xref: /linux/drivers/hid/hid-rmi.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  *  Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com>
3  *  Copyright (c) 2013 Synaptics Incorporated
4  *  Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com>
5  *  Copyright (c) 2014 Red Hat, Inc
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the Free
9  * Software Foundation; either version 2 of the License, or (at your option)
10  * any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/hid.h>
15 #include <linux/input.h>
16 #include <linux/input/mt.h>
17 #include <linux/module.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/wait.h>
21 #include <linux/sched.h>
22 #include "hid-ids.h"
23 
24 #define RMI_MOUSE_REPORT_ID		0x01 /* Mouse emulation Report */
25 #define RMI_WRITE_REPORT_ID		0x09 /* Output Report */
26 #define RMI_READ_ADDR_REPORT_ID		0x0a /* Output Report */
27 #define RMI_READ_DATA_REPORT_ID		0x0b /* Input Report */
28 #define RMI_ATTN_REPORT_ID		0x0c /* Input Report */
29 #define RMI_SET_RMI_MODE_REPORT_ID	0x0f /* Feature Report */
30 
31 /* flags */
32 #define RMI_READ_REQUEST_PENDING	BIT(0)
33 #define RMI_READ_DATA_PENDING		BIT(1)
34 #define RMI_STARTED			BIT(2)
35 
36 enum rmi_mode_type {
37 	RMI_MODE_OFF			= 0,
38 	RMI_MODE_ATTN_REPORTS		= 1,
39 	RMI_MODE_NO_PACKED_ATTN_REPORTS	= 2,
40 };
41 
42 struct rmi_function {
43 	unsigned page;			/* page of the function */
44 	u16 query_base_addr;		/* base address for queries */
45 	u16 command_base_addr;		/* base address for commands */
46 	u16 control_base_addr;		/* base address for controls */
47 	u16 data_base_addr;		/* base address for datas */
48 	unsigned int interrupt_base;	/* cross-function interrupt number
49 					 * (uniq in the device)*/
50 	unsigned int interrupt_count;	/* number of interrupts */
51 	unsigned int report_size;	/* size of a report */
52 	unsigned long irq_mask;		/* mask of the interrupts
53 					 * (to be applied against ATTN IRQ) */
54 };
55 
56 /**
57  * struct rmi_data - stores information for hid communication
58  *
59  * @page_mutex: Locks current page to avoid changing pages in unexpected ways.
60  * @page: Keeps track of the current virtual page
61  *
62  * @wait: Used for waiting for read data
63  *
64  * @writeReport: output buffer when writing RMI registers
65  * @readReport: input buffer when reading RMI registers
66  *
67  * @input_report_size: size of an input report (advertised by HID)
68  * @output_report_size: size of an output report (advertised by HID)
69  *
70  * @flags: flags for the current device (started, reading, etc...)
71  *
72  * @f11: placeholder of internal RMI function F11 description
73  * @f30: placeholder of internal RMI function F30 description
74  *
75  * @max_fingers: maximum finger count reported by the device
76  * @max_x: maximum x value reported by the device
77  * @max_y: maximum y value reported by the device
78  *
79  * @gpio_led_count: count of GPIOs + LEDs reported by F30
80  * @button_count: actual physical buttons count
81  * @button_mask: button mask used to decode GPIO ATTN reports
82  * @button_state_mask: pull state of the buttons
83  *
84  * @input: pointer to the kernel input device
85  *
86  * @reset_work: worker which will be called in case of a mouse report
87  * @hdev: pointer to the struct hid_device
88  */
89 struct rmi_data {
90 	struct mutex page_mutex;
91 	int page;
92 
93 	wait_queue_head_t wait;
94 
95 	u8 *writeReport;
96 	u8 *readReport;
97 
98 	int input_report_size;
99 	int output_report_size;
100 
101 	unsigned long flags;
102 
103 	struct rmi_function f11;
104 	struct rmi_function f30;
105 
106 	unsigned int max_fingers;
107 	unsigned int max_x;
108 	unsigned int max_y;
109 	unsigned int x_size_mm;
110 	unsigned int y_size_mm;
111 
112 	unsigned int gpio_led_count;
113 	unsigned int button_count;
114 	unsigned long button_mask;
115 	unsigned long button_state_mask;
116 
117 	struct input_dev *input;
118 
119 	struct work_struct reset_work;
120 	struct hid_device *hdev;
121 };
122 
123 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff)
124 
125 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len);
126 
127 /**
128  * rmi_set_page - Set RMI page
129  * @hdev: The pointer to the hid_device struct
130  * @page: The new page address.
131  *
132  * RMI devices have 16-bit addressing, but some of the physical
133  * implementations (like SMBus) only have 8-bit addressing. So RMI implements
134  * a page address at 0xff of every page so we can reliable page addresses
135  * every 256 registers.
136  *
137  * The page_mutex lock must be held when this function is entered.
138  *
139  * Returns zero on success, non-zero on failure.
140  */
141 static int rmi_set_page(struct hid_device *hdev, u8 page)
142 {
143 	struct rmi_data *data = hid_get_drvdata(hdev);
144 	int retval;
145 
146 	data->writeReport[0] = RMI_WRITE_REPORT_ID;
147 	data->writeReport[1] = 1;
148 	data->writeReport[2] = 0xFF;
149 	data->writeReport[4] = page;
150 
151 	retval = rmi_write_report(hdev, data->writeReport,
152 			data->output_report_size);
153 	if (retval != data->output_report_size) {
154 		dev_err(&hdev->dev,
155 			"%s: set page failed: %d.", __func__, retval);
156 		return retval;
157 	}
158 
159 	data->page = page;
160 	return 0;
161 }
162 
163 static int rmi_set_mode(struct hid_device *hdev, u8 mode)
164 {
165 	int ret;
166 	u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode};
167 
168 	ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, txbuf,
169 			sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
170 	if (ret < 0) {
171 		dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode,
172 			ret);
173 		return ret;
174 	}
175 
176 	return 0;
177 }
178 
179 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len)
180 {
181 	int ret;
182 
183 	ret = hid_hw_output_report(hdev, (void *)report, len);
184 	if (ret < 0) {
185 		dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret);
186 		return ret;
187 	}
188 
189 	return ret;
190 }
191 
192 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf,
193 		const int len)
194 {
195 	struct rmi_data *data = hid_get_drvdata(hdev);
196 	int ret;
197 	int bytes_read;
198 	int bytes_needed;
199 	int retries;
200 	int read_input_count;
201 
202 	mutex_lock(&data->page_mutex);
203 
204 	if (RMI_PAGE(addr) != data->page) {
205 		ret = rmi_set_page(hdev, RMI_PAGE(addr));
206 		if (ret < 0)
207 			goto exit;
208 	}
209 
210 	for (retries = 5; retries > 0; retries--) {
211 		data->writeReport[0] = RMI_READ_ADDR_REPORT_ID;
212 		data->writeReport[1] = 0; /* old 1 byte read count */
213 		data->writeReport[2] = addr & 0xFF;
214 		data->writeReport[3] = (addr >> 8) & 0xFF;
215 		data->writeReport[4] = len  & 0xFF;
216 		data->writeReport[5] = (len >> 8) & 0xFF;
217 
218 		set_bit(RMI_READ_REQUEST_PENDING, &data->flags);
219 
220 		ret = rmi_write_report(hdev, data->writeReport,
221 						data->output_report_size);
222 		if (ret != data->output_report_size) {
223 			clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
224 			dev_err(&hdev->dev,
225 				"failed to write request output report (%d)\n",
226 				ret);
227 			goto exit;
228 		}
229 
230 		bytes_read = 0;
231 		bytes_needed = len;
232 		while (bytes_read < len) {
233 			if (!wait_event_timeout(data->wait,
234 				test_bit(RMI_READ_DATA_PENDING, &data->flags),
235 					msecs_to_jiffies(1000))) {
236 				hid_warn(hdev, "%s: timeout elapsed\n",
237 					 __func__);
238 				ret = -EAGAIN;
239 				break;
240 			}
241 
242 			read_input_count = data->readReport[1];
243 			memcpy(buf + bytes_read, &data->readReport[2],
244 				read_input_count < bytes_needed ?
245 					read_input_count : bytes_needed);
246 
247 			bytes_read += read_input_count;
248 			bytes_needed -= read_input_count;
249 			clear_bit(RMI_READ_DATA_PENDING, &data->flags);
250 		}
251 
252 		if (ret >= 0) {
253 			ret = 0;
254 			break;
255 		}
256 	}
257 
258 exit:
259 	clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
260 	mutex_unlock(&data->page_mutex);
261 	return ret;
262 }
263 
264 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf)
265 {
266 	return rmi_read_block(hdev, addr, buf, 1);
267 }
268 
269 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot,
270 		u8 finger_state, u8 *touch_data)
271 {
272 	int x, y, wx, wy;
273 	int wide, major, minor;
274 	int z;
275 
276 	input_mt_slot(hdata->input, slot);
277 	input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER,
278 			finger_state == 0x01);
279 	if (finger_state == 0x01) {
280 		x = (touch_data[0] << 4) | (touch_data[2] & 0x0F);
281 		y = (touch_data[1] << 4) | (touch_data[2] >> 4);
282 		wx = touch_data[3] & 0x0F;
283 		wy = touch_data[3] >> 4;
284 		wide = (wx > wy);
285 		major = max(wx, wy);
286 		minor = min(wx, wy);
287 		z = touch_data[4];
288 
289 		/* y is inverted */
290 		y = hdata->max_y - y;
291 
292 		input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x);
293 		input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y);
294 		input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide);
295 		input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z);
296 		input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major);
297 		input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor);
298 	}
299 }
300 
301 static void rmi_reset_work(struct work_struct *work)
302 {
303 	struct rmi_data *hdata = container_of(work, struct rmi_data,
304 						reset_work);
305 
306 	/* switch the device to RMI if we receive a generic mouse report */
307 	rmi_set_mode(hdata->hdev, RMI_MODE_ATTN_REPORTS);
308 }
309 
310 static inline int rmi_schedule_reset(struct hid_device *hdev)
311 {
312 	struct rmi_data *hdata = hid_get_drvdata(hdev);
313 	return schedule_work(&hdata->reset_work);
314 }
315 
316 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data,
317 		int size)
318 {
319 	struct rmi_data *hdata = hid_get_drvdata(hdev);
320 	int offset;
321 	int i;
322 
323 	if (size < hdata->f11.report_size)
324 		return 0;
325 
326 	if (!(irq & hdata->f11.irq_mask))
327 		return 0;
328 
329 	offset = (hdata->max_fingers >> 2) + 1;
330 	for (i = 0; i < hdata->max_fingers; i++) {
331 		int fs_byte_position = i >> 2;
332 		int fs_bit_position = (i & 0x3) << 1;
333 		int finger_state = (data[fs_byte_position] >> fs_bit_position) &
334 					0x03;
335 
336 		rmi_f11_process_touch(hdata, i, finger_state,
337 				&data[offset + 5 * i]);
338 	}
339 	input_mt_sync_frame(hdata->input);
340 	input_sync(hdata->input);
341 	return hdata->f11.report_size;
342 }
343 
344 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data,
345 		int size)
346 {
347 	struct rmi_data *hdata = hid_get_drvdata(hdev);
348 	int i;
349 	int button = 0;
350 	bool value;
351 
352 	if (!(irq & hdata->f30.irq_mask))
353 		return 0;
354 
355 	for (i = 0; i < hdata->gpio_led_count; i++) {
356 		if (test_bit(i, &hdata->button_mask)) {
357 			value = (data[i / 8] >> (i & 0x07)) & BIT(0);
358 			if (test_bit(i, &hdata->button_state_mask))
359 				value = !value;
360 			input_event(hdata->input, EV_KEY, BTN_LEFT + button++,
361 					value);
362 		}
363 	}
364 	return hdata->f30.report_size;
365 }
366 
367 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size)
368 {
369 	struct rmi_data *hdata = hid_get_drvdata(hdev);
370 	unsigned long irq_mask = 0;
371 	unsigned index = 2;
372 
373 	if (!(test_bit(RMI_STARTED, &hdata->flags)))
374 		return 0;
375 
376 	irq_mask |= hdata->f11.irq_mask;
377 	irq_mask |= hdata->f30.irq_mask;
378 
379 	if (data[1] & ~irq_mask)
380 		hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n",
381 			data[1] & ~irq_mask, __FILE__, __LINE__);
382 
383 	if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) {
384 		index += rmi_f11_input_event(hdev, data[1], &data[index],
385 				size - index);
386 		index += rmi_f30_input_event(hdev, data[1], &data[index],
387 				size - index);
388 	} else {
389 		index += rmi_f30_input_event(hdev, data[1], &data[index],
390 				size - index);
391 		index += rmi_f11_input_event(hdev, data[1], &data[index],
392 				size - index);
393 	}
394 
395 	return 1;
396 }
397 
398 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size)
399 {
400 	struct rmi_data *hdata = hid_get_drvdata(hdev);
401 
402 	if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) {
403 		hid_dbg(hdev, "no read request pending\n");
404 		return 0;
405 	}
406 
407 	memcpy(hdata->readReport, data, size < hdata->input_report_size ?
408 			size : hdata->input_report_size);
409 	set_bit(RMI_READ_DATA_PENDING, &hdata->flags);
410 	wake_up(&hdata->wait);
411 
412 	return 1;
413 }
414 
415 static int rmi_raw_event(struct hid_device *hdev,
416 		struct hid_report *report, u8 *data, int size)
417 {
418 	switch (data[0]) {
419 	case RMI_READ_DATA_REPORT_ID:
420 		return rmi_read_data_event(hdev, data, size);
421 	case RMI_ATTN_REPORT_ID:
422 		return rmi_input_event(hdev, data, size);
423 	case RMI_MOUSE_REPORT_ID:
424 		rmi_schedule_reset(hdev);
425 		break;
426 	}
427 
428 	return 0;
429 }
430 
431 #ifdef CONFIG_PM
432 static int rmi_post_reset(struct hid_device *hdev)
433 {
434 	return rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
435 }
436 
437 static int rmi_post_resume(struct hid_device *hdev)
438 {
439 	return rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
440 }
441 #endif /* CONFIG_PM */
442 
443 #define RMI4_MAX_PAGE 0xff
444 #define RMI4_PAGE_SIZE 0x0100
445 
446 #define PDT_START_SCAN_LOCATION 0x00e9
447 #define PDT_END_SCAN_LOCATION	0x0005
448 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff)
449 
450 struct pdt_entry {
451 	u8 query_base_addr:8;
452 	u8 command_base_addr:8;
453 	u8 control_base_addr:8;
454 	u8 data_base_addr:8;
455 	u8 interrupt_source_count:3;
456 	u8 bits3and4:2;
457 	u8 function_version:2;
458 	u8 bit7:1;
459 	u8 function_number:8;
460 } __attribute__((__packed__));
461 
462 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count)
463 {
464 	return GENMASK(irq_count + irq_base - 1, irq_base);
465 }
466 
467 static void rmi_register_function(struct rmi_data *data,
468 	struct pdt_entry *pdt_entry, int page, unsigned interrupt_count)
469 {
470 	struct rmi_function *f = NULL;
471 	u16 page_base = page << 8;
472 
473 	switch (pdt_entry->function_number) {
474 	case 0x11:
475 		f = &data->f11;
476 		break;
477 	case 0x30:
478 		f = &data->f30;
479 		break;
480 	}
481 
482 	if (f) {
483 		f->page = page;
484 		f->query_base_addr = page_base | pdt_entry->query_base_addr;
485 		f->command_base_addr = page_base | pdt_entry->command_base_addr;
486 		f->control_base_addr = page_base | pdt_entry->control_base_addr;
487 		f->data_base_addr = page_base | pdt_entry->data_base_addr;
488 		f->interrupt_base = interrupt_count;
489 		f->interrupt_count = pdt_entry->interrupt_source_count;
490 		f->irq_mask = rmi_gen_mask(f->interrupt_base,
491 						f->interrupt_count);
492 	}
493 }
494 
495 static int rmi_scan_pdt(struct hid_device *hdev)
496 {
497 	struct rmi_data *data = hid_get_drvdata(hdev);
498 	struct pdt_entry entry;
499 	int page;
500 	bool page_has_function;
501 	int i;
502 	int retval;
503 	int interrupt = 0;
504 	u16 page_start, pdt_start , pdt_end;
505 
506 	hid_info(hdev, "Scanning PDT...\n");
507 
508 	for (page = 0; (page <= RMI4_MAX_PAGE); page++) {
509 		page_start = RMI4_PAGE_SIZE * page;
510 		pdt_start = page_start + PDT_START_SCAN_LOCATION;
511 		pdt_end = page_start + PDT_END_SCAN_LOCATION;
512 
513 		page_has_function = false;
514 		for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) {
515 			retval = rmi_read_block(hdev, i, &entry, sizeof(entry));
516 			if (retval) {
517 				hid_err(hdev,
518 					"Read of PDT entry at %#06x failed.\n",
519 					i);
520 				goto error_exit;
521 			}
522 
523 			if (RMI4_END_OF_PDT(entry.function_number))
524 				break;
525 
526 			page_has_function = true;
527 
528 			hid_info(hdev, "Found F%02X on page %#04x\n",
529 					entry.function_number, page);
530 
531 			rmi_register_function(data, &entry, page, interrupt);
532 			interrupt += entry.interrupt_source_count;
533 		}
534 
535 		if (!page_has_function)
536 			break;
537 	}
538 
539 	hid_info(hdev, "%s: Done with PDT scan.\n", __func__);
540 	retval = 0;
541 
542 error_exit:
543 	return retval;
544 }
545 
546 static int rmi_populate_f11(struct hid_device *hdev)
547 {
548 	struct rmi_data *data = hid_get_drvdata(hdev);
549 	u8 buf[20];
550 	int ret;
551 	bool has_query9;
552 	bool has_query10 = false;
553 	bool has_query11;
554 	bool has_query12;
555 	bool has_physical_props;
556 	bool has_gestures;
557 	bool has_rel;
558 	unsigned x_size, y_size;
559 	u16 query12_offset;
560 
561 	if (!data->f11.query_base_addr) {
562 		hid_err(hdev, "No 2D sensor found, giving up.\n");
563 		return -ENODEV;
564 	}
565 
566 	/* query 0 contains some useful information */
567 	ret = rmi_read(hdev, data->f11.query_base_addr, buf);
568 	if (ret) {
569 		hid_err(hdev, "can not get query 0: %d.\n", ret);
570 		return ret;
571 	}
572 	has_query9 = !!(buf[0] & BIT(3));
573 	has_query11 = !!(buf[0] & BIT(4));
574 	has_query12 = !!(buf[0] & BIT(5));
575 
576 	/* query 1 to get the max number of fingers */
577 	ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf);
578 	if (ret) {
579 		hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret);
580 		return ret;
581 	}
582 	data->max_fingers = (buf[0] & 0x07) + 1;
583 	if (data->max_fingers > 5)
584 		data->max_fingers = 10;
585 
586 	data->f11.report_size = data->max_fingers * 5 +
587 				DIV_ROUND_UP(data->max_fingers, 4);
588 
589 	if (!(buf[0] & BIT(4))) {
590 		hid_err(hdev, "No absolute events, giving up.\n");
591 		return -ENODEV;
592 	}
593 
594 	has_rel = !!(buf[0] & BIT(3));
595 	has_gestures = !!(buf[0] & BIT(5));
596 
597 	if (has_gestures) {
598 		/* query 8 to find out if query 10 exists */
599 		ret = rmi_read(hdev, data->f11.query_base_addr + 8, buf);
600 		if (ret) {
601 			hid_err(hdev, "can not read gesture information: %d.\n",
602 				ret);
603 			return ret;
604 		}
605 		has_query10 = !!(buf[0] & BIT(2));
606 	}
607 
608 	/*
609 	 * At least 4 queries are guaranteed to be present in F11
610 	 * +1 for query 5 which is present since absolute events are
611 	 * reported and +1 for query 12.
612 	 */
613 	query12_offset = 6;
614 
615 	if (has_rel)
616 		++query12_offset; /* query 6 is present */
617 
618 	if (has_gestures)
619 		query12_offset += 2; /* query 7 and 8 are present */
620 
621 	if (has_query9)
622 		++query12_offset;
623 
624 	if (has_query10)
625 		++query12_offset;
626 
627 	if (has_query11)
628 		++query12_offset;
629 
630 	/* query 12 to know if the physical properties are reported */
631 	if (has_query12) {
632 		ret = rmi_read(hdev, data->f11.query_base_addr
633 				+ query12_offset, buf);
634 		if (ret) {
635 			hid_err(hdev, "can not get query 12: %d.\n", ret);
636 			return ret;
637 		}
638 		has_physical_props = !!(buf[0] & BIT(5));
639 
640 		if (has_physical_props) {
641 			ret = rmi_read_block(hdev,
642 					data->f11.query_base_addr
643 						+ query12_offset + 1, buf, 4);
644 			if (ret) {
645 				hid_err(hdev, "can not read query 15-18: %d.\n",
646 					ret);
647 				return ret;
648 			}
649 
650 			x_size = buf[0] | (buf[1] << 8);
651 			y_size = buf[2] | (buf[3] << 8);
652 
653 			data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10);
654 			data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10);
655 
656 			hid_info(hdev, "%s: size in mm: %d x %d\n",
657 				 __func__, data->x_size_mm, data->y_size_mm);
658 		}
659 	}
660 
661 	/*
662 	 * retrieve the ctrl registers
663 	 * the ctrl register has a size of 20 but a fw bug split it into 16 + 4,
664 	 * and there is no way to know if the first 20 bytes are here or not.
665 	 * We use only the first 10 bytes, so get only them.
666 	 */
667 	ret = rmi_read_block(hdev, data->f11.control_base_addr, buf, 10);
668 	if (ret) {
669 		hid_err(hdev, "can not read ctrl block of size 10: %d.\n", ret);
670 		return ret;
671 	}
672 
673 	data->max_x = buf[6] | (buf[7] << 8);
674 	data->max_y = buf[8] | (buf[9] << 8);
675 
676 	return 0;
677 }
678 
679 static int rmi_populate_f30(struct hid_device *hdev)
680 {
681 	struct rmi_data *data = hid_get_drvdata(hdev);
682 	u8 buf[20];
683 	int ret;
684 	bool has_gpio, has_led;
685 	unsigned bytes_per_ctrl;
686 	u8 ctrl2_addr;
687 	int ctrl2_3_length;
688 	int i;
689 
690 	/* function F30 is for physical buttons */
691 	if (!data->f30.query_base_addr) {
692 		hid_err(hdev, "No GPIO/LEDs found, giving up.\n");
693 		return -ENODEV;
694 	}
695 
696 	ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2);
697 	if (ret) {
698 		hid_err(hdev, "can not get F30 query registers: %d.\n", ret);
699 		return ret;
700 	}
701 
702 	has_gpio = !!(buf[0] & BIT(3));
703 	has_led = !!(buf[0] & BIT(2));
704 	data->gpio_led_count = buf[1] & 0x1f;
705 
706 	/* retrieve ctrl 2 & 3 registers */
707 	bytes_per_ctrl = (data->gpio_led_count + 7) / 8;
708 	/* Ctrl0 is present only if both has_gpio and has_led are set*/
709 	ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0;
710 	/* Ctrl1 is always be present */
711 	ctrl2_addr += bytes_per_ctrl;
712 	ctrl2_3_length = 2 * bytes_per_ctrl;
713 
714 	data->f30.report_size = bytes_per_ctrl;
715 
716 	ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr,
717 				buf, ctrl2_3_length);
718 	if (ret) {
719 		hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n",
720 			ctrl2_3_length, ret);
721 		return ret;
722 	}
723 
724 	for (i = 0; i < data->gpio_led_count; i++) {
725 		int byte_position = i >> 3;
726 		int bit_position = i & 0x07;
727 		u8 dir_byte = buf[byte_position];
728 		u8 data_byte = buf[byte_position + bytes_per_ctrl];
729 		bool dir = (dir_byte >> bit_position) & BIT(0);
730 		bool dat = (data_byte >> bit_position) & BIT(0);
731 
732 		if (dir == 0) {
733 			/* input mode */
734 			if (dat) {
735 				/* actual buttons have pull up resistor */
736 				data->button_count++;
737 				set_bit(i, &data->button_mask);
738 				set_bit(i, &data->button_state_mask);
739 			}
740 		}
741 
742 	}
743 
744 	return 0;
745 }
746 
747 static int rmi_populate(struct hid_device *hdev)
748 {
749 	int ret;
750 
751 	ret = rmi_scan_pdt(hdev);
752 	if (ret) {
753 		hid_err(hdev, "PDT scan failed with code %d.\n", ret);
754 		return ret;
755 	}
756 
757 	ret = rmi_populate_f11(hdev);
758 	if (ret) {
759 		hid_err(hdev, "Error while initializing F11 (%d).\n", ret);
760 		return ret;
761 	}
762 
763 	ret = rmi_populate_f30(hdev);
764 	if (ret)
765 		hid_warn(hdev, "Error while initializing F30 (%d).\n", ret);
766 
767 	return 0;
768 }
769 
770 static void rmi_input_configured(struct hid_device *hdev, struct hid_input *hi)
771 {
772 	struct rmi_data *data = hid_get_drvdata(hdev);
773 	struct input_dev *input = hi->input;
774 	int ret;
775 	int res_x, res_y, i;
776 
777 	data->input = input;
778 
779 	hid_dbg(hdev, "Opening low level driver\n");
780 	ret = hid_hw_open(hdev);
781 	if (ret)
782 		return;
783 
784 	/* Allow incoming hid reports */
785 	hid_device_io_start(hdev);
786 
787 	ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
788 	if (ret < 0) {
789 		dev_err(&hdev->dev, "failed to set rmi mode\n");
790 		goto exit;
791 	}
792 
793 	ret = rmi_set_page(hdev, 0);
794 	if (ret < 0) {
795 		dev_err(&hdev->dev, "failed to set page select to 0.\n");
796 		goto exit;
797 	}
798 
799 	ret = rmi_populate(hdev);
800 	if (ret)
801 		goto exit;
802 
803 	__set_bit(EV_ABS, input->evbit);
804 	input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0);
805 	input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0);
806 
807 	if (data->x_size_mm && data->y_size_mm) {
808 		res_x = (data->max_x - 1) / data->x_size_mm;
809 		res_y = (data->max_y - 1) / data->y_size_mm;
810 
811 		input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
812 		input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
813 	}
814 
815 	input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0);
816 	input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0);
817 	input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0);
818 	input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0);
819 
820 	input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER);
821 
822 	if (data->button_count) {
823 		__set_bit(EV_KEY, input->evbit);
824 		for (i = 0; i < data->button_count; i++)
825 			__set_bit(BTN_LEFT + i, input->keybit);
826 
827 		if (data->button_count == 1)
828 			__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
829 	}
830 
831 	set_bit(RMI_STARTED, &data->flags);
832 
833 exit:
834 	hid_device_io_stop(hdev);
835 	hid_hw_close(hdev);
836 }
837 
838 static int rmi_input_mapping(struct hid_device *hdev,
839 		struct hid_input *hi, struct hid_field *field,
840 		struct hid_usage *usage, unsigned long **bit, int *max)
841 {
842 	/* we want to make HID ignore the advertised HID collection */
843 	return -1;
844 }
845 
846 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id)
847 {
848 	struct rmi_data *data = NULL;
849 	int ret;
850 	size_t alloc_size;
851 	struct hid_report *input_report;
852 	struct hid_report *output_report;
853 
854 	data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL);
855 	if (!data)
856 		return -ENOMEM;
857 
858 	INIT_WORK(&data->reset_work, rmi_reset_work);
859 	data->hdev = hdev;
860 
861 	hid_set_drvdata(hdev, data);
862 
863 	hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
864 
865 	ret = hid_parse(hdev);
866 	if (ret) {
867 		hid_err(hdev, "parse failed\n");
868 		return ret;
869 	}
870 
871 	input_report = hdev->report_enum[HID_INPUT_REPORT]
872 			.report_id_hash[RMI_ATTN_REPORT_ID];
873 	if (!input_report) {
874 		hid_err(hdev, "device does not have expected input report\n");
875 		ret = -ENODEV;
876 		return ret;
877 	}
878 
879 	data->input_report_size = (input_report->size >> 3) + 1 /* report id */;
880 
881 	output_report = hdev->report_enum[HID_OUTPUT_REPORT]
882 			.report_id_hash[RMI_WRITE_REPORT_ID];
883 	if (!output_report) {
884 		hid_err(hdev, "device does not have expected output report\n");
885 		ret = -ENODEV;
886 		return ret;
887 	}
888 
889 	data->output_report_size = (output_report->size >> 3)
890 					+ 1 /* report id */;
891 
892 	alloc_size = data->output_report_size + data->input_report_size;
893 
894 	data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL);
895 	if (!data->writeReport) {
896 		ret = -ENOMEM;
897 		return ret;
898 	}
899 
900 	data->readReport = data->writeReport + data->output_report_size;
901 
902 	init_waitqueue_head(&data->wait);
903 
904 	mutex_init(&data->page_mutex);
905 
906 	ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
907 	if (ret) {
908 		hid_err(hdev, "hw start failed\n");
909 		return ret;
910 	}
911 
912 	if (!test_bit(RMI_STARTED, &data->flags))
913 		/*
914 		 * The device maybe in the bootloader if rmi_input_configured
915 		 * failed to find F11 in the PDT. Print an error, but don't
916 		 * return an error from rmi_probe so that hidraw will be
917 		 * accessible from userspace. That way a userspace tool
918 		 * can be used to reload working firmware on the touchpad.
919 		 */
920 		hid_err(hdev, "Device failed to be properly configured\n");
921 
922 	return 0;
923 }
924 
925 static void rmi_remove(struct hid_device *hdev)
926 {
927 	struct rmi_data *hdata = hid_get_drvdata(hdev);
928 
929 	clear_bit(RMI_STARTED, &hdata->flags);
930 
931 	hid_hw_stop(hdev);
932 }
933 
934 static const struct hid_device_id rmi_id[] = {
935 	{ HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) },
936 	{ }
937 };
938 MODULE_DEVICE_TABLE(hid, rmi_id);
939 
940 static struct hid_driver rmi_driver = {
941 	.name = "hid-rmi",
942 	.id_table		= rmi_id,
943 	.probe			= rmi_probe,
944 	.remove			= rmi_remove,
945 	.raw_event		= rmi_raw_event,
946 	.input_mapping		= rmi_input_mapping,
947 	.input_configured	= rmi_input_configured,
948 #ifdef CONFIG_PM
949 	.resume			= rmi_post_resume,
950 	.reset_resume		= rmi_post_reset,
951 #endif
952 };
953 
954 module_hid_driver(rmi_driver);
955 
956 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
957 MODULE_DESCRIPTION("RMI HID driver");
958 MODULE_LICENSE("GPL");
959