1 /* 2 * Copyright (c) 2009, Microsoft Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 15 * Place - Suite 330, Boston, MA 02111-1307 USA. 16 * 17 * Authors: 18 * Haiyang Zhang <haiyangz@microsoft.com> 19 * Hank Janssen <hjanssen@microsoft.com> 20 */ 21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 22 23 #include <linux/kernel.h> 24 #include <linux/interrupt.h> 25 #include <linux/sched.h> 26 #include <linux/wait.h> 27 #include <linux/mm.h> 28 #include <linux/slab.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/completion.h> 32 #include <linux/delay.h> 33 #include <linux/hyperv.h> 34 #include <asm/mshyperv.h> 35 36 #include "hyperv_vmbus.h" 37 38 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type); 39 40 static const struct vmbus_device vmbus_devs[] = { 41 /* IDE */ 42 { .dev_type = HV_IDE, 43 HV_IDE_GUID, 44 .perf_device = true, 45 }, 46 47 /* SCSI */ 48 { .dev_type = HV_SCSI, 49 HV_SCSI_GUID, 50 .perf_device = true, 51 }, 52 53 /* Fibre Channel */ 54 { .dev_type = HV_FC, 55 HV_SYNTHFC_GUID, 56 .perf_device = true, 57 }, 58 59 /* Synthetic NIC */ 60 { .dev_type = HV_NIC, 61 HV_NIC_GUID, 62 .perf_device = true, 63 }, 64 65 /* Network Direct */ 66 { .dev_type = HV_ND, 67 HV_ND_GUID, 68 .perf_device = true, 69 }, 70 71 /* PCIE */ 72 { .dev_type = HV_PCIE, 73 HV_PCIE_GUID, 74 .perf_device = false, 75 }, 76 77 /* Synthetic Frame Buffer */ 78 { .dev_type = HV_FB, 79 HV_SYNTHVID_GUID, 80 .perf_device = false, 81 }, 82 83 /* Synthetic Keyboard */ 84 { .dev_type = HV_KBD, 85 HV_KBD_GUID, 86 .perf_device = false, 87 }, 88 89 /* Synthetic MOUSE */ 90 { .dev_type = HV_MOUSE, 91 HV_MOUSE_GUID, 92 .perf_device = false, 93 }, 94 95 /* KVP */ 96 { .dev_type = HV_KVP, 97 HV_KVP_GUID, 98 .perf_device = false, 99 }, 100 101 /* Time Synch */ 102 { .dev_type = HV_TS, 103 HV_TS_GUID, 104 .perf_device = false, 105 }, 106 107 /* Heartbeat */ 108 { .dev_type = HV_HB, 109 HV_HEART_BEAT_GUID, 110 .perf_device = false, 111 }, 112 113 /* Shutdown */ 114 { .dev_type = HV_SHUTDOWN, 115 HV_SHUTDOWN_GUID, 116 .perf_device = false, 117 }, 118 119 /* File copy */ 120 { .dev_type = HV_FCOPY, 121 HV_FCOPY_GUID, 122 .perf_device = false, 123 }, 124 125 /* Backup */ 126 { .dev_type = HV_BACKUP, 127 HV_VSS_GUID, 128 .perf_device = false, 129 }, 130 131 /* Dynamic Memory */ 132 { .dev_type = HV_DM, 133 HV_DM_GUID, 134 .perf_device = false, 135 }, 136 137 /* Unknown GUID */ 138 { .dev_type = HV_UNKNOWN, 139 .perf_device = false, 140 }, 141 }; 142 143 static const struct { 144 uuid_le guid; 145 } vmbus_unsupported_devs[] = { 146 { HV_AVMA1_GUID }, 147 { HV_AVMA2_GUID }, 148 { HV_RDV_GUID }, 149 }; 150 151 /* 152 * The rescinded channel may be blocked waiting for a response from the host; 153 * take care of that. 154 */ 155 static void vmbus_rescind_cleanup(struct vmbus_channel *channel) 156 { 157 struct vmbus_channel_msginfo *msginfo; 158 unsigned long flags; 159 160 161 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 162 channel->rescind = true; 163 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 164 msglistentry) { 165 166 if (msginfo->waiting_channel == channel) { 167 complete(&msginfo->waitevent); 168 break; 169 } 170 } 171 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 172 } 173 174 static bool is_unsupported_vmbus_devs(const uuid_le *guid) 175 { 176 int i; 177 178 for (i = 0; i < ARRAY_SIZE(vmbus_unsupported_devs); i++) 179 if (!uuid_le_cmp(*guid, vmbus_unsupported_devs[i].guid)) 180 return true; 181 return false; 182 } 183 184 static u16 hv_get_dev_type(const struct vmbus_channel *channel) 185 { 186 const uuid_le *guid = &channel->offermsg.offer.if_type; 187 u16 i; 188 189 if (is_hvsock_channel(channel) || is_unsupported_vmbus_devs(guid)) 190 return HV_UNKNOWN; 191 192 for (i = HV_IDE; i < HV_UNKNOWN; i++) { 193 if (!uuid_le_cmp(*guid, vmbus_devs[i].guid)) 194 return i; 195 } 196 pr_info("Unknown GUID: %pUl\n", guid); 197 return i; 198 } 199 200 /** 201 * vmbus_prep_negotiate_resp() - Create default response for Negotiate message 202 * @icmsghdrp: Pointer to msg header structure 203 * @buf: Raw buffer channel data 204 * @fw_version: The framework versions we can support. 205 * @fw_vercnt: The size of @fw_version. 206 * @srv_version: The service versions we can support. 207 * @srv_vercnt: The size of @srv_version. 208 * @nego_fw_version: The selected framework version. 209 * @nego_srv_version: The selected service version. 210 * 211 * Note: Versions are given in decreasing order. 212 * 213 * Set up and fill in default negotiate response message. 214 * Mainly used by Hyper-V drivers. 215 */ 216 bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, 217 u8 *buf, const int *fw_version, int fw_vercnt, 218 const int *srv_version, int srv_vercnt, 219 int *nego_fw_version, int *nego_srv_version) 220 { 221 int icframe_major, icframe_minor; 222 int icmsg_major, icmsg_minor; 223 int fw_major, fw_minor; 224 int srv_major, srv_minor; 225 int i, j; 226 bool found_match = false; 227 struct icmsg_negotiate *negop; 228 229 icmsghdrp->icmsgsize = 0x10; 230 negop = (struct icmsg_negotiate *)&buf[ 231 sizeof(struct vmbuspipe_hdr) + 232 sizeof(struct icmsg_hdr)]; 233 234 icframe_major = negop->icframe_vercnt; 235 icframe_minor = 0; 236 237 icmsg_major = negop->icmsg_vercnt; 238 icmsg_minor = 0; 239 240 /* 241 * Select the framework version number we will 242 * support. 243 */ 244 245 for (i = 0; i < fw_vercnt; i++) { 246 fw_major = (fw_version[i] >> 16); 247 fw_minor = (fw_version[i] & 0xFFFF); 248 249 for (j = 0; j < negop->icframe_vercnt; j++) { 250 if ((negop->icversion_data[j].major == fw_major) && 251 (negop->icversion_data[j].minor == fw_minor)) { 252 icframe_major = negop->icversion_data[j].major; 253 icframe_minor = negop->icversion_data[j].minor; 254 found_match = true; 255 break; 256 } 257 } 258 259 if (found_match) 260 break; 261 } 262 263 if (!found_match) 264 goto fw_error; 265 266 found_match = false; 267 268 for (i = 0; i < srv_vercnt; i++) { 269 srv_major = (srv_version[i] >> 16); 270 srv_minor = (srv_version[i] & 0xFFFF); 271 272 for (j = negop->icframe_vercnt; 273 (j < negop->icframe_vercnt + negop->icmsg_vercnt); 274 j++) { 275 276 if ((negop->icversion_data[j].major == srv_major) && 277 (negop->icversion_data[j].minor == srv_minor)) { 278 279 icmsg_major = negop->icversion_data[j].major; 280 icmsg_minor = negop->icversion_data[j].minor; 281 found_match = true; 282 break; 283 } 284 } 285 286 if (found_match) 287 break; 288 } 289 290 /* 291 * Respond with the framework and service 292 * version numbers we can support. 293 */ 294 295 fw_error: 296 if (!found_match) { 297 negop->icframe_vercnt = 0; 298 negop->icmsg_vercnt = 0; 299 } else { 300 negop->icframe_vercnt = 1; 301 negop->icmsg_vercnt = 1; 302 } 303 304 if (nego_fw_version) 305 *nego_fw_version = (icframe_major << 16) | icframe_minor; 306 307 if (nego_srv_version) 308 *nego_srv_version = (icmsg_major << 16) | icmsg_minor; 309 310 negop->icversion_data[0].major = icframe_major; 311 negop->icversion_data[0].minor = icframe_minor; 312 negop->icversion_data[1].major = icmsg_major; 313 negop->icversion_data[1].minor = icmsg_minor; 314 return found_match; 315 } 316 317 EXPORT_SYMBOL_GPL(vmbus_prep_negotiate_resp); 318 319 /* 320 * alloc_channel - Allocate and initialize a vmbus channel object 321 */ 322 static struct vmbus_channel *alloc_channel(void) 323 { 324 struct vmbus_channel *channel; 325 326 channel = kzalloc(sizeof(*channel), GFP_ATOMIC); 327 if (!channel) 328 return NULL; 329 330 spin_lock_init(&channel->lock); 331 init_completion(&channel->rescind_event); 332 333 INIT_LIST_HEAD(&channel->sc_list); 334 INIT_LIST_HEAD(&channel->percpu_list); 335 336 tasklet_init(&channel->callback_event, 337 vmbus_on_event, (unsigned long)channel); 338 339 return channel; 340 } 341 342 /* 343 * free_channel - Release the resources used by the vmbus channel object 344 */ 345 static void free_channel(struct vmbus_channel *channel) 346 { 347 tasklet_kill(&channel->callback_event); 348 349 kobject_put(&channel->kobj); 350 } 351 352 static void percpu_channel_enq(void *arg) 353 { 354 struct vmbus_channel *channel = arg; 355 struct hv_per_cpu_context *hv_cpu 356 = this_cpu_ptr(hv_context.cpu_context); 357 358 list_add_tail_rcu(&channel->percpu_list, &hv_cpu->chan_list); 359 } 360 361 static void percpu_channel_deq(void *arg) 362 { 363 struct vmbus_channel *channel = arg; 364 365 list_del_rcu(&channel->percpu_list); 366 } 367 368 369 static void vmbus_release_relid(u32 relid) 370 { 371 struct vmbus_channel_relid_released msg; 372 int ret; 373 374 memset(&msg, 0, sizeof(struct vmbus_channel_relid_released)); 375 msg.child_relid = relid; 376 msg.header.msgtype = CHANNELMSG_RELID_RELEASED; 377 ret = vmbus_post_msg(&msg, sizeof(struct vmbus_channel_relid_released), 378 true); 379 380 trace_vmbus_release_relid(&msg, ret); 381 } 382 383 void hv_process_channel_removal(struct vmbus_channel *channel) 384 { 385 struct vmbus_channel *primary_channel; 386 unsigned long flags; 387 388 BUG_ON(!mutex_is_locked(&vmbus_connection.channel_mutex)); 389 BUG_ON(!channel->rescind); 390 391 if (channel->target_cpu != get_cpu()) { 392 put_cpu(); 393 smp_call_function_single(channel->target_cpu, 394 percpu_channel_deq, channel, true); 395 } else { 396 percpu_channel_deq(channel); 397 put_cpu(); 398 } 399 400 if (channel->primary_channel == NULL) { 401 list_del(&channel->listentry); 402 403 primary_channel = channel; 404 } else { 405 primary_channel = channel->primary_channel; 406 spin_lock_irqsave(&primary_channel->lock, flags); 407 list_del(&channel->sc_list); 408 primary_channel->num_sc--; 409 spin_unlock_irqrestore(&primary_channel->lock, flags); 410 } 411 412 /* 413 * We need to free the bit for init_vp_index() to work in the case 414 * of sub-channel, when we reload drivers like hv_netvsc. 415 */ 416 if (channel->affinity_policy == HV_LOCALIZED) 417 cpumask_clear_cpu(channel->target_cpu, 418 &primary_channel->alloced_cpus_in_node); 419 420 vmbus_release_relid(channel->offermsg.child_relid); 421 422 free_channel(channel); 423 } 424 425 void vmbus_free_channels(void) 426 { 427 struct vmbus_channel *channel, *tmp; 428 429 list_for_each_entry_safe(channel, tmp, &vmbus_connection.chn_list, 430 listentry) { 431 /* hv_process_channel_removal() needs this */ 432 channel->rescind = true; 433 434 vmbus_device_unregister(channel->device_obj); 435 } 436 } 437 438 /* Note: the function can run concurrently for primary/sub channels. */ 439 static void vmbus_add_channel_work(struct work_struct *work) 440 { 441 struct vmbus_channel *newchannel = 442 container_of(work, struct vmbus_channel, add_channel_work); 443 struct vmbus_channel *primary_channel = newchannel->primary_channel; 444 unsigned long flags; 445 u16 dev_type; 446 int ret; 447 448 dev_type = hv_get_dev_type(newchannel); 449 450 init_vp_index(newchannel, dev_type); 451 452 if (newchannel->target_cpu != get_cpu()) { 453 put_cpu(); 454 smp_call_function_single(newchannel->target_cpu, 455 percpu_channel_enq, 456 newchannel, true); 457 } else { 458 percpu_channel_enq(newchannel); 459 put_cpu(); 460 } 461 462 /* 463 * This state is used to indicate a successful open 464 * so that when we do close the channel normally, we 465 * can cleanup properly. 466 */ 467 newchannel->state = CHANNEL_OPEN_STATE; 468 469 if (primary_channel != NULL) { 470 /* newchannel is a sub-channel. */ 471 struct hv_device *dev = primary_channel->device_obj; 472 473 if (vmbus_add_channel_kobj(dev, newchannel)) 474 goto err_deq_chan; 475 476 if (primary_channel->sc_creation_callback != NULL) 477 primary_channel->sc_creation_callback(newchannel); 478 479 newchannel->probe_done = true; 480 return; 481 } 482 483 /* 484 * Start the process of binding the primary channel to the driver 485 */ 486 newchannel->device_obj = vmbus_device_create( 487 &newchannel->offermsg.offer.if_type, 488 &newchannel->offermsg.offer.if_instance, 489 newchannel); 490 if (!newchannel->device_obj) 491 goto err_deq_chan; 492 493 newchannel->device_obj->device_id = dev_type; 494 /* 495 * Add the new device to the bus. This will kick off device-driver 496 * binding which eventually invokes the device driver's AddDevice() 497 * method. 498 */ 499 ret = vmbus_device_register(newchannel->device_obj); 500 501 if (ret != 0) { 502 pr_err("unable to add child device object (relid %d)\n", 503 newchannel->offermsg.child_relid); 504 kfree(newchannel->device_obj); 505 goto err_deq_chan; 506 } 507 508 newchannel->probe_done = true; 509 return; 510 511 err_deq_chan: 512 mutex_lock(&vmbus_connection.channel_mutex); 513 514 /* 515 * We need to set the flag, otherwise 516 * vmbus_onoffer_rescind() can be blocked. 517 */ 518 newchannel->probe_done = true; 519 520 if (primary_channel == NULL) { 521 list_del(&newchannel->listentry); 522 } else { 523 spin_lock_irqsave(&primary_channel->lock, flags); 524 list_del(&newchannel->sc_list); 525 spin_unlock_irqrestore(&primary_channel->lock, flags); 526 } 527 528 mutex_unlock(&vmbus_connection.channel_mutex); 529 530 if (newchannel->target_cpu != get_cpu()) { 531 put_cpu(); 532 smp_call_function_single(newchannel->target_cpu, 533 percpu_channel_deq, 534 newchannel, true); 535 } else { 536 percpu_channel_deq(newchannel); 537 put_cpu(); 538 } 539 540 vmbus_release_relid(newchannel->offermsg.child_relid); 541 542 free_channel(newchannel); 543 } 544 545 /* 546 * vmbus_process_offer - Process the offer by creating a channel/device 547 * associated with this offer 548 */ 549 static void vmbus_process_offer(struct vmbus_channel *newchannel) 550 { 551 struct vmbus_channel *channel; 552 struct workqueue_struct *wq; 553 unsigned long flags; 554 bool fnew = true; 555 556 mutex_lock(&vmbus_connection.channel_mutex); 557 558 /* 559 * Now that we have acquired the channel_mutex, 560 * we can release the potentially racing rescind thread. 561 */ 562 atomic_dec(&vmbus_connection.offer_in_progress); 563 564 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 565 if (!uuid_le_cmp(channel->offermsg.offer.if_type, 566 newchannel->offermsg.offer.if_type) && 567 !uuid_le_cmp(channel->offermsg.offer.if_instance, 568 newchannel->offermsg.offer.if_instance)) { 569 fnew = false; 570 break; 571 } 572 } 573 574 if (fnew) 575 list_add_tail(&newchannel->listentry, 576 &vmbus_connection.chn_list); 577 else { 578 /* 579 * Check to see if this is a valid sub-channel. 580 */ 581 if (newchannel->offermsg.offer.sub_channel_index == 0) { 582 mutex_unlock(&vmbus_connection.channel_mutex); 583 /* 584 * Don't call free_channel(), because newchannel->kobj 585 * is not initialized yet. 586 */ 587 kfree(newchannel); 588 WARN_ON_ONCE(1); 589 return; 590 } 591 /* 592 * Process the sub-channel. 593 */ 594 newchannel->primary_channel = channel; 595 spin_lock_irqsave(&channel->lock, flags); 596 list_add_tail(&newchannel->sc_list, &channel->sc_list); 597 spin_unlock_irqrestore(&channel->lock, flags); 598 } 599 600 mutex_unlock(&vmbus_connection.channel_mutex); 601 602 /* 603 * vmbus_process_offer() mustn't call channel->sc_creation_callback() 604 * directly for sub-channels, because sc_creation_callback() -> 605 * vmbus_open() may never get the host's response to the 606 * OPEN_CHANNEL message (the host may rescind a channel at any time, 607 * e.g. in the case of hot removing a NIC), and vmbus_onoffer_rescind() 608 * may not wake up the vmbus_open() as it's blocked due to a non-zero 609 * vmbus_connection.offer_in_progress, and finally we have a deadlock. 610 * 611 * The above is also true for primary channels, if the related device 612 * drivers use sync probing mode by default. 613 * 614 * And, usually the handling of primary channels and sub-channels can 615 * depend on each other, so we should offload them to different 616 * workqueues to avoid possible deadlock, e.g. in sync-probing mode, 617 * NIC1's netvsc_subchan_work() can race with NIC2's netvsc_probe() -> 618 * rtnl_lock(), and causes deadlock: the former gets the rtnl_lock 619 * and waits for all the sub-channels to appear, but the latter 620 * can't get the rtnl_lock and this blocks the handling of 621 * sub-channels. 622 */ 623 INIT_WORK(&newchannel->add_channel_work, vmbus_add_channel_work); 624 wq = fnew ? vmbus_connection.handle_primary_chan_wq : 625 vmbus_connection.handle_sub_chan_wq; 626 queue_work(wq, &newchannel->add_channel_work); 627 } 628 629 /* 630 * We use this state to statically distribute the channel interrupt load. 631 */ 632 static int next_numa_node_id; 633 /* 634 * init_vp_index() accesses global variables like next_numa_node_id, and 635 * it can run concurrently for primary channels and sub-channels: see 636 * vmbus_process_offer(), so we need the lock to protect the global 637 * variables. 638 */ 639 static DEFINE_SPINLOCK(bind_channel_to_cpu_lock); 640 641 /* 642 * Starting with Win8, we can statically distribute the incoming 643 * channel interrupt load by binding a channel to VCPU. 644 * We distribute the interrupt loads to one or more NUMA nodes based on 645 * the channel's affinity_policy. 646 * 647 * For pre-win8 hosts or non-performance critical channels we assign the 648 * first CPU in the first NUMA node. 649 */ 650 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type) 651 { 652 u32 cur_cpu; 653 bool perf_chn = vmbus_devs[dev_type].perf_device; 654 struct vmbus_channel *primary = channel->primary_channel; 655 int next_node; 656 cpumask_var_t available_mask; 657 struct cpumask *alloced_mask; 658 659 if ((vmbus_proto_version == VERSION_WS2008) || 660 (vmbus_proto_version == VERSION_WIN7) || (!perf_chn) || 661 !alloc_cpumask_var(&available_mask, GFP_KERNEL)) { 662 /* 663 * Prior to win8, all channel interrupts are 664 * delivered on cpu 0. 665 * Also if the channel is not a performance critical 666 * channel, bind it to cpu 0. 667 * In case alloc_cpumask_var() fails, bind it to cpu 0. 668 */ 669 channel->numa_node = 0; 670 channel->target_cpu = 0; 671 channel->target_vp = hv_cpu_number_to_vp_number(0); 672 return; 673 } 674 675 spin_lock(&bind_channel_to_cpu_lock); 676 677 /* 678 * Based on the channel affinity policy, we will assign the NUMA 679 * nodes. 680 */ 681 682 if ((channel->affinity_policy == HV_BALANCED) || (!primary)) { 683 while (true) { 684 next_node = next_numa_node_id++; 685 if (next_node == nr_node_ids) { 686 next_node = next_numa_node_id = 0; 687 continue; 688 } 689 if (cpumask_empty(cpumask_of_node(next_node))) 690 continue; 691 break; 692 } 693 channel->numa_node = next_node; 694 primary = channel; 695 } 696 alloced_mask = &hv_context.hv_numa_map[primary->numa_node]; 697 698 if (cpumask_weight(alloced_mask) == 699 cpumask_weight(cpumask_of_node(primary->numa_node))) { 700 /* 701 * We have cycled through all the CPUs in the node; 702 * reset the alloced map. 703 */ 704 cpumask_clear(alloced_mask); 705 } 706 707 cpumask_xor(available_mask, alloced_mask, 708 cpumask_of_node(primary->numa_node)); 709 710 cur_cpu = -1; 711 712 if (primary->affinity_policy == HV_LOCALIZED) { 713 /* 714 * Normally Hyper-V host doesn't create more subchannels 715 * than there are VCPUs on the node but it is possible when not 716 * all present VCPUs on the node are initialized by guest. 717 * Clear the alloced_cpus_in_node to start over. 718 */ 719 if (cpumask_equal(&primary->alloced_cpus_in_node, 720 cpumask_of_node(primary->numa_node))) 721 cpumask_clear(&primary->alloced_cpus_in_node); 722 } 723 724 while (true) { 725 cur_cpu = cpumask_next(cur_cpu, available_mask); 726 if (cur_cpu >= nr_cpu_ids) { 727 cur_cpu = -1; 728 cpumask_copy(available_mask, 729 cpumask_of_node(primary->numa_node)); 730 continue; 731 } 732 733 if (primary->affinity_policy == HV_LOCALIZED) { 734 /* 735 * NOTE: in the case of sub-channel, we clear the 736 * sub-channel related bit(s) in 737 * primary->alloced_cpus_in_node in 738 * hv_process_channel_removal(), so when we 739 * reload drivers like hv_netvsc in SMP guest, here 740 * we're able to re-allocate 741 * bit from primary->alloced_cpus_in_node. 742 */ 743 if (!cpumask_test_cpu(cur_cpu, 744 &primary->alloced_cpus_in_node)) { 745 cpumask_set_cpu(cur_cpu, 746 &primary->alloced_cpus_in_node); 747 cpumask_set_cpu(cur_cpu, alloced_mask); 748 break; 749 } 750 } else { 751 cpumask_set_cpu(cur_cpu, alloced_mask); 752 break; 753 } 754 } 755 756 channel->target_cpu = cur_cpu; 757 channel->target_vp = hv_cpu_number_to_vp_number(cur_cpu); 758 759 spin_unlock(&bind_channel_to_cpu_lock); 760 761 free_cpumask_var(available_mask); 762 } 763 764 static void vmbus_wait_for_unload(void) 765 { 766 int cpu; 767 void *page_addr; 768 struct hv_message *msg; 769 struct vmbus_channel_message_header *hdr; 770 u32 message_type; 771 772 /* 773 * CHANNELMSG_UNLOAD_RESPONSE is always delivered to the CPU which was 774 * used for initial contact or to CPU0 depending on host version. When 775 * we're crashing on a different CPU let's hope that IRQ handler on 776 * the cpu which receives CHANNELMSG_UNLOAD_RESPONSE is still 777 * functional and vmbus_unload_response() will complete 778 * vmbus_connection.unload_event. If not, the last thing we can do is 779 * read message pages for all CPUs directly. 780 */ 781 while (1) { 782 if (completion_done(&vmbus_connection.unload_event)) 783 break; 784 785 for_each_online_cpu(cpu) { 786 struct hv_per_cpu_context *hv_cpu 787 = per_cpu_ptr(hv_context.cpu_context, cpu); 788 789 page_addr = hv_cpu->synic_message_page; 790 msg = (struct hv_message *)page_addr 791 + VMBUS_MESSAGE_SINT; 792 793 message_type = READ_ONCE(msg->header.message_type); 794 if (message_type == HVMSG_NONE) 795 continue; 796 797 hdr = (struct vmbus_channel_message_header *) 798 msg->u.payload; 799 800 if (hdr->msgtype == CHANNELMSG_UNLOAD_RESPONSE) 801 complete(&vmbus_connection.unload_event); 802 803 vmbus_signal_eom(msg, message_type); 804 } 805 806 mdelay(10); 807 } 808 809 /* 810 * We're crashing and already got the UNLOAD_RESPONSE, cleanup all 811 * maybe-pending messages on all CPUs to be able to receive new 812 * messages after we reconnect. 813 */ 814 for_each_online_cpu(cpu) { 815 struct hv_per_cpu_context *hv_cpu 816 = per_cpu_ptr(hv_context.cpu_context, cpu); 817 818 page_addr = hv_cpu->synic_message_page; 819 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 820 msg->header.message_type = HVMSG_NONE; 821 } 822 } 823 824 /* 825 * vmbus_unload_response - Handler for the unload response. 826 */ 827 static void vmbus_unload_response(struct vmbus_channel_message_header *hdr) 828 { 829 /* 830 * This is a global event; just wakeup the waiting thread. 831 * Once we successfully unload, we can cleanup the monitor state. 832 */ 833 complete(&vmbus_connection.unload_event); 834 } 835 836 void vmbus_initiate_unload(bool crash) 837 { 838 struct vmbus_channel_message_header hdr; 839 840 /* Pre-Win2012R2 hosts don't support reconnect */ 841 if (vmbus_proto_version < VERSION_WIN8_1) 842 return; 843 844 init_completion(&vmbus_connection.unload_event); 845 memset(&hdr, 0, sizeof(struct vmbus_channel_message_header)); 846 hdr.msgtype = CHANNELMSG_UNLOAD; 847 vmbus_post_msg(&hdr, sizeof(struct vmbus_channel_message_header), 848 !crash); 849 850 /* 851 * vmbus_initiate_unload() is also called on crash and the crash can be 852 * happening in an interrupt context, where scheduling is impossible. 853 */ 854 if (!crash) 855 wait_for_completion(&vmbus_connection.unload_event); 856 else 857 vmbus_wait_for_unload(); 858 } 859 860 /* 861 * vmbus_onoffer - Handler for channel offers from vmbus in parent partition. 862 * 863 */ 864 static void vmbus_onoffer(struct vmbus_channel_message_header *hdr) 865 { 866 struct vmbus_channel_offer_channel *offer; 867 struct vmbus_channel *newchannel; 868 869 offer = (struct vmbus_channel_offer_channel *)hdr; 870 871 trace_vmbus_onoffer(offer); 872 873 /* Allocate the channel object and save this offer. */ 874 newchannel = alloc_channel(); 875 if (!newchannel) { 876 vmbus_release_relid(offer->child_relid); 877 atomic_dec(&vmbus_connection.offer_in_progress); 878 pr_err("Unable to allocate channel object\n"); 879 return; 880 } 881 882 /* 883 * Setup state for signalling the host. 884 */ 885 newchannel->sig_event = VMBUS_EVENT_CONNECTION_ID; 886 887 if (vmbus_proto_version != VERSION_WS2008) { 888 newchannel->is_dedicated_interrupt = 889 (offer->is_dedicated_interrupt != 0); 890 newchannel->sig_event = offer->connection_id; 891 } 892 893 memcpy(&newchannel->offermsg, offer, 894 sizeof(struct vmbus_channel_offer_channel)); 895 newchannel->monitor_grp = (u8)offer->monitorid / 32; 896 newchannel->monitor_bit = (u8)offer->monitorid % 32; 897 898 vmbus_process_offer(newchannel); 899 } 900 901 /* 902 * vmbus_onoffer_rescind - Rescind offer handler. 903 * 904 * We queue a work item to process this offer synchronously 905 */ 906 static void vmbus_onoffer_rescind(struct vmbus_channel_message_header *hdr) 907 { 908 struct vmbus_channel_rescind_offer *rescind; 909 struct vmbus_channel *channel; 910 struct device *dev; 911 912 rescind = (struct vmbus_channel_rescind_offer *)hdr; 913 914 trace_vmbus_onoffer_rescind(rescind); 915 916 /* 917 * The offer msg and the corresponding rescind msg 918 * from the host are guranteed to be ordered - 919 * offer comes in first and then the rescind. 920 * Since we process these events in work elements, 921 * and with preemption, we may end up processing 922 * the events out of order. Given that we handle these 923 * work elements on the same CPU, this is possible only 924 * in the case of preemption. In any case wait here 925 * until the offer processing has moved beyond the 926 * point where the channel is discoverable. 927 */ 928 929 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 930 /* 931 * We wait here until any channel offer is currently 932 * being processed. 933 */ 934 msleep(1); 935 } 936 937 mutex_lock(&vmbus_connection.channel_mutex); 938 channel = relid2channel(rescind->child_relid); 939 mutex_unlock(&vmbus_connection.channel_mutex); 940 941 if (channel == NULL) { 942 /* 943 * We failed in processing the offer message; 944 * we would have cleaned up the relid in that 945 * failure path. 946 */ 947 return; 948 } 949 950 /* 951 * Before setting channel->rescind in vmbus_rescind_cleanup(), we 952 * should make sure the channel callback is not running any more. 953 */ 954 vmbus_reset_channel_cb(channel); 955 956 /* 957 * Now wait for offer handling to complete. 958 */ 959 vmbus_rescind_cleanup(channel); 960 while (READ_ONCE(channel->probe_done) == false) { 961 /* 962 * We wait here until any channel offer is currently 963 * being processed. 964 */ 965 msleep(1); 966 } 967 968 /* 969 * At this point, the rescind handling can proceed safely. 970 */ 971 972 if (channel->device_obj) { 973 if (channel->chn_rescind_callback) { 974 channel->chn_rescind_callback(channel); 975 return; 976 } 977 /* 978 * We will have to unregister this device from the 979 * driver core. 980 */ 981 dev = get_device(&channel->device_obj->device); 982 if (dev) { 983 vmbus_device_unregister(channel->device_obj); 984 put_device(dev); 985 } 986 } 987 if (channel->primary_channel != NULL) { 988 /* 989 * Sub-channel is being rescinded. Following is the channel 990 * close sequence when initiated from the driveri (refer to 991 * vmbus_close() for details): 992 * 1. Close all sub-channels first 993 * 2. Then close the primary channel. 994 */ 995 mutex_lock(&vmbus_connection.channel_mutex); 996 if (channel->state == CHANNEL_OPEN_STATE) { 997 /* 998 * The channel is currently not open; 999 * it is safe for us to cleanup the channel. 1000 */ 1001 hv_process_channel_removal(channel); 1002 } else { 1003 complete(&channel->rescind_event); 1004 } 1005 mutex_unlock(&vmbus_connection.channel_mutex); 1006 } 1007 } 1008 1009 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel) 1010 { 1011 BUG_ON(!is_hvsock_channel(channel)); 1012 1013 /* We always get a rescind msg when a connection is closed. */ 1014 while (!READ_ONCE(channel->probe_done) || !READ_ONCE(channel->rescind)) 1015 msleep(1); 1016 1017 vmbus_device_unregister(channel->device_obj); 1018 } 1019 EXPORT_SYMBOL_GPL(vmbus_hvsock_device_unregister); 1020 1021 1022 /* 1023 * vmbus_onoffers_delivered - 1024 * This is invoked when all offers have been delivered. 1025 * 1026 * Nothing to do here. 1027 */ 1028 static void vmbus_onoffers_delivered( 1029 struct vmbus_channel_message_header *hdr) 1030 { 1031 } 1032 1033 /* 1034 * vmbus_onopen_result - Open result handler. 1035 * 1036 * This is invoked when we received a response to our channel open request. 1037 * Find the matching request, copy the response and signal the requesting 1038 * thread. 1039 */ 1040 static void vmbus_onopen_result(struct vmbus_channel_message_header *hdr) 1041 { 1042 struct vmbus_channel_open_result *result; 1043 struct vmbus_channel_msginfo *msginfo; 1044 struct vmbus_channel_message_header *requestheader; 1045 struct vmbus_channel_open_channel *openmsg; 1046 unsigned long flags; 1047 1048 result = (struct vmbus_channel_open_result *)hdr; 1049 1050 trace_vmbus_onopen_result(result); 1051 1052 /* 1053 * Find the open msg, copy the result and signal/unblock the wait event 1054 */ 1055 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1056 1057 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1058 msglistentry) { 1059 requestheader = 1060 (struct vmbus_channel_message_header *)msginfo->msg; 1061 1062 if (requestheader->msgtype == CHANNELMSG_OPENCHANNEL) { 1063 openmsg = 1064 (struct vmbus_channel_open_channel *)msginfo->msg; 1065 if (openmsg->child_relid == result->child_relid && 1066 openmsg->openid == result->openid) { 1067 memcpy(&msginfo->response.open_result, 1068 result, 1069 sizeof( 1070 struct vmbus_channel_open_result)); 1071 complete(&msginfo->waitevent); 1072 break; 1073 } 1074 } 1075 } 1076 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1077 } 1078 1079 /* 1080 * vmbus_ongpadl_created - GPADL created handler. 1081 * 1082 * This is invoked when we received a response to our gpadl create request. 1083 * Find the matching request, copy the response and signal the requesting 1084 * thread. 1085 */ 1086 static void vmbus_ongpadl_created(struct vmbus_channel_message_header *hdr) 1087 { 1088 struct vmbus_channel_gpadl_created *gpadlcreated; 1089 struct vmbus_channel_msginfo *msginfo; 1090 struct vmbus_channel_message_header *requestheader; 1091 struct vmbus_channel_gpadl_header *gpadlheader; 1092 unsigned long flags; 1093 1094 gpadlcreated = (struct vmbus_channel_gpadl_created *)hdr; 1095 1096 trace_vmbus_ongpadl_created(gpadlcreated); 1097 1098 /* 1099 * Find the establish msg, copy the result and signal/unblock the wait 1100 * event 1101 */ 1102 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1103 1104 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1105 msglistentry) { 1106 requestheader = 1107 (struct vmbus_channel_message_header *)msginfo->msg; 1108 1109 if (requestheader->msgtype == CHANNELMSG_GPADL_HEADER) { 1110 gpadlheader = 1111 (struct vmbus_channel_gpadl_header *)requestheader; 1112 1113 if ((gpadlcreated->child_relid == 1114 gpadlheader->child_relid) && 1115 (gpadlcreated->gpadl == gpadlheader->gpadl)) { 1116 memcpy(&msginfo->response.gpadl_created, 1117 gpadlcreated, 1118 sizeof( 1119 struct vmbus_channel_gpadl_created)); 1120 complete(&msginfo->waitevent); 1121 break; 1122 } 1123 } 1124 } 1125 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1126 } 1127 1128 /* 1129 * vmbus_ongpadl_torndown - GPADL torndown handler. 1130 * 1131 * This is invoked when we received a response to our gpadl teardown request. 1132 * Find the matching request, copy the response and signal the requesting 1133 * thread. 1134 */ 1135 static void vmbus_ongpadl_torndown( 1136 struct vmbus_channel_message_header *hdr) 1137 { 1138 struct vmbus_channel_gpadl_torndown *gpadl_torndown; 1139 struct vmbus_channel_msginfo *msginfo; 1140 struct vmbus_channel_message_header *requestheader; 1141 struct vmbus_channel_gpadl_teardown *gpadl_teardown; 1142 unsigned long flags; 1143 1144 gpadl_torndown = (struct vmbus_channel_gpadl_torndown *)hdr; 1145 1146 trace_vmbus_ongpadl_torndown(gpadl_torndown); 1147 1148 /* 1149 * Find the open msg, copy the result and signal/unblock the wait event 1150 */ 1151 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1152 1153 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1154 msglistentry) { 1155 requestheader = 1156 (struct vmbus_channel_message_header *)msginfo->msg; 1157 1158 if (requestheader->msgtype == CHANNELMSG_GPADL_TEARDOWN) { 1159 gpadl_teardown = 1160 (struct vmbus_channel_gpadl_teardown *)requestheader; 1161 1162 if (gpadl_torndown->gpadl == gpadl_teardown->gpadl) { 1163 memcpy(&msginfo->response.gpadl_torndown, 1164 gpadl_torndown, 1165 sizeof( 1166 struct vmbus_channel_gpadl_torndown)); 1167 complete(&msginfo->waitevent); 1168 break; 1169 } 1170 } 1171 } 1172 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1173 } 1174 1175 /* 1176 * vmbus_onversion_response - Version response handler 1177 * 1178 * This is invoked when we received a response to our initiate contact request. 1179 * Find the matching request, copy the response and signal the requesting 1180 * thread. 1181 */ 1182 static void vmbus_onversion_response( 1183 struct vmbus_channel_message_header *hdr) 1184 { 1185 struct vmbus_channel_msginfo *msginfo; 1186 struct vmbus_channel_message_header *requestheader; 1187 struct vmbus_channel_version_response *version_response; 1188 unsigned long flags; 1189 1190 version_response = (struct vmbus_channel_version_response *)hdr; 1191 1192 trace_vmbus_onversion_response(version_response); 1193 1194 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1195 1196 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1197 msglistentry) { 1198 requestheader = 1199 (struct vmbus_channel_message_header *)msginfo->msg; 1200 1201 if (requestheader->msgtype == 1202 CHANNELMSG_INITIATE_CONTACT) { 1203 memcpy(&msginfo->response.version_response, 1204 version_response, 1205 sizeof(struct vmbus_channel_version_response)); 1206 complete(&msginfo->waitevent); 1207 } 1208 } 1209 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1210 } 1211 1212 /* Channel message dispatch table */ 1213 const struct vmbus_channel_message_table_entry 1214 channel_message_table[CHANNELMSG_COUNT] = { 1215 { CHANNELMSG_INVALID, 0, NULL }, 1216 { CHANNELMSG_OFFERCHANNEL, 0, vmbus_onoffer }, 1217 { CHANNELMSG_RESCIND_CHANNELOFFER, 0, vmbus_onoffer_rescind }, 1218 { CHANNELMSG_REQUESTOFFERS, 0, NULL }, 1219 { CHANNELMSG_ALLOFFERS_DELIVERED, 1, vmbus_onoffers_delivered }, 1220 { CHANNELMSG_OPENCHANNEL, 0, NULL }, 1221 { CHANNELMSG_OPENCHANNEL_RESULT, 1, vmbus_onopen_result }, 1222 { CHANNELMSG_CLOSECHANNEL, 0, NULL }, 1223 { CHANNELMSG_GPADL_HEADER, 0, NULL }, 1224 { CHANNELMSG_GPADL_BODY, 0, NULL }, 1225 { CHANNELMSG_GPADL_CREATED, 1, vmbus_ongpadl_created }, 1226 { CHANNELMSG_GPADL_TEARDOWN, 0, NULL }, 1227 { CHANNELMSG_GPADL_TORNDOWN, 1, vmbus_ongpadl_torndown }, 1228 { CHANNELMSG_RELID_RELEASED, 0, NULL }, 1229 { CHANNELMSG_INITIATE_CONTACT, 0, NULL }, 1230 { CHANNELMSG_VERSION_RESPONSE, 1, vmbus_onversion_response }, 1231 { CHANNELMSG_UNLOAD, 0, NULL }, 1232 { CHANNELMSG_UNLOAD_RESPONSE, 1, vmbus_unload_response }, 1233 { CHANNELMSG_18, 0, NULL }, 1234 { CHANNELMSG_19, 0, NULL }, 1235 { CHANNELMSG_20, 0, NULL }, 1236 { CHANNELMSG_TL_CONNECT_REQUEST, 0, NULL }, 1237 }; 1238 1239 /* 1240 * vmbus_onmessage - Handler for channel protocol messages. 1241 * 1242 * This is invoked in the vmbus worker thread context. 1243 */ 1244 void vmbus_onmessage(void *context) 1245 { 1246 struct hv_message *msg = context; 1247 struct vmbus_channel_message_header *hdr; 1248 int size; 1249 1250 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 1251 size = msg->header.payload_size; 1252 1253 trace_vmbus_on_message(hdr); 1254 1255 if (hdr->msgtype >= CHANNELMSG_COUNT) { 1256 pr_err("Received invalid channel message type %d size %d\n", 1257 hdr->msgtype, size); 1258 print_hex_dump_bytes("", DUMP_PREFIX_NONE, 1259 (unsigned char *)msg->u.payload, size); 1260 return; 1261 } 1262 1263 if (channel_message_table[hdr->msgtype].message_handler) 1264 channel_message_table[hdr->msgtype].message_handler(hdr); 1265 else 1266 pr_err("Unhandled channel message type %d\n", hdr->msgtype); 1267 } 1268 1269 /* 1270 * vmbus_request_offers - Send a request to get all our pending offers. 1271 */ 1272 int vmbus_request_offers(void) 1273 { 1274 struct vmbus_channel_message_header *msg; 1275 struct vmbus_channel_msginfo *msginfo; 1276 int ret; 1277 1278 msginfo = kmalloc(sizeof(*msginfo) + 1279 sizeof(struct vmbus_channel_message_header), 1280 GFP_KERNEL); 1281 if (!msginfo) 1282 return -ENOMEM; 1283 1284 msg = (struct vmbus_channel_message_header *)msginfo->msg; 1285 1286 msg->msgtype = CHANNELMSG_REQUESTOFFERS; 1287 1288 ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_message_header), 1289 true); 1290 1291 trace_vmbus_request_offers(ret); 1292 1293 if (ret != 0) { 1294 pr_err("Unable to request offers - %d\n", ret); 1295 1296 goto cleanup; 1297 } 1298 1299 cleanup: 1300 kfree(msginfo); 1301 1302 return ret; 1303 } 1304 1305 /* 1306 * Retrieve the (sub) channel on which to send an outgoing request. 1307 * When a primary channel has multiple sub-channels, we try to 1308 * distribute the load equally amongst all available channels. 1309 */ 1310 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary) 1311 { 1312 struct list_head *cur, *tmp; 1313 int cur_cpu; 1314 struct vmbus_channel *cur_channel; 1315 struct vmbus_channel *outgoing_channel = primary; 1316 int next_channel; 1317 int i = 1; 1318 1319 if (list_empty(&primary->sc_list)) 1320 return outgoing_channel; 1321 1322 next_channel = primary->next_oc++; 1323 1324 if (next_channel > (primary->num_sc)) { 1325 primary->next_oc = 0; 1326 return outgoing_channel; 1327 } 1328 1329 cur_cpu = hv_cpu_number_to_vp_number(smp_processor_id()); 1330 list_for_each_safe(cur, tmp, &primary->sc_list) { 1331 cur_channel = list_entry(cur, struct vmbus_channel, sc_list); 1332 if (cur_channel->state != CHANNEL_OPENED_STATE) 1333 continue; 1334 1335 if (cur_channel->target_vp == cur_cpu) 1336 return cur_channel; 1337 1338 if (i == next_channel) 1339 return cur_channel; 1340 1341 i++; 1342 } 1343 1344 return outgoing_channel; 1345 } 1346 EXPORT_SYMBOL_GPL(vmbus_get_outgoing_channel); 1347 1348 static void invoke_sc_cb(struct vmbus_channel *primary_channel) 1349 { 1350 struct list_head *cur, *tmp; 1351 struct vmbus_channel *cur_channel; 1352 1353 if (primary_channel->sc_creation_callback == NULL) 1354 return; 1355 1356 list_for_each_safe(cur, tmp, &primary_channel->sc_list) { 1357 cur_channel = list_entry(cur, struct vmbus_channel, sc_list); 1358 1359 primary_channel->sc_creation_callback(cur_channel); 1360 } 1361 } 1362 1363 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1364 void (*sc_cr_cb)(struct vmbus_channel *new_sc)) 1365 { 1366 primary_channel->sc_creation_callback = sc_cr_cb; 1367 } 1368 EXPORT_SYMBOL_GPL(vmbus_set_sc_create_callback); 1369 1370 bool vmbus_are_subchannels_present(struct vmbus_channel *primary) 1371 { 1372 bool ret; 1373 1374 ret = !list_empty(&primary->sc_list); 1375 1376 if (ret) { 1377 /* 1378 * Invoke the callback on sub-channel creation. 1379 * This will present a uniform interface to the 1380 * clients. 1381 */ 1382 invoke_sc_cb(primary); 1383 } 1384 1385 return ret; 1386 } 1387 EXPORT_SYMBOL_GPL(vmbus_are_subchannels_present); 1388 1389 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1390 void (*chn_rescind_cb)(struct vmbus_channel *)) 1391 { 1392 channel->chn_rescind_callback = chn_rescind_cb; 1393 } 1394 EXPORT_SYMBOL_GPL(vmbus_set_chn_rescind_callback); 1395