1 /* 2 * Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com> 3 * Copyright (c) 2013 Synaptics Incorporated 4 * Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com> 5 * Copyright (c) 2014 Red Hat, Inc 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License as published by the Free 9 * Software Foundation; either version 2 of the License, or (at your option) 10 * any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/hid.h> 15 #include <linux/input.h> 16 #include <linux/input/mt.h> 17 #include <linux/module.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/wait.h> 21 #include <linux/sched.h> 22 #include "hid-ids.h" 23 24 #define RMI_MOUSE_REPORT_ID 0x01 /* Mouse emulation Report */ 25 #define RMI_WRITE_REPORT_ID 0x09 /* Output Report */ 26 #define RMI_READ_ADDR_REPORT_ID 0x0a /* Output Report */ 27 #define RMI_READ_DATA_REPORT_ID 0x0b /* Input Report */ 28 #define RMI_ATTN_REPORT_ID 0x0c /* Input Report */ 29 #define RMI_SET_RMI_MODE_REPORT_ID 0x0f /* Feature Report */ 30 31 /* flags */ 32 #define RMI_READ_REQUEST_PENDING BIT(0) 33 #define RMI_READ_DATA_PENDING BIT(1) 34 #define RMI_STARTED BIT(2) 35 36 enum rmi_mode_type { 37 RMI_MODE_OFF = 0, 38 RMI_MODE_ATTN_REPORTS = 1, 39 RMI_MODE_NO_PACKED_ATTN_REPORTS = 2, 40 }; 41 42 struct rmi_function { 43 unsigned page; /* page of the function */ 44 u16 query_base_addr; /* base address for queries */ 45 u16 command_base_addr; /* base address for commands */ 46 u16 control_base_addr; /* base address for controls */ 47 u16 data_base_addr; /* base address for datas */ 48 unsigned int interrupt_base; /* cross-function interrupt number 49 * (uniq in the device)*/ 50 unsigned int interrupt_count; /* number of interrupts */ 51 unsigned int report_size; /* size of a report */ 52 unsigned long irq_mask; /* mask of the interrupts 53 * (to be applied against ATTN IRQ) */ 54 }; 55 56 /** 57 * struct rmi_data - stores information for hid communication 58 * 59 * @page_mutex: Locks current page to avoid changing pages in unexpected ways. 60 * @page: Keeps track of the current virtual page 61 * 62 * @wait: Used for waiting for read data 63 * 64 * @writeReport: output buffer when writing RMI registers 65 * @readReport: input buffer when reading RMI registers 66 * 67 * @input_report_size: size of an input report (advertised by HID) 68 * @output_report_size: size of an output report (advertised by HID) 69 * 70 * @flags: flags for the current device (started, reading, etc...) 71 * 72 * @f11: placeholder of internal RMI function F11 description 73 * @f30: placeholder of internal RMI function F30 description 74 * 75 * @max_fingers: maximum finger count reported by the device 76 * @max_x: maximum x value reported by the device 77 * @max_y: maximum y value reported by the device 78 * 79 * @gpio_led_count: count of GPIOs + LEDs reported by F30 80 * @button_count: actual physical buttons count 81 * @button_mask: button mask used to decode GPIO ATTN reports 82 * @button_state_mask: pull state of the buttons 83 * 84 * @input: pointer to the kernel input device 85 * 86 * @reset_work: worker which will be called in case of a mouse report 87 * @hdev: pointer to the struct hid_device 88 */ 89 struct rmi_data { 90 struct mutex page_mutex; 91 int page; 92 93 wait_queue_head_t wait; 94 95 u8 *writeReport; 96 u8 *readReport; 97 98 int input_report_size; 99 int output_report_size; 100 101 unsigned long flags; 102 103 struct rmi_function f11; 104 struct rmi_function f30; 105 106 unsigned int max_fingers; 107 unsigned int max_x; 108 unsigned int max_y; 109 unsigned int x_size_mm; 110 unsigned int y_size_mm; 111 112 unsigned int gpio_led_count; 113 unsigned int button_count; 114 unsigned long button_mask; 115 unsigned long button_state_mask; 116 117 struct input_dev *input; 118 119 struct work_struct reset_work; 120 struct hid_device *hdev; 121 }; 122 123 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff) 124 125 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len); 126 127 /** 128 * rmi_set_page - Set RMI page 129 * @hdev: The pointer to the hid_device struct 130 * @page: The new page address. 131 * 132 * RMI devices have 16-bit addressing, but some of the physical 133 * implementations (like SMBus) only have 8-bit addressing. So RMI implements 134 * a page address at 0xff of every page so we can reliable page addresses 135 * every 256 registers. 136 * 137 * The page_mutex lock must be held when this function is entered. 138 * 139 * Returns zero on success, non-zero on failure. 140 */ 141 static int rmi_set_page(struct hid_device *hdev, u8 page) 142 { 143 struct rmi_data *data = hid_get_drvdata(hdev); 144 int retval; 145 146 data->writeReport[0] = RMI_WRITE_REPORT_ID; 147 data->writeReport[1] = 1; 148 data->writeReport[2] = 0xFF; 149 data->writeReport[4] = page; 150 151 retval = rmi_write_report(hdev, data->writeReport, 152 data->output_report_size); 153 if (retval != data->output_report_size) { 154 dev_err(&hdev->dev, 155 "%s: set page failed: %d.", __func__, retval); 156 return retval; 157 } 158 159 data->page = page; 160 return 0; 161 } 162 163 static int rmi_set_mode(struct hid_device *hdev, u8 mode) 164 { 165 int ret; 166 u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode}; 167 168 ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, txbuf, 169 sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT); 170 if (ret < 0) { 171 dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode, 172 ret); 173 return ret; 174 } 175 176 return 0; 177 } 178 179 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len) 180 { 181 int ret; 182 183 ret = hid_hw_output_report(hdev, (void *)report, len); 184 if (ret < 0) { 185 dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret); 186 return ret; 187 } 188 189 return ret; 190 } 191 192 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf, 193 const int len) 194 { 195 struct rmi_data *data = hid_get_drvdata(hdev); 196 int ret; 197 int bytes_read; 198 int bytes_needed; 199 int retries; 200 int read_input_count; 201 202 mutex_lock(&data->page_mutex); 203 204 if (RMI_PAGE(addr) != data->page) { 205 ret = rmi_set_page(hdev, RMI_PAGE(addr)); 206 if (ret < 0) 207 goto exit; 208 } 209 210 for (retries = 5; retries > 0; retries--) { 211 data->writeReport[0] = RMI_READ_ADDR_REPORT_ID; 212 data->writeReport[1] = 0; /* old 1 byte read count */ 213 data->writeReport[2] = addr & 0xFF; 214 data->writeReport[3] = (addr >> 8) & 0xFF; 215 data->writeReport[4] = len & 0xFF; 216 data->writeReport[5] = (len >> 8) & 0xFF; 217 218 set_bit(RMI_READ_REQUEST_PENDING, &data->flags); 219 220 ret = rmi_write_report(hdev, data->writeReport, 221 data->output_report_size); 222 if (ret != data->output_report_size) { 223 clear_bit(RMI_READ_REQUEST_PENDING, &data->flags); 224 dev_err(&hdev->dev, 225 "failed to write request output report (%d)\n", 226 ret); 227 goto exit; 228 } 229 230 bytes_read = 0; 231 bytes_needed = len; 232 while (bytes_read < len) { 233 if (!wait_event_timeout(data->wait, 234 test_bit(RMI_READ_DATA_PENDING, &data->flags), 235 msecs_to_jiffies(1000))) { 236 hid_warn(hdev, "%s: timeout elapsed\n", 237 __func__); 238 ret = -EAGAIN; 239 break; 240 } 241 242 read_input_count = data->readReport[1]; 243 memcpy(buf + bytes_read, &data->readReport[2], 244 read_input_count < bytes_needed ? 245 read_input_count : bytes_needed); 246 247 bytes_read += read_input_count; 248 bytes_needed -= read_input_count; 249 clear_bit(RMI_READ_DATA_PENDING, &data->flags); 250 } 251 252 if (ret >= 0) { 253 ret = 0; 254 break; 255 } 256 } 257 258 exit: 259 clear_bit(RMI_READ_REQUEST_PENDING, &data->flags); 260 mutex_unlock(&data->page_mutex); 261 return ret; 262 } 263 264 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf) 265 { 266 return rmi_read_block(hdev, addr, buf, 1); 267 } 268 269 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot, 270 u8 finger_state, u8 *touch_data) 271 { 272 int x, y, wx, wy; 273 int wide, major, minor; 274 int z; 275 276 input_mt_slot(hdata->input, slot); 277 input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER, 278 finger_state == 0x01); 279 if (finger_state == 0x01) { 280 x = (touch_data[0] << 4) | (touch_data[2] & 0x0F); 281 y = (touch_data[1] << 4) | (touch_data[2] >> 4); 282 wx = touch_data[3] & 0x0F; 283 wy = touch_data[3] >> 4; 284 wide = (wx > wy); 285 major = max(wx, wy); 286 minor = min(wx, wy); 287 z = touch_data[4]; 288 289 /* y is inverted */ 290 y = hdata->max_y - y; 291 292 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x); 293 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y); 294 input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide); 295 input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z); 296 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major); 297 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor); 298 } 299 } 300 301 static void rmi_reset_work(struct work_struct *work) 302 { 303 struct rmi_data *hdata = container_of(work, struct rmi_data, 304 reset_work); 305 306 /* switch the device to RMI if we receive a generic mouse report */ 307 rmi_set_mode(hdata->hdev, RMI_MODE_ATTN_REPORTS); 308 } 309 310 static inline int rmi_schedule_reset(struct hid_device *hdev) 311 { 312 struct rmi_data *hdata = hid_get_drvdata(hdev); 313 return schedule_work(&hdata->reset_work); 314 } 315 316 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data, 317 int size) 318 { 319 struct rmi_data *hdata = hid_get_drvdata(hdev); 320 int offset; 321 int i; 322 323 if (size < hdata->f11.report_size) 324 return 0; 325 326 if (!(irq & hdata->f11.irq_mask)) 327 return 0; 328 329 offset = (hdata->max_fingers >> 2) + 1; 330 for (i = 0; i < hdata->max_fingers; i++) { 331 int fs_byte_position = i >> 2; 332 int fs_bit_position = (i & 0x3) << 1; 333 int finger_state = (data[fs_byte_position] >> fs_bit_position) & 334 0x03; 335 336 rmi_f11_process_touch(hdata, i, finger_state, 337 &data[offset + 5 * i]); 338 } 339 input_mt_sync_frame(hdata->input); 340 input_sync(hdata->input); 341 return hdata->f11.report_size; 342 } 343 344 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data, 345 int size) 346 { 347 struct rmi_data *hdata = hid_get_drvdata(hdev); 348 int i; 349 int button = 0; 350 bool value; 351 352 if (!(irq & hdata->f30.irq_mask)) 353 return 0; 354 355 for (i = 0; i < hdata->gpio_led_count; i++) { 356 if (test_bit(i, &hdata->button_mask)) { 357 value = (data[i / 8] >> (i & 0x07)) & BIT(0); 358 if (test_bit(i, &hdata->button_state_mask)) 359 value = !value; 360 input_event(hdata->input, EV_KEY, BTN_LEFT + button++, 361 value); 362 } 363 } 364 return hdata->f30.report_size; 365 } 366 367 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size) 368 { 369 struct rmi_data *hdata = hid_get_drvdata(hdev); 370 unsigned long irq_mask = 0; 371 unsigned index = 2; 372 373 if (!(test_bit(RMI_STARTED, &hdata->flags))) 374 return 0; 375 376 irq_mask |= hdata->f11.irq_mask; 377 irq_mask |= hdata->f30.irq_mask; 378 379 if (data[1] & ~irq_mask) 380 hid_warn(hdev, "unknown intr source:%02lx %s:%d\n", 381 data[1] & ~irq_mask, __FILE__, __LINE__); 382 383 if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) { 384 index += rmi_f11_input_event(hdev, data[1], &data[index], 385 size - index); 386 index += rmi_f30_input_event(hdev, data[1], &data[index], 387 size - index); 388 } else { 389 index += rmi_f30_input_event(hdev, data[1], &data[index], 390 size - index); 391 index += rmi_f11_input_event(hdev, data[1], &data[index], 392 size - index); 393 } 394 395 return 1; 396 } 397 398 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size) 399 { 400 struct rmi_data *hdata = hid_get_drvdata(hdev); 401 402 if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) { 403 hid_err(hdev, "no read request pending\n"); 404 return 0; 405 } 406 407 memcpy(hdata->readReport, data, size < hdata->input_report_size ? 408 size : hdata->input_report_size); 409 set_bit(RMI_READ_DATA_PENDING, &hdata->flags); 410 wake_up(&hdata->wait); 411 412 return 1; 413 } 414 415 static int rmi_raw_event(struct hid_device *hdev, 416 struct hid_report *report, u8 *data, int size) 417 { 418 switch (data[0]) { 419 case RMI_READ_DATA_REPORT_ID: 420 return rmi_read_data_event(hdev, data, size); 421 case RMI_ATTN_REPORT_ID: 422 return rmi_input_event(hdev, data, size); 423 case RMI_MOUSE_REPORT_ID: 424 rmi_schedule_reset(hdev); 425 break; 426 } 427 428 return 0; 429 } 430 431 #ifdef CONFIG_PM 432 static int rmi_post_reset(struct hid_device *hdev) 433 { 434 return rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS); 435 } 436 437 static int rmi_post_resume(struct hid_device *hdev) 438 { 439 return rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS); 440 } 441 #endif /* CONFIG_PM */ 442 443 #define RMI4_MAX_PAGE 0xff 444 #define RMI4_PAGE_SIZE 0x0100 445 446 #define PDT_START_SCAN_LOCATION 0x00e9 447 #define PDT_END_SCAN_LOCATION 0x0005 448 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff) 449 450 struct pdt_entry { 451 u8 query_base_addr:8; 452 u8 command_base_addr:8; 453 u8 control_base_addr:8; 454 u8 data_base_addr:8; 455 u8 interrupt_source_count:3; 456 u8 bits3and4:2; 457 u8 function_version:2; 458 u8 bit7:1; 459 u8 function_number:8; 460 } __attribute__((__packed__)); 461 462 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count) 463 { 464 return GENMASK(irq_count + irq_base - 1, irq_base); 465 } 466 467 static void rmi_register_function(struct rmi_data *data, 468 struct pdt_entry *pdt_entry, int page, unsigned interrupt_count) 469 { 470 struct rmi_function *f = NULL; 471 u16 page_base = page << 8; 472 473 switch (pdt_entry->function_number) { 474 case 0x11: 475 f = &data->f11; 476 break; 477 case 0x30: 478 f = &data->f30; 479 break; 480 } 481 482 if (f) { 483 f->page = page; 484 f->query_base_addr = page_base | pdt_entry->query_base_addr; 485 f->command_base_addr = page_base | pdt_entry->command_base_addr; 486 f->control_base_addr = page_base | pdt_entry->control_base_addr; 487 f->data_base_addr = page_base | pdt_entry->data_base_addr; 488 f->interrupt_base = interrupt_count; 489 f->interrupt_count = pdt_entry->interrupt_source_count; 490 f->irq_mask = rmi_gen_mask(f->interrupt_base, 491 f->interrupt_count); 492 } 493 } 494 495 static int rmi_scan_pdt(struct hid_device *hdev) 496 { 497 struct rmi_data *data = hid_get_drvdata(hdev); 498 struct pdt_entry entry; 499 int page; 500 bool page_has_function; 501 int i; 502 int retval; 503 int interrupt = 0; 504 u16 page_start, pdt_start , pdt_end; 505 506 hid_info(hdev, "Scanning PDT...\n"); 507 508 for (page = 0; (page <= RMI4_MAX_PAGE); page++) { 509 page_start = RMI4_PAGE_SIZE * page; 510 pdt_start = page_start + PDT_START_SCAN_LOCATION; 511 pdt_end = page_start + PDT_END_SCAN_LOCATION; 512 513 page_has_function = false; 514 for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) { 515 retval = rmi_read_block(hdev, i, &entry, sizeof(entry)); 516 if (retval) { 517 hid_err(hdev, 518 "Read of PDT entry at %#06x failed.\n", 519 i); 520 goto error_exit; 521 } 522 523 if (RMI4_END_OF_PDT(entry.function_number)) 524 break; 525 526 page_has_function = true; 527 528 hid_info(hdev, "Found F%02X on page %#04x\n", 529 entry.function_number, page); 530 531 rmi_register_function(data, &entry, page, interrupt); 532 interrupt += entry.interrupt_source_count; 533 } 534 535 if (!page_has_function) 536 break; 537 } 538 539 hid_info(hdev, "%s: Done with PDT scan.\n", __func__); 540 retval = 0; 541 542 error_exit: 543 return retval; 544 } 545 546 static int rmi_populate_f11(struct hid_device *hdev) 547 { 548 struct rmi_data *data = hid_get_drvdata(hdev); 549 u8 buf[20]; 550 int ret; 551 bool has_query9; 552 bool has_query10; 553 bool has_query11; 554 bool has_query12; 555 bool has_physical_props; 556 unsigned x_size, y_size; 557 u16 query12_offset; 558 559 if (!data->f11.query_base_addr) { 560 hid_err(hdev, "No 2D sensor found, giving up.\n"); 561 return -ENODEV; 562 } 563 564 /* query 0 contains some useful information */ 565 ret = rmi_read(hdev, data->f11.query_base_addr, buf); 566 if (ret) { 567 hid_err(hdev, "can not get query 0: %d.\n", ret); 568 return ret; 569 } 570 has_query9 = !!(buf[0] & BIT(3)); 571 has_query11 = !!(buf[0] & BIT(4)); 572 has_query12 = !!(buf[0] & BIT(5)); 573 574 /* query 1 to get the max number of fingers */ 575 ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf); 576 if (ret) { 577 hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret); 578 return ret; 579 } 580 data->max_fingers = (buf[0] & 0x07) + 1; 581 if (data->max_fingers > 5) 582 data->max_fingers = 10; 583 584 data->f11.report_size = data->max_fingers * 5 + 585 DIV_ROUND_UP(data->max_fingers, 4); 586 587 if (!(buf[0] & BIT(4))) { 588 hid_err(hdev, "No absolute events, giving up.\n"); 589 return -ENODEV; 590 } 591 592 /* query 8 to find out if query 10 exists */ 593 ret = rmi_read(hdev, data->f11.query_base_addr + 8, buf); 594 if (ret) { 595 hid_err(hdev, "can not read gesture information: %d.\n", ret); 596 return ret; 597 } 598 has_query10 = !!(buf[0] & BIT(2)); 599 600 /* 601 * At least 8 queries are guaranteed to be present in F11 602 * +1 for query12. 603 */ 604 query12_offset = 9; 605 606 if (has_query9) 607 ++query12_offset; 608 609 if (has_query10) 610 ++query12_offset; 611 612 if (has_query11) 613 ++query12_offset; 614 615 /* query 12 to know if the physical properties are reported */ 616 if (has_query12) { 617 ret = rmi_read(hdev, data->f11.query_base_addr 618 + query12_offset, buf); 619 if (ret) { 620 hid_err(hdev, "can not get query 12: %d.\n", ret); 621 return ret; 622 } 623 has_physical_props = !!(buf[0] & BIT(5)); 624 625 if (has_physical_props) { 626 ret = rmi_read_block(hdev, 627 data->f11.query_base_addr 628 + query12_offset + 1, buf, 4); 629 if (ret) { 630 hid_err(hdev, "can not read query 15-18: %d.\n", 631 ret); 632 return ret; 633 } 634 635 x_size = buf[0] | (buf[1] << 8); 636 y_size = buf[2] | (buf[3] << 8); 637 638 data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10); 639 data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10); 640 641 hid_info(hdev, "%s: size in mm: %d x %d\n", 642 __func__, data->x_size_mm, data->y_size_mm); 643 } 644 } 645 646 /* 647 * retrieve the ctrl registers 648 * the ctrl register has a size of 20 but a fw bug split it into 16 + 4, 649 * and there is no way to know if the first 20 bytes are here or not. 650 * We use only the first 10 bytes, so get only them. 651 */ 652 ret = rmi_read_block(hdev, data->f11.control_base_addr, buf, 10); 653 if (ret) { 654 hid_err(hdev, "can not read ctrl block of size 10: %d.\n", ret); 655 return ret; 656 } 657 658 data->max_x = buf[6] | (buf[7] << 8); 659 data->max_y = buf[8] | (buf[9] << 8); 660 661 return 0; 662 } 663 664 static int rmi_populate_f30(struct hid_device *hdev) 665 { 666 struct rmi_data *data = hid_get_drvdata(hdev); 667 u8 buf[20]; 668 int ret; 669 bool has_gpio, has_led; 670 unsigned bytes_per_ctrl; 671 u8 ctrl2_addr; 672 int ctrl2_3_length; 673 int i; 674 675 /* function F30 is for physical buttons */ 676 if (!data->f30.query_base_addr) { 677 hid_err(hdev, "No GPIO/LEDs found, giving up.\n"); 678 return -ENODEV; 679 } 680 681 ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2); 682 if (ret) { 683 hid_err(hdev, "can not get F30 query registers: %d.\n", ret); 684 return ret; 685 } 686 687 has_gpio = !!(buf[0] & BIT(3)); 688 has_led = !!(buf[0] & BIT(2)); 689 data->gpio_led_count = buf[1] & 0x1f; 690 691 /* retrieve ctrl 2 & 3 registers */ 692 bytes_per_ctrl = (data->gpio_led_count + 7) / 8; 693 /* Ctrl0 is present only if both has_gpio and has_led are set*/ 694 ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0; 695 /* Ctrl1 is always be present */ 696 ctrl2_addr += bytes_per_ctrl; 697 ctrl2_3_length = 2 * bytes_per_ctrl; 698 699 data->f30.report_size = bytes_per_ctrl; 700 701 ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr, 702 buf, ctrl2_3_length); 703 if (ret) { 704 hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n", 705 ctrl2_3_length, ret); 706 return ret; 707 } 708 709 for (i = 0; i < data->gpio_led_count; i++) { 710 int byte_position = i >> 3; 711 int bit_position = i & 0x07; 712 u8 dir_byte = buf[byte_position]; 713 u8 data_byte = buf[byte_position + bytes_per_ctrl]; 714 bool dir = (dir_byte >> bit_position) & BIT(0); 715 bool dat = (data_byte >> bit_position) & BIT(0); 716 717 if (dir == 0) { 718 /* input mode */ 719 if (dat) { 720 /* actual buttons have pull up resistor */ 721 data->button_count++; 722 set_bit(i, &data->button_mask); 723 set_bit(i, &data->button_state_mask); 724 } 725 } 726 727 } 728 729 return 0; 730 } 731 732 static int rmi_populate(struct hid_device *hdev) 733 { 734 int ret; 735 736 ret = rmi_scan_pdt(hdev); 737 if (ret) { 738 hid_err(hdev, "PDT scan failed with code %d.\n", ret); 739 return ret; 740 } 741 742 ret = rmi_populate_f11(hdev); 743 if (ret) { 744 hid_err(hdev, "Error while initializing F11 (%d).\n", ret); 745 return ret; 746 } 747 748 ret = rmi_populate_f30(hdev); 749 if (ret) 750 hid_warn(hdev, "Error while initializing F30 (%d).\n", ret); 751 752 return 0; 753 } 754 755 static void rmi_input_configured(struct hid_device *hdev, struct hid_input *hi) 756 { 757 struct rmi_data *data = hid_get_drvdata(hdev); 758 struct input_dev *input = hi->input; 759 int ret; 760 int res_x, res_y, i; 761 762 data->input = input; 763 764 hid_dbg(hdev, "Opening low level driver\n"); 765 ret = hid_hw_open(hdev); 766 if (ret) 767 return; 768 769 /* Allow incoming hid reports */ 770 hid_device_io_start(hdev); 771 772 ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS); 773 if (ret < 0) { 774 dev_err(&hdev->dev, "failed to set rmi mode\n"); 775 goto exit; 776 } 777 778 ret = rmi_set_page(hdev, 0); 779 if (ret < 0) { 780 dev_err(&hdev->dev, "failed to set page select to 0.\n"); 781 goto exit; 782 } 783 784 ret = rmi_populate(hdev); 785 if (ret) 786 goto exit; 787 788 __set_bit(EV_ABS, input->evbit); 789 input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0); 790 input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0); 791 792 if (data->x_size_mm && data->y_size_mm) { 793 res_x = (data->max_x - 1) / data->x_size_mm; 794 res_y = (data->max_y - 1) / data->y_size_mm; 795 796 input_abs_set_res(input, ABS_MT_POSITION_X, res_x); 797 input_abs_set_res(input, ABS_MT_POSITION_Y, res_y); 798 } 799 800 input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0); 801 input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0); 802 input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0); 803 input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0); 804 805 input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER); 806 807 if (data->button_count) { 808 __set_bit(EV_KEY, input->evbit); 809 for (i = 0; i < data->button_count; i++) 810 __set_bit(BTN_LEFT + i, input->keybit); 811 812 if (data->button_count == 1) 813 __set_bit(INPUT_PROP_BUTTONPAD, input->propbit); 814 } 815 816 set_bit(RMI_STARTED, &data->flags); 817 818 exit: 819 hid_device_io_stop(hdev); 820 hid_hw_close(hdev); 821 } 822 823 static int rmi_input_mapping(struct hid_device *hdev, 824 struct hid_input *hi, struct hid_field *field, 825 struct hid_usage *usage, unsigned long **bit, int *max) 826 { 827 /* we want to make HID ignore the advertised HID collection */ 828 return -1; 829 } 830 831 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id) 832 { 833 struct rmi_data *data = NULL; 834 int ret; 835 size_t alloc_size; 836 837 data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL); 838 if (!data) 839 return -ENOMEM; 840 841 INIT_WORK(&data->reset_work, rmi_reset_work); 842 data->hdev = hdev; 843 844 hid_set_drvdata(hdev, data); 845 846 hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS; 847 848 ret = hid_parse(hdev); 849 if (ret) { 850 hid_err(hdev, "parse failed\n"); 851 return ret; 852 } 853 854 data->input_report_size = (hdev->report_enum[HID_INPUT_REPORT] 855 .report_id_hash[RMI_ATTN_REPORT_ID]->size >> 3) 856 + 1 /* report id */; 857 data->output_report_size = (hdev->report_enum[HID_OUTPUT_REPORT] 858 .report_id_hash[RMI_WRITE_REPORT_ID]->size >> 3) 859 + 1 /* report id */; 860 861 alloc_size = data->output_report_size + data->input_report_size; 862 863 data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL); 864 if (!data->writeReport) { 865 ret = -ENOMEM; 866 return ret; 867 } 868 869 data->readReport = data->writeReport + data->output_report_size; 870 871 init_waitqueue_head(&data->wait); 872 873 mutex_init(&data->page_mutex); 874 875 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 876 if (ret) { 877 hid_err(hdev, "hw start failed\n"); 878 return ret; 879 } 880 881 if (!test_bit(RMI_STARTED, &data->flags)) { 882 hid_hw_stop(hdev); 883 return -EIO; 884 } 885 886 return 0; 887 } 888 889 static void rmi_remove(struct hid_device *hdev) 890 { 891 struct rmi_data *hdata = hid_get_drvdata(hdev); 892 893 clear_bit(RMI_STARTED, &hdata->flags); 894 895 hid_hw_stop(hdev); 896 } 897 898 static const struct hid_device_id rmi_id[] = { 899 { HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) }, 900 { } 901 }; 902 MODULE_DEVICE_TABLE(hid, rmi_id); 903 904 static struct hid_driver rmi_driver = { 905 .name = "hid-rmi", 906 .id_table = rmi_id, 907 .probe = rmi_probe, 908 .remove = rmi_remove, 909 .raw_event = rmi_raw_event, 910 .input_mapping = rmi_input_mapping, 911 .input_configured = rmi_input_configured, 912 #ifdef CONFIG_PM 913 .resume = rmi_post_resume, 914 .reset_resume = rmi_post_reset, 915 #endif 916 }; 917 918 module_hid_driver(rmi_driver); 919 920 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>"); 921 MODULE_DESCRIPTION("RMI HID driver"); 922 MODULE_LICENSE("GPL"); 923