync_test_and_clear_bit() ensures 402 * that vmbus_chan_sched() must find the channel's relid in 403 * recv_int_page before retrieving the channel pointer from the 404 * array of channels. 405 * 406 * (b) In the "resuming from hibernation" path, the virt_store_mb() 407 * guarantees that the store is propagated to all CPUs before 408 * the VMBus connection is marked as ready for the resume event 409 * (cf. check_ready_for_resume_event()). The interrupt handler 410 * of the VMBus driver and vmbus_chan_sched() can not run before 411 * vmbus_bus_resume() has completed execution (cf. resume_noirq). 412 */ 413 virt_store_mb( 414 vmbus_connection.channels[channel->offermsg.child_relid], 415 channel); 416 } 417 418 void vmbus_channel_unmap_relid(struct vmbus_channel *channel) 419 { 420 if (WARN_ON(channel->offermsg.child_relid >= MAX_CHANNEL_RELIDS)) 421 return; 422 WRITE_ONCE( 423 vmbus_connection.channels[channel->offermsg.child_relid], 424 NULL); 425 } 426 427 static void vmbus_release_relid(u32 relid) 428 { 429 struct vmbus_channel_relid_released msg; 430 int ret; 431 432 memset(&msg, 0, sizeof(struct vmbus_channel_relid_released)); 433 msg.child_relid = relid; 434 msg.header.msgtype = CHANNELMSG_RELID_RELEASED; 435 ret = vmbus_post_msg(&msg, sizeof(struct vmbus_channel_relid_released), 436 true); 437 438 trace_vmbus_release_relid(&msg, ret); 439 } 440 441 void hv_process_channel_removal(struct vmbus_channel *channel) 442 { 443 lockdep_assert_held(&vmbus_connection.channel_mutex); 444 BUG_ON(!channel->rescind); 445 446 /* 447 * hv_process_channel_removal() could find INVALID_RELID only for 448 * hv_sock channels. See the inline comments in vmbus_onoffer(). 449 */ 450 WARN_ON(channel->offermsg.child_relid == INVALID_RELID && 451 !is_hvsock_channel(channel)); 452 453 /* 454 * Upon suspend, an in-use hv_sock channel is removed from the array of 455 * channels and the relid is invalidated. After hibernation, when the 456 * user-space application destroys the channel, it's unnecessary and 457 * unsafe to remove the channel from the array of channels. See also 458 * the inline comments before the call of vmbus_release_relid() below. 459 */ 460 if (channel->offermsg.child_relid != INVALID_RELID) 461 vmbus_channel_unmap_relid(channel); 462 463 if (channel->primary_channel == NULL) 464 list_del(&channel->listentry); 465 else 466 list_del(&channel->sc_list); 467 468 /* 469 * If this is a "perf" channel, updates the hv_numa_map[] masks so that 470 * init_vp_index() can (re-)use the CPU. 471 */ 472 if (hv_is_perf_channel(channel)) 473 hv_clear_allocated_cpu(channel->target_cpu); 474 475 /* 476 * Upon suspend, an in-use hv_sock channel is marked as "rescinded" and 477 * the relid is invalidated; after hibernation, when the user-space app 478 * destroys the channel, the relid is INVALID_RELID, and in this case 479 * it's unnecessary and unsafe to release the old relid, since the same 480 * relid can refer to a completely different channel now. 481 */ 482 if (channel->offermsg.child_relid != INVALID_RELID) 483 vmbus_release_relid(channel->offermsg.child_relid); 484 485 free_channel(channel); 486 } 487 488 void vmbus_free_channels(void) 489 { 490 struct vmbus_channel *channel, *tmp; 491 492 list_for_each_entry_safe(channel, tmp, &vmbus_connection.chn_list, 493 listentry) { 494 /* hv_process_channel_removal() needs this */ 495 channel->rescind = true; 496 497 vmbus_device_unregister(channel->device_obj); 498 } 499 } 500 501 /* Note: the function can run concurrently for primary/sub channels. */ 502 static void vmbus_add_channel_work(struct work_struct *work) 503 { 504 struct vmbus_channel *newchannel = 505 container_of(work, struct vmbus_channel, add_channel_work); 506 struct vmbus_channel *primary_channel = newchannel->primary_channel; 507 int ret; 508 509 /* 510 * This state is used to indicate a successful open 511 * so that when we do close the channel normally, we 512 * can cleanup properly. 513 */ 514 newchannel->state = CHANNEL_OPEN_STATE; 515 516 if (primary_channel != NULL) { 517 /* newchannel is a sub-channel. */ 518 struct hv_device *dev = primary_channel->device_obj; 519 520 if (vmbus_add_channel_kobj(dev, newchannel)) 521 goto err_deq_chan; 522 523 if (primary_channel->sc_creation_callback != NULL) 524 primary_channel->sc_creation_callback(newchannel); 525 526 newchannel->probe_done = true; 527 return; 528 } 529 530 /* 531 * Start the process of binding the primary channel to the driver 532 */ 533 newchannel->device_obj = vmbus_device_create( 534 &newchannel->offermsg.offer.if_type, 535 &newchannel->offermsg.offer.if_instance, 536 newchannel); 537 if (!newchannel->device_obj) 538 goto err_deq_chan; 539 540 newchannel->device_obj->device_id = newchannel->device_id; 541 /* 542 * Add the new device to the bus. This will kick off device-driver 543 * binding which eventually invokes the device driver's AddDevice() 544 * method. 545 * 546 * If vmbus_device_register() fails, the 'device_obj' is freed in 547 * vmbus_device_release() as called by device_unregister() in the 548 * error path of vmbus_device_register(). In the outside error 549 * path, there's no need to free it. 550 */ 551 ret = vmbus_device_register(newchannel->device_obj); 552 553 if (ret != 0) { 554 pr_err("unable to add child device object (relid %d)\n", 555 newchannel->offermsg.child_relid); 556 goto err_deq_chan; 557 } 558 559 newchannel->probe_done = true; 560 return; 561 562 err_deq_chan: 563 mutex_lock(&vmbus_connection.channel_mutex); 564 565 /* 566 * We need to set the flag, otherwise 567 * vmbus_onoffer_rescind() can be blocked. 568 */ 569 newchannel->probe_done = true; 570 571 if (primary_channel == NULL) 572 list_del(&newchannel->listentry); 573 else 574 list_del(&newchannel->sc_list); 575 576 /* vmbus_process_offer() has mapped the channel. */ 577 vmbus_channel_unmap_relid(newchannel); 578 579 mutex_unlock(&vmbus_connection.channel_mutex); 580 581 vmbus_release_relid(newchannel->offermsg.child_relid); 582 583 free_channel(newchannel); 584 } 585 586 /* 587 * vmbus_process_offer - Process the offer by creating a channel/device 588 * associated with this offer 589 */ 590 static void vmbus_process_offer(struct vmbus_channel *newchannel) 591 { 592 struct vmbus_channel *channel; 593 struct workqueue_struct *wq; 594 bool fnew = true; 595 596 /* 597 * Synchronize vmbus_process_offer() and CPU hotplugging: 598 * 599 * CPU1 CPU2 600 * 601 * [vmbus_process_offer()] [Hot removal of the CPU] 602 * 603 * CPU_READ_LOCK CPUS_WRITE_LOCK 604 * LOAD cpu_online_mask SEARCH chn_list 605 * STORE target_cpu LOAD target_cpu 606 * INSERT chn_list STORE cpu_online_mask 607 * CPUS_READ_UNLOCK CPUS_WRITE_UNLOCK 608 * 609 * Forbids: CPU1's LOAD from *not* seing CPU2's STORE && 610 * CPU2's SEARCH from *not* seeing CPU1's INSERT 611 * 612 * Forbids: CPU2's SEARCH from seeing CPU1's INSERT && 613 * CPU2's LOAD from *not* seing CPU1's STORE 614 */ 615 cpus_read_lock(); 616 617 /* 618 * Serializes the modifications of the chn_list list as well as 619 * the accesses to next_numa_node_id in init_vp_index(). 620 */ 621 mutex_lock(&vmbus_connection.channel_mutex); 622 623 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 624 if (guid_equal(&channel->offermsg.offer.if_type, 625 &newchannel->offermsg.offer.if_type) && 626 guid_equal(&channel->offermsg.offer.if_instance, 627 &newchannel->offermsg.offer.if_instance)) { 628 fnew = false; 629 newchannel->primary_channel = channel; 630 break; 631 } 632 } 633 634 init_vp_index(newchannel); 635 636 /* Remember the channels that should be cleaned up upon suspend. */ 637 if (is_hvsock_channel(newchannel) || is_sub_channel(newchannel)) 638 atomic_inc(&vmbus_connection.nr_chan_close_on_suspend); 639 640 /* 641 * Now that we have acquired the channel_mutex, 642 * we can release the potentially racing rescind thread. 643 */ 644 atomic_dec(&vmbus_connection.offer_in_progress); 645 646 if (fnew) { 647 list_add_tail(&newchannel->listentry, 648 &vmbus_connection.chn_list); 649 } else { 650 /* 651 * Check to see if this is a valid sub-channel. 652 */ 653 if (newchannel->offermsg.offer.sub_channel_index == 0) { 654 mutex_unlock(&vmbus_connection.channel_mutex); 655 cpus_read_unlock(); 656 /* 657 * Don't call free_channel(), because newchannel->kobj 658 * is not initialized yet. 659 */ 660 kfree(newchannel); 661 WARN_ON_ONCE(1); 662 return; 663 } 664 /* 665 * Process the sub-channel. 666 */ 667 list_add_tail(&newchannel->sc_list, &channel->sc_list); 668 } 669 670 vmbus_channel_map_relid(newchannel); 671 672 mutex_unlock(&vmbus_connection.channel_mutex); 673 cpus_read_unlock(); 674 675 /* 676 * vmbus_process_offer() mustn't call channel->sc_creation_callback() 677 * directly for sub-channels, because sc_creation_callback() -> 678 * vmbus_open() may never get the host's response to the 679 * OPEN_CHANNEL message (the host may rescind a channel at any time, 680 * e.g. in the case of hot removing a NIC), and vmbus_onoffer_rescind() 681 * may not wake up the vmbus_open() as it's blocked due to a non-zero 682 * vmbus_connection.offer_in_progress, and finally we have a deadlock. 683 * 684 * The above is also true for primary channels, if the related device 685 * drivers use sync probing mode by default. 686 * 687 * And, usually the handling of primary channels and sub-channels can 688 * depend on each other, so we should offload them to different 689 * workqueues to avoid possible deadlock, e.g. in sync-probing mode, 690 * NIC1's netvsc_subchan_work() can race with NIC2's netvsc_probe() -> 691 * rtnl_lock(), and causes deadlock: the former gets the rtnl_lock 692 * and waits for all the sub-channels to appear, but the latter 693 * can't get the rtnl_lock and this blocks the handling of 694 * sub-channels. 695 */ 696 INIT_WORK(&newchannel->add_channel_work, vmbus_add_channel_work); 697 wq = fnew ? vmbus_connection.handle_primary_chan_wq : 698 vmbus_connection.handle_sub_chan_wq; 699 queue_work(wq, &newchannel->add_channel_work); 700 } 701 702 /* 703 * Check if CPUs used by other channels of the same device. 704 * It should only be called by init_vp_index(). 705 */ 706 static bool hv_cpuself_used(u32 cpu, struct vmbus_channel *chn) 707 { 708 struct vmbus_channel *primary = chn->primary_channel; 709 struct vmbus_channel *sc; 710 711 lockdep_assert_held(&vmbus_connection.channel_mutex); 712 713 if (!primary) 714 return false; 715 716 if (primary->target_cpu == cpu) 717 return true; 718 719 list_for_each_entry(sc, &primary->sc_list, sc_list) 720 if (sc != chn && sc->target_cpu == cpu) 721 return true; 722 723 return false; 724 } 725 726 /* 727 * We use this state to statically distribute the channel interrupt load. 728 */ 729 static int next_numa_node_id; 730 731 /* 732 * We can statically distribute the incoming channel interrupt load 733 * by binding a channel to VCPU. 734 * 735 * For non-performance critical channels we assign the VMBUS_CONNECT_CPU. 736 * Performance critical channels will be distributed evenly among all 737 * the available NUMA nodes. Once the node is assigned, we will assign 738 * the CPU based on a simple round robin scheme. 739 */ 740 static void init_vp_index(struct vmbus_channel *channel) 741 { 742 bool perf_chn = hv_is_perf_channel(channel); 743 u32 i, ncpu = num_online_cpus(); 744 cpumask_var_t available_mask; 745 struct cpumask *allocated_mask; 746 const struct cpumask *hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ); 747 u32 target_cpu; 748 int numa_node; 749 750 if (!perf_chn || 751 !alloc_cpumask_var(&available_mask, GFP_KERNEL) || 752 cpumask_empty(hk_mask)) { 753 /* 754 * If the channel is not a performance critical 755 * channel, bind it to VMBUS_CONNECT_CPU. 756 * In case alloc_cpumask_var() fails, bind it to 757 * VMBUS_CONNECT_CPU. 758 * If all the cpus are isolated, bind it to 759 * VMBUS_CONNECT_CPU. 760 */ 761 channel->target_cpu = VMBUS_CONNECT_CPU; 762 if (perf_chn) 763 hv_set_allocated_cpu(VMBUS_CONNECT_CPU); 764 return; 765 } 766 767 for (i = 1; i <= ncpu + 1; i++) { 768 while (true) { 769 numa_node = next_numa_node_id++; 770 if (numa_node == nr_node_ids) { 771 next_numa_node_id = 0; 772 continue; 773 } 774 if (cpumask_empty(cpumask_of_node(numa_node))) 775 continue; 776 break; 777 } 778 allocated_mask = &hv_context.hv_numa_map[numa_node]; 779 780 retry: 781 cpumask_xor(available_mask, allocated_mask, cpumask_of_node(numa_node)); 782 cpumask_and(available_mask, available_mask, hk_mask); 783 784 if (cpumask_empty(available_mask)) { 785 /* 786 * We have cycled through all the CPUs in the node; 787 * reset the allocated map. 788 */ 789 cpumask_clear(allocated_mask); 790 goto retry; 791 } 792 793 target_cpu = cpumask_first(available_mask); 794 cpumask_set_cpu(target_cpu, allocated_mask); 795 796 if (channel->offermsg.offer.sub_channel_index >= ncpu || 797 i > ncpu || !hv_cpuself_used(target_cpu, channel)) 798 break; 799 } 800 801 channel->target_cpu = target_cpu; 802 803 free_cpumask_var(available_mask); 804 } 805 806 #define UNLOAD_DELAY_UNIT_MS 10 /* 10 milliseconds */ 807 #define UNLOAD_WAIT_MS (100*1000) /* 100 seconds */ 808 #define UNLOAD_WAIT_LOOPS (UNLOAD_WAIT_MS/UNLOAD_DELAY_UNIT_MS) 809 #define UNLOAD_MSG_MS (5*1000) /* Every 5 seconds */ 810 #define UNLOAD_MSG_LOOPS (UNLOAD_MSG_MS/UNLOAD_DELAY_UNIT_MS) 811 812 static void vmbus_wait_for_unload(void) 813 { 814 int cpu; 815 void *page_addr; 816 struct hv_message *msg; 817 struct vmbus_channel_message_header *hdr; 818 u32 message_type, i; 819 820 /* 821 * CHANNELMSG_UNLOAD_RESPONSE is always delivered to the CPU which was 822 * used for initial contact or to CPU0 depending on host version. When 823 * we're crashing on a different CPU let's hope that IRQ handler on 824 * the cpu which receives CHANNELMSG_UNLOAD_RESPONSE is still 825 * functional and vmbus_unload_response() will complete 826 * vmbus_connection.unload_event. If not, the last thing we can do is 827 * read message pages for all CPUs directly. 828 * 829 * Wait up to 100 seconds since an Azure host must writeback any dirty 830 * data in its disk cache before the VMbus UNLOAD request will 831 * complete. This flushing has been empirically observed to take up 832 * to 50 seconds in cases with a lot of dirty data, so allow additional 833 * leeway and for inaccuracies in mdelay(). But eventually time out so 834 * that the panic path can't get hung forever in case the response 835 * message isn't seen. 836 */ 837 for (i = 1; i <= UNLOAD_WAIT_LOOPS; i++) { 838 if (completion_done(&vmbus_connection.unload_event)) 839 goto completed; 840 841 for_each_present_cpu(cpu) { 842 struct hv_per_cpu_context *hv_cpu 843 = per_cpu_ptr(hv_context.cpu_context, cpu); 844 845 /* 846 * In a CoCo VM the synic_message_page is not allocated 847 * in hv_synic_alloc(). Instead it is set/cleared in 848 * hv_synic_enable_regs() and hv_synic_disable_regs() 849 * such that it is set only when the CPU is online. If 850 * not all present CPUs are online, the message page 851 * might be NULL, so skip such CPUs. 852 */ 853 page_addr = hv_cpu->synic_message_page; 854 if (!page_addr) 855 continue; 856 857 msg = (struct hv_message *)page_addr 858 + VMBUS_MESSAGE_SINT; 859 860 message_type = READ_ONCE(msg->header.message_type); 861 if (message_type == HVMSG_NONE) 862 continue; 863 864 hdr = (struct vmbus_channel_message_header *) 865 msg->u.payload; 866 867 if (hdr->msgtype == CHANNELMSG_UNLOAD_RESPONSE) 868 complete(&vmbus_connection.unload_event); 869 870 vmbus_signal_eom(msg, message_type); 871 } 872 873 /* 874 * Give a notice periodically so someone watching the 875 * serial output won't think it is completely hung. 876 */ 877 if (!(i % UNLOAD_MSG_LOOPS)) 878 pr_notice("Waiting for VMBus UNLOAD to complete\n"); 879 880 mdelay(UNLOAD_DELAY_UNIT_MS); 881 } 882 pr_err("Continuing even though VMBus UNLOAD did not complete\n"); 883 884 completed: 885 /* 886 * We're crashing and already got the UNLOAD_RESPONSE, cleanup all 887 * maybe-pending messages on all CPUs to be able to receive new 888 * messages after we reconnect. 889 */ 890 for_each_present_cpu(cpu) { 891 struct hv_per_cpu_context *hv_cpu 892 = per_cpu_ptr(hv_context.cpu_context, cpu); 893 894 page_addr = hv_cpu->synic_message_page; 895 if (!page_addr) 896 continue; 897 898 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 899 msg->header.message_type = HVMSG_NONE; 900 } 901 } 902 903 /* 904 * vmbus_unload_response - Handler for the unload response. 905 */ 906 static void vmbus_unload_response(struct vmbus_channel_message_header *hdr) 907 { 908 /* 909 * This is a global event; just wakeup the waiting thread. 910 * Once we successfully unload, we can cleanup the monitor state. 911 * 912 * NB. A malicious or compromised Hyper-V could send a spurious 913 * message of type CHANNELMSG_UNLOAD_RESPONSE, and trigger a call 914 * of the complete() below. Make sure that unload_event has been 915 * initialized by the time this complete() is executed. 916 */ 917 complete(&vmbus_connection.unload_event); 918 } 919 920 void vmbus_initiate_unload(bool crash) 921 { 922 struct vmbus_channel_message_header hdr; 923 924 if (xchg(&vmbus_connection.conn_state, DISCONNECTED) == DISCONNECTED) 925 return; 926 927 /* Pre-Win2012R2 hosts don't support reconnect */ 928 if (vmbus_proto_version < VERSION_WIN8_1) 929 return; 930 931 reinit_completion(&vmbus_connection.unload_event); 932 memset(&hdr, 0, sizeof(struct vmbus_channel_message_header)); 933 hdr.msgtype = CHANNELMSG_UNLOAD; 934 vmbus_post_msg(&hdr, sizeof(struct vmbus_channel_message_header), 935 !crash); 936 937 /* 938 * vmbus_initiate_unload() is also called on crash and the crash can be 939 * happening in an interrupt context, where scheduling is impossible. 940 */ 941 if (!crash) 942 wait_for_completion(&vmbus_connection.unload_event); 943 else 944 vmbus_wait_for_unload(); 945 } 946 947 static void vmbus_setup_channel_state(struct vmbus_channel *channel, 948 struct vmbus_channel_offer_channel *offer) 949 { 950 /* 951 * Setup state for signalling the host. 952 */ 953 channel->sig_event = VMBUS_EVENT_CONNECTION_ID; 954 955 channel->is_dedicated_interrupt = 956 (offer->is_dedicated_interrupt != 0); 957 channel->sig_event = offer->connection_id; 958 959 memcpy(&channel->offermsg, offer, 960 sizeof(struct vmbus_channel_offer_channel)); 961 channel->monitor_grp = (u8)offer->monitorid / 32; 962 channel->monitor_bit = (u8)offer->monitorid % 32; 963 channel->device_id = hv_get_dev_type(channel); 964 } 965 966 /* 967 * find_primary_channel_by_offer - Get the channel object given the new offer. 968 * This is only used in the resume path of hibernation. 969 */ 970 static struct vmbus_channel * 971 find_primary_channel_by_offer(const struct vmbus_channel_offer_channel *offer) 972 { 973 struct vmbus_channel *channel = NULL, *iter; 974 const guid_t *inst1, *inst2; 975 976 /* Ignore sub-channel offers. */ 977 if (offer->offer.sub_channel_index != 0) 978 return NULL; 979 980 mutex_lock(&vmbus_connection.channel_mutex); 981 982 list_for_each_entry(iter, &vmbus_connection.chn_list, listentry) { 983 inst1 = &iter->offermsg.offer.if_instance; 984 inst2 = &offer->offer.if_instance; 985 986 if (guid_equal(inst1, inst2)) { 987 channel = iter; 988 break; 989 } 990 } 991 992 mutex_unlock(&vmbus_connection.channel_mutex); 993 994 return channel; 995 } 996 997 static bool vmbus_is_valid_offer(const struct vmbus_channel_offer_channel *offer) 998 { 999 const guid_t *guid = &offer->offer.if_type; 1000 u16 i; 1001 1002 if (!hv_is_isolation_supported()) 1003 return true; 1004 1005 if (is_hvsock_offer(offer)) 1006 return true; 1007 1008 for (i = 0; i < ARRAY_SIZE(vmbus_devs); i++) { 1009 if (guid_equal(guid, &vmbus_devs[i].guid)) 1010 return vmbus_devs[i].allowed_in_isolated; 1011 } 1012 return false; 1013 } 1014 1015 /* 1016 * vmbus_onoffer - Handler for channel offers from vmbus in parent partition. 1017 * 1018 */ 1019 static void vmbus_onoffer(struct vmbus_channel_message_header *hdr) 1020 { 1021 struct vmbus_channel_offer_channel *offer; 1022 struct vmbus_channel *oldchannel, *newchannel; 1023 size_t offer_sz; 1024 1025 offer = (struct vmbus_channel_offer_channel *)hdr; 1026 1027 trace_vmbus_onoffer(offer); 1028 1029 if (!vmbus_is_valid_offer(offer)) { 1030 pr_err_ratelimited("Invalid offer %d from the host supporting isolation\n", 1031 offer->child_relid); 1032 atomic_dec(&vmbus_connection.offer_in_progress); 1033 return; 1034 } 1035 1036 oldchannel = find_primary_channel_by_offer(offer); 1037 1038 if (oldchannel != NULL) { 1039 /* 1040 * We're resuming from hibernation: all the sub-channel and 1041 * hv_sock channels we had before the hibernation should have 1042 * been cleaned up, and now we must be seeing a re-offered 1043 * primary channel that we had before the hibernation. 1044 */ 1045 1046 /* 1047 * { Initially: channel relid = INVALID_RELID, 1048 * channels[valid_relid] = NULL } 1049 * 1050 * CPU1 CPU2 1051 * 1052 * [vmbus_onoffer()] [vmbus_device_release()] 1053 * 1054 * LOCK channel_mutex LOCK channel_mutex 1055 * STORE channel relid = valid_relid LOAD r1 = channel relid 1056 * MAP_RELID channel if (r1 != INVALID_RELID) 1057 * UNLOCK channel_mutex UNMAP_RELID channel 1058 * UNLOCK channel_mutex 1059 * 1060 * Forbids: r1 == valid_relid && 1061 * channels[valid_relid] == channel 1062 * 1063 * Note. r1 can be INVALID_RELID only for an hv_sock channel. 1064 * None of the hv_sock channels which were present before the 1065 * suspend are re-offered upon the resume. See the WARN_ON() 1066 * in hv_process_channel_removal(). 1067 */ 1068 mutex_lock(&vmbus_connection.channel_mutex); 1069 1070 atomic_dec(&vmbus_connection.offer_in_progress); 1071 1072 WARN_ON(oldchannel->offermsg.child_relid != INVALID_RELID); 1073 /* Fix up the relid. */ 1074 oldchannel->offermsg.child_relid = offer->child_relid; 1075 1076 offer_sz = sizeof(*offer); 1077 if (memcmp(offer, &oldchannel->offermsg, offer_sz) != 0) { 1078 /* 1079 * This is not an error, since the host can also change 1080 * the other field(s) of the offer, e.g. on WS RS5 1081 * (Build 17763), the offer->connection_id of the 1082 * Mellanox VF vmbus device can change when the host 1083 * reoffers the device upon resume. 1084 */ 1085 pr_debug("vmbus offer changed: relid=%d\n", 1086 offer->child_relid); 1087 1088 print_hex_dump_debug("Old vmbus offer: ", 1089 DUMP_PREFIX_OFFSET, 16, 4, 1090 &oldchannel->offermsg, offer_sz, 1091 false); 1092 print_hex_dump_debug("New vmbus offer: ", 1093 DUMP_PREFIX_OFFSET, 16, 4, 1094 offer, offer_sz, false); 1095 1096 /* Fix up the old channel. */ 1097 vmbus_setup_channel_state(oldchannel, offer); 1098 } 1099 1100 /* Add the channel back to the array of channels. */ 1101 vmbus_channel_map_relid(oldchannel); 1102 mutex_unlock(&vmbus_connection.channel_mutex); 1103 return; 1104 } 1105 1106 /* Allocate the channel object and save this offer. */ 1107 newchannel = alloc_channel(); 1108 if (!newchannel) { 1109 vmbus_release_relid(offer->child_relid); 1110 atomic_dec(&vmbus_connection.offer_in_progress); 1111 pr_err("Unable to allocate channel object\n"); 1112 return; 1113 } 1114 1115 vmbus_setup_channel_state(newchannel, offer); 1116 1117 vmbus_process_offer(newchannel); 1118 } 1119 1120 static void check_ready_for_suspend_event(void) 1121 { 1122 /* 1123 * If all the sub-channels or hv_sock channels have been cleaned up, 1124 * then it's safe to suspend. 1125 */ 1126 if (atomic_dec_and_test(&vmbus_connection.nr_chan_close_on_suspend)) 1127 complete(&vmbus_connection.ready_for_suspend_event); 1128 } 1129 1130 /* 1131 * vmbus_onoffer_rescind - Rescind offer handler. 1132 * 1133 * We queue a work item to process this offer synchronously 1134 */ 1135 static void vmbus_onoffer_rescind(struct vmbus_channel_message_header *hdr) 1136 { 1137 struct vmbus_channel_rescind_offer *rescind; 1138 struct vmbus_channel *channel; 1139 struct device *dev; 1140 bool clean_up_chan_for_suspend; 1141 1142 rescind = (struct vmbus_channel_rescind_offer *)hdr; 1143 1144 trace_vmbus_onoffer_rescind(rescind); 1145 1146 /* 1147 * The offer msg and the corresponding rescind msg 1148 * from the host are guranteed to be ordered - 1149 * offer comes in first and then the rescind. 1150 * Since we process these events in work elements, 1151 * and with preemption, we may end up processing 1152 * the events out of order. We rely on the synchronization 1153 * provided by offer_in_progress and by channel_mutex for 1154 * ordering these events: 1155 * 1156 * { Initially: offer_in_progress = 1 } 1157 * 1158 * CPU1 CPU2 1159 * 1160 * [vmbus_onoffer()] [vmbus_onoffer_rescind()] 1161 * 1162 * LOCK channel_mutex WAIT_ON offer_in_progress == 0 1163 * DECREMENT offer_in_progress LOCK channel_mutex 1164 * STORE channels[] LOAD channels[] 1165 * UNLOCK channel_mutex UNLOCK channel_mutex 1166 * 1167 * Forbids: CPU2's LOAD from *not* seeing CPU1's STORE 1168 */ 1169 1170 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 1171 /* 1172 * We wait here until any channel offer is currently 1173 * being processed. 1174 */ 1175 msleep(1); 1176 } 1177 1178 mutex_lock(&vmbus_connection.channel_mutex); 1179 channel = relid2channel(rescind->child_relid); 1180 if (channel != NULL) { 1181 /* 1182 * Guarantee that no other instance of vmbus_onoffer_rescind() 1183 * has got a reference to the channel object. Synchronize on 1184 * &vmbus_connection.channel_mutex. 1185 */ 1186 if (channel->rescind_ref) { 1187 mutex_unlock(&vmbus_connection.channel_mutex); 1188 return; 1189 } 1190 channel->rescind_ref = true; 1191 } 1192 mutex_unlock(&vmbus_connection.channel_mutex); 1193 1194 if (channel == NULL) { 1195 /* 1196 * We failed in processing the offer message; 1197 * we would have cleaned up the relid in that 1198 * failure path. 1199 */ 1200 return; 1201 } 1202 1203 clean_up_chan_for_suspend = is_hvsock_channel(channel) || 1204 is_sub_channel(channel); 1205 /* 1206 * Before setting channel->rescind in vmbus_rescind_cleanup(), we 1207 * should make sure the channel callback is not running any more. 1208 */ 1209 vmbus_reset_channel_cb(channel); 1210 1211 /* 1212 * Now wait for offer handling to complete. 1213 */ 1214 vmbus_rescind_cleanup(channel); 1215 while (READ_ONCE(channel->probe_done) == false) { 1216 /* 1217 * We wait here until any channel offer is currently 1218 * being processed. 1219 */ 1220 msleep(1); 1221 } 1222 1223 /* 1224 * At this point, the rescind handling can proceed safely. 1225 */ 1226 1227 if (channel->device_obj) { 1228 if (channel->chn_rescind_callback) { 1229 channel->chn_rescind_callback(channel); 1230 1231 if (clean_up_chan_for_suspend) 1232 check_ready_for_suspend_event(); 1233 1234 return; 1235 } 1236 /* 1237 * We will have to unregister this device from the 1238 * driver core. 1239 */ 1240 dev = get_device(&channel->device_obj->device); 1241 if (dev) { 1242 vmbus_device_unregister(channel->device_obj); 1243 put_device(dev); 1244 } 1245 } else if (channel->primary_channel != NULL) { 1246 /* 1247 * Sub-channel is being rescinded. Following is the channel 1248 * close sequence when initiated from the driveri (refer to 1249 * vmbus_close() for details): 1250 * 1. Close all sub-channels first 1251 * 2. Then close the primary channel. 1252 */ 1253 mutex_lock(&vmbus_connection.channel_mutex); 1254 if (channel->state == CHANNEL_OPEN_STATE) { 1255 /* 1256 * The channel is currently not open; 1257 * it is safe for us to cleanup the channel. 1258 */ 1259 hv_process_channel_removal(channel); 1260 } else { 1261 complete(&channel->rescind_event); 1262 } 1263 mutex_unlock(&vmbus_connection.channel_mutex); 1264 } 1265 1266 /* The "channel" may have been freed. Do not access it any longer. */ 1267 1268 if (clean_up_chan_for_suspend) 1269 check_ready_for_suspend_event(); 1270 } 1271 1272 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel) 1273 { 1274 BUG_ON(!is_hvsock_channel(channel)); 1275 1276 /* We always get a rescind msg when a connection is closed. */ 1277 while (!READ_ONCE(channel->probe_done) || !READ_ONCE(channel->rescind)) 1278 msleep(1); 1279 1280 vmbus_device_unregister(channel->device_obj); 1281 } 1282 EXPORT_SYMBOL_GPL(vmbus_hvsock_device_unregister); 1283 1284 1285 /* 1286 * vmbus_onoffers_delivered - 1287 * The CHANNELMSG_ALLOFFERS_DELIVERED message arrives after all 1288 * boot-time offers are delivered. A boot-time offer is for the primary 1289 * channel for any virtual hardware configured in the VM at the time it boots. 1290 * Boot-time offers include offers for physical devices assigned to the VM 1291 * via Hyper-V's Discrete Device Assignment (DDA) functionality that are 1292 * handled as virtual PCI devices in Linux (e.g., NVMe devices and GPUs). 1293 * Boot-time offers do not include offers for VMBus sub-channels. Because 1294 * devices can be hot-added to the VM after it is booted, additional channel 1295 * offers that aren't boot-time offers can be received at any time after the 1296 * all-offers-delivered message. 1297 * 1298 * SR-IOV NIC Virtual Functions (VFs) assigned to a VM are not considered 1299 * to be assigned to the VM at boot-time, and offers for VFs may occur after 1300 * the all-offers-delivered message. VFs are optional accelerators to the 1301 * synthetic VMBus NIC and are effectively hot-added only after the VMBus 1302 * NIC channel is opened (once it knows the guest can support it, via the 1303 * sriov bit in the netvsc protocol). 1304 */ 1305 static void vmbus_onoffers_delivered( 1306 struct vmbus_channel_message_header *hdr) 1307 { 1308 complete(&vmbus_connection.all_offers_delivered_event); 1309 } 1310 1311 /* 1312 * vmbus_onopen_result - Open result handler. 1313 * 1314 * This is invoked when we received a response to our channel open request. 1315 * Find the matching request, copy the response and signal the requesting 1316 * thread. 1317 */ 1318 static void vmbus_onopen_result(struct vmbus_channel_message_header *hdr) 1319 { 1320 struct vmbus_channel_open_result *result; 1321 struct vmbus_channel_msginfo *msginfo; 1322 struct vmbus_channel_message_header *requestheader; 1323 struct vmbus_channel_open_channel *openmsg; 1324 unsigned long flags; 1325 1326 result = (struct vmbus_channel_open_result *)hdr; 1327 1328 trace_vmbus_onopen_result(result); 1329 1330 /* 1331 * Find the open msg, copy the result and signal/unblock the wait event 1332 */ 1333 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1334 1335 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1336 msglistentry) { 1337 requestheader = 1338 (struct vmbus_channel_message_header *)msginfo->msg; 1339 1340 if (requestheader->msgtype == CHANNELMSG_OPENCHANNEL) { 1341 openmsg = 1342 (struct vmbus_channel_open_channel *)msginfo->msg; 1343 if (openmsg->child_relid == result->child_relid && 1344 openmsg->openid == result->openid) { 1345 memcpy(&msginfo->response.open_result, 1346 result, 1347 sizeof( 1348 struct vmbus_channel_open_result)); 1349 complete(&msginfo->waitevent); 1350 break; 1351 } 1352 } 1353 } 1354 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1355 } 1356 1357 /* 1358 * vmbus_ongpadl_created - GPADL created handler. 1359 * 1360 * This is invoked when we received a response to our gpadl create request. 1361 * Find the matching request, copy the response and signal the requesting 1362 * thread. 1363 */ 1364 static void vmbus_ongpadl_created(struct vmbus_channel_message_header *hdr) 1365 { 1366 struct vmbus_channel_gpadl_created *gpadlcreated; 1367 struct vmbus_channel_msginfo *msginfo; 1368 struct vmbus_channel_message_header *requestheader; 1369 struct vmbus_channel_gpadl_header *gpadlheader; 1370 unsigned long flags; 1371 1372 gpadlcreated = (struct vmbus_channel_gpadl_created *)hdr; 1373 1374 trace_vmbus_ongpadl_created(gpadlcreated); 1375 1376 /* 1377 * Find the establish msg, copy the result and signal/unblock the wait 1378 * event 1379 */ 1380 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1381 1382 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1383 msglistentry) { 1384 requestheader = 1385 (struct vmbus_channel_message_header *)msginfo->msg; 1386 1387 if (requestheader->msgtype == CHANNELMSG_GPADL_HEADER) { 1388 gpadlheader = 1389 (struct vmbus_channel_gpadl_header *)requestheader; 1390 1391 if ((gpadlcreated->child_relid == 1392 gpadlheader->child_relid) && 1393 (gpadlcreated->gpadl == gpadlheader->gpadl)) { 1394 memcpy(&msginfo->response.gpadl_created, 1395 gpadlcreated, 1396 sizeof( 1397 struct vmbus_channel_gpadl_created)); 1398 complete(&msginfo->waitevent); 1399 break; 1400 } 1401 } 1402 } 1403 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1404 } 1405 1406 /* 1407 * vmbus_onmodifychannel_response - Modify Channel response handler. 1408 * 1409 * This is invoked when we received a response to our channel modify request. 1410 * Find the matching request, copy the response and signal the requesting thread. 1411 */ 1412 static void vmbus_onmodifychannel_response(struct vmbus_channel_message_header *hdr) 1413 { 1414 struct vmbus_channel_modifychannel_response *response; 1415 struct vmbus_channel_msginfo *msginfo; 1416 unsigned long flags; 1417 1418 response = (struct vmbus_channel_modifychannel_response *)hdr; 1419 1420 trace_vmbus_onmodifychannel_response(response); 1421 1422 /* 1423 * Find the modify msg, copy the response and signal/unblock the wait event. 1424 */ 1425 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1426 1427 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, msglistentry) { 1428 struct vmbus_channel_message_header *responseheader = 1429 (struct vmbus_channel_message_header *)msginfo->msg; 1430 1431 if (responseheader->msgtype == CHANNELMSG_MODIFYCHANNEL) { 1432 struct vmbus_channel_modifychannel *modifymsg; 1433 1434 modifymsg = (struct vmbus_channel_modifychannel *)msginfo->msg; 1435 if (modifymsg->child_relid == response->child_relid) { 1436 memcpy(&msginfo->response.modify_response, response, 1437 sizeof(*response)); 1438 complete(&msginfo->waitevent); 1439 break; 1440 } 1441 } 1442 } 1443 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1444 } 1445 1446 /* 1447 * vmbus_ongpadl_torndown - GPADL torndown handler. 1448 * 1449 * This is invoked when we received a response to our gpadl teardown request. 1450 * Find the matching request, copy the response and signal the requesting 1451 * thread. 1452 */ 1453 static void vmbus_ongpadl_torndown( 1454 struct vmbus_channel_message_header *hdr) 1455 { 1456 struct vmbus_channel_gpadl_torndown *gpadl_torndown; 1457 struct vmbus_channel_msginfo *msginfo; 1458 struct vmbus_channel_message_header *requestheader; 1459 struct vmbus_channel_gpadl_teardown *gpadl_teardown; 1460 unsigned long flags; 1461 1462 gpadl_torndown = (struct vmbus_channel_gpadl_torndown *)hdr; 1463 1464 trace_vmbus_ongpadl_torndown(gpadl_torndown); 1465 1466 /* 1467 * Find the open msg, copy the result and signal/unblock the wait event 1468 */ 1469 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1470 1471 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1472 msglistentry) { 1473 requestheader = 1474 (struct vmbus_channel_message_header *)msginfo->msg; 1475 1476 if (requestheader->msgtype == CHANNELMSG_GPADL_TEARDOWN) { 1477 gpadl_teardown = 1478 (struct vmbus_channel_gpadl_teardown *)requestheader; 1479 1480 if (gpadl_torndown->gpadl == gpadl_teardown->gpadl) { 1481 memcpy(&msginfo->response.gpadl_torndown, 1482 gpadl_torndown, 1483 sizeof( 1484 struct vmbus_channel_gpadl_torndown)); 1485 complete(&msginfo->waitevent); 1486 break; 1487 } 1488 } 1489 } 1490 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1491 } 1492 1493 /* 1494 * vmbus_onversion_response - Version response handler 1495 * 1496 * This is invoked when we received a response to our initiate contact request. 1497 * Find the matching request, copy the response and signal the requesting 1498 * thread. 1499 */ 1500 static void vmbus_onversion_response( 1501 struct vmbus_channel_message_header *hdr) 1502 { 1503 struct vmbus_channel_msginfo *msginfo; 1504 struct vmbus_channel_message_header *requestheader; 1505 struct vmbus_channel_version_response *version_response; 1506 unsigned long flags; 1507 1508 version_response = (struct vmbus_channel_version_response *)hdr; 1509 1510 trace_vmbus_onversion_response(version_response); 1511 1512 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1513 1514 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1515 msglistentry) { 1516 requestheader = 1517 (struct vmbus_channel_message_header *)msginfo->msg; 1518 1519 if (requestheader->msgtype == 1520 CHANNELMSG_INITIATE_CONTACT) { 1521 memcpy(&msginfo->response.version_response, 1522 version_response, 1523 sizeof(struct vmbus_channel_version_response)); 1524 complete(&msginfo->waitevent); 1525 } 1526 } 1527 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1528 } 1529 1530 /* Channel message dispatch table */ 1531 const struct vmbus_channel_message_table_entry 1532 channel_message_table[CHANNELMSG_COUNT] = { 1533 { CHANNELMSG_INVALID, 0, NULL, 0}, 1534 { CHANNELMSG_OFFERCHANNEL, 0, vmbus_onoffer, 1535 sizeof(struct vmbus_channel_offer_channel)}, 1536 { CHANNELMSG_RESCIND_CHANNELOFFER, 0, vmbus_onoffer_rescind, 1537 sizeof(struct vmbus_channel_rescind_offer) }, 1538 { CHANNELMSG_REQUESTOFFERS, 0, NULL, 0}, 1539 { CHANNELMSG_ALLOFFERS_DELIVERED, 1, vmbus_onoffers_delivered, 0}, 1540 { CHANNELMSG_OPENCHANNEL, 0, NULL, 0}, 1541 { CHANNELMSG_OPENCHANNEL_RESULT, 1, vmbus_onopen_result, 1542 sizeof(struct vmbus_channel_open_result)}, 1543 { CHANNELMSG_CLOSECHANNEL, 0, NULL, 0}, 1544 { CHANNELMSG_GPADL_HEADER, 0, NULL, 0}, 1545 { CHANNELMSG_GPADL_BODY, 0, NULL, 0}, 1546 { CHANNELMSG_GPADL_CREATED, 1, vmbus_ongpadl_created, 1547 sizeof(struct vmbus_channel_gpadl_created)}, 1548 { CHANNELMSG_GPADL_TEARDOWN, 0, NULL, 0}, 1549 { CHANNELMSG_GPADL_TORNDOWN, 1, vmbus_ongpadl_torndown, 1550 sizeof(struct vmbus_channel_gpadl_torndown) }, 1551 { CHANNELMSG_RELID_RELEASED, 0, NULL, 0}, 1552 { CHANNELMSG_INITIATE_CONTACT, 0, NULL, 0}, 1553 { CHANNELMSG_VERSION_RESPONSE, 1, vmbus_onversion_response, 1554 sizeof(struct vmbus_channel_version_response)}, 1555 { CHANNELMSG_UNLOAD, 0, NULL, 0}, 1556 { CHANNELMSG_UNLOAD_RESPONSE, 1, vmbus_unload_response, 0}, 1557 { CHANNELMSG_18, 0, NULL, 0}, 1558 { CHANNELMSG_19, 0, NULL, 0}, 1559 { CHANNELMSG_20, 0, NULL, 0}, 1560 { CHANNELMSG_TL_CONNECT_REQUEST, 0, NULL, 0}, 1561 { CHANNELMSG_MODIFYCHANNEL, 0, NULL, 0}, 1562 { CHANNELMSG_TL_CONNECT_RESULT, 0, NULL, 0}, 1563 { CHANNELMSG_MODIFYCHANNEL_RESPONSE, 1, vmbus_onmodifychannel_response, 1564 sizeof(struct vmbus_channel_modifychannel_response)}, 1565 }; 1566 1567 /* 1568 * vmbus_onmessage - Handler for channel protocol messages. 1569 * 1570 * This is invoked in the vmbus worker thread context. 1571 */ 1572 void vmbus_onmessage(struct vmbus_channel_message_header *hdr) 1573 { 1574 trace_vmbus_on_message(hdr); 1575 1576 /* 1577 * vmbus_on_msg_dpc() makes sure the hdr->msgtype here can not go 1578 * out of bound and the message_handler pointer can not be NULL. 1579 */ 1580 channel_message_table[hdr->msgtype].message_handler(hdr); 1581 } 1582 1583 /* 1584 * vmbus_request_offers - Send a request to get all our pending offers 1585 * and wait for all boot-time offers to arrive. 1586 */ 1587 int vmbus_request_offers(void) 1588 { 1589 struct vmbus_channel_message_header *msg; 1590 struct vmbus_channel_msginfo *msginfo; 1591 int ret; 1592 1593 msginfo = kzalloc(sizeof(*msginfo) + 1594 sizeof(struct vmbus_channel_message_header), 1595 GFP_KERNEL); 1596 if (!msginfo) 1597 return -ENOMEM; 1598 1599 msg = (struct vmbus_channel_message_header *)msginfo->msg; 1600 1601 msg->msgtype = CHANNELMSG_REQUESTOFFERS; 1602 1603 /* 1604 * This REQUESTOFFERS message will result in the host sending an all 1605 * offers delivered message after all the boot-time offers are sent. 1606 */ 1607 ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_message_header), 1608 true); 1609 1610 trace_vmbus_request_offers(ret); 1611 1612 if (ret != 0) { 1613 pr_err("Unable to request offers - %d\n", ret); 1614 1615 goto cleanup; 1616 } 1617 1618 /* 1619 * Wait for the host to send all boot-time offers. 1620 * Keeping it as a best-effort mechanism, where a warning is 1621 * printed if a timeout occurs, and execution is resumed. 1622 */ 1623 if (!wait_for_completion_timeout(&vmbus_connection.all_offers_delivered_event, 1624 secs_to_jiffies(60))) { 1625 pr_warn("timed out waiting for all boot-time offers to be delivered.\n"); 1626 } 1627 1628 /* 1629 * Flush handling of offer messages (which may initiate work on 1630 * other work queues). 1631 */ 1632 flush_workqueue(vmbus_connection.work_queue); 1633 1634 /* 1635 * Flush workqueue for processing the incoming offers. Subchannel 1636 * offers and their processing can happen later, so there is no need to 1637 * flush that workqueue here. 1638 */ 1639 flush_workqueue(vmbus_connection.handle_primary_chan_wq); 1640 1641 cleanup: 1642 kfree(msginfo); 1643 1644 return ret; 1645 } 1646 1647 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1648 void (*sc_cr_cb)(struct vmbus_channel *new_sc)) 1649 { 1650 primary_channel->sc_creation_callback = sc_cr_cb; 1651 } 1652 EXPORT_SYMBOL_GPL(vmbus_set_sc_create_callback); 1653 1654 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1655 void (*chn_rescind_cb)(struct vmbus_channel *)) 1656 { 1657 channel->chn_rescind_callback = chn_rescind_cb; 1658 } 1659 EXPORT_SYMBOL_GPL(vmbus_set_chn_rescind_callback); 1660