1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/kernel.h> 12 #include <linux/interrupt.h> 13 #include <linux/sched.h> 14 #include <linux/wait.h> 15 #include <linux/mm.h> 16 #include <linux/slab.h> 17 #include <linux/list.h> 18 #include <linux/module.h> 19 #include <linux/completion.h> 20 #include <linux/delay.h> 21 #include <linux/hyperv.h> 22 #include <asm/mshyperv.h> 23 24 #include "hyperv_vmbus.h" 25 26 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type); 27 28 static const struct vmbus_device vmbus_devs[] = { 29 /* IDE */ 30 { .dev_type = HV_IDE, 31 HV_IDE_GUID, 32 .perf_device = true, 33 }, 34 35 /* SCSI */ 36 { .dev_type = HV_SCSI, 37 HV_SCSI_GUID, 38 .perf_device = true, 39 }, 40 41 /* Fibre Channel */ 42 { .dev_type = HV_FC, 43 HV_SYNTHFC_GUID, 44 .perf_device = true, 45 }, 46 47 /* Synthetic NIC */ 48 { .dev_type = HV_NIC, 49 HV_NIC_GUID, 50 .perf_device = true, 51 }, 52 53 /* Network Direct */ 54 { .dev_type = HV_ND, 55 HV_ND_GUID, 56 .perf_device = true, 57 }, 58 59 /* PCIE */ 60 { .dev_type = HV_PCIE, 61 HV_PCIE_GUID, 62 .perf_device = false, 63 }, 64 65 /* Synthetic Frame Buffer */ 66 { .dev_type = HV_FB, 67 HV_SYNTHVID_GUID, 68 .perf_device = false, 69 }, 70 71 /* Synthetic Keyboard */ 72 { .dev_type = HV_KBD, 73 HV_KBD_GUID, 74 .perf_device = false, 75 }, 76 77 /* Synthetic MOUSE */ 78 { .dev_type = HV_MOUSE, 79 HV_MOUSE_GUID, 80 .perf_device = false, 81 }, 82 83 /* KVP */ 84 { .dev_type = HV_KVP, 85 HV_KVP_GUID, 86 .perf_device = false, 87 }, 88 89 /* Time Synch */ 90 { .dev_type = HV_TS, 91 HV_TS_GUID, 92 .perf_device = false, 93 }, 94 95 /* Heartbeat */ 96 { .dev_type = HV_HB, 97 HV_HEART_BEAT_GUID, 98 .perf_device = false, 99 }, 100 101 /* Shutdown */ 102 { .dev_type = HV_SHUTDOWN, 103 HV_SHUTDOWN_GUID, 104 .perf_device = false, 105 }, 106 107 /* File copy */ 108 { .dev_type = HV_FCOPY, 109 HV_FCOPY_GUID, 110 .perf_device = false, 111 }, 112 113 /* Backup */ 114 { .dev_type = HV_BACKUP, 115 HV_VSS_GUID, 116 .perf_device = false, 117 }, 118 119 /* Dynamic Memory */ 120 { .dev_type = HV_DM, 121 HV_DM_GUID, 122 .perf_device = false, 123 }, 124 125 /* Unknown GUID */ 126 { .dev_type = HV_UNKNOWN, 127 .perf_device = false, 128 }, 129 }; 130 131 static const struct { 132 guid_t guid; 133 } vmbus_unsupported_devs[] = { 134 { HV_AVMA1_GUID }, 135 { HV_AVMA2_GUID }, 136 { HV_RDV_GUID }, 137 }; 138 139 /* 140 * The rescinded channel may be blocked waiting for a response from the host; 141 * take care of that. 142 */ 143 static void vmbus_rescind_cleanup(struct vmbus_channel *channel) 144 { 145 struct vmbus_channel_msginfo *msginfo; 146 unsigned long flags; 147 148 149 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 150 channel->rescind = true; 151 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 152 msglistentry) { 153 154 if (msginfo->waiting_channel == channel) { 155 complete(&msginfo->waitevent); 156 break; 157 } 158 } 159 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 160 } 161 162 static bool is_unsupported_vmbus_devs(const guid_t *guid) 163 { 164 int i; 165 166 for (i = 0; i < ARRAY_SIZE(vmbus_unsupported_devs); i++) 167 if (guid_equal(guid, &vmbus_unsupported_devs[i].guid)) 168 return true; 169 return false; 170 } 171 172 static u16 hv_get_dev_type(const struct vmbus_channel *channel) 173 { 174 const guid_t *guid = &channel->offermsg.offer.if_type; 175 u16 i; 176 177 if (is_hvsock_channel(channel) || is_unsupported_vmbus_devs(guid)) 178 return HV_UNKNOWN; 179 180 for (i = HV_IDE; i < HV_UNKNOWN; i++) { 181 if (guid_equal(guid, &vmbus_devs[i].guid)) 182 return i; 183 } 184 pr_info("Unknown GUID: %pUl\n", guid); 185 return i; 186 } 187 188 /** 189 * vmbus_prep_negotiate_resp() - Create default response for Negotiate message 190 * @icmsghdrp: Pointer to msg header structure 191 * @buf: Raw buffer channel data 192 * @fw_version: The framework versions we can support. 193 * @fw_vercnt: The size of @fw_version. 194 * @srv_version: The service versions we can support. 195 * @srv_vercnt: The size of @srv_version. 196 * @nego_fw_version: The selected framework version. 197 * @nego_srv_version: The selected service version. 198 * 199 * Note: Versions are given in decreasing order. 200 * 201 * Set up and fill in default negotiate response message. 202 * Mainly used by Hyper-V drivers. 203 */ 204 bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, 205 u8 *buf, const int *fw_version, int fw_vercnt, 206 const int *srv_version, int srv_vercnt, 207 int *nego_fw_version, int *nego_srv_version) 208 { 209 int icframe_major, icframe_minor; 210 int icmsg_major, icmsg_minor; 211 int fw_major, fw_minor; 212 int srv_major, srv_minor; 213 int i, j; 214 bool found_match = false; 215 struct icmsg_negotiate *negop; 216 217 icmsghdrp->icmsgsize = 0x10; 218 negop = (struct icmsg_negotiate *)&buf[ 219 sizeof(struct vmbuspipe_hdr) + 220 sizeof(struct icmsg_hdr)]; 221 222 icframe_major = negop->icframe_vercnt; 223 icframe_minor = 0; 224 225 icmsg_major = negop->icmsg_vercnt; 226 icmsg_minor = 0; 227 228 /* 229 * Select the framework version number we will 230 * support. 231 */ 232 233 for (i = 0; i < fw_vercnt; i++) { 234 fw_major = (fw_version[i] >> 16); 235 fw_minor = (fw_version[i] & 0xFFFF); 236 237 for (j = 0; j < negop->icframe_vercnt; j++) { 238 if ((negop->icversion_data[j].major == fw_major) && 239 (negop->icversion_data[j].minor == fw_minor)) { 240 icframe_major = negop->icversion_data[j].major; 241 icframe_minor = negop->icversion_data[j].minor; 242 found_match = true; 243 break; 244 } 245 } 246 247 if (found_match) 248 break; 249 } 250 251 if (!found_match) 252 goto fw_error; 253 254 found_match = false; 255 256 for (i = 0; i < srv_vercnt; i++) { 257 srv_major = (srv_version[i] >> 16); 258 srv_minor = (srv_version[i] & 0xFFFF); 259 260 for (j = negop->icframe_vercnt; 261 (j < negop->icframe_vercnt + negop->icmsg_vercnt); 262 j++) { 263 264 if ((negop->icversion_data[j].major == srv_major) && 265 (negop->icversion_data[j].minor == srv_minor)) { 266 267 icmsg_major = negop->icversion_data[j].major; 268 icmsg_minor = negop->icversion_data[j].minor; 269 found_match = true; 270 break; 271 } 272 } 273 274 if (found_match) 275 break; 276 } 277 278 /* 279 * Respond with the framework and service 280 * version numbers we can support. 281 */ 282 283 fw_error: 284 if (!found_match) { 285 negop->icframe_vercnt = 0; 286 negop->icmsg_vercnt = 0; 287 } else { 288 negop->icframe_vercnt = 1; 289 negop->icmsg_vercnt = 1; 290 } 291 292 if (nego_fw_version) 293 *nego_fw_version = (icframe_major << 16) | icframe_minor; 294 295 if (nego_srv_version) 296 *nego_srv_version = (icmsg_major << 16) | icmsg_minor; 297 298 negop->icversion_data[0].major = icframe_major; 299 negop->icversion_data[0].minor = icframe_minor; 300 negop->icversion_data[1].major = icmsg_major; 301 negop->icversion_data[1].minor = icmsg_minor; 302 return found_match; 303 } 304 305 EXPORT_SYMBOL_GPL(vmbus_prep_negotiate_resp); 306 307 /* 308 * alloc_channel - Allocate and initialize a vmbus channel object 309 */ 310 static struct vmbus_channel *alloc_channel(void) 311 { 312 struct vmbus_channel *channel; 313 314 channel = kzalloc(sizeof(*channel), GFP_ATOMIC); 315 if (!channel) 316 return NULL; 317 318 spin_lock_init(&channel->lock); 319 init_completion(&channel->rescind_event); 320 321 INIT_LIST_HEAD(&channel->sc_list); 322 INIT_LIST_HEAD(&channel->percpu_list); 323 324 tasklet_init(&channel->callback_event, 325 vmbus_on_event, (unsigned long)channel); 326 327 hv_ringbuffer_pre_init(channel); 328 329 return channel; 330 } 331 332 /* 333 * free_channel - Release the resources used by the vmbus channel object 334 */ 335 static void free_channel(struct vmbus_channel *channel) 336 { 337 tasklet_kill(&channel->callback_event); 338 vmbus_remove_channel_attr_group(channel); 339 340 kobject_put(&channel->kobj); 341 } 342 343 static void percpu_channel_enq(void *arg) 344 { 345 struct vmbus_channel *channel = arg; 346 struct hv_per_cpu_context *hv_cpu 347 = this_cpu_ptr(hv_context.cpu_context); 348 349 list_add_tail_rcu(&channel->percpu_list, &hv_cpu->chan_list); 350 } 351 352 static void percpu_channel_deq(void *arg) 353 { 354 struct vmbus_channel *channel = arg; 355 356 list_del_rcu(&channel->percpu_list); 357 } 358 359 360 static void vmbus_release_relid(u32 relid) 361 { 362 struct vmbus_channel_relid_released msg; 363 int ret; 364 365 memset(&msg, 0, sizeof(struct vmbus_channel_relid_released)); 366 msg.child_relid = relid; 367 msg.header.msgtype = CHANNELMSG_RELID_RELEASED; 368 ret = vmbus_post_msg(&msg, sizeof(struct vmbus_channel_relid_released), 369 true); 370 371 trace_vmbus_release_relid(&msg, ret); 372 } 373 374 void hv_process_channel_removal(struct vmbus_channel *channel) 375 { 376 struct vmbus_channel *primary_channel; 377 unsigned long flags; 378 379 BUG_ON(!mutex_is_locked(&vmbus_connection.channel_mutex)); 380 BUG_ON(!channel->rescind); 381 382 if (channel->target_cpu != get_cpu()) { 383 put_cpu(); 384 smp_call_function_single(channel->target_cpu, 385 percpu_channel_deq, channel, true); 386 } else { 387 percpu_channel_deq(channel); 388 put_cpu(); 389 } 390 391 if (channel->primary_channel == NULL) { 392 list_del(&channel->listentry); 393 394 primary_channel = channel; 395 } else { 396 primary_channel = channel->primary_channel; 397 spin_lock_irqsave(&primary_channel->lock, flags); 398 list_del(&channel->sc_list); 399 spin_unlock_irqrestore(&primary_channel->lock, flags); 400 } 401 402 /* 403 * We need to free the bit for init_vp_index() to work in the case 404 * of sub-channel, when we reload drivers like hv_netvsc. 405 */ 406 if (channel->affinity_policy == HV_LOCALIZED) 407 cpumask_clear_cpu(channel->target_cpu, 408 &primary_channel->alloced_cpus_in_node); 409 410 vmbus_release_relid(channel->offermsg.child_relid); 411 412 free_channel(channel); 413 } 414 415 void vmbus_free_channels(void) 416 { 417 struct vmbus_channel *channel, *tmp; 418 419 list_for_each_entry_safe(channel, tmp, &vmbus_connection.chn_list, 420 listentry) { 421 /* hv_process_channel_removal() needs this */ 422 channel->rescind = true; 423 424 vmbus_device_unregister(channel->device_obj); 425 } 426 } 427 428 /* Note: the function can run concurrently for primary/sub channels. */ 429 static void vmbus_add_channel_work(struct work_struct *work) 430 { 431 struct vmbus_channel *newchannel = 432 container_of(work, struct vmbus_channel, add_channel_work); 433 struct vmbus_channel *primary_channel = newchannel->primary_channel; 434 unsigned long flags; 435 u16 dev_type; 436 int ret; 437 438 dev_type = hv_get_dev_type(newchannel); 439 440 init_vp_index(newchannel, dev_type); 441 442 if (newchannel->target_cpu != get_cpu()) { 443 put_cpu(); 444 smp_call_function_single(newchannel->target_cpu, 445 percpu_channel_enq, 446 newchannel, true); 447 } else { 448 percpu_channel_enq(newchannel); 449 put_cpu(); 450 } 451 452 /* 453 * This state is used to indicate a successful open 454 * so that when we do close the channel normally, we 455 * can cleanup properly. 456 */ 457 newchannel->state = CHANNEL_OPEN_STATE; 458 459 if (primary_channel != NULL) { 460 /* newchannel is a sub-channel. */ 461 struct hv_device *dev = primary_channel->device_obj; 462 463 if (vmbus_add_channel_kobj(dev, newchannel)) 464 goto err_deq_chan; 465 466 if (primary_channel->sc_creation_callback != NULL) 467 primary_channel->sc_creation_callback(newchannel); 468 469 newchannel->probe_done = true; 470 return; 471 } 472 473 /* 474 * Start the process of binding the primary channel to the driver 475 */ 476 newchannel->device_obj = vmbus_device_create( 477 &newchannel->offermsg.offer.if_type, 478 &newchannel->offermsg.offer.if_instance, 479 newchannel); 480 if (!newchannel->device_obj) 481 goto err_deq_chan; 482 483 newchannel->device_obj->device_id = dev_type; 484 /* 485 * Add the new device to the bus. This will kick off device-driver 486 * binding which eventually invokes the device driver's AddDevice() 487 * method. 488 */ 489 ret = vmbus_device_register(newchannel->device_obj); 490 491 if (ret != 0) { 492 pr_err("unable to add child device object (relid %d)\n", 493 newchannel->offermsg.child_relid); 494 kfree(newchannel->device_obj); 495 goto err_deq_chan; 496 } 497 498 newchannel->probe_done = true; 499 return; 500 501 err_deq_chan: 502 mutex_lock(&vmbus_connection.channel_mutex); 503 504 /* 505 * We need to set the flag, otherwise 506 * vmbus_onoffer_rescind() can be blocked. 507 */ 508 newchannel->probe_done = true; 509 510 if (primary_channel == NULL) { 511 list_del(&newchannel->listentry); 512 } else { 513 spin_lock_irqsave(&primary_channel->lock, flags); 514 list_del(&newchannel->sc_list); 515 spin_unlock_irqrestore(&primary_channel->lock, flags); 516 } 517 518 mutex_unlock(&vmbus_connection.channel_mutex); 519 520 if (newchannel->target_cpu != get_cpu()) { 521 put_cpu(); 522 smp_call_function_single(newchannel->target_cpu, 523 percpu_channel_deq, 524 newchannel, true); 525 } else { 526 percpu_channel_deq(newchannel); 527 put_cpu(); 528 } 529 530 vmbus_release_relid(newchannel->offermsg.child_relid); 531 532 free_channel(newchannel); 533 } 534 535 /* 536 * vmbus_process_offer - Process the offer by creating a channel/device 537 * associated with this offer 538 */ 539 static void vmbus_process_offer(struct vmbus_channel *newchannel) 540 { 541 struct vmbus_channel *channel; 542 struct workqueue_struct *wq; 543 unsigned long flags; 544 bool fnew = true; 545 546 mutex_lock(&vmbus_connection.channel_mutex); 547 548 /* 549 * Now that we have acquired the channel_mutex, 550 * we can release the potentially racing rescind thread. 551 */ 552 atomic_dec(&vmbus_connection.offer_in_progress); 553 554 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) { 555 if (guid_equal(&channel->offermsg.offer.if_type, 556 &newchannel->offermsg.offer.if_type) && 557 guid_equal(&channel->offermsg.offer.if_instance, 558 &newchannel->offermsg.offer.if_instance)) { 559 fnew = false; 560 break; 561 } 562 } 563 564 if (fnew) 565 list_add_tail(&newchannel->listentry, 566 &vmbus_connection.chn_list); 567 else { 568 /* 569 * Check to see if this is a valid sub-channel. 570 */ 571 if (newchannel->offermsg.offer.sub_channel_index == 0) { 572 mutex_unlock(&vmbus_connection.channel_mutex); 573 /* 574 * Don't call free_channel(), because newchannel->kobj 575 * is not initialized yet. 576 */ 577 kfree(newchannel); 578 WARN_ON_ONCE(1); 579 return; 580 } 581 /* 582 * Process the sub-channel. 583 */ 584 newchannel->primary_channel = channel; 585 spin_lock_irqsave(&channel->lock, flags); 586 list_add_tail(&newchannel->sc_list, &channel->sc_list); 587 spin_unlock_irqrestore(&channel->lock, flags); 588 } 589 590 mutex_unlock(&vmbus_connection.channel_mutex); 591 592 /* 593 * vmbus_process_offer() mustn't call channel->sc_creation_callback() 594 * directly for sub-channels, because sc_creation_callback() -> 595 * vmbus_open() may never get the host's response to the 596 * OPEN_CHANNEL message (the host may rescind a channel at any time, 597 * e.g. in the case of hot removing a NIC), and vmbus_onoffer_rescind() 598 * may not wake up the vmbus_open() as it's blocked due to a non-zero 599 * vmbus_connection.offer_in_progress, and finally we have a deadlock. 600 * 601 * The above is also true for primary channels, if the related device 602 * drivers use sync probing mode by default. 603 * 604 * And, usually the handling of primary channels and sub-channels can 605 * depend on each other, so we should offload them to different 606 * workqueues to avoid possible deadlock, e.g. in sync-probing mode, 607 * NIC1's netvsc_subchan_work() can race with NIC2's netvsc_probe() -> 608 * rtnl_lock(), and causes deadlock: the former gets the rtnl_lock 609 * and waits for all the sub-channels to appear, but the latter 610 * can't get the rtnl_lock and this blocks the handling of 611 * sub-channels. 612 */ 613 INIT_WORK(&newchannel->add_channel_work, vmbus_add_channel_work); 614 wq = fnew ? vmbus_connection.handle_primary_chan_wq : 615 vmbus_connection.handle_sub_chan_wq; 616 queue_work(wq, &newchannel->add_channel_work); 617 } 618 619 /* 620 * We use this state to statically distribute the channel interrupt load. 621 */ 622 static int next_numa_node_id; 623 /* 624 * init_vp_index() accesses global variables like next_numa_node_id, and 625 * it can run concurrently for primary channels and sub-channels: see 626 * vmbus_process_offer(), so we need the lock to protect the global 627 * variables. 628 */ 629 static DEFINE_SPINLOCK(bind_channel_to_cpu_lock); 630 631 /* 632 * Starting with Win8, we can statically distribute the incoming 633 * channel interrupt load by binding a channel to VCPU. 634 * We distribute the interrupt loads to one or more NUMA nodes based on 635 * the channel's affinity_policy. 636 * 637 * For pre-win8 hosts or non-performance critical channels we assign the 638 * first CPU in the first NUMA node. 639 */ 640 static void init_vp_index(struct vmbus_channel *channel, u16 dev_type) 641 { 642 u32 cur_cpu; 643 bool perf_chn = vmbus_devs[dev_type].perf_device; 644 struct vmbus_channel *primary = channel->primary_channel; 645 int next_node; 646 cpumask_var_t available_mask; 647 struct cpumask *alloced_mask; 648 649 if ((vmbus_proto_version == VERSION_WS2008) || 650 (vmbus_proto_version == VERSION_WIN7) || (!perf_chn) || 651 !alloc_cpumask_var(&available_mask, GFP_KERNEL)) { 652 /* 653 * Prior to win8, all channel interrupts are 654 * delivered on cpu 0. 655 * Also if the channel is not a performance critical 656 * channel, bind it to cpu 0. 657 * In case alloc_cpumask_var() fails, bind it to cpu 0. 658 */ 659 channel->numa_node = 0; 660 channel->target_cpu = 0; 661 channel->target_vp = hv_cpu_number_to_vp_number(0); 662 return; 663 } 664 665 spin_lock(&bind_channel_to_cpu_lock); 666 667 /* 668 * Based on the channel affinity policy, we will assign the NUMA 669 * nodes. 670 */ 671 672 if ((channel->affinity_policy == HV_BALANCED) || (!primary)) { 673 while (true) { 674 next_node = next_numa_node_id++; 675 if (next_node == nr_node_ids) { 676 next_node = next_numa_node_id = 0; 677 continue; 678 } 679 if (cpumask_empty(cpumask_of_node(next_node))) 680 continue; 681 break; 682 } 683 channel->numa_node = next_node; 684 primary = channel; 685 } 686 alloced_mask = &hv_context.hv_numa_map[primary->numa_node]; 687 688 if (cpumask_weight(alloced_mask) == 689 cpumask_weight(cpumask_of_node(primary->numa_node))) { 690 /* 691 * We have cycled through all the CPUs in the node; 692 * reset the alloced map. 693 */ 694 cpumask_clear(alloced_mask); 695 } 696 697 cpumask_xor(available_mask, alloced_mask, 698 cpumask_of_node(primary->numa_node)); 699 700 cur_cpu = -1; 701 702 if (primary->affinity_policy == HV_LOCALIZED) { 703 /* 704 * Normally Hyper-V host doesn't create more subchannels 705 * than there are VCPUs on the node but it is possible when not 706 * all present VCPUs on the node are initialized by guest. 707 * Clear the alloced_cpus_in_node to start over. 708 */ 709 if (cpumask_equal(&primary->alloced_cpus_in_node, 710 cpumask_of_node(primary->numa_node))) 711 cpumask_clear(&primary->alloced_cpus_in_node); 712 } 713 714 while (true) { 715 cur_cpu = cpumask_next(cur_cpu, available_mask); 716 if (cur_cpu >= nr_cpu_ids) { 717 cur_cpu = -1; 718 cpumask_copy(available_mask, 719 cpumask_of_node(primary->numa_node)); 720 continue; 721 } 722 723 if (primary->affinity_policy == HV_LOCALIZED) { 724 /* 725 * NOTE: in the case of sub-channel, we clear the 726 * sub-channel related bit(s) in 727 * primary->alloced_cpus_in_node in 728 * hv_process_channel_removal(), so when we 729 * reload drivers like hv_netvsc in SMP guest, here 730 * we're able to re-allocate 731 * bit from primary->alloced_cpus_in_node. 732 */ 733 if (!cpumask_test_cpu(cur_cpu, 734 &primary->alloced_cpus_in_node)) { 735 cpumask_set_cpu(cur_cpu, 736 &primary->alloced_cpus_in_node); 737 cpumask_set_cpu(cur_cpu, alloced_mask); 738 break; 739 } 740 } else { 741 cpumask_set_cpu(cur_cpu, alloced_mask); 742 break; 743 } 744 } 745 746 channel->target_cpu = cur_cpu; 747 channel->target_vp = hv_cpu_number_to_vp_number(cur_cpu); 748 749 spin_unlock(&bind_channel_to_cpu_lock); 750 751 free_cpumask_var(available_mask); 752 } 753 754 static void vmbus_wait_for_unload(void) 755 { 756 int cpu; 757 void *page_addr; 758 struct hv_message *msg; 759 struct vmbus_channel_message_header *hdr; 760 u32 message_type; 761 762 /* 763 * CHANNELMSG_UNLOAD_RESPONSE is always delivered to the CPU which was 764 * used for initial contact or to CPU0 depending on host version. When 765 * we're crashing on a different CPU let's hope that IRQ handler on 766 * the cpu which receives CHANNELMSG_UNLOAD_RESPONSE is still 767 * functional and vmbus_unload_response() will complete 768 * vmbus_connection.unload_event. If not, the last thing we can do is 769 * read message pages for all CPUs directly. 770 */ 771 while (1) { 772 if (completion_done(&vmbus_connection.unload_event)) 773 break; 774 775 for_each_online_cpu(cpu) { 776 struct hv_per_cpu_context *hv_cpu 777 = per_cpu_ptr(hv_context.cpu_context, cpu); 778 779 page_addr = hv_cpu->synic_message_page; 780 msg = (struct hv_message *)page_addr 781 + VMBUS_MESSAGE_SINT; 782 783 message_type = READ_ONCE(msg->header.message_type); 784 if (message_type == HVMSG_NONE) 785 continue; 786 787 hdr = (struct vmbus_channel_message_header *) 788 msg->u.payload; 789 790 if (hdr->msgtype == CHANNELMSG_UNLOAD_RESPONSE) 791 complete(&vmbus_connection.unload_event); 792 793 vmbus_signal_eom(msg, message_type); 794 } 795 796 mdelay(10); 797 } 798 799 /* 800 * We're crashing and already got the UNLOAD_RESPONSE, cleanup all 801 * maybe-pending messages on all CPUs to be able to receive new 802 * messages after we reconnect. 803 */ 804 for_each_online_cpu(cpu) { 805 struct hv_per_cpu_context *hv_cpu 806 = per_cpu_ptr(hv_context.cpu_context, cpu); 807 808 page_addr = hv_cpu->synic_message_page; 809 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT; 810 msg->header.message_type = HVMSG_NONE; 811 } 812 } 813 814 /* 815 * vmbus_unload_response - Handler for the unload response. 816 */ 817 static void vmbus_unload_response(struct vmbus_channel_message_header *hdr) 818 { 819 /* 820 * This is a global event; just wakeup the waiting thread. 821 * Once we successfully unload, we can cleanup the monitor state. 822 */ 823 complete(&vmbus_connection.unload_event); 824 } 825 826 void vmbus_initiate_unload(bool crash) 827 { 828 struct vmbus_channel_message_header hdr; 829 830 /* Pre-Win2012R2 hosts don't support reconnect */ 831 if (vmbus_proto_version < VERSION_WIN8_1) 832 return; 833 834 init_completion(&vmbus_connection.unload_event); 835 memset(&hdr, 0, sizeof(struct vmbus_channel_message_header)); 836 hdr.msgtype = CHANNELMSG_UNLOAD; 837 vmbus_post_msg(&hdr, sizeof(struct vmbus_channel_message_header), 838 !crash); 839 840 /* 841 * vmbus_initiate_unload() is also called on crash and the crash can be 842 * happening in an interrupt context, where scheduling is impossible. 843 */ 844 if (!crash) 845 wait_for_completion(&vmbus_connection.unload_event); 846 else 847 vmbus_wait_for_unload(); 848 } 849 850 /* 851 * vmbus_onoffer - Handler for channel offers from vmbus in parent partition. 852 * 853 */ 854 static void vmbus_onoffer(struct vmbus_channel_message_header *hdr) 855 { 856 struct vmbus_channel_offer_channel *offer; 857 struct vmbus_channel *newchannel; 858 859 offer = (struct vmbus_channel_offer_channel *)hdr; 860 861 trace_vmbus_onoffer(offer); 862 863 /* Allocate the channel object and save this offer. */ 864 newchannel = alloc_channel(); 865 if (!newchannel) { 866 vmbus_release_relid(offer->child_relid); 867 atomic_dec(&vmbus_connection.offer_in_progress); 868 pr_err("Unable to allocate channel object\n"); 869 return; 870 } 871 872 /* 873 * Setup state for signalling the host. 874 */ 875 newchannel->sig_event = VMBUS_EVENT_CONNECTION_ID; 876 877 if (vmbus_proto_version != VERSION_WS2008) { 878 newchannel->is_dedicated_interrupt = 879 (offer->is_dedicated_interrupt != 0); 880 newchannel->sig_event = offer->connection_id; 881 } 882 883 memcpy(&newchannel->offermsg, offer, 884 sizeof(struct vmbus_channel_offer_channel)); 885 newchannel->monitor_grp = (u8)offer->monitorid / 32; 886 newchannel->monitor_bit = (u8)offer->monitorid % 32; 887 888 vmbus_process_offer(newchannel); 889 } 890 891 /* 892 * vmbus_onoffer_rescind - Rescind offer handler. 893 * 894 * We queue a work item to process this offer synchronously 895 */ 896 static void vmbus_onoffer_rescind(struct vmbus_channel_message_header *hdr) 897 { 898 struct vmbus_channel_rescind_offer *rescind; 899 struct vmbus_channel *channel; 900 struct device *dev; 901 902 rescind = (struct vmbus_channel_rescind_offer *)hdr; 903 904 trace_vmbus_onoffer_rescind(rescind); 905 906 /* 907 * The offer msg and the corresponding rescind msg 908 * from the host are guranteed to be ordered - 909 * offer comes in first and then the rescind. 910 * Since we process these events in work elements, 911 * and with preemption, we may end up processing 912 * the events out of order. Given that we handle these 913 * work elements on the same CPU, this is possible only 914 * in the case of preemption. In any case wait here 915 * until the offer processing has moved beyond the 916 * point where the channel is discoverable. 917 */ 918 919 while (atomic_read(&vmbus_connection.offer_in_progress) != 0) { 920 /* 921 * We wait here until any channel offer is currently 922 * being processed. 923 */ 924 msleep(1); 925 } 926 927 mutex_lock(&vmbus_connection.channel_mutex); 928 channel = relid2channel(rescind->child_relid); 929 mutex_unlock(&vmbus_connection.channel_mutex); 930 931 if (channel == NULL) { 932 /* 933 * We failed in processing the offer message; 934 * we would have cleaned up the relid in that 935 * failure path. 936 */ 937 return; 938 } 939 940 /* 941 * Before setting channel->rescind in vmbus_rescind_cleanup(), we 942 * should make sure the channel callback is not running any more. 943 */ 944 vmbus_reset_channel_cb(channel); 945 946 /* 947 * Now wait for offer handling to complete. 948 */ 949 vmbus_rescind_cleanup(channel); 950 while (READ_ONCE(channel->probe_done) == false) { 951 /* 952 * We wait here until any channel offer is currently 953 * being processed. 954 */ 955 msleep(1); 956 } 957 958 /* 959 * At this point, the rescind handling can proceed safely. 960 */ 961 962 if (channel->device_obj) { 963 if (channel->chn_rescind_callback) { 964 channel->chn_rescind_callback(channel); 965 return; 966 } 967 /* 968 * We will have to unregister this device from the 969 * driver core. 970 */ 971 dev = get_device(&channel->device_obj->device); 972 if (dev) { 973 vmbus_device_unregister(channel->device_obj); 974 put_device(dev); 975 } 976 } 977 if (channel->primary_channel != NULL) { 978 /* 979 * Sub-channel is being rescinded. Following is the channel 980 * close sequence when initiated from the driveri (refer to 981 * vmbus_close() for details): 982 * 1. Close all sub-channels first 983 * 2. Then close the primary channel. 984 */ 985 mutex_lock(&vmbus_connection.channel_mutex); 986 if (channel->state == CHANNEL_OPEN_STATE) { 987 /* 988 * The channel is currently not open; 989 * it is safe for us to cleanup the channel. 990 */ 991 hv_process_channel_removal(channel); 992 } else { 993 complete(&channel->rescind_event); 994 } 995 mutex_unlock(&vmbus_connection.channel_mutex); 996 } 997 } 998 999 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel) 1000 { 1001 BUG_ON(!is_hvsock_channel(channel)); 1002 1003 /* We always get a rescind msg when a connection is closed. */ 1004 while (!READ_ONCE(channel->probe_done) || !READ_ONCE(channel->rescind)) 1005 msleep(1); 1006 1007 vmbus_device_unregister(channel->device_obj); 1008 } 1009 EXPORT_SYMBOL_GPL(vmbus_hvsock_device_unregister); 1010 1011 1012 /* 1013 * vmbus_onoffers_delivered - 1014 * This is invoked when all offers have been delivered. 1015 * 1016 * Nothing to do here. 1017 */ 1018 static void vmbus_onoffers_delivered( 1019 struct vmbus_channel_message_header *hdr) 1020 { 1021 } 1022 1023 /* 1024 * vmbus_onopen_result - Open result handler. 1025 * 1026 * This is invoked when we received a response to our channel open request. 1027 * Find the matching request, copy the response and signal the requesting 1028 * thread. 1029 */ 1030 static void vmbus_onopen_result(struct vmbus_channel_message_header *hdr) 1031 { 1032 struct vmbus_channel_open_result *result; 1033 struct vmbus_channel_msginfo *msginfo; 1034 struct vmbus_channel_message_header *requestheader; 1035 struct vmbus_channel_open_channel *openmsg; 1036 unsigned long flags; 1037 1038 result = (struct vmbus_channel_open_result *)hdr; 1039 1040 trace_vmbus_onopen_result(result); 1041 1042 /* 1043 * Find the open msg, copy the result and signal/unblock the wait event 1044 */ 1045 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1046 1047 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1048 msglistentry) { 1049 requestheader = 1050 (struct vmbus_channel_message_header *)msginfo->msg; 1051 1052 if (requestheader->msgtype == CHANNELMSG_OPENCHANNEL) { 1053 openmsg = 1054 (struct vmbus_channel_open_channel *)msginfo->msg; 1055 if (openmsg->child_relid == result->child_relid && 1056 openmsg->openid == result->openid) { 1057 memcpy(&msginfo->response.open_result, 1058 result, 1059 sizeof( 1060 struct vmbus_channel_open_result)); 1061 complete(&msginfo->waitevent); 1062 break; 1063 } 1064 } 1065 } 1066 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1067 } 1068 1069 /* 1070 * vmbus_ongpadl_created - GPADL created handler. 1071 * 1072 * This is invoked when we received a response to our gpadl create request. 1073 * Find the matching request, copy the response and signal the requesting 1074 * thread. 1075 */ 1076 static void vmbus_ongpadl_created(struct vmbus_channel_message_header *hdr) 1077 { 1078 struct vmbus_channel_gpadl_created *gpadlcreated; 1079 struct vmbus_channel_msginfo *msginfo; 1080 struct vmbus_channel_message_header *requestheader; 1081 struct vmbus_channel_gpadl_header *gpadlheader; 1082 unsigned long flags; 1083 1084 gpadlcreated = (struct vmbus_channel_gpadl_created *)hdr; 1085 1086 trace_vmbus_ongpadl_created(gpadlcreated); 1087 1088 /* 1089 * Find the establish msg, copy the result and signal/unblock the wait 1090 * event 1091 */ 1092 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1093 1094 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1095 msglistentry) { 1096 requestheader = 1097 (struct vmbus_channel_message_header *)msginfo->msg; 1098 1099 if (requestheader->msgtype == CHANNELMSG_GPADL_HEADER) { 1100 gpadlheader = 1101 (struct vmbus_channel_gpadl_header *)requestheader; 1102 1103 if ((gpadlcreated->child_relid == 1104 gpadlheader->child_relid) && 1105 (gpadlcreated->gpadl == gpadlheader->gpadl)) { 1106 memcpy(&msginfo->response.gpadl_created, 1107 gpadlcreated, 1108 sizeof( 1109 struct vmbus_channel_gpadl_created)); 1110 complete(&msginfo->waitevent); 1111 break; 1112 } 1113 } 1114 } 1115 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1116 } 1117 1118 /* 1119 * vmbus_ongpadl_torndown - GPADL torndown handler. 1120 * 1121 * This is invoked when we received a response to our gpadl teardown request. 1122 * Find the matching request, copy the response and signal the requesting 1123 * thread. 1124 */ 1125 static void vmbus_ongpadl_torndown( 1126 struct vmbus_channel_message_header *hdr) 1127 { 1128 struct vmbus_channel_gpadl_torndown *gpadl_torndown; 1129 struct vmbus_channel_msginfo *msginfo; 1130 struct vmbus_channel_message_header *requestheader; 1131 struct vmbus_channel_gpadl_teardown *gpadl_teardown; 1132 unsigned long flags; 1133 1134 gpadl_torndown = (struct vmbus_channel_gpadl_torndown *)hdr; 1135 1136 trace_vmbus_ongpadl_torndown(gpadl_torndown); 1137 1138 /* 1139 * Find the open msg, copy the result and signal/unblock the wait event 1140 */ 1141 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1142 1143 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1144 msglistentry) { 1145 requestheader = 1146 (struct vmbus_channel_message_header *)msginfo->msg; 1147 1148 if (requestheader->msgtype == CHANNELMSG_GPADL_TEARDOWN) { 1149 gpadl_teardown = 1150 (struct vmbus_channel_gpadl_teardown *)requestheader; 1151 1152 if (gpadl_torndown->gpadl == gpadl_teardown->gpadl) { 1153 memcpy(&msginfo->response.gpadl_torndown, 1154 gpadl_torndown, 1155 sizeof( 1156 struct vmbus_channel_gpadl_torndown)); 1157 complete(&msginfo->waitevent); 1158 break; 1159 } 1160 } 1161 } 1162 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1163 } 1164 1165 /* 1166 * vmbus_onversion_response - Version response handler 1167 * 1168 * This is invoked when we received a response to our initiate contact request. 1169 * Find the matching request, copy the response and signal the requesting 1170 * thread. 1171 */ 1172 static void vmbus_onversion_response( 1173 struct vmbus_channel_message_header *hdr) 1174 { 1175 struct vmbus_channel_msginfo *msginfo; 1176 struct vmbus_channel_message_header *requestheader; 1177 struct vmbus_channel_version_response *version_response; 1178 unsigned long flags; 1179 1180 version_response = (struct vmbus_channel_version_response *)hdr; 1181 1182 trace_vmbus_onversion_response(version_response); 1183 1184 spin_lock_irqsave(&vmbus_connection.channelmsg_lock, flags); 1185 1186 list_for_each_entry(msginfo, &vmbus_connection.chn_msg_list, 1187 msglistentry) { 1188 requestheader = 1189 (struct vmbus_channel_message_header *)msginfo->msg; 1190 1191 if (requestheader->msgtype == 1192 CHANNELMSG_INITIATE_CONTACT) { 1193 memcpy(&msginfo->response.version_response, 1194 version_response, 1195 sizeof(struct vmbus_channel_version_response)); 1196 complete(&msginfo->waitevent); 1197 } 1198 } 1199 spin_unlock_irqrestore(&vmbus_connection.channelmsg_lock, flags); 1200 } 1201 1202 /* Channel message dispatch table */ 1203 const struct vmbus_channel_message_table_entry 1204 channel_message_table[CHANNELMSG_COUNT] = { 1205 { CHANNELMSG_INVALID, 0, NULL }, 1206 { CHANNELMSG_OFFERCHANNEL, 0, vmbus_onoffer }, 1207 { CHANNELMSG_RESCIND_CHANNELOFFER, 0, vmbus_onoffer_rescind }, 1208 { CHANNELMSG_REQUESTOFFERS, 0, NULL }, 1209 { CHANNELMSG_ALLOFFERS_DELIVERED, 1, vmbus_onoffers_delivered }, 1210 { CHANNELMSG_OPENCHANNEL, 0, NULL }, 1211 { CHANNELMSG_OPENCHANNEL_RESULT, 1, vmbus_onopen_result }, 1212 { CHANNELMSG_CLOSECHANNEL, 0, NULL }, 1213 { CHANNELMSG_GPADL_HEADER, 0, NULL }, 1214 { CHANNELMSG_GPADL_BODY, 0, NULL }, 1215 { CHANNELMSG_GPADL_CREATED, 1, vmbus_ongpadl_created }, 1216 { CHANNELMSG_GPADL_TEARDOWN, 0, NULL }, 1217 { CHANNELMSG_GPADL_TORNDOWN, 1, vmbus_ongpadl_torndown }, 1218 { CHANNELMSG_RELID_RELEASED, 0, NULL }, 1219 { CHANNELMSG_INITIATE_CONTACT, 0, NULL }, 1220 { CHANNELMSG_VERSION_RESPONSE, 1, vmbus_onversion_response }, 1221 { CHANNELMSG_UNLOAD, 0, NULL }, 1222 { CHANNELMSG_UNLOAD_RESPONSE, 1, vmbus_unload_response }, 1223 { CHANNELMSG_18, 0, NULL }, 1224 { CHANNELMSG_19, 0, NULL }, 1225 { CHANNELMSG_20, 0, NULL }, 1226 { CHANNELMSG_TL_CONNECT_REQUEST, 0, NULL }, 1227 }; 1228 1229 /* 1230 * vmbus_onmessage - Handler for channel protocol messages. 1231 * 1232 * This is invoked in the vmbus worker thread context. 1233 */ 1234 void vmbus_onmessage(void *context) 1235 { 1236 struct hv_message *msg = context; 1237 struct vmbus_channel_message_header *hdr; 1238 int size; 1239 1240 hdr = (struct vmbus_channel_message_header *)msg->u.payload; 1241 size = msg->header.payload_size; 1242 1243 trace_vmbus_on_message(hdr); 1244 1245 if (hdr->msgtype >= CHANNELMSG_COUNT) { 1246 pr_err("Received invalid channel message type %d size %d\n", 1247 hdr->msgtype, size); 1248 print_hex_dump_bytes("", DUMP_PREFIX_NONE, 1249 (unsigned char *)msg->u.payload, size); 1250 return; 1251 } 1252 1253 if (channel_message_table[hdr->msgtype].message_handler) 1254 channel_message_table[hdr->msgtype].message_handler(hdr); 1255 else 1256 pr_err("Unhandled channel message type %d\n", hdr->msgtype); 1257 } 1258 1259 /* 1260 * vmbus_request_offers - Send a request to get all our pending offers. 1261 */ 1262 int vmbus_request_offers(void) 1263 { 1264 struct vmbus_channel_message_header *msg; 1265 struct vmbus_channel_msginfo *msginfo; 1266 int ret; 1267 1268 msginfo = kmalloc(sizeof(*msginfo) + 1269 sizeof(struct vmbus_channel_message_header), 1270 GFP_KERNEL); 1271 if (!msginfo) 1272 return -ENOMEM; 1273 1274 msg = (struct vmbus_channel_message_header *)msginfo->msg; 1275 1276 msg->msgtype = CHANNELMSG_REQUESTOFFERS; 1277 1278 ret = vmbus_post_msg(msg, sizeof(struct vmbus_channel_message_header), 1279 true); 1280 1281 trace_vmbus_request_offers(ret); 1282 1283 if (ret != 0) { 1284 pr_err("Unable to request offers - %d\n", ret); 1285 1286 goto cleanup; 1287 } 1288 1289 cleanup: 1290 kfree(msginfo); 1291 1292 return ret; 1293 } 1294 1295 static void invoke_sc_cb(struct vmbus_channel *primary_channel) 1296 { 1297 struct list_head *cur, *tmp; 1298 struct vmbus_channel *cur_channel; 1299 1300 if (primary_channel->sc_creation_callback == NULL) 1301 return; 1302 1303 list_for_each_safe(cur, tmp, &primary_channel->sc_list) { 1304 cur_channel = list_entry(cur, struct vmbus_channel, sc_list); 1305 1306 primary_channel->sc_creation_callback(cur_channel); 1307 } 1308 } 1309 1310 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1311 void (*sc_cr_cb)(struct vmbus_channel *new_sc)) 1312 { 1313 primary_channel->sc_creation_callback = sc_cr_cb; 1314 } 1315 EXPORT_SYMBOL_GPL(vmbus_set_sc_create_callback); 1316 1317 bool vmbus_are_subchannels_present(struct vmbus_channel *primary) 1318 { 1319 bool ret; 1320 1321 ret = !list_empty(&primary->sc_list); 1322 1323 if (ret) { 1324 /* 1325 * Invoke the callback on sub-channel creation. 1326 * This will present a uniform interface to the 1327 * clients. 1328 */ 1329 invoke_sc_cb(primary); 1330 } 1331 1332 return ret; 1333 } 1334 EXPORT_SYMBOL_GPL(vmbus_are_subchannels_present); 1335 1336 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1337 void (*chn_rescind_cb)(struct vmbus_channel *)) 1338 { 1339 channel->chn_rescind_callback = chn_rescind_cb; 1340 } 1341 EXPORT_SYMBOL_GPL(vmbus_set_chn_rescind_callback); 1342