xref: /linux/drivers/hte/hte.c (revision 8b8eed05a1c650c27e78bc47d07f7d6c9ba779e8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2021-2022 NVIDIA Corporation
4  *
5  * Author: Dipen Patel <dipenp@nvidia.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/err.h>
11 #include <linux/slab.h>
12 #include <linux/of.h>
13 #include <linux/mutex.h>
14 #include <linux/uaccess.h>
15 #include <linux/hte.h>
16 #include <linux/delay.h>
17 #include <linux/debugfs.h>
18 #include <linux/device.h>
19 
20 /* Global list of the HTE devices */
21 static DEFINE_SPINLOCK(hte_lock);
22 static LIST_HEAD(hte_devices);
23 
24 enum {
25 	HTE_TS_REGISTERED,
26 	HTE_TS_REQ,
27 	HTE_TS_DISABLE,
28 	HTE_TS_QUEUE_WK,
29 };
30 
31 /**
32  * struct hte_ts_info - Information related to requested timestamp.
33  *
34  * @xlated_id: Timestamp ID as understood between HTE subsys and HTE provider,
35  * See xlate callback API.
36  * @flags: Flags holding state information.
37  * @hte_cb_flags: Callback related flags.
38  * @seq: Timestamp sequence counter.
39  * @line_name: HTE allocated line name.
40  * @free_attr_name: If set, free the attr name.
41  * @cb: A nonsleeping callback function provided by clients.
42  * @tcb: A secondary sleeping callback function provided by clients.
43  * @dropped_ts: Dropped timestamps.
44  * @slock: Spin lock to synchronize between disable/enable,
45  * request/release APIs.
46  * @cb_work: callback workqueue, used when tcb is specified.
47  * @req_mlock: Lock during timestamp request/release APIs.
48  * @ts_dbg_root: Root for the debug fs.
49  * @gdev: HTE abstract device that this timestamp information belongs to.
50  * @cl_data: Client specific data.
51  */
52 struct hte_ts_info {
53 	u32 xlated_id;
54 	unsigned long flags;
55 	unsigned long hte_cb_flags;
56 	u64 seq;
57 	char *line_name;
58 	bool free_attr_name;
59 	hte_ts_cb_t cb;
60 	hte_ts_sec_cb_t tcb;
61 	atomic_t dropped_ts;
62 	spinlock_t slock;
63 	struct work_struct cb_work;
64 	struct mutex req_mlock;
65 	struct dentry *ts_dbg_root;
66 	struct hte_device *gdev;
67 	void *cl_data;
68 };
69 
70 /**
71  * struct hte_device - HTE abstract device
72  * @nlines: Number of entities this device supports.
73  * @ts_req: Total number of entities requested.
74  * @sdev: Device used at various debug prints.
75  * @dbg_root: Root directory for debug fs.
76  * @list: List node to store hte_device for each provider.
77  * @chip: HTE chip providing this HTE device.
78  * @owner: helps prevent removal of modules when in use.
79  * @ei: Timestamp information.
80  */
81 struct hte_device {
82 	u32 nlines;
83 	atomic_t ts_req;
84 	struct device *sdev;
85 	struct dentry *dbg_root;
86 	struct list_head list;
87 	struct hte_chip *chip;
88 	struct module *owner;
89 	struct hte_ts_info ei[] __counted_by(nlines);
90 };
91 
92 #ifdef CONFIG_DEBUG_FS
93 
94 static struct dentry *hte_root;
95 
96 static int __init hte_subsys_dbgfs_init(void)
97 {
98 	/* creates /sys/kernel/debug/hte/ */
99 	hte_root = debugfs_create_dir("hte", NULL);
100 
101 	return 0;
102 }
103 subsys_initcall(hte_subsys_dbgfs_init);
104 
105 static void hte_chip_dbgfs_init(struct hte_device *gdev)
106 {
107 	const struct hte_chip *chip = gdev->chip;
108 	const char *name = chip->name ? chip->name : dev_name(chip->dev);
109 
110 	gdev->dbg_root = debugfs_create_dir(name, hte_root);
111 
112 	debugfs_create_atomic_t("ts_requested", 0444, gdev->dbg_root,
113 				&gdev->ts_req);
114 	debugfs_create_u32("total_ts", 0444, gdev->dbg_root,
115 			   &gdev->nlines);
116 }
117 
118 static void hte_ts_dbgfs_init(const char *name, struct hte_ts_info *ei)
119 {
120 	if (!ei->gdev->dbg_root || !name)
121 		return;
122 
123 	ei->ts_dbg_root = debugfs_create_dir(name, ei->gdev->dbg_root);
124 
125 	debugfs_create_atomic_t("dropped_timestamps", 0444, ei->ts_dbg_root,
126 				&ei->dropped_ts);
127 }
128 
129 #else
130 
131 static void hte_chip_dbgfs_init(struct hte_device *gdev)
132 {
133 }
134 
135 static void hte_ts_dbgfs_init(const char *name, struct hte_ts_info *ei)
136 {
137 }
138 
139 #endif
140 
141 /**
142  * hte_ts_put() - Release and disable timestamp for the given desc.
143  *
144  * @desc: timestamp descriptor.
145  *
146  * Context: debugfs_remove_recursive() function call may use sleeping locks,
147  *	    not suitable from atomic context.
148  * Returns: 0 on success or a negative error code on failure.
149  */
150 int hte_ts_put(struct hte_ts_desc *desc)
151 {
152 	int ret = 0;
153 	unsigned long flag;
154 	struct hte_device *gdev;
155 	struct hte_ts_info *ei;
156 
157 	if (!desc)
158 		return -EINVAL;
159 
160 	ei = desc->hte_data;
161 
162 	if (!ei || !ei->gdev)
163 		return -EINVAL;
164 
165 	gdev = ei->gdev;
166 
167 	mutex_lock(&ei->req_mlock);
168 
169 	if (unlikely(!test_bit(HTE_TS_REQ, &ei->flags) &&
170 	    !test_bit(HTE_TS_REGISTERED, &ei->flags))) {
171 		dev_info(gdev->sdev, "id:%d is not requested\n",
172 			 desc->attr.line_id);
173 		ret = -EINVAL;
174 		goto unlock;
175 	}
176 
177 	if (unlikely(!test_bit(HTE_TS_REQ, &ei->flags) &&
178 	    test_bit(HTE_TS_REGISTERED, &ei->flags))) {
179 		dev_info(gdev->sdev, "id:%d is registered but not requested\n",
180 			 desc->attr.line_id);
181 		ret = -EINVAL;
182 		goto unlock;
183 	}
184 
185 	if (test_bit(HTE_TS_REQ, &ei->flags) &&
186 	    !test_bit(HTE_TS_REGISTERED, &ei->flags)) {
187 		clear_bit(HTE_TS_REQ, &ei->flags);
188 		desc->hte_data = NULL;
189 		ret = 0;
190 		goto mod_put;
191 	}
192 
193 	ret = gdev->chip->ops->release(gdev->chip, desc, ei->xlated_id);
194 	if (ret) {
195 		dev_err(gdev->sdev, "id: %d free failed\n",
196 			desc->attr.line_id);
197 		goto unlock;
198 	}
199 
200 	kfree(ei->line_name);
201 	if (ei->free_attr_name)
202 		kfree_const(desc->attr.name);
203 
204 	debugfs_remove_recursive(ei->ts_dbg_root);
205 
206 	spin_lock_irqsave(&ei->slock, flag);
207 
208 	if (test_bit(HTE_TS_QUEUE_WK, &ei->flags)) {
209 		spin_unlock_irqrestore(&ei->slock, flag);
210 		flush_work(&ei->cb_work);
211 		spin_lock_irqsave(&ei->slock, flag);
212 	}
213 
214 	atomic_dec(&gdev->ts_req);
215 	atomic_set(&ei->dropped_ts, 0);
216 
217 	ei->seq = 1;
218 	ei->flags = 0;
219 	desc->hte_data = NULL;
220 
221 	spin_unlock_irqrestore(&ei->slock, flag);
222 
223 	ei->cb = NULL;
224 	ei->tcb = NULL;
225 	ei->cl_data = NULL;
226 
227 mod_put:
228 	module_put(gdev->owner);
229 unlock:
230 	mutex_unlock(&ei->req_mlock);
231 	dev_dbg(gdev->sdev, "release id: %d\n", desc->attr.line_id);
232 
233 	return ret;
234 }
235 EXPORT_SYMBOL_GPL(hte_ts_put);
236 
237 static int hte_ts_dis_en_common(struct hte_ts_desc *desc, bool en)
238 {
239 	u32 ts_id;
240 	struct hte_device *gdev;
241 	struct hte_ts_info *ei;
242 	int ret;
243 	unsigned long flag;
244 
245 	if (!desc)
246 		return -EINVAL;
247 
248 	ei = desc->hte_data;
249 
250 	if (!ei || !ei->gdev)
251 		return -EINVAL;
252 
253 	gdev = ei->gdev;
254 	ts_id = desc->attr.line_id;
255 
256 	mutex_lock(&ei->req_mlock);
257 
258 	if (!test_bit(HTE_TS_REGISTERED, &ei->flags)) {
259 		dev_dbg(gdev->sdev, "id:%d is not registered", ts_id);
260 		ret = -EUSERS;
261 		goto out;
262 	}
263 
264 	spin_lock_irqsave(&ei->slock, flag);
265 
266 	if (en) {
267 		if (!test_bit(HTE_TS_DISABLE, &ei->flags)) {
268 			ret = 0;
269 			goto out_unlock;
270 		}
271 
272 		spin_unlock_irqrestore(&ei->slock, flag);
273 		ret = gdev->chip->ops->enable(gdev->chip, ei->xlated_id);
274 		if (ret) {
275 			dev_warn(gdev->sdev, "id: %d enable failed\n",
276 				 ts_id);
277 			goto out;
278 		}
279 
280 		spin_lock_irqsave(&ei->slock, flag);
281 		clear_bit(HTE_TS_DISABLE, &ei->flags);
282 	} else {
283 		if (test_bit(HTE_TS_DISABLE, &ei->flags)) {
284 			ret = 0;
285 			goto out_unlock;
286 		}
287 
288 		spin_unlock_irqrestore(&ei->slock, flag);
289 		ret = gdev->chip->ops->disable(gdev->chip, ei->xlated_id);
290 		if (ret) {
291 			dev_warn(gdev->sdev, "id: %d disable failed\n",
292 				 ts_id);
293 			goto out;
294 		}
295 
296 		spin_lock_irqsave(&ei->slock, flag);
297 		set_bit(HTE_TS_DISABLE, &ei->flags);
298 	}
299 
300 out_unlock:
301 	spin_unlock_irqrestore(&ei->slock, flag);
302 out:
303 	mutex_unlock(&ei->req_mlock);
304 	return ret;
305 }
306 
307 /**
308  * hte_disable_ts() - Disable timestamp on given descriptor.
309  *
310  * The API does not release any resources associated with desc.
311  *
312  * @desc: ts descriptor, this is the same as returned by the request API.
313  *
314  * Context: Holds mutex lock, not suitable from atomic context.
315  * Returns: 0 on success or a negative error code on failure.
316  */
317 int hte_disable_ts(struct hte_ts_desc *desc)
318 {
319 	return hte_ts_dis_en_common(desc, false);
320 }
321 EXPORT_SYMBOL_GPL(hte_disable_ts);
322 
323 /**
324  * hte_enable_ts() - Enable timestamp on given descriptor.
325  *
326  * @desc: ts descriptor, this is the same as returned by the request API.
327  *
328  * Context: Holds mutex lock, not suitable from atomic context.
329  * Returns: 0 on success or a negative error code on failure.
330  */
331 int hte_enable_ts(struct hte_ts_desc *desc)
332 {
333 	return hte_ts_dis_en_common(desc, true);
334 }
335 EXPORT_SYMBOL_GPL(hte_enable_ts);
336 
337 static void hte_do_cb_work(struct work_struct *w)
338 {
339 	unsigned long flag;
340 	struct hte_ts_info *ei = container_of(w, struct hte_ts_info, cb_work);
341 
342 	if (unlikely(!ei->tcb))
343 		return;
344 
345 	ei->tcb(ei->cl_data);
346 
347 	spin_lock_irqsave(&ei->slock, flag);
348 	clear_bit(HTE_TS_QUEUE_WK, &ei->flags);
349 	spin_unlock_irqrestore(&ei->slock, flag);
350 }
351 
352 static int __hte_req_ts(struct hte_ts_desc *desc, hte_ts_cb_t cb,
353 			hte_ts_sec_cb_t tcb, void *data)
354 {
355 	int ret;
356 	struct hte_device *gdev;
357 	struct hte_ts_info *ei = desc->hte_data;
358 
359 	gdev = ei->gdev;
360 	/*
361 	 * There is a chance that multiple consumers requesting same entity,
362 	 * lock here.
363 	 */
364 	mutex_lock(&ei->req_mlock);
365 
366 	if (test_bit(HTE_TS_REGISTERED, &ei->flags) ||
367 	    !test_bit(HTE_TS_REQ, &ei->flags)) {
368 		dev_dbg(gdev->chip->dev, "id:%u req failed\n",
369 			desc->attr.line_id);
370 		ret = -EUSERS;
371 		goto unlock;
372 	}
373 
374 	ei->cb = cb;
375 	ei->tcb = tcb;
376 	if (tcb)
377 		INIT_WORK(&ei->cb_work, hte_do_cb_work);
378 
379 	ret = gdev->chip->ops->request(gdev->chip, desc, ei->xlated_id);
380 	if (ret < 0) {
381 		dev_err(gdev->chip->dev, "ts request failed\n");
382 		goto unlock;
383 	}
384 
385 	ei->cl_data = data;
386 	ei->seq = 1;
387 
388 	atomic_inc(&gdev->ts_req);
389 
390 	if (desc->attr.name)
391 		ei->line_name = NULL;
392 	else
393 		ei->line_name = kasprintf(GFP_KERNEL, "ts_%u", desc->attr.line_id);
394 
395 	hte_ts_dbgfs_init(desc->attr.name == NULL ?
396 			  ei->line_name : desc->attr.name, ei);
397 	set_bit(HTE_TS_REGISTERED, &ei->flags);
398 
399 	dev_dbg(gdev->chip->dev, "id: %u, xlated id:%u",
400 		desc->attr.line_id, ei->xlated_id);
401 
402 	ret = 0;
403 
404 unlock:
405 	mutex_unlock(&ei->req_mlock);
406 
407 	return ret;
408 }
409 
410 static int hte_bind_ts_info_locked(struct hte_ts_info *ei,
411 				   struct hte_ts_desc *desc, u32 x_id)
412 {
413 	int ret = 0;
414 
415 	mutex_lock(&ei->req_mlock);
416 
417 	if (test_bit(HTE_TS_REQ, &ei->flags)) {
418 		dev_dbg(ei->gdev->chip->dev, "id:%u is already requested\n",
419 			desc->attr.line_id);
420 		ret = -EUSERS;
421 		goto out;
422 	}
423 
424 	set_bit(HTE_TS_REQ, &ei->flags);
425 	desc->hte_data = ei;
426 	ei->xlated_id = x_id;
427 
428 out:
429 	mutex_unlock(&ei->req_mlock);
430 
431 	return ret;
432 }
433 
434 static struct hte_device *of_node_to_htedevice(struct device_node *np)
435 {
436 	struct hte_device *gdev;
437 
438 	spin_lock(&hte_lock);
439 
440 	list_for_each_entry(gdev, &hte_devices, list)
441 		if (gdev->chip && gdev->chip->dev &&
442 		    device_match_of_node(gdev->chip->dev, np)) {
443 			spin_unlock(&hte_lock);
444 			return gdev;
445 		}
446 
447 	spin_unlock(&hte_lock);
448 
449 	return ERR_PTR(-ENODEV);
450 }
451 
452 static struct hte_device *hte_find_dev_from_linedata(struct hte_ts_desc *desc)
453 {
454 	struct hte_device *gdev;
455 
456 	spin_lock(&hte_lock);
457 
458 	list_for_each_entry(gdev, &hte_devices, list)
459 		if (gdev->chip && gdev->chip->match_from_linedata) {
460 			if (!gdev->chip->match_from_linedata(gdev->chip, desc))
461 				continue;
462 			spin_unlock(&hte_lock);
463 			return gdev;
464 		}
465 
466 	spin_unlock(&hte_lock);
467 
468 	return ERR_PTR(-ENODEV);
469 }
470 
471 /**
472  * of_hte_req_count - Return the number of entities to timestamp.
473  *
474  * The function returns the total count of the requested entities to timestamp
475  * by parsing device tree.
476  *
477  * @dev: The HTE consumer.
478  *
479  * Returns: Positive number on success, -ENOENT if no entries,
480  * -EINVAL for other errors.
481  */
482 int of_hte_req_count(struct device *dev)
483 {
484 	int count;
485 
486 	if (!dev || !dev->of_node)
487 		return -EINVAL;
488 
489 	count = of_count_phandle_with_args(dev->of_node, "timestamps",
490 					   "#timestamp-cells");
491 
492 	return count ? count : -ENOENT;
493 }
494 EXPORT_SYMBOL_GPL(of_hte_req_count);
495 
496 static inline struct hte_device *hte_get_dev(struct hte_ts_desc *desc)
497 {
498 	return hte_find_dev_from_linedata(desc);
499 }
500 
501 static struct hte_device *hte_of_get_dev(struct device *dev,
502 					 struct hte_ts_desc *desc,
503 					 int index,
504 					 struct of_phandle_args *args,
505 					 bool *free_name)
506 {
507 	int ret;
508 	struct device_node *np;
509 	char *temp;
510 
511 	if (!dev->of_node)
512 		return ERR_PTR(-EINVAL);
513 
514 	np = dev->of_node;
515 
516 	if (!of_property_present(np, "timestamp-names")) {
517 		/* Let hte core construct it during request time */
518 		desc->attr.name = NULL;
519 	} else {
520 		ret = of_property_read_string_index(np, "timestamp-names",
521 						    index, &desc->attr.name);
522 		if (ret) {
523 			pr_err("can't parse \"timestamp-names\" property\n");
524 			return ERR_PTR(ret);
525 		}
526 		*free_name = false;
527 		if (desc->attr.name) {
528 			temp = skip_spaces(desc->attr.name);
529 			if (!*temp)
530 				desc->attr.name = NULL;
531 		}
532 	}
533 
534 	ret = of_parse_phandle_with_args(np, "timestamps", "#timestamp-cells",
535 					 index, args);
536 	if (ret) {
537 		pr_err("%s(): can't parse \"timestamps\" property\n",
538 		       __func__);
539 		return ERR_PTR(ret);
540 	}
541 
542 	of_node_put(args->np);
543 
544 	return of_node_to_htedevice(args->np);
545 }
546 
547 /**
548  * hte_ts_get() - The function to initialize and obtain HTE desc.
549  *
550  * The function initializes the consumer provided HTE descriptor. If consumer
551  * has device tree node, index is used to parse the line id and other details.
552  * The function needs to be called before using any request APIs.
553  *
554  * @dev: HTE consumer/client device, used in case of parsing device tree node.
555  * @desc: Pre-allocated timestamp descriptor.
556  * @index: The index will be used as an index to parse line_id from the
557  * device tree node if node is present.
558  *
559  * Context: Holds mutex lock.
560  * Returns: Returns 0 on success or negative error code on failure.
561  */
562 int hte_ts_get(struct device *dev, struct hte_ts_desc *desc, int index)
563 {
564 	struct hte_device *gdev;
565 	struct hte_ts_info *ei;
566 	const struct fwnode_handle *fwnode;
567 	struct of_phandle_args args;
568 	u32 xlated_id;
569 	int ret;
570 	bool free_name = false;
571 
572 	if (!desc)
573 		return -EINVAL;
574 
575 	fwnode = dev ? dev_fwnode(dev) : NULL;
576 
577 	if (is_of_node(fwnode))
578 		gdev = hte_of_get_dev(dev, desc, index, &args, &free_name);
579 	else
580 		gdev = hte_get_dev(desc);
581 
582 	if (IS_ERR(gdev)) {
583 		pr_err("%s() no hte dev found\n", __func__);
584 		return PTR_ERR(gdev);
585 	}
586 
587 	if (!try_module_get(gdev->owner))
588 		return -ENODEV;
589 
590 	if (!gdev->chip) {
591 		pr_err("%s(): requested id does not have provider\n",
592 		       __func__);
593 		ret = -ENODEV;
594 		goto put;
595 	}
596 
597 	if (is_of_node(fwnode)) {
598 		if (!gdev->chip->xlate_of)
599 			ret = -EINVAL;
600 		else
601 			ret = gdev->chip->xlate_of(gdev->chip, &args,
602 						   desc, &xlated_id);
603 	} else {
604 		if (!gdev->chip->xlate_plat)
605 			ret = -EINVAL;
606 		else
607 			ret = gdev->chip->xlate_plat(gdev->chip, desc,
608 						     &xlated_id);
609 	}
610 
611 	if (ret < 0)
612 		goto put;
613 
614 	ei = &gdev->ei[xlated_id];
615 
616 	ret = hte_bind_ts_info_locked(ei, desc, xlated_id);
617 	if (ret)
618 		goto put;
619 
620 	ei->free_attr_name = free_name;
621 
622 	return 0;
623 
624 put:
625 	module_put(gdev->owner);
626 	return ret;
627 }
628 EXPORT_SYMBOL_GPL(hte_ts_get);
629 
630 static void __devm_hte_release_ts(void *res)
631 {
632 	hte_ts_put(res);
633 }
634 
635 /**
636  * hte_request_ts_ns() - The API to request and enable hardware timestamp in
637  * nanoseconds.
638  *
639  * The entity is provider specific for example, GPIO lines, signals, buses
640  * etc...The API allocates necessary resources and enables the timestamp.
641  *
642  * @desc: Pre-allocated and initialized timestamp descriptor.
643  * @cb: Callback to push the timestamp data to consumer.
644  * @tcb: Optional callback. If its provided, subsystem initializes
645  * workqueue. It is called when cb returns HTE_RUN_SECOND_CB.
646  * @data: Client data, used during cb and tcb callbacks.
647  *
648  * Context: Holds mutex lock.
649  * Returns: Returns 0 on success or negative error code on failure.
650  */
651 int hte_request_ts_ns(struct hte_ts_desc *desc, hte_ts_cb_t cb,
652 		      hte_ts_sec_cb_t tcb, void *data)
653 {
654 	int ret;
655 	struct hte_ts_info *ei;
656 
657 	if (!desc || !desc->hte_data || !cb)
658 		return -EINVAL;
659 
660 	ei = desc->hte_data;
661 	if (!ei || !ei->gdev)
662 		return -EINVAL;
663 
664 	ret = __hte_req_ts(desc, cb, tcb, data);
665 	if (ret < 0) {
666 		dev_err(ei->gdev->chip->dev,
667 			"failed to request id: %d\n", desc->attr.line_id);
668 		return ret;
669 	}
670 
671 	return 0;
672 }
673 EXPORT_SYMBOL_GPL(hte_request_ts_ns);
674 
675 /**
676  * devm_hte_request_ts_ns() - Resource managed API to request and enable
677  * hardware timestamp in nanoseconds.
678  *
679  * The entity is provider specific for example, GPIO lines, signals, buses
680  * etc...The API allocates necessary resources and enables the timestamp. It
681  * deallocates and disables automatically when the consumer exits.
682  *
683  * @dev: HTE consumer/client device.
684  * @desc: Pre-allocated and initialized timestamp descriptor.
685  * @cb: Callback to push the timestamp data to consumer.
686  * @tcb: Optional callback. If its provided, subsystem initializes
687  * workqueue. It is called when cb returns HTE_RUN_SECOND_CB.
688  * @data: Client data, used during cb and tcb callbacks.
689  *
690  * Context: Holds mutex lock.
691  * Returns: Returns 0 on success or negative error code on failure.
692  */
693 int devm_hte_request_ts_ns(struct device *dev, struct hte_ts_desc *desc,
694 			   hte_ts_cb_t cb, hte_ts_sec_cb_t tcb,
695 			   void *data)
696 {
697 	int err;
698 
699 	if (!dev)
700 		return -EINVAL;
701 
702 	err = hte_request_ts_ns(desc, cb, tcb, data);
703 	if (err)
704 		return err;
705 
706 	err = devm_add_action_or_reset(dev, __devm_hte_release_ts, desc);
707 	if (err)
708 		return err;
709 
710 	return 0;
711 }
712 EXPORT_SYMBOL_GPL(devm_hte_request_ts_ns);
713 
714 /**
715  * hte_init_line_attr() - Initialize line attributes.
716  *
717  * Zeroes out line attributes and initializes with provided arguments.
718  * The function needs to be called before calling any consumer facing
719  * functions.
720  *
721  * @desc: Pre-allocated timestamp descriptor.
722  * @line_id: line id.
723  * @edge_flags: edge flags related to line_id.
724  * @name: name of the line.
725  * @data: line data related to line_id.
726  *
727  * Context: Any.
728  * Returns: 0 on success or negative error code for the failure.
729  */
730 int hte_init_line_attr(struct hte_ts_desc *desc, u32 line_id,
731 		       unsigned long edge_flags, const char *name, void *data)
732 {
733 	if (!desc)
734 		return -EINVAL;
735 
736 	memset(&desc->attr, 0, sizeof(desc->attr));
737 
738 	desc->attr.edge_flags = edge_flags;
739 	desc->attr.line_id = line_id;
740 	desc->attr.line_data = data;
741 	if (name) {
742 		name =  kstrdup_const(name, GFP_KERNEL);
743 		if (!name)
744 			return -ENOMEM;
745 	}
746 
747 	desc->attr.name = name;
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL_GPL(hte_init_line_attr);
752 
753 /**
754  * hte_get_clk_src_info() - Get the clock source information for a ts
755  * descriptor.
756  *
757  * @desc: ts descriptor, same as returned from request API.
758  * @ci: The API fills this structure with the clock information data.
759  *
760  * Context: Any context.
761  * Returns: 0 on success else negative error code on failure.
762  */
763 int hte_get_clk_src_info(const struct hte_ts_desc *desc,
764 			 struct hte_clk_info *ci)
765 {
766 	struct hte_chip *chip;
767 	struct hte_ts_info *ei;
768 
769 	if (!desc || !desc->hte_data || !ci) {
770 		pr_debug("%s:%d\n", __func__, __LINE__);
771 		return -EINVAL;
772 	}
773 
774 	ei = desc->hte_data;
775 	if (!ei->gdev || !ei->gdev->chip)
776 		return -EINVAL;
777 
778 	chip = ei->gdev->chip;
779 	if (!chip->ops->get_clk_src_info)
780 		return -EOPNOTSUPP;
781 
782 	return chip->ops->get_clk_src_info(chip, ci);
783 }
784 EXPORT_SYMBOL_GPL(hte_get_clk_src_info);
785 
786 /**
787  * hte_push_ts_ns() - Push timestamp data in nanoseconds.
788  *
789  * It is used by the provider to push timestamp data.
790  *
791  * @chip: The HTE chip, used during the registration.
792  * @xlated_id: entity id understood by both subsystem and provider, this is
793  * obtained from xlate callback during request API.
794  * @data: timestamp data.
795  *
796  * Returns: 0 on success or a negative error code on failure.
797  */
798 int hte_push_ts_ns(const struct hte_chip *chip, u32 xlated_id,
799 		   struct hte_ts_data *data)
800 {
801 	enum hte_return ret;
802 	int st = 0;
803 	struct hte_ts_info *ei;
804 	unsigned long flag;
805 
806 	if (!chip || !data || !chip->gdev)
807 		return -EINVAL;
808 
809 	if (xlated_id >= chip->nlines)
810 		return -EINVAL;
811 
812 	ei = &chip->gdev->ei[xlated_id];
813 
814 	spin_lock_irqsave(&ei->slock, flag);
815 
816 	/* timestamp sequence counter */
817 	data->seq = ei->seq++;
818 
819 	if (!test_bit(HTE_TS_REGISTERED, &ei->flags) ||
820 	    test_bit(HTE_TS_DISABLE, &ei->flags)) {
821 		dev_dbg(chip->dev, "Unknown timestamp push\n");
822 		atomic_inc(&ei->dropped_ts);
823 		st = -EINVAL;
824 		goto unlock;
825 	}
826 
827 	ret = ei->cb(data, ei->cl_data);
828 	if (ret == HTE_RUN_SECOND_CB && ei->tcb) {
829 		queue_work(system_unbound_wq, &ei->cb_work);
830 		set_bit(HTE_TS_QUEUE_WK, &ei->flags);
831 	}
832 
833 unlock:
834 	spin_unlock_irqrestore(&ei->slock, flag);
835 
836 	return st;
837 }
838 EXPORT_SYMBOL_GPL(hte_push_ts_ns);
839 
840 static int hte_register_chip(struct hte_chip *chip)
841 {
842 	struct hte_device *gdev;
843 	u32 i;
844 
845 	if (!chip || !chip->dev || !chip->dev->of_node)
846 		return -EINVAL;
847 
848 	if (!chip->ops || !chip->ops->request || !chip->ops->release) {
849 		dev_err(chip->dev, "Driver needs to provide ops\n");
850 		return -EINVAL;
851 	}
852 
853 	gdev = kzalloc(struct_size(gdev, ei, chip->nlines), GFP_KERNEL);
854 	if (!gdev)
855 		return -ENOMEM;
856 
857 	gdev->chip = chip;
858 	chip->gdev = gdev;
859 	gdev->nlines = chip->nlines;
860 	gdev->sdev = chip->dev;
861 
862 	for (i = 0; i < chip->nlines; i++) {
863 		gdev->ei[i].gdev = gdev;
864 		mutex_init(&gdev->ei[i].req_mlock);
865 		spin_lock_init(&gdev->ei[i].slock);
866 	}
867 
868 	if (chip->dev->driver)
869 		gdev->owner = chip->dev->driver->owner;
870 	else
871 		gdev->owner = THIS_MODULE;
872 
873 	of_node_get(chip->dev->of_node);
874 
875 	INIT_LIST_HEAD(&gdev->list);
876 
877 	spin_lock(&hte_lock);
878 	list_add_tail(&gdev->list, &hte_devices);
879 	spin_unlock(&hte_lock);
880 
881 	hte_chip_dbgfs_init(gdev);
882 
883 	dev_dbg(chip->dev, "Added hte chip\n");
884 
885 	return 0;
886 }
887 
888 static int hte_unregister_chip(struct hte_chip *chip)
889 {
890 	struct hte_device *gdev;
891 
892 	if (!chip)
893 		return -EINVAL;
894 
895 	gdev = chip->gdev;
896 
897 	spin_lock(&hte_lock);
898 	list_del(&gdev->list);
899 	spin_unlock(&hte_lock);
900 
901 	gdev->chip = NULL;
902 
903 	of_node_put(chip->dev->of_node);
904 	debugfs_remove_recursive(gdev->dbg_root);
905 	kfree(gdev);
906 
907 	dev_dbg(chip->dev, "Removed hte chip\n");
908 
909 	return 0;
910 }
911 
912 static void _hte_devm_unregister_chip(void *chip)
913 {
914 	hte_unregister_chip(chip);
915 }
916 
917 /**
918  * devm_hte_register_chip() - Resource managed API to register HTE chip.
919  *
920  * It is used by the provider to register itself with the HTE subsystem.
921  * The unregistration is done automatically when the provider exits.
922  *
923  * @chip: the HTE chip to add to subsystem.
924  *
925  * Returns: 0 on success or a negative error code on failure.
926  */
927 int devm_hte_register_chip(struct hte_chip *chip)
928 {
929 	int err;
930 
931 	err = hte_register_chip(chip);
932 	if (err)
933 		return err;
934 
935 	err = devm_add_action_or_reset(chip->dev, _hte_devm_unregister_chip,
936 				       chip);
937 	if (err)
938 		return err;
939 
940 	return 0;
941 }
942 EXPORT_SYMBOL_GPL(devm_hte_register_chip);
943