xref: /linux/drivers/hid/hid-rmi.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  *  Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com>
3  *  Copyright (c) 2013 Synaptics Incorporated
4  *  Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com>
5  *  Copyright (c) 2014 Red Hat, Inc
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the Free
9  * Software Foundation; either version 2 of the License, or (at your option)
10  * any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/hid.h>
15 #include <linux/input.h>
16 #include <linux/input/mt.h>
17 #include <linux/module.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/wait.h>
21 #include <linux/sched.h>
22 #include "hid-ids.h"
23 
24 #define RMI_MOUSE_REPORT_ID		0x01 /* Mouse emulation Report */
25 #define RMI_WRITE_REPORT_ID		0x09 /* Output Report */
26 #define RMI_READ_ADDR_REPORT_ID		0x0a /* Output Report */
27 #define RMI_READ_DATA_REPORT_ID		0x0b /* Input Report */
28 #define RMI_ATTN_REPORT_ID		0x0c /* Input Report */
29 #define RMI_SET_RMI_MODE_REPORT_ID	0x0f /* Feature Report */
30 
31 /* flags */
32 #define RMI_READ_REQUEST_PENDING	0
33 #define RMI_READ_DATA_PENDING		1
34 #define RMI_STARTED			2
35 
36 #define RMI_SLEEP_NORMAL		0x0
37 #define RMI_SLEEP_DEEP_SLEEP		0x1
38 
39 /* device flags */
40 #define RMI_DEVICE			BIT(0)
41 #define RMI_DEVICE_HAS_PHYS_BUTTONS	BIT(1)
42 
43 /*
44  * retrieve the ctrl registers
45  * the ctrl register has a size of 20 but a fw bug split it into 16 + 4,
46  * and there is no way to know if the first 20 bytes are here or not.
47  * We use only the first 12 bytes, so get only them.
48  */
49 #define RMI_F11_CTRL_REG_COUNT		12
50 
51 enum rmi_mode_type {
52 	RMI_MODE_OFF			= 0,
53 	RMI_MODE_ATTN_REPORTS		= 1,
54 	RMI_MODE_NO_PACKED_ATTN_REPORTS	= 2,
55 };
56 
57 struct rmi_function {
58 	unsigned page;			/* page of the function */
59 	u16 query_base_addr;		/* base address for queries */
60 	u16 command_base_addr;		/* base address for commands */
61 	u16 control_base_addr;		/* base address for controls */
62 	u16 data_base_addr;		/* base address for datas */
63 	unsigned int interrupt_base;	/* cross-function interrupt number
64 					 * (uniq in the device)*/
65 	unsigned int interrupt_count;	/* number of interrupts */
66 	unsigned int report_size;	/* size of a report */
67 	unsigned long irq_mask;		/* mask of the interrupts
68 					 * (to be applied against ATTN IRQ) */
69 };
70 
71 /**
72  * struct rmi_data - stores information for hid communication
73  *
74  * @page_mutex: Locks current page to avoid changing pages in unexpected ways.
75  * @page: Keeps track of the current virtual page
76  *
77  * @wait: Used for waiting for read data
78  *
79  * @writeReport: output buffer when writing RMI registers
80  * @readReport: input buffer when reading RMI registers
81  *
82  * @input_report_size: size of an input report (advertised by HID)
83  * @output_report_size: size of an output report (advertised by HID)
84  *
85  * @flags: flags for the current device (started, reading, etc...)
86  *
87  * @f11: placeholder of internal RMI function F11 description
88  * @f30: placeholder of internal RMI function F30 description
89  *
90  * @max_fingers: maximum finger count reported by the device
91  * @max_x: maximum x value reported by the device
92  * @max_y: maximum y value reported by the device
93  *
94  * @gpio_led_count: count of GPIOs + LEDs reported by F30
95  * @button_count: actual physical buttons count
96  * @button_mask: button mask used to decode GPIO ATTN reports
97  * @button_state_mask: pull state of the buttons
98  *
99  * @input: pointer to the kernel input device
100  *
101  * @reset_work: worker which will be called in case of a mouse report
102  * @hdev: pointer to the struct hid_device
103  */
104 struct rmi_data {
105 	struct mutex page_mutex;
106 	int page;
107 
108 	wait_queue_head_t wait;
109 
110 	u8 *writeReport;
111 	u8 *readReport;
112 
113 	int input_report_size;
114 	int output_report_size;
115 
116 	unsigned long flags;
117 
118 	struct rmi_function f01;
119 	struct rmi_function f11;
120 	struct rmi_function f30;
121 
122 	unsigned int max_fingers;
123 	unsigned int max_x;
124 	unsigned int max_y;
125 	unsigned int x_size_mm;
126 	unsigned int y_size_mm;
127 	bool read_f11_ctrl_regs;
128 	u8 f11_ctrl_regs[RMI_F11_CTRL_REG_COUNT];
129 
130 	unsigned int gpio_led_count;
131 	unsigned int button_count;
132 	unsigned long button_mask;
133 	unsigned long button_state_mask;
134 
135 	struct input_dev *input;
136 
137 	struct work_struct reset_work;
138 	struct hid_device *hdev;
139 
140 	unsigned long device_flags;
141 	unsigned long firmware_id;
142 
143 	u8 f01_ctrl0;
144 	u8 interrupt_enable_mask;
145 	bool restore_interrupt_mask;
146 };
147 
148 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff)
149 
150 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len);
151 
152 /**
153  * rmi_set_page - Set RMI page
154  * @hdev: The pointer to the hid_device struct
155  * @page: The new page address.
156  *
157  * RMI devices have 16-bit addressing, but some of the physical
158  * implementations (like SMBus) only have 8-bit addressing. So RMI implements
159  * a page address at 0xff of every page so we can reliable page addresses
160  * every 256 registers.
161  *
162  * The page_mutex lock must be held when this function is entered.
163  *
164  * Returns zero on success, non-zero on failure.
165  */
166 static int rmi_set_page(struct hid_device *hdev, u8 page)
167 {
168 	struct rmi_data *data = hid_get_drvdata(hdev);
169 	int retval;
170 
171 	data->writeReport[0] = RMI_WRITE_REPORT_ID;
172 	data->writeReport[1] = 1;
173 	data->writeReport[2] = 0xFF;
174 	data->writeReport[4] = page;
175 
176 	retval = rmi_write_report(hdev, data->writeReport,
177 			data->output_report_size);
178 	if (retval != data->output_report_size) {
179 		dev_err(&hdev->dev,
180 			"%s: set page failed: %d.", __func__, retval);
181 		return retval;
182 	}
183 
184 	data->page = page;
185 	return 0;
186 }
187 
188 static int rmi_set_mode(struct hid_device *hdev, u8 mode)
189 {
190 	int ret;
191 	const u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode};
192 	u8 *buf;
193 
194 	buf = kmemdup(txbuf, sizeof(txbuf), GFP_KERNEL);
195 	if (!buf)
196 		return -ENOMEM;
197 
198 	ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, buf,
199 			sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
200 	kfree(buf);
201 	if (ret < 0) {
202 		dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode,
203 			ret);
204 		return ret;
205 	}
206 
207 	return 0;
208 }
209 
210 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len)
211 {
212 	int ret;
213 
214 	ret = hid_hw_output_report(hdev, (void *)report, len);
215 	if (ret < 0) {
216 		dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret);
217 		return ret;
218 	}
219 
220 	return ret;
221 }
222 
223 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf,
224 		const int len)
225 {
226 	struct rmi_data *data = hid_get_drvdata(hdev);
227 	int ret;
228 	int bytes_read;
229 	int bytes_needed;
230 	int retries;
231 	int read_input_count;
232 
233 	mutex_lock(&data->page_mutex);
234 
235 	if (RMI_PAGE(addr) != data->page) {
236 		ret = rmi_set_page(hdev, RMI_PAGE(addr));
237 		if (ret < 0)
238 			goto exit;
239 	}
240 
241 	for (retries = 5; retries > 0; retries--) {
242 		data->writeReport[0] = RMI_READ_ADDR_REPORT_ID;
243 		data->writeReport[1] = 0; /* old 1 byte read count */
244 		data->writeReport[2] = addr & 0xFF;
245 		data->writeReport[3] = (addr >> 8) & 0xFF;
246 		data->writeReport[4] = len  & 0xFF;
247 		data->writeReport[5] = (len >> 8) & 0xFF;
248 
249 		set_bit(RMI_READ_REQUEST_PENDING, &data->flags);
250 
251 		ret = rmi_write_report(hdev, data->writeReport,
252 						data->output_report_size);
253 		if (ret != data->output_report_size) {
254 			clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
255 			dev_err(&hdev->dev,
256 				"failed to write request output report (%d)\n",
257 				ret);
258 			goto exit;
259 		}
260 
261 		bytes_read = 0;
262 		bytes_needed = len;
263 		while (bytes_read < len) {
264 			if (!wait_event_timeout(data->wait,
265 				test_bit(RMI_READ_DATA_PENDING, &data->flags),
266 					msecs_to_jiffies(1000))) {
267 				hid_warn(hdev, "%s: timeout elapsed\n",
268 					 __func__);
269 				ret = -EAGAIN;
270 				break;
271 			}
272 
273 			read_input_count = data->readReport[1];
274 			memcpy(buf + bytes_read, &data->readReport[2],
275 				read_input_count < bytes_needed ?
276 					read_input_count : bytes_needed);
277 
278 			bytes_read += read_input_count;
279 			bytes_needed -= read_input_count;
280 			clear_bit(RMI_READ_DATA_PENDING, &data->flags);
281 		}
282 
283 		if (ret >= 0) {
284 			ret = 0;
285 			break;
286 		}
287 	}
288 
289 exit:
290 	clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
291 	mutex_unlock(&data->page_mutex);
292 	return ret;
293 }
294 
295 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf)
296 {
297 	return rmi_read_block(hdev, addr, buf, 1);
298 }
299 
300 static int rmi_write_block(struct hid_device *hdev, u16 addr, void *buf,
301 		const int len)
302 {
303 	struct rmi_data *data = hid_get_drvdata(hdev);
304 	int ret;
305 
306 	mutex_lock(&data->page_mutex);
307 
308 	if (RMI_PAGE(addr) != data->page) {
309 		ret = rmi_set_page(hdev, RMI_PAGE(addr));
310 		if (ret < 0)
311 			goto exit;
312 	}
313 
314 	data->writeReport[0] = RMI_WRITE_REPORT_ID;
315 	data->writeReport[1] = len;
316 	data->writeReport[2] = addr & 0xFF;
317 	data->writeReport[3] = (addr >> 8) & 0xFF;
318 	memcpy(&data->writeReport[4], buf, len);
319 
320 	ret = rmi_write_report(hdev, data->writeReport,
321 					data->output_report_size);
322 	if (ret < 0) {
323 		dev_err(&hdev->dev,
324 			"failed to write request output report (%d)\n",
325 			ret);
326 		goto exit;
327 	}
328 	ret = 0;
329 
330 exit:
331 	mutex_unlock(&data->page_mutex);
332 	return ret;
333 }
334 
335 static inline int rmi_write(struct hid_device *hdev, u16 addr, void *buf)
336 {
337 	return rmi_write_block(hdev, addr, buf, 1);
338 }
339 
340 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot,
341 		u8 finger_state, u8 *touch_data)
342 {
343 	int x, y, wx, wy;
344 	int wide, major, minor;
345 	int z;
346 
347 	input_mt_slot(hdata->input, slot);
348 	input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER,
349 			finger_state == 0x01);
350 	if (finger_state == 0x01) {
351 		x = (touch_data[0] << 4) | (touch_data[2] & 0x0F);
352 		y = (touch_data[1] << 4) | (touch_data[2] >> 4);
353 		wx = touch_data[3] & 0x0F;
354 		wy = touch_data[3] >> 4;
355 		wide = (wx > wy);
356 		major = max(wx, wy);
357 		minor = min(wx, wy);
358 		z = touch_data[4];
359 
360 		/* y is inverted */
361 		y = hdata->max_y - y;
362 
363 		input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x);
364 		input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y);
365 		input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide);
366 		input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z);
367 		input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major);
368 		input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor);
369 	}
370 }
371 
372 static int rmi_reset_attn_mode(struct hid_device *hdev)
373 {
374 	struct rmi_data *data = hid_get_drvdata(hdev);
375 	int ret;
376 
377 	ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
378 	if (ret)
379 		return ret;
380 
381 	if (data->restore_interrupt_mask) {
382 		ret = rmi_write(hdev, data->f01.control_base_addr + 1,
383 				&data->interrupt_enable_mask);
384 		if (ret) {
385 			hid_err(hdev, "can not write F01 control register\n");
386 			return ret;
387 		}
388 	}
389 
390 	return 0;
391 }
392 
393 static void rmi_reset_work(struct work_struct *work)
394 {
395 	struct rmi_data *hdata = container_of(work, struct rmi_data,
396 						reset_work);
397 
398 	/* switch the device to RMI if we receive a generic mouse report */
399 	rmi_reset_attn_mode(hdata->hdev);
400 }
401 
402 static inline int rmi_schedule_reset(struct hid_device *hdev)
403 {
404 	struct rmi_data *hdata = hid_get_drvdata(hdev);
405 	return schedule_work(&hdata->reset_work);
406 }
407 
408 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data,
409 		int size)
410 {
411 	struct rmi_data *hdata = hid_get_drvdata(hdev);
412 	int offset;
413 	int i;
414 
415 	if (!(irq & hdata->f11.irq_mask) || size <= 0)
416 		return 0;
417 
418 	offset = (hdata->max_fingers >> 2) + 1;
419 	for (i = 0; i < hdata->max_fingers; i++) {
420 		int fs_byte_position = i >> 2;
421 		int fs_bit_position = (i & 0x3) << 1;
422 		int finger_state = (data[fs_byte_position] >> fs_bit_position) &
423 					0x03;
424 		int position = offset + 5 * i;
425 
426 		if (position + 5 > size) {
427 			/* partial report, go on with what we received */
428 			printk_once(KERN_WARNING
429 				"%s %s: Detected incomplete finger report. Finger reports may occasionally get dropped on this platform.\n",
430 				 dev_driver_string(&hdev->dev),
431 				 dev_name(&hdev->dev));
432 			hid_dbg(hdev, "Incomplete finger report\n");
433 			break;
434 		}
435 
436 		rmi_f11_process_touch(hdata, i, finger_state, &data[position]);
437 	}
438 	input_mt_sync_frame(hdata->input);
439 	input_sync(hdata->input);
440 	return hdata->f11.report_size;
441 }
442 
443 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data,
444 		int size)
445 {
446 	struct rmi_data *hdata = hid_get_drvdata(hdev);
447 	int i;
448 	int button = 0;
449 	bool value;
450 
451 	if (!(irq & hdata->f30.irq_mask))
452 		return 0;
453 
454 	if (size < (int)hdata->f30.report_size) {
455 		hid_warn(hdev, "Click Button pressed, but the click data is missing\n");
456 		return 0;
457 	}
458 
459 	for (i = 0; i < hdata->gpio_led_count; i++) {
460 		if (test_bit(i, &hdata->button_mask)) {
461 			value = (data[i / 8] >> (i & 0x07)) & BIT(0);
462 			if (test_bit(i, &hdata->button_state_mask))
463 				value = !value;
464 			input_event(hdata->input, EV_KEY, BTN_LEFT + button++,
465 					value);
466 		}
467 	}
468 	return hdata->f30.report_size;
469 }
470 
471 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size)
472 {
473 	struct rmi_data *hdata = hid_get_drvdata(hdev);
474 	unsigned long irq_mask = 0;
475 	unsigned index = 2;
476 
477 	if (!(test_bit(RMI_STARTED, &hdata->flags)))
478 		return 0;
479 
480 	irq_mask |= hdata->f11.irq_mask;
481 	irq_mask |= hdata->f30.irq_mask;
482 
483 	if (data[1] & ~irq_mask)
484 		hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n",
485 			data[1] & ~irq_mask, __FILE__, __LINE__);
486 
487 	if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) {
488 		index += rmi_f11_input_event(hdev, data[1], &data[index],
489 				size - index);
490 		index += rmi_f30_input_event(hdev, data[1], &data[index],
491 				size - index);
492 	} else {
493 		index += rmi_f30_input_event(hdev, data[1], &data[index],
494 				size - index);
495 		index += rmi_f11_input_event(hdev, data[1], &data[index],
496 				size - index);
497 	}
498 
499 	return 1;
500 }
501 
502 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size)
503 {
504 	struct rmi_data *hdata = hid_get_drvdata(hdev);
505 
506 	if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) {
507 		hid_dbg(hdev, "no read request pending\n");
508 		return 0;
509 	}
510 
511 	memcpy(hdata->readReport, data, size < hdata->input_report_size ?
512 			size : hdata->input_report_size);
513 	set_bit(RMI_READ_DATA_PENDING, &hdata->flags);
514 	wake_up(&hdata->wait);
515 
516 	return 1;
517 }
518 
519 static int rmi_check_sanity(struct hid_device *hdev, u8 *data, int size)
520 {
521 	int valid_size = size;
522 	/*
523 	 * On the Dell XPS 13 9333, the bus sometimes get confused and fills
524 	 * the report with a sentinel value "ff". Synaptics told us that such
525 	 * behavior does not comes from the touchpad itself, so we filter out
526 	 * such reports here.
527 	 */
528 
529 	while ((data[valid_size - 1] == 0xff) && valid_size > 0)
530 		valid_size--;
531 
532 	return valid_size;
533 }
534 
535 static int rmi_raw_event(struct hid_device *hdev,
536 		struct hid_report *report, u8 *data, int size)
537 {
538 	size = rmi_check_sanity(hdev, data, size);
539 	if (size < 2)
540 		return 0;
541 
542 	switch (data[0]) {
543 	case RMI_READ_DATA_REPORT_ID:
544 		return rmi_read_data_event(hdev, data, size);
545 	case RMI_ATTN_REPORT_ID:
546 		return rmi_input_event(hdev, data, size);
547 	default:
548 		return 1;
549 	}
550 
551 	return 0;
552 }
553 
554 static int rmi_event(struct hid_device *hdev, struct hid_field *field,
555 			struct hid_usage *usage, __s32 value)
556 {
557 	struct rmi_data *data = hid_get_drvdata(hdev);
558 
559 	if ((data->device_flags & RMI_DEVICE) &&
560 	    (field->application == HID_GD_POINTER ||
561 	    field->application == HID_GD_MOUSE)) {
562 		if (data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) {
563 			if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON)
564 				return 0;
565 
566 			if ((usage->hid == HID_GD_X || usage->hid == HID_GD_Y)
567 			    && !value)
568 				return 1;
569 		}
570 
571 		rmi_schedule_reset(hdev);
572 		return 1;
573 	}
574 
575 	return 0;
576 }
577 
578 #ifdef CONFIG_PM
579 static int rmi_set_sleep_mode(struct hid_device *hdev, int sleep_mode)
580 {
581 	struct rmi_data *data = hid_get_drvdata(hdev);
582 	int ret;
583 	u8 f01_ctrl0;
584 
585 	f01_ctrl0 = (data->f01_ctrl0 & ~0x3) | sleep_mode;
586 
587 	ret = rmi_write(hdev, data->f01.control_base_addr,
588 			&f01_ctrl0);
589 	if (ret) {
590 		hid_err(hdev, "can not write sleep mode\n");
591 		return ret;
592 	}
593 
594 	return 0;
595 }
596 
597 static int rmi_suspend(struct hid_device *hdev, pm_message_t message)
598 {
599 	struct rmi_data *data = hid_get_drvdata(hdev);
600 	int ret;
601 	u8 buf[RMI_F11_CTRL_REG_COUNT];
602 
603 	if (!(data->device_flags & RMI_DEVICE))
604 		return 0;
605 
606 	ret = rmi_read_block(hdev, data->f11.control_base_addr, buf,
607 				RMI_F11_CTRL_REG_COUNT);
608 	if (ret)
609 		hid_warn(hdev, "can not read F11 control registers\n");
610 	else
611 		memcpy(data->f11_ctrl_regs, buf, RMI_F11_CTRL_REG_COUNT);
612 
613 
614 	if (!device_may_wakeup(hdev->dev.parent))
615 		return rmi_set_sleep_mode(hdev, RMI_SLEEP_DEEP_SLEEP);
616 
617 	return 0;
618 }
619 
620 static int rmi_post_reset(struct hid_device *hdev)
621 {
622 	struct rmi_data *data = hid_get_drvdata(hdev);
623 	int ret;
624 
625 	if (!(data->device_flags & RMI_DEVICE))
626 		return 0;
627 
628 	ret = rmi_reset_attn_mode(hdev);
629 	if (ret) {
630 		hid_err(hdev, "can not set rmi mode\n");
631 		return ret;
632 	}
633 
634 	if (data->read_f11_ctrl_regs) {
635 		ret = rmi_write_block(hdev, data->f11.control_base_addr,
636 				data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT);
637 		if (ret)
638 			hid_warn(hdev,
639 				"can not write F11 control registers after reset\n");
640 	}
641 
642 	if (!device_may_wakeup(hdev->dev.parent)) {
643 		ret = rmi_set_sleep_mode(hdev, RMI_SLEEP_NORMAL);
644 		if (ret) {
645 			hid_err(hdev, "can not write sleep mode\n");
646 			return ret;
647 		}
648 	}
649 
650 	return ret;
651 }
652 
653 static int rmi_post_resume(struct hid_device *hdev)
654 {
655 	struct rmi_data *data = hid_get_drvdata(hdev);
656 
657 	if (!(data->device_flags & RMI_DEVICE))
658 		return 0;
659 
660 	return rmi_reset_attn_mode(hdev);
661 }
662 #endif /* CONFIG_PM */
663 
664 #define RMI4_MAX_PAGE 0xff
665 #define RMI4_PAGE_SIZE 0x0100
666 
667 #define PDT_START_SCAN_LOCATION 0x00e9
668 #define PDT_END_SCAN_LOCATION	0x0005
669 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff)
670 
671 struct pdt_entry {
672 	u8 query_base_addr:8;
673 	u8 command_base_addr:8;
674 	u8 control_base_addr:8;
675 	u8 data_base_addr:8;
676 	u8 interrupt_source_count:3;
677 	u8 bits3and4:2;
678 	u8 function_version:2;
679 	u8 bit7:1;
680 	u8 function_number:8;
681 } __attribute__((__packed__));
682 
683 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count)
684 {
685 	return GENMASK(irq_count + irq_base - 1, irq_base);
686 }
687 
688 static void rmi_register_function(struct rmi_data *data,
689 	struct pdt_entry *pdt_entry, int page, unsigned interrupt_count)
690 {
691 	struct rmi_function *f = NULL;
692 	u16 page_base = page << 8;
693 
694 	switch (pdt_entry->function_number) {
695 	case 0x01:
696 		f = &data->f01;
697 		break;
698 	case 0x11:
699 		f = &data->f11;
700 		break;
701 	case 0x30:
702 		f = &data->f30;
703 		break;
704 	}
705 
706 	if (f) {
707 		f->page = page;
708 		f->query_base_addr = page_base | pdt_entry->query_base_addr;
709 		f->command_base_addr = page_base | pdt_entry->command_base_addr;
710 		f->control_base_addr = page_base | pdt_entry->control_base_addr;
711 		f->data_base_addr = page_base | pdt_entry->data_base_addr;
712 		f->interrupt_base = interrupt_count;
713 		f->interrupt_count = pdt_entry->interrupt_source_count;
714 		f->irq_mask = rmi_gen_mask(f->interrupt_base,
715 						f->interrupt_count);
716 		data->interrupt_enable_mask |= f->irq_mask;
717 	}
718 }
719 
720 static int rmi_scan_pdt(struct hid_device *hdev)
721 {
722 	struct rmi_data *data = hid_get_drvdata(hdev);
723 	struct pdt_entry entry;
724 	int page;
725 	bool page_has_function;
726 	int i;
727 	int retval;
728 	int interrupt = 0;
729 	u16 page_start, pdt_start , pdt_end;
730 
731 	hid_info(hdev, "Scanning PDT...\n");
732 
733 	for (page = 0; (page <= RMI4_MAX_PAGE); page++) {
734 		page_start = RMI4_PAGE_SIZE * page;
735 		pdt_start = page_start + PDT_START_SCAN_LOCATION;
736 		pdt_end = page_start + PDT_END_SCAN_LOCATION;
737 
738 		page_has_function = false;
739 		for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) {
740 			retval = rmi_read_block(hdev, i, &entry, sizeof(entry));
741 			if (retval) {
742 				hid_err(hdev,
743 					"Read of PDT entry at %#06x failed.\n",
744 					i);
745 				goto error_exit;
746 			}
747 
748 			if (RMI4_END_OF_PDT(entry.function_number))
749 				break;
750 
751 			page_has_function = true;
752 
753 			hid_info(hdev, "Found F%02X on page %#04x\n",
754 					entry.function_number, page);
755 
756 			rmi_register_function(data, &entry, page, interrupt);
757 			interrupt += entry.interrupt_source_count;
758 		}
759 
760 		if (!page_has_function)
761 			break;
762 	}
763 
764 	hid_info(hdev, "%s: Done with PDT scan.\n", __func__);
765 	retval = 0;
766 
767 error_exit:
768 	return retval;
769 }
770 
771 #define RMI_DEVICE_F01_BASIC_QUERY_LEN	11
772 
773 static int rmi_populate_f01(struct hid_device *hdev)
774 {
775 	struct rmi_data *data = hid_get_drvdata(hdev);
776 	u8 basic_queries[RMI_DEVICE_F01_BASIC_QUERY_LEN];
777 	u8 info[3];
778 	int ret;
779 	bool has_query42;
780 	bool has_lts;
781 	bool has_sensor_id;
782 	bool has_ds4_queries = false;
783 	bool has_build_id_query = false;
784 	bool has_package_id_query = false;
785 	u16 query_offset = data->f01.query_base_addr;
786 	u16 prod_info_addr;
787 	u8 ds4_query_len;
788 
789 	ret = rmi_read_block(hdev, query_offset, basic_queries,
790 				RMI_DEVICE_F01_BASIC_QUERY_LEN);
791 	if (ret) {
792 		hid_err(hdev, "Can not read basic queries from Function 0x1.\n");
793 		return ret;
794 	}
795 
796 	has_lts = !!(basic_queries[0] & BIT(2));
797 	has_sensor_id = !!(basic_queries[1] & BIT(3));
798 	has_query42 = !!(basic_queries[1] & BIT(7));
799 
800 	query_offset += 11;
801 	prod_info_addr = query_offset + 6;
802 	query_offset += 10;
803 
804 	if (has_lts)
805 		query_offset += 20;
806 
807 	if (has_sensor_id)
808 		query_offset++;
809 
810 	if (has_query42) {
811 		ret = rmi_read(hdev, query_offset, info);
812 		if (ret) {
813 			hid_err(hdev, "Can not read query42.\n");
814 			return ret;
815 		}
816 		has_ds4_queries = !!(info[0] & BIT(0));
817 		query_offset++;
818 	}
819 
820 	if (has_ds4_queries) {
821 		ret = rmi_read(hdev, query_offset, &ds4_query_len);
822 		if (ret) {
823 			hid_err(hdev, "Can not read DS4 Query length.\n");
824 			return ret;
825 		}
826 		query_offset++;
827 
828 		if (ds4_query_len > 0) {
829 			ret = rmi_read(hdev, query_offset, info);
830 			if (ret) {
831 				hid_err(hdev, "Can not read DS4 query.\n");
832 				return ret;
833 			}
834 
835 			has_package_id_query = !!(info[0] & BIT(0));
836 			has_build_id_query = !!(info[0] & BIT(1));
837 		}
838 	}
839 
840 	if (has_package_id_query)
841 		prod_info_addr++;
842 
843 	if (has_build_id_query) {
844 		ret = rmi_read_block(hdev, prod_info_addr, info, 3);
845 		if (ret) {
846 			hid_err(hdev, "Can not read product info.\n");
847 			return ret;
848 		}
849 
850 		data->firmware_id = info[1] << 8 | info[0];
851 		data->firmware_id += info[2] * 65536;
852 	}
853 
854 	ret = rmi_read_block(hdev, data->f01.control_base_addr, info,
855 				2);
856 
857 	if (ret) {
858 		hid_err(hdev, "can not read f01 ctrl registers\n");
859 		return ret;
860 	}
861 
862 	data->f01_ctrl0 = info[0];
863 
864 	if (!info[1]) {
865 		/*
866 		 * Do to a firmware bug in some touchpads the F01 interrupt
867 		 * enable control register will be cleared on reset.
868 		 * This will stop the touchpad from reporting data, so
869 		 * if F01 CTRL1 is 0 then we need to explicitly enable
870 		 * interrupts for the functions we want data for.
871 		 */
872 		data->restore_interrupt_mask = true;
873 
874 		ret = rmi_write(hdev, data->f01.control_base_addr + 1,
875 				&data->interrupt_enable_mask);
876 		if (ret) {
877 			hid_err(hdev, "can not write to control reg 1: %d.\n",
878 				ret);
879 			return ret;
880 		}
881 	}
882 
883 	return 0;
884 }
885 
886 static int rmi_populate_f11(struct hid_device *hdev)
887 {
888 	struct rmi_data *data = hid_get_drvdata(hdev);
889 	u8 buf[20];
890 	int ret;
891 	bool has_query9;
892 	bool has_query10 = false;
893 	bool has_query11;
894 	bool has_query12;
895 	bool has_query27;
896 	bool has_query28;
897 	bool has_query36 = false;
898 	bool has_physical_props;
899 	bool has_gestures;
900 	bool has_rel;
901 	bool has_data40 = false;
902 	bool has_dribble = false;
903 	bool has_palm_detect = false;
904 	unsigned x_size, y_size;
905 	u16 query_offset;
906 
907 	if (!data->f11.query_base_addr) {
908 		hid_err(hdev, "No 2D sensor found, giving up.\n");
909 		return -ENODEV;
910 	}
911 
912 	/* query 0 contains some useful information */
913 	ret = rmi_read(hdev, data->f11.query_base_addr, buf);
914 	if (ret) {
915 		hid_err(hdev, "can not get query 0: %d.\n", ret);
916 		return ret;
917 	}
918 	has_query9 = !!(buf[0] & BIT(3));
919 	has_query11 = !!(buf[0] & BIT(4));
920 	has_query12 = !!(buf[0] & BIT(5));
921 	has_query27 = !!(buf[0] & BIT(6));
922 	has_query28 = !!(buf[0] & BIT(7));
923 
924 	/* query 1 to get the max number of fingers */
925 	ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf);
926 	if (ret) {
927 		hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret);
928 		return ret;
929 	}
930 	data->max_fingers = (buf[0] & 0x07) + 1;
931 	if (data->max_fingers > 5)
932 		data->max_fingers = 10;
933 
934 	data->f11.report_size = data->max_fingers * 5 +
935 				DIV_ROUND_UP(data->max_fingers, 4);
936 
937 	if (!(buf[0] & BIT(4))) {
938 		hid_err(hdev, "No absolute events, giving up.\n");
939 		return -ENODEV;
940 	}
941 
942 	has_rel = !!(buf[0] & BIT(3));
943 	has_gestures = !!(buf[0] & BIT(5));
944 
945 	ret = rmi_read(hdev, data->f11.query_base_addr + 5, buf);
946 	if (ret) {
947 		hid_err(hdev, "can not get absolute data sources: %d.\n", ret);
948 		return ret;
949 	}
950 
951 	has_dribble = !!(buf[0] & BIT(4));
952 
953 	/*
954 	 * At least 4 queries are guaranteed to be present in F11
955 	 * +1 for query 5 which is present since absolute events are
956 	 * reported and +1 for query 12.
957 	 */
958 	query_offset = 6;
959 
960 	if (has_rel)
961 		++query_offset; /* query 6 is present */
962 
963 	if (has_gestures) {
964 		/* query 8 to find out if query 10 exists */
965 		ret = rmi_read(hdev,
966 			data->f11.query_base_addr + query_offset + 1, buf);
967 		if (ret) {
968 			hid_err(hdev, "can not read gesture information: %d.\n",
969 				ret);
970 			return ret;
971 		}
972 		has_palm_detect = !!(buf[0] & BIT(0));
973 		has_query10 = !!(buf[0] & BIT(2));
974 
975 		query_offset += 2; /* query 7 and 8 are present */
976 	}
977 
978 	if (has_query9)
979 		++query_offset;
980 
981 	if (has_query10)
982 		++query_offset;
983 
984 	if (has_query11)
985 		++query_offset;
986 
987 	/* query 12 to know if the physical properties are reported */
988 	if (has_query12) {
989 		ret = rmi_read(hdev, data->f11.query_base_addr
990 				+ query_offset, buf);
991 		if (ret) {
992 			hid_err(hdev, "can not get query 12: %d.\n", ret);
993 			return ret;
994 		}
995 		has_physical_props = !!(buf[0] & BIT(5));
996 
997 		if (has_physical_props) {
998 			query_offset += 1;
999 			ret = rmi_read_block(hdev,
1000 					data->f11.query_base_addr
1001 						+ query_offset, buf, 4);
1002 			if (ret) {
1003 				hid_err(hdev, "can not read query 15-18: %d.\n",
1004 					ret);
1005 				return ret;
1006 			}
1007 
1008 			x_size = buf[0] | (buf[1] << 8);
1009 			y_size = buf[2] | (buf[3] << 8);
1010 
1011 			data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10);
1012 			data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10);
1013 
1014 			hid_info(hdev, "%s: size in mm: %d x %d\n",
1015 				 __func__, data->x_size_mm, data->y_size_mm);
1016 
1017 			/*
1018 			 * query 15 - 18 contain the size of the sensor
1019 			 * and query 19 - 26 contain bezel dimensions
1020 			 */
1021 			query_offset += 12;
1022 		}
1023 	}
1024 
1025 	if (has_query27)
1026 		++query_offset;
1027 
1028 	if (has_query28) {
1029 		ret = rmi_read(hdev, data->f11.query_base_addr
1030 				+ query_offset, buf);
1031 		if (ret) {
1032 			hid_err(hdev, "can not get query 28: %d.\n", ret);
1033 			return ret;
1034 		}
1035 
1036 		has_query36 = !!(buf[0] & BIT(6));
1037 	}
1038 
1039 	if (has_query36) {
1040 		query_offset += 2;
1041 		ret = rmi_read(hdev, data->f11.query_base_addr
1042 				+ query_offset, buf);
1043 		if (ret) {
1044 			hid_err(hdev, "can not get query 36: %d.\n", ret);
1045 			return ret;
1046 		}
1047 
1048 		has_data40 = !!(buf[0] & BIT(5));
1049 	}
1050 
1051 
1052 	if (has_data40)
1053 		data->f11.report_size += data->max_fingers * 2;
1054 
1055 	ret = rmi_read_block(hdev, data->f11.control_base_addr,
1056 			data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT);
1057 	if (ret) {
1058 		hid_err(hdev, "can not read ctrl block of size 11: %d.\n", ret);
1059 		return ret;
1060 	}
1061 
1062 	/* data->f11_ctrl_regs now contains valid register data */
1063 	data->read_f11_ctrl_regs = true;
1064 
1065 	data->max_x = data->f11_ctrl_regs[6] | (data->f11_ctrl_regs[7] << 8);
1066 	data->max_y = data->f11_ctrl_regs[8] | (data->f11_ctrl_regs[9] << 8);
1067 
1068 	if (has_dribble) {
1069 		data->f11_ctrl_regs[0] = data->f11_ctrl_regs[0] & ~BIT(6);
1070 		ret = rmi_write(hdev, data->f11.control_base_addr,
1071 				data->f11_ctrl_regs);
1072 		if (ret) {
1073 			hid_err(hdev, "can not write to control reg 0: %d.\n",
1074 				ret);
1075 			return ret;
1076 		}
1077 	}
1078 
1079 	if (has_palm_detect) {
1080 		data->f11_ctrl_regs[11] = data->f11_ctrl_regs[11] & ~BIT(0);
1081 		ret = rmi_write(hdev, data->f11.control_base_addr + 11,
1082 				&data->f11_ctrl_regs[11]);
1083 		if (ret) {
1084 			hid_err(hdev, "can not write to control reg 11: %d.\n",
1085 				ret);
1086 			return ret;
1087 		}
1088 	}
1089 
1090 	return 0;
1091 }
1092 
1093 static int rmi_populate_f30(struct hid_device *hdev)
1094 {
1095 	struct rmi_data *data = hid_get_drvdata(hdev);
1096 	u8 buf[20];
1097 	int ret;
1098 	bool has_gpio, has_led;
1099 	unsigned bytes_per_ctrl;
1100 	u8 ctrl2_addr;
1101 	int ctrl2_3_length;
1102 	int i;
1103 
1104 	/* function F30 is for physical buttons */
1105 	if (!data->f30.query_base_addr) {
1106 		hid_err(hdev, "No GPIO/LEDs found, giving up.\n");
1107 		return -ENODEV;
1108 	}
1109 
1110 	ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2);
1111 	if (ret) {
1112 		hid_err(hdev, "can not get F30 query registers: %d.\n", ret);
1113 		return ret;
1114 	}
1115 
1116 	has_gpio = !!(buf[0] & BIT(3));
1117 	has_led = !!(buf[0] & BIT(2));
1118 	data->gpio_led_count = buf[1] & 0x1f;
1119 
1120 	/* retrieve ctrl 2 & 3 registers */
1121 	bytes_per_ctrl = (data->gpio_led_count + 7) / 8;
1122 	/* Ctrl0 is present only if both has_gpio and has_led are set*/
1123 	ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0;
1124 	/* Ctrl1 is always be present */
1125 	ctrl2_addr += bytes_per_ctrl;
1126 	ctrl2_3_length = 2 * bytes_per_ctrl;
1127 
1128 	data->f30.report_size = bytes_per_ctrl;
1129 
1130 	ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr,
1131 				buf, ctrl2_3_length);
1132 	if (ret) {
1133 		hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n",
1134 			ctrl2_3_length, ret);
1135 		return ret;
1136 	}
1137 
1138 	for (i = 0; i < data->gpio_led_count; i++) {
1139 		int byte_position = i >> 3;
1140 		int bit_position = i & 0x07;
1141 		u8 dir_byte = buf[byte_position];
1142 		u8 data_byte = buf[byte_position + bytes_per_ctrl];
1143 		bool dir = (dir_byte >> bit_position) & BIT(0);
1144 		bool dat = (data_byte >> bit_position) & BIT(0);
1145 
1146 		if (dir == 0) {
1147 			/* input mode */
1148 			if (dat) {
1149 				/* actual buttons have pull up resistor */
1150 				data->button_count++;
1151 				set_bit(i, &data->button_mask);
1152 				set_bit(i, &data->button_state_mask);
1153 			}
1154 		}
1155 
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static int rmi_populate(struct hid_device *hdev)
1162 {
1163 	struct rmi_data *data = hid_get_drvdata(hdev);
1164 	int ret;
1165 
1166 	ret = rmi_scan_pdt(hdev);
1167 	if (ret) {
1168 		hid_err(hdev, "PDT scan failed with code %d.\n", ret);
1169 		return ret;
1170 	}
1171 
1172 	ret = rmi_populate_f01(hdev);
1173 	if (ret) {
1174 		hid_err(hdev, "Error while initializing F01 (%d).\n", ret);
1175 		return ret;
1176 	}
1177 
1178 	ret = rmi_populate_f11(hdev);
1179 	if (ret) {
1180 		hid_err(hdev, "Error while initializing F11 (%d).\n", ret);
1181 		return ret;
1182 	}
1183 
1184 	if (!(data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS)) {
1185 		ret = rmi_populate_f30(hdev);
1186 		if (ret)
1187 			hid_warn(hdev, "Error while initializing F30 (%d).\n", ret);
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 static int rmi_input_configured(struct hid_device *hdev, struct hid_input *hi)
1194 {
1195 	struct rmi_data *data = hid_get_drvdata(hdev);
1196 	struct input_dev *input = hi->input;
1197 	int ret;
1198 	int res_x, res_y, i;
1199 
1200 	data->input = input;
1201 
1202 	hid_dbg(hdev, "Opening low level driver\n");
1203 	ret = hid_hw_open(hdev);
1204 	if (ret)
1205 		return ret;
1206 
1207 	if (!(data->device_flags & RMI_DEVICE))
1208 		return 0;
1209 
1210 	/* Allow incoming hid reports */
1211 	hid_device_io_start(hdev);
1212 
1213 	ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
1214 	if (ret < 0) {
1215 		dev_err(&hdev->dev, "failed to set rmi mode\n");
1216 		goto exit;
1217 	}
1218 
1219 	ret = rmi_set_page(hdev, 0);
1220 	if (ret < 0) {
1221 		dev_err(&hdev->dev, "failed to set page select to 0.\n");
1222 		goto exit;
1223 	}
1224 
1225 	ret = rmi_populate(hdev);
1226 	if (ret)
1227 		goto exit;
1228 
1229 	hid_info(hdev, "firmware id: %ld\n", data->firmware_id);
1230 
1231 	__set_bit(EV_ABS, input->evbit);
1232 	input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0);
1233 	input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0);
1234 
1235 	if (data->x_size_mm && data->y_size_mm) {
1236 		res_x = (data->max_x - 1) / data->x_size_mm;
1237 		res_y = (data->max_y - 1) / data->y_size_mm;
1238 
1239 		input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
1240 		input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
1241 	}
1242 
1243 	input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0);
1244 	input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0);
1245 	input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0);
1246 	input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0);
1247 
1248 	ret = input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER);
1249 	if (ret < 0)
1250 		goto exit;
1251 
1252 	if (data->button_count) {
1253 		__set_bit(EV_KEY, input->evbit);
1254 		for (i = 0; i < data->button_count; i++)
1255 			__set_bit(BTN_LEFT + i, input->keybit);
1256 
1257 		if (data->button_count == 1)
1258 			__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
1259 	}
1260 
1261 	set_bit(RMI_STARTED, &data->flags);
1262 
1263 exit:
1264 	hid_device_io_stop(hdev);
1265 	hid_hw_close(hdev);
1266 	return ret;
1267 }
1268 
1269 static int rmi_input_mapping(struct hid_device *hdev,
1270 		struct hid_input *hi, struct hid_field *field,
1271 		struct hid_usage *usage, unsigned long **bit, int *max)
1272 {
1273 	struct rmi_data *data = hid_get_drvdata(hdev);
1274 
1275 	/*
1276 	 * we want to make HID ignore the advertised HID collection
1277 	 * for RMI deivces
1278 	 */
1279 	if (data->device_flags & RMI_DEVICE) {
1280 		if ((data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) &&
1281 		    ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON))
1282 			return 0;
1283 
1284 		return -1;
1285 	}
1286 
1287 	return 0;
1288 }
1289 
1290 static int rmi_check_valid_report_id(struct hid_device *hdev, unsigned type,
1291 		unsigned id, struct hid_report **report)
1292 {
1293 	int i;
1294 
1295 	*report = hdev->report_enum[type].report_id_hash[id];
1296 	if (*report) {
1297 		for (i = 0; i < (*report)->maxfield; i++) {
1298 			unsigned app = (*report)->field[i]->application;
1299 			if ((app & HID_USAGE_PAGE) >= HID_UP_MSVENDOR)
1300 				return 1;
1301 		}
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id)
1308 {
1309 	struct rmi_data *data = NULL;
1310 	int ret;
1311 	size_t alloc_size;
1312 	struct hid_report *input_report;
1313 	struct hid_report *output_report;
1314 	struct hid_report *feature_report;
1315 
1316 	data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL);
1317 	if (!data)
1318 		return -ENOMEM;
1319 
1320 	INIT_WORK(&data->reset_work, rmi_reset_work);
1321 	data->hdev = hdev;
1322 
1323 	hid_set_drvdata(hdev, data);
1324 
1325 	hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
1326 
1327 	ret = hid_parse(hdev);
1328 	if (ret) {
1329 		hid_err(hdev, "parse failed\n");
1330 		return ret;
1331 	}
1332 
1333 	if (id->driver_data)
1334 		data->device_flags = id->driver_data;
1335 
1336 	/*
1337 	 * Check for the RMI specific report ids. If they are misisng
1338 	 * simply return and let the events be processed by hid-input
1339 	 */
1340 	if (!rmi_check_valid_report_id(hdev, HID_FEATURE_REPORT,
1341 	    RMI_SET_RMI_MODE_REPORT_ID, &feature_report)) {
1342 		hid_dbg(hdev, "device does not have set mode feature report\n");
1343 		goto start;
1344 	}
1345 
1346 	if (!rmi_check_valid_report_id(hdev, HID_INPUT_REPORT,
1347 	    RMI_ATTN_REPORT_ID, &input_report)) {
1348 		hid_dbg(hdev, "device does not have attention input report\n");
1349 		goto start;
1350 	}
1351 
1352 	data->input_report_size = hid_report_len(input_report);
1353 
1354 	if (!rmi_check_valid_report_id(hdev, HID_OUTPUT_REPORT,
1355 	    RMI_WRITE_REPORT_ID, &output_report)) {
1356 		hid_dbg(hdev,
1357 			"device does not have rmi write output report\n");
1358 		goto start;
1359 	}
1360 
1361 	data->output_report_size = hid_report_len(output_report);
1362 
1363 	data->device_flags |= RMI_DEVICE;
1364 	alloc_size = data->output_report_size + data->input_report_size;
1365 
1366 	data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL);
1367 	if (!data->writeReport) {
1368 		ret = -ENOMEM;
1369 		return ret;
1370 	}
1371 
1372 	data->readReport = data->writeReport + data->output_report_size;
1373 
1374 	init_waitqueue_head(&data->wait);
1375 
1376 	mutex_init(&data->page_mutex);
1377 
1378 start:
1379 	ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1380 	if (ret) {
1381 		hid_err(hdev, "hw start failed\n");
1382 		return ret;
1383 	}
1384 
1385 	if ((data->device_flags & RMI_DEVICE) &&
1386 	    !test_bit(RMI_STARTED, &data->flags))
1387 		/*
1388 		 * The device maybe in the bootloader if rmi_input_configured
1389 		 * failed to find F11 in the PDT. Print an error, but don't
1390 		 * return an error from rmi_probe so that hidraw will be
1391 		 * accessible from userspace. That way a userspace tool
1392 		 * can be used to reload working firmware on the touchpad.
1393 		 */
1394 		hid_err(hdev, "Device failed to be properly configured\n");
1395 
1396 	return 0;
1397 }
1398 
1399 static void rmi_remove(struct hid_device *hdev)
1400 {
1401 	struct rmi_data *hdata = hid_get_drvdata(hdev);
1402 
1403 	clear_bit(RMI_STARTED, &hdata->flags);
1404 
1405 	hid_hw_stop(hdev);
1406 }
1407 
1408 static const struct hid_device_id rmi_id[] = {
1409 	{ HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14),
1410 		.driver_data = RMI_DEVICE_HAS_PHYS_BUTTONS },
1411 	{ HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) },
1412 	{ }
1413 };
1414 MODULE_DEVICE_TABLE(hid, rmi_id);
1415 
1416 static struct hid_driver rmi_driver = {
1417 	.name = "hid-rmi",
1418 	.id_table		= rmi_id,
1419 	.probe			= rmi_probe,
1420 	.remove			= rmi_remove,
1421 	.event			= rmi_event,
1422 	.raw_event		= rmi_raw_event,
1423 	.input_mapping		= rmi_input_mapping,
1424 	.input_configured	= rmi_input_configured,
1425 #ifdef CONFIG_PM
1426 	.suspend		= rmi_suspend,
1427 	.resume			= rmi_post_resume,
1428 	.reset_resume		= rmi_post_reset,
1429 #endif
1430 };
1431 
1432 module_hid_driver(rmi_driver);
1433 
1434 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
1435 MODULE_DESCRIPTION("RMI HID driver");
1436 MODULE_LICENSE("GPL");
1437