xref: /linux/drivers/hid/hid-rmi.c (revision 8c749ce93ee69e789e46b3be98de9e0cbfcf8ed8)
1 /*
2  *  Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com>
3  *  Copyright (c) 2013 Synaptics Incorporated
4  *  Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com>
5  *  Copyright (c) 2014 Red Hat, Inc
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the Free
9  * Software Foundation; either version 2 of the License, or (at your option)
10  * any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/hid.h>
15 #include <linux/input.h>
16 #include <linux/input/mt.h>
17 #include <linux/module.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/wait.h>
21 #include <linux/sched.h>
22 #include "hid-ids.h"
23 
24 #define RMI_MOUSE_REPORT_ID		0x01 /* Mouse emulation Report */
25 #define RMI_WRITE_REPORT_ID		0x09 /* Output Report */
26 #define RMI_READ_ADDR_REPORT_ID		0x0a /* Output Report */
27 #define RMI_READ_DATA_REPORT_ID		0x0b /* Input Report */
28 #define RMI_ATTN_REPORT_ID		0x0c /* Input Report */
29 #define RMI_SET_RMI_MODE_REPORT_ID	0x0f /* Feature Report */
30 
31 /* flags */
32 #define RMI_READ_REQUEST_PENDING	0
33 #define RMI_READ_DATA_PENDING		1
34 #define RMI_STARTED			2
35 
36 #define RMI_SLEEP_NORMAL		0x0
37 #define RMI_SLEEP_DEEP_SLEEP		0x1
38 
39 /* device flags */
40 #define RMI_DEVICE			BIT(0)
41 #define RMI_DEVICE_HAS_PHYS_BUTTONS	BIT(1)
42 
43 /*
44  * retrieve the ctrl registers
45  * the ctrl register has a size of 20 but a fw bug split it into 16 + 4,
46  * and there is no way to know if the first 20 bytes are here or not.
47  * We use only the first 12 bytes, so get only them.
48  */
49 #define RMI_F11_CTRL_REG_COUNT		12
50 
51 enum rmi_mode_type {
52 	RMI_MODE_OFF			= 0,
53 	RMI_MODE_ATTN_REPORTS		= 1,
54 	RMI_MODE_NO_PACKED_ATTN_REPORTS	= 2,
55 };
56 
57 struct rmi_function {
58 	unsigned page;			/* page of the function */
59 	u16 query_base_addr;		/* base address for queries */
60 	u16 command_base_addr;		/* base address for commands */
61 	u16 control_base_addr;		/* base address for controls */
62 	u16 data_base_addr;		/* base address for datas */
63 	unsigned int interrupt_base;	/* cross-function interrupt number
64 					 * (uniq in the device)*/
65 	unsigned int interrupt_count;	/* number of interrupts */
66 	unsigned int report_size;	/* size of a report */
67 	unsigned long irq_mask;		/* mask of the interrupts
68 					 * (to be applied against ATTN IRQ) */
69 };
70 
71 /**
72  * struct rmi_data - stores information for hid communication
73  *
74  * @page_mutex: Locks current page to avoid changing pages in unexpected ways.
75  * @page: Keeps track of the current virtual page
76  *
77  * @wait: Used for waiting for read data
78  *
79  * @writeReport: output buffer when writing RMI registers
80  * @readReport: input buffer when reading RMI registers
81  *
82  * @input_report_size: size of an input report (advertised by HID)
83  * @output_report_size: size of an output report (advertised by HID)
84  *
85  * @flags: flags for the current device (started, reading, etc...)
86  *
87  * @f11: placeholder of internal RMI function F11 description
88  * @f30: placeholder of internal RMI function F30 description
89  *
90  * @max_fingers: maximum finger count reported by the device
91  * @max_x: maximum x value reported by the device
92  * @max_y: maximum y value reported by the device
93  *
94  * @gpio_led_count: count of GPIOs + LEDs reported by F30
95  * @button_count: actual physical buttons count
96  * @button_mask: button mask used to decode GPIO ATTN reports
97  * @button_state_mask: pull state of the buttons
98  *
99  * @input: pointer to the kernel input device
100  *
101  * @reset_work: worker which will be called in case of a mouse report
102  * @hdev: pointer to the struct hid_device
103  */
104 struct rmi_data {
105 	struct mutex page_mutex;
106 	int page;
107 
108 	wait_queue_head_t wait;
109 
110 	u8 *writeReport;
111 	u8 *readReport;
112 
113 	int input_report_size;
114 	int output_report_size;
115 
116 	unsigned long flags;
117 
118 	struct rmi_function f01;
119 	struct rmi_function f11;
120 	struct rmi_function f30;
121 
122 	unsigned int max_fingers;
123 	unsigned int max_x;
124 	unsigned int max_y;
125 	unsigned int x_size_mm;
126 	unsigned int y_size_mm;
127 	bool read_f11_ctrl_regs;
128 	u8 f11_ctrl_regs[RMI_F11_CTRL_REG_COUNT];
129 
130 	unsigned int gpio_led_count;
131 	unsigned int button_count;
132 	unsigned long button_mask;
133 	unsigned long button_state_mask;
134 
135 	struct input_dev *input;
136 
137 	struct work_struct reset_work;
138 	struct hid_device *hdev;
139 
140 	unsigned long device_flags;
141 	unsigned long firmware_id;
142 
143 	u8 f01_ctrl0;
144 	u8 interrupt_enable_mask;
145 	bool restore_interrupt_mask;
146 };
147 
148 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff)
149 
150 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len);
151 
152 /**
153  * rmi_set_page - Set RMI page
154  * @hdev: The pointer to the hid_device struct
155  * @page: The new page address.
156  *
157  * RMI devices have 16-bit addressing, but some of the physical
158  * implementations (like SMBus) only have 8-bit addressing. So RMI implements
159  * a page address at 0xff of every page so we can reliable page addresses
160  * every 256 registers.
161  *
162  * The page_mutex lock must be held when this function is entered.
163  *
164  * Returns zero on success, non-zero on failure.
165  */
166 static int rmi_set_page(struct hid_device *hdev, u8 page)
167 {
168 	struct rmi_data *data = hid_get_drvdata(hdev);
169 	int retval;
170 
171 	data->writeReport[0] = RMI_WRITE_REPORT_ID;
172 	data->writeReport[1] = 1;
173 	data->writeReport[2] = 0xFF;
174 	data->writeReport[4] = page;
175 
176 	retval = rmi_write_report(hdev, data->writeReport,
177 			data->output_report_size);
178 	if (retval != data->output_report_size) {
179 		dev_err(&hdev->dev,
180 			"%s: set page failed: %d.", __func__, retval);
181 		return retval;
182 	}
183 
184 	data->page = page;
185 	return 0;
186 }
187 
188 static int rmi_set_mode(struct hid_device *hdev, u8 mode)
189 {
190 	int ret;
191 	u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode};
192 
193 	ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, txbuf,
194 			sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
195 	if (ret < 0) {
196 		dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode,
197 			ret);
198 		return ret;
199 	}
200 
201 	return 0;
202 }
203 
204 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len)
205 {
206 	int ret;
207 
208 	ret = hid_hw_output_report(hdev, (void *)report, len);
209 	if (ret < 0) {
210 		dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret);
211 		return ret;
212 	}
213 
214 	return ret;
215 }
216 
217 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf,
218 		const int len)
219 {
220 	struct rmi_data *data = hid_get_drvdata(hdev);
221 	int ret;
222 	int bytes_read;
223 	int bytes_needed;
224 	int retries;
225 	int read_input_count;
226 
227 	mutex_lock(&data->page_mutex);
228 
229 	if (RMI_PAGE(addr) != data->page) {
230 		ret = rmi_set_page(hdev, RMI_PAGE(addr));
231 		if (ret < 0)
232 			goto exit;
233 	}
234 
235 	for (retries = 5; retries > 0; retries--) {
236 		data->writeReport[0] = RMI_READ_ADDR_REPORT_ID;
237 		data->writeReport[1] = 0; /* old 1 byte read count */
238 		data->writeReport[2] = addr & 0xFF;
239 		data->writeReport[3] = (addr >> 8) & 0xFF;
240 		data->writeReport[4] = len  & 0xFF;
241 		data->writeReport[5] = (len >> 8) & 0xFF;
242 
243 		set_bit(RMI_READ_REQUEST_PENDING, &data->flags);
244 
245 		ret = rmi_write_report(hdev, data->writeReport,
246 						data->output_report_size);
247 		if (ret != data->output_report_size) {
248 			clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
249 			dev_err(&hdev->dev,
250 				"failed to write request output report (%d)\n",
251 				ret);
252 			goto exit;
253 		}
254 
255 		bytes_read = 0;
256 		bytes_needed = len;
257 		while (bytes_read < len) {
258 			if (!wait_event_timeout(data->wait,
259 				test_bit(RMI_READ_DATA_PENDING, &data->flags),
260 					msecs_to_jiffies(1000))) {
261 				hid_warn(hdev, "%s: timeout elapsed\n",
262 					 __func__);
263 				ret = -EAGAIN;
264 				break;
265 			}
266 
267 			read_input_count = data->readReport[1];
268 			memcpy(buf + bytes_read, &data->readReport[2],
269 				read_input_count < bytes_needed ?
270 					read_input_count : bytes_needed);
271 
272 			bytes_read += read_input_count;
273 			bytes_needed -= read_input_count;
274 			clear_bit(RMI_READ_DATA_PENDING, &data->flags);
275 		}
276 
277 		if (ret >= 0) {
278 			ret = 0;
279 			break;
280 		}
281 	}
282 
283 exit:
284 	clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
285 	mutex_unlock(&data->page_mutex);
286 	return ret;
287 }
288 
289 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf)
290 {
291 	return rmi_read_block(hdev, addr, buf, 1);
292 }
293 
294 static int rmi_write_block(struct hid_device *hdev, u16 addr, void *buf,
295 		const int len)
296 {
297 	struct rmi_data *data = hid_get_drvdata(hdev);
298 	int ret;
299 
300 	mutex_lock(&data->page_mutex);
301 
302 	if (RMI_PAGE(addr) != data->page) {
303 		ret = rmi_set_page(hdev, RMI_PAGE(addr));
304 		if (ret < 0)
305 			goto exit;
306 	}
307 
308 	data->writeReport[0] = RMI_WRITE_REPORT_ID;
309 	data->writeReport[1] = len;
310 	data->writeReport[2] = addr & 0xFF;
311 	data->writeReport[3] = (addr >> 8) & 0xFF;
312 	memcpy(&data->writeReport[4], buf, len);
313 
314 	ret = rmi_write_report(hdev, data->writeReport,
315 					data->output_report_size);
316 	if (ret < 0) {
317 		dev_err(&hdev->dev,
318 			"failed to write request output report (%d)\n",
319 			ret);
320 		goto exit;
321 	}
322 	ret = 0;
323 
324 exit:
325 	mutex_unlock(&data->page_mutex);
326 	return ret;
327 }
328 
329 static inline int rmi_write(struct hid_device *hdev, u16 addr, void *buf)
330 {
331 	return rmi_write_block(hdev, addr, buf, 1);
332 }
333 
334 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot,
335 		u8 finger_state, u8 *touch_data)
336 {
337 	int x, y, wx, wy;
338 	int wide, major, minor;
339 	int z;
340 
341 	input_mt_slot(hdata->input, slot);
342 	input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER,
343 			finger_state == 0x01);
344 	if (finger_state == 0x01) {
345 		x = (touch_data[0] << 4) | (touch_data[2] & 0x0F);
346 		y = (touch_data[1] << 4) | (touch_data[2] >> 4);
347 		wx = touch_data[3] & 0x0F;
348 		wy = touch_data[3] >> 4;
349 		wide = (wx > wy);
350 		major = max(wx, wy);
351 		minor = min(wx, wy);
352 		z = touch_data[4];
353 
354 		/* y is inverted */
355 		y = hdata->max_y - y;
356 
357 		input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x);
358 		input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y);
359 		input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide);
360 		input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z);
361 		input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major);
362 		input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor);
363 	}
364 }
365 
366 static int rmi_reset_attn_mode(struct hid_device *hdev)
367 {
368 	struct rmi_data *data = hid_get_drvdata(hdev);
369 	int ret;
370 
371 	ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
372 	if (ret)
373 		return ret;
374 
375 	if (data->restore_interrupt_mask) {
376 		ret = rmi_write(hdev, data->f01.control_base_addr + 1,
377 				&data->interrupt_enable_mask);
378 		if (ret) {
379 			hid_err(hdev, "can not write F01 control register\n");
380 			return ret;
381 		}
382 	}
383 
384 	return 0;
385 }
386 
387 static void rmi_reset_work(struct work_struct *work)
388 {
389 	struct rmi_data *hdata = container_of(work, struct rmi_data,
390 						reset_work);
391 
392 	/* switch the device to RMI if we receive a generic mouse report */
393 	rmi_reset_attn_mode(hdata->hdev);
394 }
395 
396 static inline int rmi_schedule_reset(struct hid_device *hdev)
397 {
398 	struct rmi_data *hdata = hid_get_drvdata(hdev);
399 	return schedule_work(&hdata->reset_work);
400 }
401 
402 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data,
403 		int size)
404 {
405 	struct rmi_data *hdata = hid_get_drvdata(hdev);
406 	int offset;
407 	int i;
408 
409 	if (!(irq & hdata->f11.irq_mask) || size <= 0)
410 		return 0;
411 
412 	offset = (hdata->max_fingers >> 2) + 1;
413 	for (i = 0; i < hdata->max_fingers; i++) {
414 		int fs_byte_position = i >> 2;
415 		int fs_bit_position = (i & 0x3) << 1;
416 		int finger_state = (data[fs_byte_position] >> fs_bit_position) &
417 					0x03;
418 		int position = offset + 5 * i;
419 
420 		if (position + 5 > size) {
421 			/* partial report, go on with what we received */
422 			printk_once(KERN_WARNING
423 				"%s %s: Detected incomplete finger report. Finger reports may occasionally get dropped on this platform.\n",
424 				 dev_driver_string(&hdev->dev),
425 				 dev_name(&hdev->dev));
426 			hid_dbg(hdev, "Incomplete finger report\n");
427 			break;
428 		}
429 
430 		rmi_f11_process_touch(hdata, i, finger_state, &data[position]);
431 	}
432 	input_mt_sync_frame(hdata->input);
433 	input_sync(hdata->input);
434 	return hdata->f11.report_size;
435 }
436 
437 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data,
438 		int size)
439 {
440 	struct rmi_data *hdata = hid_get_drvdata(hdev);
441 	int i;
442 	int button = 0;
443 	bool value;
444 
445 	if (!(irq & hdata->f30.irq_mask))
446 		return 0;
447 
448 	if (size < (int)hdata->f30.report_size) {
449 		hid_warn(hdev, "Click Button pressed, but the click data is missing\n");
450 		return 0;
451 	}
452 
453 	for (i = 0; i < hdata->gpio_led_count; i++) {
454 		if (test_bit(i, &hdata->button_mask)) {
455 			value = (data[i / 8] >> (i & 0x07)) & BIT(0);
456 			if (test_bit(i, &hdata->button_state_mask))
457 				value = !value;
458 			input_event(hdata->input, EV_KEY, BTN_LEFT + button++,
459 					value);
460 		}
461 	}
462 	return hdata->f30.report_size;
463 }
464 
465 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size)
466 {
467 	struct rmi_data *hdata = hid_get_drvdata(hdev);
468 	unsigned long irq_mask = 0;
469 	unsigned index = 2;
470 
471 	if (!(test_bit(RMI_STARTED, &hdata->flags)))
472 		return 0;
473 
474 	irq_mask |= hdata->f11.irq_mask;
475 	irq_mask |= hdata->f30.irq_mask;
476 
477 	if (data[1] & ~irq_mask)
478 		hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n",
479 			data[1] & ~irq_mask, __FILE__, __LINE__);
480 
481 	if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) {
482 		index += rmi_f11_input_event(hdev, data[1], &data[index],
483 				size - index);
484 		index += rmi_f30_input_event(hdev, data[1], &data[index],
485 				size - index);
486 	} else {
487 		index += rmi_f30_input_event(hdev, data[1], &data[index],
488 				size - index);
489 		index += rmi_f11_input_event(hdev, data[1], &data[index],
490 				size - index);
491 	}
492 
493 	return 1;
494 }
495 
496 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size)
497 {
498 	struct rmi_data *hdata = hid_get_drvdata(hdev);
499 
500 	if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) {
501 		hid_dbg(hdev, "no read request pending\n");
502 		return 0;
503 	}
504 
505 	memcpy(hdata->readReport, data, size < hdata->input_report_size ?
506 			size : hdata->input_report_size);
507 	set_bit(RMI_READ_DATA_PENDING, &hdata->flags);
508 	wake_up(&hdata->wait);
509 
510 	return 1;
511 }
512 
513 static int rmi_check_sanity(struct hid_device *hdev, u8 *data, int size)
514 {
515 	int valid_size = size;
516 	/*
517 	 * On the Dell XPS 13 9333, the bus sometimes get confused and fills
518 	 * the report with a sentinel value "ff". Synaptics told us that such
519 	 * behavior does not comes from the touchpad itself, so we filter out
520 	 * such reports here.
521 	 */
522 
523 	while ((data[valid_size - 1] == 0xff) && valid_size > 0)
524 		valid_size--;
525 
526 	return valid_size;
527 }
528 
529 static int rmi_raw_event(struct hid_device *hdev,
530 		struct hid_report *report, u8 *data, int size)
531 {
532 	size = rmi_check_sanity(hdev, data, size);
533 	if (size < 2)
534 		return 0;
535 
536 	switch (data[0]) {
537 	case RMI_READ_DATA_REPORT_ID:
538 		return rmi_read_data_event(hdev, data, size);
539 	case RMI_ATTN_REPORT_ID:
540 		return rmi_input_event(hdev, data, size);
541 	default:
542 		return 1;
543 	}
544 
545 	return 0;
546 }
547 
548 static int rmi_event(struct hid_device *hdev, struct hid_field *field,
549 			struct hid_usage *usage, __s32 value)
550 {
551 	struct rmi_data *data = hid_get_drvdata(hdev);
552 
553 	if ((data->device_flags & RMI_DEVICE) &&
554 	    (field->application == HID_GD_POINTER ||
555 	    field->application == HID_GD_MOUSE)) {
556 		if (data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) {
557 			if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON)
558 				return 0;
559 
560 			if ((usage->hid == HID_GD_X || usage->hid == HID_GD_Y)
561 			    && !value)
562 				return 1;
563 		}
564 
565 		rmi_schedule_reset(hdev);
566 		return 1;
567 	}
568 
569 	return 0;
570 }
571 
572 #ifdef CONFIG_PM
573 static int rmi_set_sleep_mode(struct hid_device *hdev, int sleep_mode)
574 {
575 	struct rmi_data *data = hid_get_drvdata(hdev);
576 	int ret;
577 	u8 f01_ctrl0;
578 
579 	f01_ctrl0 = (data->f01_ctrl0 & ~0x3) | sleep_mode;
580 
581 	ret = rmi_write(hdev, data->f01.control_base_addr,
582 			&f01_ctrl0);
583 	if (ret) {
584 		hid_err(hdev, "can not write sleep mode\n");
585 		return ret;
586 	}
587 
588 	return 0;
589 }
590 
591 static int rmi_suspend(struct hid_device *hdev, pm_message_t message)
592 {
593 	struct rmi_data *data = hid_get_drvdata(hdev);
594 	int ret;
595 	u8 buf[RMI_F11_CTRL_REG_COUNT];
596 
597 	ret = rmi_read_block(hdev, data->f11.control_base_addr, buf,
598 				RMI_F11_CTRL_REG_COUNT);
599 	if (ret)
600 		hid_warn(hdev, "can not read F11 control registers\n");
601 	else
602 		memcpy(data->f11_ctrl_regs, buf, RMI_F11_CTRL_REG_COUNT);
603 
604 
605 	if (!device_may_wakeup(hdev->dev.parent))
606 		return rmi_set_sleep_mode(hdev, RMI_SLEEP_DEEP_SLEEP);
607 
608 	return 0;
609 }
610 
611 static int rmi_post_reset(struct hid_device *hdev)
612 {
613 	struct rmi_data *data = hid_get_drvdata(hdev);
614 	int ret;
615 
616 	ret = rmi_reset_attn_mode(hdev);
617 	if (ret) {
618 		hid_err(hdev, "can not set rmi mode\n");
619 		return ret;
620 	}
621 
622 	if (data->read_f11_ctrl_regs) {
623 		ret = rmi_write_block(hdev, data->f11.control_base_addr,
624 				data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT);
625 		if (ret)
626 			hid_warn(hdev,
627 				"can not write F11 control registers after reset\n");
628 	}
629 
630 	if (!device_may_wakeup(hdev->dev.parent)) {
631 		ret = rmi_set_sleep_mode(hdev, RMI_SLEEP_NORMAL);
632 		if (ret) {
633 			hid_err(hdev, "can not write sleep mode\n");
634 			return ret;
635 		}
636 	}
637 
638 	return ret;
639 }
640 
641 static int rmi_post_resume(struct hid_device *hdev)
642 {
643 	return rmi_reset_attn_mode(hdev);
644 }
645 #endif /* CONFIG_PM */
646 
647 #define RMI4_MAX_PAGE 0xff
648 #define RMI4_PAGE_SIZE 0x0100
649 
650 #define PDT_START_SCAN_LOCATION 0x00e9
651 #define PDT_END_SCAN_LOCATION	0x0005
652 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff)
653 
654 struct pdt_entry {
655 	u8 query_base_addr:8;
656 	u8 command_base_addr:8;
657 	u8 control_base_addr:8;
658 	u8 data_base_addr:8;
659 	u8 interrupt_source_count:3;
660 	u8 bits3and4:2;
661 	u8 function_version:2;
662 	u8 bit7:1;
663 	u8 function_number:8;
664 } __attribute__((__packed__));
665 
666 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count)
667 {
668 	return GENMASK(irq_count + irq_base - 1, irq_base);
669 }
670 
671 static void rmi_register_function(struct rmi_data *data,
672 	struct pdt_entry *pdt_entry, int page, unsigned interrupt_count)
673 {
674 	struct rmi_function *f = NULL;
675 	u16 page_base = page << 8;
676 
677 	switch (pdt_entry->function_number) {
678 	case 0x01:
679 		f = &data->f01;
680 		break;
681 	case 0x11:
682 		f = &data->f11;
683 		break;
684 	case 0x30:
685 		f = &data->f30;
686 		break;
687 	}
688 
689 	if (f) {
690 		f->page = page;
691 		f->query_base_addr = page_base | pdt_entry->query_base_addr;
692 		f->command_base_addr = page_base | pdt_entry->command_base_addr;
693 		f->control_base_addr = page_base | pdt_entry->control_base_addr;
694 		f->data_base_addr = page_base | pdt_entry->data_base_addr;
695 		f->interrupt_base = interrupt_count;
696 		f->interrupt_count = pdt_entry->interrupt_source_count;
697 		f->irq_mask = rmi_gen_mask(f->interrupt_base,
698 						f->interrupt_count);
699 		data->interrupt_enable_mask |= f->irq_mask;
700 	}
701 }
702 
703 static int rmi_scan_pdt(struct hid_device *hdev)
704 {
705 	struct rmi_data *data = hid_get_drvdata(hdev);
706 	struct pdt_entry entry;
707 	int page;
708 	bool page_has_function;
709 	int i;
710 	int retval;
711 	int interrupt = 0;
712 	u16 page_start, pdt_start , pdt_end;
713 
714 	hid_info(hdev, "Scanning PDT...\n");
715 
716 	for (page = 0; (page <= RMI4_MAX_PAGE); page++) {
717 		page_start = RMI4_PAGE_SIZE * page;
718 		pdt_start = page_start + PDT_START_SCAN_LOCATION;
719 		pdt_end = page_start + PDT_END_SCAN_LOCATION;
720 
721 		page_has_function = false;
722 		for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) {
723 			retval = rmi_read_block(hdev, i, &entry, sizeof(entry));
724 			if (retval) {
725 				hid_err(hdev,
726 					"Read of PDT entry at %#06x failed.\n",
727 					i);
728 				goto error_exit;
729 			}
730 
731 			if (RMI4_END_OF_PDT(entry.function_number))
732 				break;
733 
734 			page_has_function = true;
735 
736 			hid_info(hdev, "Found F%02X on page %#04x\n",
737 					entry.function_number, page);
738 
739 			rmi_register_function(data, &entry, page, interrupt);
740 			interrupt += entry.interrupt_source_count;
741 		}
742 
743 		if (!page_has_function)
744 			break;
745 	}
746 
747 	hid_info(hdev, "%s: Done with PDT scan.\n", __func__);
748 	retval = 0;
749 
750 error_exit:
751 	return retval;
752 }
753 
754 #define RMI_DEVICE_F01_BASIC_QUERY_LEN	11
755 
756 static int rmi_populate_f01(struct hid_device *hdev)
757 {
758 	struct rmi_data *data = hid_get_drvdata(hdev);
759 	u8 basic_queries[RMI_DEVICE_F01_BASIC_QUERY_LEN];
760 	u8 info[3];
761 	int ret;
762 	bool has_query42;
763 	bool has_lts;
764 	bool has_sensor_id;
765 	bool has_ds4_queries = false;
766 	bool has_build_id_query = false;
767 	bool has_package_id_query = false;
768 	u16 query_offset = data->f01.query_base_addr;
769 	u16 prod_info_addr;
770 	u8 ds4_query_len;
771 
772 	ret = rmi_read_block(hdev, query_offset, basic_queries,
773 				RMI_DEVICE_F01_BASIC_QUERY_LEN);
774 	if (ret) {
775 		hid_err(hdev, "Can not read basic queries from Function 0x1.\n");
776 		return ret;
777 	}
778 
779 	has_lts = !!(basic_queries[0] & BIT(2));
780 	has_sensor_id = !!(basic_queries[1] & BIT(3));
781 	has_query42 = !!(basic_queries[1] & BIT(7));
782 
783 	query_offset += 11;
784 	prod_info_addr = query_offset + 6;
785 	query_offset += 10;
786 
787 	if (has_lts)
788 		query_offset += 20;
789 
790 	if (has_sensor_id)
791 		query_offset++;
792 
793 	if (has_query42) {
794 		ret = rmi_read(hdev, query_offset, info);
795 		if (ret) {
796 			hid_err(hdev, "Can not read query42.\n");
797 			return ret;
798 		}
799 		has_ds4_queries = !!(info[0] & BIT(0));
800 		query_offset++;
801 	}
802 
803 	if (has_ds4_queries) {
804 		ret = rmi_read(hdev, query_offset, &ds4_query_len);
805 		if (ret) {
806 			hid_err(hdev, "Can not read DS4 Query length.\n");
807 			return ret;
808 		}
809 		query_offset++;
810 
811 		if (ds4_query_len > 0) {
812 			ret = rmi_read(hdev, query_offset, info);
813 			if (ret) {
814 				hid_err(hdev, "Can not read DS4 query.\n");
815 				return ret;
816 			}
817 
818 			has_package_id_query = !!(info[0] & BIT(0));
819 			has_build_id_query = !!(info[0] & BIT(1));
820 		}
821 	}
822 
823 	if (has_package_id_query)
824 		prod_info_addr++;
825 
826 	if (has_build_id_query) {
827 		ret = rmi_read_block(hdev, prod_info_addr, info, 3);
828 		if (ret) {
829 			hid_err(hdev, "Can not read product info.\n");
830 			return ret;
831 		}
832 
833 		data->firmware_id = info[1] << 8 | info[0];
834 		data->firmware_id += info[2] * 65536;
835 	}
836 
837 	ret = rmi_read_block(hdev, data->f01.control_base_addr, info,
838 				2);
839 
840 	if (ret) {
841 		hid_err(hdev, "can not read f01 ctrl registers\n");
842 		return ret;
843 	}
844 
845 	data->f01_ctrl0 = info[0];
846 
847 	if (!info[1]) {
848 		/*
849 		 * Do to a firmware bug in some touchpads the F01 interrupt
850 		 * enable control register will be cleared on reset.
851 		 * This will stop the touchpad from reporting data, so
852 		 * if F01 CTRL1 is 0 then we need to explicitly enable
853 		 * interrupts for the functions we want data for.
854 		 */
855 		data->restore_interrupt_mask = true;
856 
857 		ret = rmi_write(hdev, data->f01.control_base_addr + 1,
858 				&data->interrupt_enable_mask);
859 		if (ret) {
860 			hid_err(hdev, "can not write to control reg 1: %d.\n",
861 				ret);
862 			return ret;
863 		}
864 	}
865 
866 	return 0;
867 }
868 
869 static int rmi_populate_f11(struct hid_device *hdev)
870 {
871 	struct rmi_data *data = hid_get_drvdata(hdev);
872 	u8 buf[20];
873 	int ret;
874 	bool has_query9;
875 	bool has_query10 = false;
876 	bool has_query11;
877 	bool has_query12;
878 	bool has_query27;
879 	bool has_query28;
880 	bool has_query36 = false;
881 	bool has_physical_props;
882 	bool has_gestures;
883 	bool has_rel;
884 	bool has_data40 = false;
885 	bool has_dribble = false;
886 	bool has_palm_detect = false;
887 	unsigned x_size, y_size;
888 	u16 query_offset;
889 
890 	if (!data->f11.query_base_addr) {
891 		hid_err(hdev, "No 2D sensor found, giving up.\n");
892 		return -ENODEV;
893 	}
894 
895 	/* query 0 contains some useful information */
896 	ret = rmi_read(hdev, data->f11.query_base_addr, buf);
897 	if (ret) {
898 		hid_err(hdev, "can not get query 0: %d.\n", ret);
899 		return ret;
900 	}
901 	has_query9 = !!(buf[0] & BIT(3));
902 	has_query11 = !!(buf[0] & BIT(4));
903 	has_query12 = !!(buf[0] & BIT(5));
904 	has_query27 = !!(buf[0] & BIT(6));
905 	has_query28 = !!(buf[0] & BIT(7));
906 
907 	/* query 1 to get the max number of fingers */
908 	ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf);
909 	if (ret) {
910 		hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret);
911 		return ret;
912 	}
913 	data->max_fingers = (buf[0] & 0x07) + 1;
914 	if (data->max_fingers > 5)
915 		data->max_fingers = 10;
916 
917 	data->f11.report_size = data->max_fingers * 5 +
918 				DIV_ROUND_UP(data->max_fingers, 4);
919 
920 	if (!(buf[0] & BIT(4))) {
921 		hid_err(hdev, "No absolute events, giving up.\n");
922 		return -ENODEV;
923 	}
924 
925 	has_rel = !!(buf[0] & BIT(3));
926 	has_gestures = !!(buf[0] & BIT(5));
927 
928 	ret = rmi_read(hdev, data->f11.query_base_addr + 5, buf);
929 	if (ret) {
930 		hid_err(hdev, "can not get absolute data sources: %d.\n", ret);
931 		return ret;
932 	}
933 
934 	has_dribble = !!(buf[0] & BIT(4));
935 
936 	/*
937 	 * At least 4 queries are guaranteed to be present in F11
938 	 * +1 for query 5 which is present since absolute events are
939 	 * reported and +1 for query 12.
940 	 */
941 	query_offset = 6;
942 
943 	if (has_rel)
944 		++query_offset; /* query 6 is present */
945 
946 	if (has_gestures) {
947 		/* query 8 to find out if query 10 exists */
948 		ret = rmi_read(hdev,
949 			data->f11.query_base_addr + query_offset + 1, buf);
950 		if (ret) {
951 			hid_err(hdev, "can not read gesture information: %d.\n",
952 				ret);
953 			return ret;
954 		}
955 		has_palm_detect = !!(buf[0] & BIT(0));
956 		has_query10 = !!(buf[0] & BIT(2));
957 
958 		query_offset += 2; /* query 7 and 8 are present */
959 	}
960 
961 	if (has_query9)
962 		++query_offset;
963 
964 	if (has_query10)
965 		++query_offset;
966 
967 	if (has_query11)
968 		++query_offset;
969 
970 	/* query 12 to know if the physical properties are reported */
971 	if (has_query12) {
972 		ret = rmi_read(hdev, data->f11.query_base_addr
973 				+ query_offset, buf);
974 		if (ret) {
975 			hid_err(hdev, "can not get query 12: %d.\n", ret);
976 			return ret;
977 		}
978 		has_physical_props = !!(buf[0] & BIT(5));
979 
980 		if (has_physical_props) {
981 			query_offset += 1;
982 			ret = rmi_read_block(hdev,
983 					data->f11.query_base_addr
984 						+ query_offset, buf, 4);
985 			if (ret) {
986 				hid_err(hdev, "can not read query 15-18: %d.\n",
987 					ret);
988 				return ret;
989 			}
990 
991 			x_size = buf[0] | (buf[1] << 8);
992 			y_size = buf[2] | (buf[3] << 8);
993 
994 			data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10);
995 			data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10);
996 
997 			hid_info(hdev, "%s: size in mm: %d x %d\n",
998 				 __func__, data->x_size_mm, data->y_size_mm);
999 
1000 			/*
1001 			 * query 15 - 18 contain the size of the sensor
1002 			 * and query 19 - 26 contain bezel dimensions
1003 			 */
1004 			query_offset += 12;
1005 		}
1006 	}
1007 
1008 	if (has_query27)
1009 		++query_offset;
1010 
1011 	if (has_query28) {
1012 		ret = rmi_read(hdev, data->f11.query_base_addr
1013 				+ query_offset, buf);
1014 		if (ret) {
1015 			hid_err(hdev, "can not get query 28: %d.\n", ret);
1016 			return ret;
1017 		}
1018 
1019 		has_query36 = !!(buf[0] & BIT(6));
1020 	}
1021 
1022 	if (has_query36) {
1023 		query_offset += 2;
1024 		ret = rmi_read(hdev, data->f11.query_base_addr
1025 				+ query_offset, buf);
1026 		if (ret) {
1027 			hid_err(hdev, "can not get query 36: %d.\n", ret);
1028 			return ret;
1029 		}
1030 
1031 		has_data40 = !!(buf[0] & BIT(5));
1032 	}
1033 
1034 
1035 	if (has_data40)
1036 		data->f11.report_size += data->max_fingers * 2;
1037 
1038 	ret = rmi_read_block(hdev, data->f11.control_base_addr,
1039 			data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT);
1040 	if (ret) {
1041 		hid_err(hdev, "can not read ctrl block of size 11: %d.\n", ret);
1042 		return ret;
1043 	}
1044 
1045 	/* data->f11_ctrl_regs now contains valid register data */
1046 	data->read_f11_ctrl_regs = true;
1047 
1048 	data->max_x = data->f11_ctrl_regs[6] | (data->f11_ctrl_regs[7] << 8);
1049 	data->max_y = data->f11_ctrl_regs[8] | (data->f11_ctrl_regs[9] << 8);
1050 
1051 	if (has_dribble) {
1052 		data->f11_ctrl_regs[0] = data->f11_ctrl_regs[0] & ~BIT(6);
1053 		ret = rmi_write(hdev, data->f11.control_base_addr,
1054 				data->f11_ctrl_regs);
1055 		if (ret) {
1056 			hid_err(hdev, "can not write to control reg 0: %d.\n",
1057 				ret);
1058 			return ret;
1059 		}
1060 	}
1061 
1062 	if (has_palm_detect) {
1063 		data->f11_ctrl_regs[11] = data->f11_ctrl_regs[11] & ~BIT(0);
1064 		ret = rmi_write(hdev, data->f11.control_base_addr + 11,
1065 				&data->f11_ctrl_regs[11]);
1066 		if (ret) {
1067 			hid_err(hdev, "can not write to control reg 11: %d.\n",
1068 				ret);
1069 			return ret;
1070 		}
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 static int rmi_populate_f30(struct hid_device *hdev)
1077 {
1078 	struct rmi_data *data = hid_get_drvdata(hdev);
1079 	u8 buf[20];
1080 	int ret;
1081 	bool has_gpio, has_led;
1082 	unsigned bytes_per_ctrl;
1083 	u8 ctrl2_addr;
1084 	int ctrl2_3_length;
1085 	int i;
1086 
1087 	/* function F30 is for physical buttons */
1088 	if (!data->f30.query_base_addr) {
1089 		hid_err(hdev, "No GPIO/LEDs found, giving up.\n");
1090 		return -ENODEV;
1091 	}
1092 
1093 	ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2);
1094 	if (ret) {
1095 		hid_err(hdev, "can not get F30 query registers: %d.\n", ret);
1096 		return ret;
1097 	}
1098 
1099 	has_gpio = !!(buf[0] & BIT(3));
1100 	has_led = !!(buf[0] & BIT(2));
1101 	data->gpio_led_count = buf[1] & 0x1f;
1102 
1103 	/* retrieve ctrl 2 & 3 registers */
1104 	bytes_per_ctrl = (data->gpio_led_count + 7) / 8;
1105 	/* Ctrl0 is present only if both has_gpio and has_led are set*/
1106 	ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0;
1107 	/* Ctrl1 is always be present */
1108 	ctrl2_addr += bytes_per_ctrl;
1109 	ctrl2_3_length = 2 * bytes_per_ctrl;
1110 
1111 	data->f30.report_size = bytes_per_ctrl;
1112 
1113 	ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr,
1114 				buf, ctrl2_3_length);
1115 	if (ret) {
1116 		hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n",
1117 			ctrl2_3_length, ret);
1118 		return ret;
1119 	}
1120 
1121 	for (i = 0; i < data->gpio_led_count; i++) {
1122 		int byte_position = i >> 3;
1123 		int bit_position = i & 0x07;
1124 		u8 dir_byte = buf[byte_position];
1125 		u8 data_byte = buf[byte_position + bytes_per_ctrl];
1126 		bool dir = (dir_byte >> bit_position) & BIT(0);
1127 		bool dat = (data_byte >> bit_position) & BIT(0);
1128 
1129 		if (dir == 0) {
1130 			/* input mode */
1131 			if (dat) {
1132 				/* actual buttons have pull up resistor */
1133 				data->button_count++;
1134 				set_bit(i, &data->button_mask);
1135 				set_bit(i, &data->button_state_mask);
1136 			}
1137 		}
1138 
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static int rmi_populate(struct hid_device *hdev)
1145 {
1146 	struct rmi_data *data = hid_get_drvdata(hdev);
1147 	int ret;
1148 
1149 	ret = rmi_scan_pdt(hdev);
1150 	if (ret) {
1151 		hid_err(hdev, "PDT scan failed with code %d.\n", ret);
1152 		return ret;
1153 	}
1154 
1155 	ret = rmi_populate_f01(hdev);
1156 	if (ret) {
1157 		hid_err(hdev, "Error while initializing F01 (%d).\n", ret);
1158 		return ret;
1159 	}
1160 
1161 	ret = rmi_populate_f11(hdev);
1162 	if (ret) {
1163 		hid_err(hdev, "Error while initializing F11 (%d).\n", ret);
1164 		return ret;
1165 	}
1166 
1167 	if (!(data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS)) {
1168 		ret = rmi_populate_f30(hdev);
1169 		if (ret)
1170 			hid_warn(hdev, "Error while initializing F30 (%d).\n", ret);
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 static int rmi_input_configured(struct hid_device *hdev, struct hid_input *hi)
1177 {
1178 	struct rmi_data *data = hid_get_drvdata(hdev);
1179 	struct input_dev *input = hi->input;
1180 	int ret;
1181 	int res_x, res_y, i;
1182 
1183 	data->input = input;
1184 
1185 	hid_dbg(hdev, "Opening low level driver\n");
1186 	ret = hid_hw_open(hdev);
1187 	if (ret)
1188 		return ret;
1189 
1190 	if (!(data->device_flags & RMI_DEVICE))
1191 		return 0;
1192 
1193 	/* Allow incoming hid reports */
1194 	hid_device_io_start(hdev);
1195 
1196 	ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
1197 	if (ret < 0) {
1198 		dev_err(&hdev->dev, "failed to set rmi mode\n");
1199 		goto exit;
1200 	}
1201 
1202 	ret = rmi_set_page(hdev, 0);
1203 	if (ret < 0) {
1204 		dev_err(&hdev->dev, "failed to set page select to 0.\n");
1205 		goto exit;
1206 	}
1207 
1208 	ret = rmi_populate(hdev);
1209 	if (ret)
1210 		goto exit;
1211 
1212 	hid_info(hdev, "firmware id: %ld\n", data->firmware_id);
1213 
1214 	__set_bit(EV_ABS, input->evbit);
1215 	input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0);
1216 	input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0);
1217 
1218 	if (data->x_size_mm && data->y_size_mm) {
1219 		res_x = (data->max_x - 1) / data->x_size_mm;
1220 		res_y = (data->max_y - 1) / data->y_size_mm;
1221 
1222 		input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
1223 		input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
1224 	}
1225 
1226 	input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0);
1227 	input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0);
1228 	input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0);
1229 	input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0);
1230 
1231 	ret = input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER);
1232 	if (ret < 0)
1233 		goto exit;
1234 
1235 	if (data->button_count) {
1236 		__set_bit(EV_KEY, input->evbit);
1237 		for (i = 0; i < data->button_count; i++)
1238 			__set_bit(BTN_LEFT + i, input->keybit);
1239 
1240 		if (data->button_count == 1)
1241 			__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
1242 	}
1243 
1244 	set_bit(RMI_STARTED, &data->flags);
1245 
1246 exit:
1247 	hid_device_io_stop(hdev);
1248 	hid_hw_close(hdev);
1249 	return ret;
1250 }
1251 
1252 static int rmi_input_mapping(struct hid_device *hdev,
1253 		struct hid_input *hi, struct hid_field *field,
1254 		struct hid_usage *usage, unsigned long **bit, int *max)
1255 {
1256 	struct rmi_data *data = hid_get_drvdata(hdev);
1257 
1258 	/*
1259 	 * we want to make HID ignore the advertised HID collection
1260 	 * for RMI deivces
1261 	 */
1262 	if (data->device_flags & RMI_DEVICE) {
1263 		if ((data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) &&
1264 		    ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON))
1265 			return 0;
1266 
1267 		return -1;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
1273 static int rmi_check_valid_report_id(struct hid_device *hdev, unsigned type,
1274 		unsigned id, struct hid_report **report)
1275 {
1276 	int i;
1277 
1278 	*report = hdev->report_enum[type].report_id_hash[id];
1279 	if (*report) {
1280 		for (i = 0; i < (*report)->maxfield; i++) {
1281 			unsigned app = (*report)->field[i]->application;
1282 			if ((app & HID_USAGE_PAGE) >= HID_UP_MSVENDOR)
1283 				return 1;
1284 		}
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id)
1291 {
1292 	struct rmi_data *data = NULL;
1293 	int ret;
1294 	size_t alloc_size;
1295 	struct hid_report *input_report;
1296 	struct hid_report *output_report;
1297 	struct hid_report *feature_report;
1298 
1299 	data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL);
1300 	if (!data)
1301 		return -ENOMEM;
1302 
1303 	INIT_WORK(&data->reset_work, rmi_reset_work);
1304 	data->hdev = hdev;
1305 
1306 	hid_set_drvdata(hdev, data);
1307 
1308 	hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
1309 
1310 	ret = hid_parse(hdev);
1311 	if (ret) {
1312 		hid_err(hdev, "parse failed\n");
1313 		return ret;
1314 	}
1315 
1316 	if (id->driver_data)
1317 		data->device_flags = id->driver_data;
1318 
1319 	/*
1320 	 * Check for the RMI specific report ids. If they are misisng
1321 	 * simply return and let the events be processed by hid-input
1322 	 */
1323 	if (!rmi_check_valid_report_id(hdev, HID_FEATURE_REPORT,
1324 	    RMI_SET_RMI_MODE_REPORT_ID, &feature_report)) {
1325 		hid_dbg(hdev, "device does not have set mode feature report\n");
1326 		goto start;
1327 	}
1328 
1329 	if (!rmi_check_valid_report_id(hdev, HID_INPUT_REPORT,
1330 	    RMI_ATTN_REPORT_ID, &input_report)) {
1331 		hid_dbg(hdev, "device does not have attention input report\n");
1332 		goto start;
1333 	}
1334 
1335 	data->input_report_size = hid_report_len(input_report);
1336 
1337 	if (!rmi_check_valid_report_id(hdev, HID_OUTPUT_REPORT,
1338 	    RMI_WRITE_REPORT_ID, &output_report)) {
1339 		hid_dbg(hdev,
1340 			"device does not have rmi write output report\n");
1341 		goto start;
1342 	}
1343 
1344 	data->output_report_size = hid_report_len(output_report);
1345 
1346 	data->device_flags |= RMI_DEVICE;
1347 	alloc_size = data->output_report_size + data->input_report_size;
1348 
1349 	data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL);
1350 	if (!data->writeReport) {
1351 		ret = -ENOMEM;
1352 		return ret;
1353 	}
1354 
1355 	data->readReport = data->writeReport + data->output_report_size;
1356 
1357 	init_waitqueue_head(&data->wait);
1358 
1359 	mutex_init(&data->page_mutex);
1360 
1361 start:
1362 	ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1363 	if (ret) {
1364 		hid_err(hdev, "hw start failed\n");
1365 		return ret;
1366 	}
1367 
1368 	if ((data->device_flags & RMI_DEVICE) &&
1369 	    !test_bit(RMI_STARTED, &data->flags))
1370 		/*
1371 		 * The device maybe in the bootloader if rmi_input_configured
1372 		 * failed to find F11 in the PDT. Print an error, but don't
1373 		 * return an error from rmi_probe so that hidraw will be
1374 		 * accessible from userspace. That way a userspace tool
1375 		 * can be used to reload working firmware on the touchpad.
1376 		 */
1377 		hid_err(hdev, "Device failed to be properly configured\n");
1378 
1379 	return 0;
1380 }
1381 
1382 static void rmi_remove(struct hid_device *hdev)
1383 {
1384 	struct rmi_data *hdata = hid_get_drvdata(hdev);
1385 
1386 	clear_bit(RMI_STARTED, &hdata->flags);
1387 
1388 	hid_hw_stop(hdev);
1389 }
1390 
1391 static const struct hid_device_id rmi_id[] = {
1392 	{ HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14),
1393 		.driver_data = RMI_DEVICE_HAS_PHYS_BUTTONS },
1394 	{ HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) },
1395 	{ }
1396 };
1397 MODULE_DEVICE_TABLE(hid, rmi_id);
1398 
1399 static struct hid_driver rmi_driver = {
1400 	.name = "hid-rmi",
1401 	.id_table		= rmi_id,
1402 	.probe			= rmi_probe,
1403 	.remove			= rmi_remove,
1404 	.event			= rmi_event,
1405 	.raw_event		= rmi_raw_event,
1406 	.input_mapping		= rmi_input_mapping,
1407 	.input_configured	= rmi_input_configured,
1408 #ifdef CONFIG_PM
1409 	.suspend		= rmi_suspend,
1410 	.resume			= rmi_post_resume,
1411 	.reset_resume		= rmi_post_reset,
1412 #endif
1413 };
1414 
1415 module_hid_driver(rmi_driver);
1416 
1417 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
1418 MODULE_DESCRIPTION("RMI HID driver");
1419 MODULE_LICENSE("GPL");
1420