1 /* 2 * Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com> 3 * Copyright (c) 2013 Synaptics Incorporated 4 * Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com> 5 * Copyright (c) 2014 Red Hat, Inc 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License as published by the Free 9 * Software Foundation; either version 2 of the License, or (at your option) 10 * any later version. 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/hid.h> 15 #include <linux/input.h> 16 #include <linux/input/mt.h> 17 #include <linux/module.h> 18 #include <linux/pm.h> 19 #include <linux/slab.h> 20 #include <linux/wait.h> 21 #include <linux/sched.h> 22 #include "hid-ids.h" 23 24 #define RMI_MOUSE_REPORT_ID 0x01 /* Mouse emulation Report */ 25 #define RMI_WRITE_REPORT_ID 0x09 /* Output Report */ 26 #define RMI_READ_ADDR_REPORT_ID 0x0a /* Output Report */ 27 #define RMI_READ_DATA_REPORT_ID 0x0b /* Input Report */ 28 #define RMI_ATTN_REPORT_ID 0x0c /* Input Report */ 29 #define RMI_SET_RMI_MODE_REPORT_ID 0x0f /* Feature Report */ 30 31 /* flags */ 32 #define RMI_READ_REQUEST_PENDING 0 33 #define RMI_READ_DATA_PENDING 1 34 #define RMI_STARTED 2 35 36 #define RMI_SLEEP_NORMAL 0x0 37 #define RMI_SLEEP_DEEP_SLEEP 0x1 38 39 /* device flags */ 40 #define RMI_DEVICE BIT(0) 41 #define RMI_DEVICE_HAS_PHYS_BUTTONS BIT(1) 42 43 /* 44 * retrieve the ctrl registers 45 * the ctrl register has a size of 20 but a fw bug split it into 16 + 4, 46 * and there is no way to know if the first 20 bytes are here or not. 47 * We use only the first 12 bytes, so get only them. 48 */ 49 #define RMI_F11_CTRL_REG_COUNT 12 50 51 enum rmi_mode_type { 52 RMI_MODE_OFF = 0, 53 RMI_MODE_ATTN_REPORTS = 1, 54 RMI_MODE_NO_PACKED_ATTN_REPORTS = 2, 55 }; 56 57 struct rmi_function { 58 unsigned page; /* page of the function */ 59 u16 query_base_addr; /* base address for queries */ 60 u16 command_base_addr; /* base address for commands */ 61 u16 control_base_addr; /* base address for controls */ 62 u16 data_base_addr; /* base address for datas */ 63 unsigned int interrupt_base; /* cross-function interrupt number 64 * (uniq in the device)*/ 65 unsigned int interrupt_count; /* number of interrupts */ 66 unsigned int report_size; /* size of a report */ 67 unsigned long irq_mask; /* mask of the interrupts 68 * (to be applied against ATTN IRQ) */ 69 }; 70 71 /** 72 * struct rmi_data - stores information for hid communication 73 * 74 * @page_mutex: Locks current page to avoid changing pages in unexpected ways. 75 * @page: Keeps track of the current virtual page 76 * 77 * @wait: Used for waiting for read data 78 * 79 * @writeReport: output buffer when writing RMI registers 80 * @readReport: input buffer when reading RMI registers 81 * 82 * @input_report_size: size of an input report (advertised by HID) 83 * @output_report_size: size of an output report (advertised by HID) 84 * 85 * @flags: flags for the current device (started, reading, etc...) 86 * 87 * @f11: placeholder of internal RMI function F11 description 88 * @f30: placeholder of internal RMI function F30 description 89 * 90 * @max_fingers: maximum finger count reported by the device 91 * @max_x: maximum x value reported by the device 92 * @max_y: maximum y value reported by the device 93 * 94 * @gpio_led_count: count of GPIOs + LEDs reported by F30 95 * @button_count: actual physical buttons count 96 * @button_mask: button mask used to decode GPIO ATTN reports 97 * @button_state_mask: pull state of the buttons 98 * 99 * @input: pointer to the kernel input device 100 * 101 * @reset_work: worker which will be called in case of a mouse report 102 * @hdev: pointer to the struct hid_device 103 */ 104 struct rmi_data { 105 struct mutex page_mutex; 106 int page; 107 108 wait_queue_head_t wait; 109 110 u8 *writeReport; 111 u8 *readReport; 112 113 int input_report_size; 114 int output_report_size; 115 116 unsigned long flags; 117 118 struct rmi_function f01; 119 struct rmi_function f11; 120 struct rmi_function f30; 121 122 unsigned int max_fingers; 123 unsigned int max_x; 124 unsigned int max_y; 125 unsigned int x_size_mm; 126 unsigned int y_size_mm; 127 bool read_f11_ctrl_regs; 128 u8 f11_ctrl_regs[RMI_F11_CTRL_REG_COUNT]; 129 130 unsigned int gpio_led_count; 131 unsigned int button_count; 132 unsigned long button_mask; 133 unsigned long button_state_mask; 134 135 struct input_dev *input; 136 137 struct work_struct reset_work; 138 struct hid_device *hdev; 139 140 unsigned long device_flags; 141 unsigned long firmware_id; 142 143 u8 f01_ctrl0; 144 u8 interrupt_enable_mask; 145 bool restore_interrupt_mask; 146 }; 147 148 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff) 149 150 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len); 151 152 /** 153 * rmi_set_page - Set RMI page 154 * @hdev: The pointer to the hid_device struct 155 * @page: The new page address. 156 * 157 * RMI devices have 16-bit addressing, but some of the physical 158 * implementations (like SMBus) only have 8-bit addressing. So RMI implements 159 * a page address at 0xff of every page so we can reliable page addresses 160 * every 256 registers. 161 * 162 * The page_mutex lock must be held when this function is entered. 163 * 164 * Returns zero on success, non-zero on failure. 165 */ 166 static int rmi_set_page(struct hid_device *hdev, u8 page) 167 { 168 struct rmi_data *data = hid_get_drvdata(hdev); 169 int retval; 170 171 data->writeReport[0] = RMI_WRITE_REPORT_ID; 172 data->writeReport[1] = 1; 173 data->writeReport[2] = 0xFF; 174 data->writeReport[4] = page; 175 176 retval = rmi_write_report(hdev, data->writeReport, 177 data->output_report_size); 178 if (retval != data->output_report_size) { 179 dev_err(&hdev->dev, 180 "%s: set page failed: %d.", __func__, retval); 181 return retval; 182 } 183 184 data->page = page; 185 return 0; 186 } 187 188 static int rmi_set_mode(struct hid_device *hdev, u8 mode) 189 { 190 int ret; 191 const u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode}; 192 u8 *buf; 193 194 buf = kmemdup(txbuf, sizeof(txbuf), GFP_KERNEL); 195 if (!buf) 196 return -ENOMEM; 197 198 ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, buf, 199 sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT); 200 kfree(buf); 201 if (ret < 0) { 202 dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode, 203 ret); 204 return ret; 205 } 206 207 return 0; 208 } 209 210 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len) 211 { 212 int ret; 213 214 ret = hid_hw_output_report(hdev, (void *)report, len); 215 if (ret < 0) { 216 dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret); 217 return ret; 218 } 219 220 return ret; 221 } 222 223 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf, 224 const int len) 225 { 226 struct rmi_data *data = hid_get_drvdata(hdev); 227 int ret; 228 int bytes_read; 229 int bytes_needed; 230 int retries; 231 int read_input_count; 232 233 mutex_lock(&data->page_mutex); 234 235 if (RMI_PAGE(addr) != data->page) { 236 ret = rmi_set_page(hdev, RMI_PAGE(addr)); 237 if (ret < 0) 238 goto exit; 239 } 240 241 for (retries = 5; retries > 0; retries--) { 242 data->writeReport[0] = RMI_READ_ADDR_REPORT_ID; 243 data->writeReport[1] = 0; /* old 1 byte read count */ 244 data->writeReport[2] = addr & 0xFF; 245 data->writeReport[3] = (addr >> 8) & 0xFF; 246 data->writeReport[4] = len & 0xFF; 247 data->writeReport[5] = (len >> 8) & 0xFF; 248 249 set_bit(RMI_READ_REQUEST_PENDING, &data->flags); 250 251 ret = rmi_write_report(hdev, data->writeReport, 252 data->output_report_size); 253 if (ret != data->output_report_size) { 254 clear_bit(RMI_READ_REQUEST_PENDING, &data->flags); 255 dev_err(&hdev->dev, 256 "failed to write request output report (%d)\n", 257 ret); 258 goto exit; 259 } 260 261 bytes_read = 0; 262 bytes_needed = len; 263 while (bytes_read < len) { 264 if (!wait_event_timeout(data->wait, 265 test_bit(RMI_READ_DATA_PENDING, &data->flags), 266 msecs_to_jiffies(1000))) { 267 hid_warn(hdev, "%s: timeout elapsed\n", 268 __func__); 269 ret = -EAGAIN; 270 break; 271 } 272 273 read_input_count = data->readReport[1]; 274 memcpy(buf + bytes_read, &data->readReport[2], 275 read_input_count < bytes_needed ? 276 read_input_count : bytes_needed); 277 278 bytes_read += read_input_count; 279 bytes_needed -= read_input_count; 280 clear_bit(RMI_READ_DATA_PENDING, &data->flags); 281 } 282 283 if (ret >= 0) { 284 ret = 0; 285 break; 286 } 287 } 288 289 exit: 290 clear_bit(RMI_READ_REQUEST_PENDING, &data->flags); 291 mutex_unlock(&data->page_mutex); 292 return ret; 293 } 294 295 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf) 296 { 297 return rmi_read_block(hdev, addr, buf, 1); 298 } 299 300 static int rmi_write_block(struct hid_device *hdev, u16 addr, void *buf, 301 const int len) 302 { 303 struct rmi_data *data = hid_get_drvdata(hdev); 304 int ret; 305 306 mutex_lock(&data->page_mutex); 307 308 if (RMI_PAGE(addr) != data->page) { 309 ret = rmi_set_page(hdev, RMI_PAGE(addr)); 310 if (ret < 0) 311 goto exit; 312 } 313 314 data->writeReport[0] = RMI_WRITE_REPORT_ID; 315 data->writeReport[1] = len; 316 data->writeReport[2] = addr & 0xFF; 317 data->writeReport[3] = (addr >> 8) & 0xFF; 318 memcpy(&data->writeReport[4], buf, len); 319 320 ret = rmi_write_report(hdev, data->writeReport, 321 data->output_report_size); 322 if (ret < 0) { 323 dev_err(&hdev->dev, 324 "failed to write request output report (%d)\n", 325 ret); 326 goto exit; 327 } 328 ret = 0; 329 330 exit: 331 mutex_unlock(&data->page_mutex); 332 return ret; 333 } 334 335 static inline int rmi_write(struct hid_device *hdev, u16 addr, void *buf) 336 { 337 return rmi_write_block(hdev, addr, buf, 1); 338 } 339 340 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot, 341 u8 finger_state, u8 *touch_data) 342 { 343 int x, y, wx, wy; 344 int wide, major, minor; 345 int z; 346 347 input_mt_slot(hdata->input, slot); 348 input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER, 349 finger_state == 0x01); 350 if (finger_state == 0x01) { 351 x = (touch_data[0] << 4) | (touch_data[2] & 0x0F); 352 y = (touch_data[1] << 4) | (touch_data[2] >> 4); 353 wx = touch_data[3] & 0x0F; 354 wy = touch_data[3] >> 4; 355 wide = (wx > wy); 356 major = max(wx, wy); 357 minor = min(wx, wy); 358 z = touch_data[4]; 359 360 /* y is inverted */ 361 y = hdata->max_y - y; 362 363 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x); 364 input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y); 365 input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide); 366 input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z); 367 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major); 368 input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor); 369 } 370 } 371 372 static int rmi_reset_attn_mode(struct hid_device *hdev) 373 { 374 struct rmi_data *data = hid_get_drvdata(hdev); 375 int ret; 376 377 ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS); 378 if (ret) 379 return ret; 380 381 if (data->restore_interrupt_mask) { 382 ret = rmi_write(hdev, data->f01.control_base_addr + 1, 383 &data->interrupt_enable_mask); 384 if (ret) { 385 hid_err(hdev, "can not write F01 control register\n"); 386 return ret; 387 } 388 } 389 390 return 0; 391 } 392 393 static void rmi_reset_work(struct work_struct *work) 394 { 395 struct rmi_data *hdata = container_of(work, struct rmi_data, 396 reset_work); 397 398 /* switch the device to RMI if we receive a generic mouse report */ 399 rmi_reset_attn_mode(hdata->hdev); 400 } 401 402 static inline int rmi_schedule_reset(struct hid_device *hdev) 403 { 404 struct rmi_data *hdata = hid_get_drvdata(hdev); 405 return schedule_work(&hdata->reset_work); 406 } 407 408 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data, 409 int size) 410 { 411 struct rmi_data *hdata = hid_get_drvdata(hdev); 412 int offset; 413 int i; 414 415 if (!(irq & hdata->f11.irq_mask) || size <= 0) 416 return 0; 417 418 offset = (hdata->max_fingers >> 2) + 1; 419 for (i = 0; i < hdata->max_fingers; i++) { 420 int fs_byte_position = i >> 2; 421 int fs_bit_position = (i & 0x3) << 1; 422 int finger_state = (data[fs_byte_position] >> fs_bit_position) & 423 0x03; 424 int position = offset + 5 * i; 425 426 if (position + 5 > size) { 427 /* partial report, go on with what we received */ 428 printk_once(KERN_WARNING 429 "%s %s: Detected incomplete finger report. Finger reports may occasionally get dropped on this platform.\n", 430 dev_driver_string(&hdev->dev), 431 dev_name(&hdev->dev)); 432 hid_dbg(hdev, "Incomplete finger report\n"); 433 break; 434 } 435 436 rmi_f11_process_touch(hdata, i, finger_state, &data[position]); 437 } 438 input_mt_sync_frame(hdata->input); 439 input_sync(hdata->input); 440 return hdata->f11.report_size; 441 } 442 443 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data, 444 int size) 445 { 446 struct rmi_data *hdata = hid_get_drvdata(hdev); 447 int i; 448 int button = 0; 449 bool value; 450 451 if (!(irq & hdata->f30.irq_mask)) 452 return 0; 453 454 if (size < (int)hdata->f30.report_size) { 455 hid_warn(hdev, "Click Button pressed, but the click data is missing\n"); 456 return 0; 457 } 458 459 for (i = 0; i < hdata->gpio_led_count; i++) { 460 if (test_bit(i, &hdata->button_mask)) { 461 value = (data[i / 8] >> (i & 0x07)) & BIT(0); 462 if (test_bit(i, &hdata->button_state_mask)) 463 value = !value; 464 input_event(hdata->input, EV_KEY, BTN_LEFT + button++, 465 value); 466 } 467 } 468 return hdata->f30.report_size; 469 } 470 471 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size) 472 { 473 struct rmi_data *hdata = hid_get_drvdata(hdev); 474 unsigned long irq_mask = 0; 475 unsigned index = 2; 476 477 if (!(test_bit(RMI_STARTED, &hdata->flags))) 478 return 0; 479 480 irq_mask |= hdata->f11.irq_mask; 481 irq_mask |= hdata->f30.irq_mask; 482 483 if (data[1] & ~irq_mask) 484 hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n", 485 data[1] & ~irq_mask, __FILE__, __LINE__); 486 487 if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) { 488 index += rmi_f11_input_event(hdev, data[1], &data[index], 489 size - index); 490 index += rmi_f30_input_event(hdev, data[1], &data[index], 491 size - index); 492 } else { 493 index += rmi_f30_input_event(hdev, data[1], &data[index], 494 size - index); 495 index += rmi_f11_input_event(hdev, data[1], &data[index], 496 size - index); 497 } 498 499 return 1; 500 } 501 502 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size) 503 { 504 struct rmi_data *hdata = hid_get_drvdata(hdev); 505 506 if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) { 507 hid_dbg(hdev, "no read request pending\n"); 508 return 0; 509 } 510 511 memcpy(hdata->readReport, data, size < hdata->input_report_size ? 512 size : hdata->input_report_size); 513 set_bit(RMI_READ_DATA_PENDING, &hdata->flags); 514 wake_up(&hdata->wait); 515 516 return 1; 517 } 518 519 static int rmi_check_sanity(struct hid_device *hdev, u8 *data, int size) 520 { 521 int valid_size = size; 522 /* 523 * On the Dell XPS 13 9333, the bus sometimes get confused and fills 524 * the report with a sentinel value "ff". Synaptics told us that such 525 * behavior does not comes from the touchpad itself, so we filter out 526 * such reports here. 527 */ 528 529 while ((data[valid_size - 1] == 0xff) && valid_size > 0) 530 valid_size--; 531 532 return valid_size; 533 } 534 535 static int rmi_raw_event(struct hid_device *hdev, 536 struct hid_report *report, u8 *data, int size) 537 { 538 size = rmi_check_sanity(hdev, data, size); 539 if (size < 2) 540 return 0; 541 542 switch (data[0]) { 543 case RMI_READ_DATA_REPORT_ID: 544 return rmi_read_data_event(hdev, data, size); 545 case RMI_ATTN_REPORT_ID: 546 return rmi_input_event(hdev, data, size); 547 default: 548 return 1; 549 } 550 551 return 0; 552 } 553 554 static int rmi_event(struct hid_device *hdev, struct hid_field *field, 555 struct hid_usage *usage, __s32 value) 556 { 557 struct rmi_data *data = hid_get_drvdata(hdev); 558 559 if ((data->device_flags & RMI_DEVICE) && 560 (field->application == HID_GD_POINTER || 561 field->application == HID_GD_MOUSE)) { 562 if (data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) { 563 if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON) 564 return 0; 565 566 if ((usage->hid == HID_GD_X || usage->hid == HID_GD_Y) 567 && !value) 568 return 1; 569 } 570 571 rmi_schedule_reset(hdev); 572 return 1; 573 } 574 575 return 0; 576 } 577 578 #ifdef CONFIG_PM 579 static int rmi_set_sleep_mode(struct hid_device *hdev, int sleep_mode) 580 { 581 struct rmi_data *data = hid_get_drvdata(hdev); 582 int ret; 583 u8 f01_ctrl0; 584 585 f01_ctrl0 = (data->f01_ctrl0 & ~0x3) | sleep_mode; 586 587 ret = rmi_write(hdev, data->f01.control_base_addr, 588 &f01_ctrl0); 589 if (ret) { 590 hid_err(hdev, "can not write sleep mode\n"); 591 return ret; 592 } 593 594 return 0; 595 } 596 597 static int rmi_suspend(struct hid_device *hdev, pm_message_t message) 598 { 599 struct rmi_data *data = hid_get_drvdata(hdev); 600 int ret; 601 u8 buf[RMI_F11_CTRL_REG_COUNT]; 602 603 if (!(data->device_flags & RMI_DEVICE)) 604 return 0; 605 606 ret = rmi_read_block(hdev, data->f11.control_base_addr, buf, 607 RMI_F11_CTRL_REG_COUNT); 608 if (ret) 609 hid_warn(hdev, "can not read F11 control registers\n"); 610 else 611 memcpy(data->f11_ctrl_regs, buf, RMI_F11_CTRL_REG_COUNT); 612 613 614 if (!device_may_wakeup(hdev->dev.parent)) 615 return rmi_set_sleep_mode(hdev, RMI_SLEEP_DEEP_SLEEP); 616 617 return 0; 618 } 619 620 static int rmi_post_reset(struct hid_device *hdev) 621 { 622 struct rmi_data *data = hid_get_drvdata(hdev); 623 int ret; 624 625 if (!(data->device_flags & RMI_DEVICE)) 626 return 0; 627 628 ret = rmi_reset_attn_mode(hdev); 629 if (ret) { 630 hid_err(hdev, "can not set rmi mode\n"); 631 return ret; 632 } 633 634 if (data->read_f11_ctrl_regs) { 635 ret = rmi_write_block(hdev, data->f11.control_base_addr, 636 data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT); 637 if (ret) 638 hid_warn(hdev, 639 "can not write F11 control registers after reset\n"); 640 } 641 642 if (!device_may_wakeup(hdev->dev.parent)) { 643 ret = rmi_set_sleep_mode(hdev, RMI_SLEEP_NORMAL); 644 if (ret) { 645 hid_err(hdev, "can not write sleep mode\n"); 646 return ret; 647 } 648 } 649 650 return ret; 651 } 652 653 static int rmi_post_resume(struct hid_device *hdev) 654 { 655 struct rmi_data *data = hid_get_drvdata(hdev); 656 657 if (!(data->device_flags & RMI_DEVICE)) 658 return 0; 659 660 return rmi_reset_attn_mode(hdev); 661 } 662 #endif /* CONFIG_PM */ 663 664 #define RMI4_MAX_PAGE 0xff 665 #define RMI4_PAGE_SIZE 0x0100 666 667 #define PDT_START_SCAN_LOCATION 0x00e9 668 #define PDT_END_SCAN_LOCATION 0x0005 669 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff) 670 671 struct pdt_entry { 672 u8 query_base_addr:8; 673 u8 command_base_addr:8; 674 u8 control_base_addr:8; 675 u8 data_base_addr:8; 676 u8 interrupt_source_count:3; 677 u8 bits3and4:2; 678 u8 function_version:2; 679 u8 bit7:1; 680 u8 function_number:8; 681 } __attribute__((__packed__)); 682 683 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count) 684 { 685 return GENMASK(irq_count + irq_base - 1, irq_base); 686 } 687 688 static void rmi_register_function(struct rmi_data *data, 689 struct pdt_entry *pdt_entry, int page, unsigned interrupt_count) 690 { 691 struct rmi_function *f = NULL; 692 u16 page_base = page << 8; 693 694 switch (pdt_entry->function_number) { 695 case 0x01: 696 f = &data->f01; 697 break; 698 case 0x11: 699 f = &data->f11; 700 break; 701 case 0x30: 702 f = &data->f30; 703 break; 704 } 705 706 if (f) { 707 f->page = page; 708 f->query_base_addr = page_base | pdt_entry->query_base_addr; 709 f->command_base_addr = page_base | pdt_entry->command_base_addr; 710 f->control_base_addr = page_base | pdt_entry->control_base_addr; 711 f->data_base_addr = page_base | pdt_entry->data_base_addr; 712 f->interrupt_base = interrupt_count; 713 f->interrupt_count = pdt_entry->interrupt_source_count; 714 f->irq_mask = rmi_gen_mask(f->interrupt_base, 715 f->interrupt_count); 716 data->interrupt_enable_mask |= f->irq_mask; 717 } 718 } 719 720 static int rmi_scan_pdt(struct hid_device *hdev) 721 { 722 struct rmi_data *data = hid_get_drvdata(hdev); 723 struct pdt_entry entry; 724 int page; 725 bool page_has_function; 726 int i; 727 int retval; 728 int interrupt = 0; 729 u16 page_start, pdt_start , pdt_end; 730 731 hid_info(hdev, "Scanning PDT...\n"); 732 733 for (page = 0; (page <= RMI4_MAX_PAGE); page++) { 734 page_start = RMI4_PAGE_SIZE * page; 735 pdt_start = page_start + PDT_START_SCAN_LOCATION; 736 pdt_end = page_start + PDT_END_SCAN_LOCATION; 737 738 page_has_function = false; 739 for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) { 740 retval = rmi_read_block(hdev, i, &entry, sizeof(entry)); 741 if (retval) { 742 hid_err(hdev, 743 "Read of PDT entry at %#06x failed.\n", 744 i); 745 goto error_exit; 746 } 747 748 if (RMI4_END_OF_PDT(entry.function_number)) 749 break; 750 751 page_has_function = true; 752 753 hid_info(hdev, "Found F%02X on page %#04x\n", 754 entry.function_number, page); 755 756 rmi_register_function(data, &entry, page, interrupt); 757 interrupt += entry.interrupt_source_count; 758 } 759 760 if (!page_has_function) 761 break; 762 } 763 764 hid_info(hdev, "%s: Done with PDT scan.\n", __func__); 765 retval = 0; 766 767 error_exit: 768 return retval; 769 } 770 771 #define RMI_DEVICE_F01_BASIC_QUERY_LEN 11 772 773 static int rmi_populate_f01(struct hid_device *hdev) 774 { 775 struct rmi_data *data = hid_get_drvdata(hdev); 776 u8 basic_queries[RMI_DEVICE_F01_BASIC_QUERY_LEN]; 777 u8 info[3]; 778 int ret; 779 bool has_query42; 780 bool has_lts; 781 bool has_sensor_id; 782 bool has_ds4_queries = false; 783 bool has_build_id_query = false; 784 bool has_package_id_query = false; 785 u16 query_offset = data->f01.query_base_addr; 786 u16 prod_info_addr; 787 u8 ds4_query_len; 788 789 ret = rmi_read_block(hdev, query_offset, basic_queries, 790 RMI_DEVICE_F01_BASIC_QUERY_LEN); 791 if (ret) { 792 hid_err(hdev, "Can not read basic queries from Function 0x1.\n"); 793 return ret; 794 } 795 796 has_lts = !!(basic_queries[0] & BIT(2)); 797 has_sensor_id = !!(basic_queries[1] & BIT(3)); 798 has_query42 = !!(basic_queries[1] & BIT(7)); 799 800 query_offset += 11; 801 prod_info_addr = query_offset + 6; 802 query_offset += 10; 803 804 if (has_lts) 805 query_offset += 20; 806 807 if (has_sensor_id) 808 query_offset++; 809 810 if (has_query42) { 811 ret = rmi_read(hdev, query_offset, info); 812 if (ret) { 813 hid_err(hdev, "Can not read query42.\n"); 814 return ret; 815 } 816 has_ds4_queries = !!(info[0] & BIT(0)); 817 query_offset++; 818 } 819 820 if (has_ds4_queries) { 821 ret = rmi_read(hdev, query_offset, &ds4_query_len); 822 if (ret) { 823 hid_err(hdev, "Can not read DS4 Query length.\n"); 824 return ret; 825 } 826 query_offset++; 827 828 if (ds4_query_len > 0) { 829 ret = rmi_read(hdev, query_offset, info); 830 if (ret) { 831 hid_err(hdev, "Can not read DS4 query.\n"); 832 return ret; 833 } 834 835 has_package_id_query = !!(info[0] & BIT(0)); 836 has_build_id_query = !!(info[0] & BIT(1)); 837 } 838 } 839 840 if (has_package_id_query) 841 prod_info_addr++; 842 843 if (has_build_id_query) { 844 ret = rmi_read_block(hdev, prod_info_addr, info, 3); 845 if (ret) { 846 hid_err(hdev, "Can not read product info.\n"); 847 return ret; 848 } 849 850 data->firmware_id = info[1] << 8 | info[0]; 851 data->firmware_id += info[2] * 65536; 852 } 853 854 ret = rmi_read_block(hdev, data->f01.control_base_addr, info, 855 2); 856 857 if (ret) { 858 hid_err(hdev, "can not read f01 ctrl registers\n"); 859 return ret; 860 } 861 862 data->f01_ctrl0 = info[0]; 863 864 if (!info[1]) { 865 /* 866 * Do to a firmware bug in some touchpads the F01 interrupt 867 * enable control register will be cleared on reset. 868 * This will stop the touchpad from reporting data, so 869 * if F01 CTRL1 is 0 then we need to explicitly enable 870 * interrupts for the functions we want data for. 871 */ 872 data->restore_interrupt_mask = true; 873 874 ret = rmi_write(hdev, data->f01.control_base_addr + 1, 875 &data->interrupt_enable_mask); 876 if (ret) { 877 hid_err(hdev, "can not write to control reg 1: %d.\n", 878 ret); 879 return ret; 880 } 881 } 882 883 return 0; 884 } 885 886 static int rmi_populate_f11(struct hid_device *hdev) 887 { 888 struct rmi_data *data = hid_get_drvdata(hdev); 889 u8 buf[20]; 890 int ret; 891 bool has_query9; 892 bool has_query10 = false; 893 bool has_query11; 894 bool has_query12; 895 bool has_query27; 896 bool has_query28; 897 bool has_query36 = false; 898 bool has_physical_props; 899 bool has_gestures; 900 bool has_rel; 901 bool has_data40 = false; 902 bool has_dribble = false; 903 bool has_palm_detect = false; 904 unsigned x_size, y_size; 905 u16 query_offset; 906 907 if (!data->f11.query_base_addr) { 908 hid_err(hdev, "No 2D sensor found, giving up.\n"); 909 return -ENODEV; 910 } 911 912 /* query 0 contains some useful information */ 913 ret = rmi_read(hdev, data->f11.query_base_addr, buf); 914 if (ret) { 915 hid_err(hdev, "can not get query 0: %d.\n", ret); 916 return ret; 917 } 918 has_query9 = !!(buf[0] & BIT(3)); 919 has_query11 = !!(buf[0] & BIT(4)); 920 has_query12 = !!(buf[0] & BIT(5)); 921 has_query27 = !!(buf[0] & BIT(6)); 922 has_query28 = !!(buf[0] & BIT(7)); 923 924 /* query 1 to get the max number of fingers */ 925 ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf); 926 if (ret) { 927 hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret); 928 return ret; 929 } 930 data->max_fingers = (buf[0] & 0x07) + 1; 931 if (data->max_fingers > 5) 932 data->max_fingers = 10; 933 934 data->f11.report_size = data->max_fingers * 5 + 935 DIV_ROUND_UP(data->max_fingers, 4); 936 937 if (!(buf[0] & BIT(4))) { 938 hid_err(hdev, "No absolute events, giving up.\n"); 939 return -ENODEV; 940 } 941 942 has_rel = !!(buf[0] & BIT(3)); 943 has_gestures = !!(buf[0] & BIT(5)); 944 945 ret = rmi_read(hdev, data->f11.query_base_addr + 5, buf); 946 if (ret) { 947 hid_err(hdev, "can not get absolute data sources: %d.\n", ret); 948 return ret; 949 } 950 951 has_dribble = !!(buf[0] & BIT(4)); 952 953 /* 954 * At least 4 queries are guaranteed to be present in F11 955 * +1 for query 5 which is present since absolute events are 956 * reported and +1 for query 12. 957 */ 958 query_offset = 6; 959 960 if (has_rel) 961 ++query_offset; /* query 6 is present */ 962 963 if (has_gestures) { 964 /* query 8 to find out if query 10 exists */ 965 ret = rmi_read(hdev, 966 data->f11.query_base_addr + query_offset + 1, buf); 967 if (ret) { 968 hid_err(hdev, "can not read gesture information: %d.\n", 969 ret); 970 return ret; 971 } 972 has_palm_detect = !!(buf[0] & BIT(0)); 973 has_query10 = !!(buf[0] & BIT(2)); 974 975 query_offset += 2; /* query 7 and 8 are present */ 976 } 977 978 if (has_query9) 979 ++query_offset; 980 981 if (has_query10) 982 ++query_offset; 983 984 if (has_query11) 985 ++query_offset; 986 987 /* query 12 to know if the physical properties are reported */ 988 if (has_query12) { 989 ret = rmi_read(hdev, data->f11.query_base_addr 990 + query_offset, buf); 991 if (ret) { 992 hid_err(hdev, "can not get query 12: %d.\n", ret); 993 return ret; 994 } 995 has_physical_props = !!(buf[0] & BIT(5)); 996 997 if (has_physical_props) { 998 query_offset += 1; 999 ret = rmi_read_block(hdev, 1000 data->f11.query_base_addr 1001 + query_offset, buf, 4); 1002 if (ret) { 1003 hid_err(hdev, "can not read query 15-18: %d.\n", 1004 ret); 1005 return ret; 1006 } 1007 1008 x_size = buf[0] | (buf[1] << 8); 1009 y_size = buf[2] | (buf[3] << 8); 1010 1011 data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10); 1012 data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10); 1013 1014 hid_info(hdev, "%s: size in mm: %d x %d\n", 1015 __func__, data->x_size_mm, data->y_size_mm); 1016 1017 /* 1018 * query 15 - 18 contain the size of the sensor 1019 * and query 19 - 26 contain bezel dimensions 1020 */ 1021 query_offset += 12; 1022 } 1023 } 1024 1025 if (has_query27) 1026 ++query_offset; 1027 1028 if (has_query28) { 1029 ret = rmi_read(hdev, data->f11.query_base_addr 1030 + query_offset, buf); 1031 if (ret) { 1032 hid_err(hdev, "can not get query 28: %d.\n", ret); 1033 return ret; 1034 } 1035 1036 has_query36 = !!(buf[0] & BIT(6)); 1037 } 1038 1039 if (has_query36) { 1040 query_offset += 2; 1041 ret = rmi_read(hdev, data->f11.query_base_addr 1042 + query_offset, buf); 1043 if (ret) { 1044 hid_err(hdev, "can not get query 36: %d.\n", ret); 1045 return ret; 1046 } 1047 1048 has_data40 = !!(buf[0] & BIT(5)); 1049 } 1050 1051 1052 if (has_data40) 1053 data->f11.report_size += data->max_fingers * 2; 1054 1055 ret = rmi_read_block(hdev, data->f11.control_base_addr, 1056 data->f11_ctrl_regs, RMI_F11_CTRL_REG_COUNT); 1057 if (ret) { 1058 hid_err(hdev, "can not read ctrl block of size 11: %d.\n", ret); 1059 return ret; 1060 } 1061 1062 /* data->f11_ctrl_regs now contains valid register data */ 1063 data->read_f11_ctrl_regs = true; 1064 1065 data->max_x = data->f11_ctrl_regs[6] | (data->f11_ctrl_regs[7] << 8); 1066 data->max_y = data->f11_ctrl_regs[8] | (data->f11_ctrl_regs[9] << 8); 1067 1068 if (has_dribble) { 1069 data->f11_ctrl_regs[0] = data->f11_ctrl_regs[0] & ~BIT(6); 1070 ret = rmi_write(hdev, data->f11.control_base_addr, 1071 data->f11_ctrl_regs); 1072 if (ret) { 1073 hid_err(hdev, "can not write to control reg 0: %d.\n", 1074 ret); 1075 return ret; 1076 } 1077 } 1078 1079 if (has_palm_detect) { 1080 data->f11_ctrl_regs[11] = data->f11_ctrl_regs[11] & ~BIT(0); 1081 ret = rmi_write(hdev, data->f11.control_base_addr + 11, 1082 &data->f11_ctrl_regs[11]); 1083 if (ret) { 1084 hid_err(hdev, "can not write to control reg 11: %d.\n", 1085 ret); 1086 return ret; 1087 } 1088 } 1089 1090 return 0; 1091 } 1092 1093 static int rmi_populate_f30(struct hid_device *hdev) 1094 { 1095 struct rmi_data *data = hid_get_drvdata(hdev); 1096 u8 buf[20]; 1097 int ret; 1098 bool has_gpio, has_led; 1099 unsigned bytes_per_ctrl; 1100 u8 ctrl2_addr; 1101 int ctrl2_3_length; 1102 int i; 1103 1104 /* function F30 is for physical buttons */ 1105 if (!data->f30.query_base_addr) { 1106 hid_err(hdev, "No GPIO/LEDs found, giving up.\n"); 1107 return -ENODEV; 1108 } 1109 1110 ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2); 1111 if (ret) { 1112 hid_err(hdev, "can not get F30 query registers: %d.\n", ret); 1113 return ret; 1114 } 1115 1116 has_gpio = !!(buf[0] & BIT(3)); 1117 has_led = !!(buf[0] & BIT(2)); 1118 data->gpio_led_count = buf[1] & 0x1f; 1119 1120 /* retrieve ctrl 2 & 3 registers */ 1121 bytes_per_ctrl = (data->gpio_led_count + 7) / 8; 1122 /* Ctrl0 is present only if both has_gpio and has_led are set*/ 1123 ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0; 1124 /* Ctrl1 is always be present */ 1125 ctrl2_addr += bytes_per_ctrl; 1126 ctrl2_3_length = 2 * bytes_per_ctrl; 1127 1128 data->f30.report_size = bytes_per_ctrl; 1129 1130 ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr, 1131 buf, ctrl2_3_length); 1132 if (ret) { 1133 hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n", 1134 ctrl2_3_length, ret); 1135 return ret; 1136 } 1137 1138 for (i = 0; i < data->gpio_led_count; i++) { 1139 int byte_position = i >> 3; 1140 int bit_position = i & 0x07; 1141 u8 dir_byte = buf[byte_position]; 1142 u8 data_byte = buf[byte_position + bytes_per_ctrl]; 1143 bool dir = (dir_byte >> bit_position) & BIT(0); 1144 bool dat = (data_byte >> bit_position) & BIT(0); 1145 1146 if (dir == 0) { 1147 /* input mode */ 1148 if (dat) { 1149 /* actual buttons have pull up resistor */ 1150 data->button_count++; 1151 set_bit(i, &data->button_mask); 1152 set_bit(i, &data->button_state_mask); 1153 } 1154 } 1155 1156 } 1157 1158 return 0; 1159 } 1160 1161 static int rmi_populate(struct hid_device *hdev) 1162 { 1163 struct rmi_data *data = hid_get_drvdata(hdev); 1164 int ret; 1165 1166 ret = rmi_scan_pdt(hdev); 1167 if (ret) { 1168 hid_err(hdev, "PDT scan failed with code %d.\n", ret); 1169 return ret; 1170 } 1171 1172 ret = rmi_populate_f01(hdev); 1173 if (ret) { 1174 hid_err(hdev, "Error while initializing F01 (%d).\n", ret); 1175 return ret; 1176 } 1177 1178 ret = rmi_populate_f11(hdev); 1179 if (ret) { 1180 hid_err(hdev, "Error while initializing F11 (%d).\n", ret); 1181 return ret; 1182 } 1183 1184 if (!(data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS)) { 1185 ret = rmi_populate_f30(hdev); 1186 if (ret) 1187 hid_warn(hdev, "Error while initializing F30 (%d).\n", ret); 1188 } 1189 1190 return 0; 1191 } 1192 1193 static int rmi_input_configured(struct hid_device *hdev, struct hid_input *hi) 1194 { 1195 struct rmi_data *data = hid_get_drvdata(hdev); 1196 struct input_dev *input = hi->input; 1197 int ret; 1198 int res_x, res_y, i; 1199 1200 data->input = input; 1201 1202 hid_dbg(hdev, "Opening low level driver\n"); 1203 ret = hid_hw_open(hdev); 1204 if (ret) 1205 return ret; 1206 1207 if (!(data->device_flags & RMI_DEVICE)) 1208 return 0; 1209 1210 /* Allow incoming hid reports */ 1211 hid_device_io_start(hdev); 1212 1213 ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS); 1214 if (ret < 0) { 1215 dev_err(&hdev->dev, "failed to set rmi mode\n"); 1216 goto exit; 1217 } 1218 1219 ret = rmi_set_page(hdev, 0); 1220 if (ret < 0) { 1221 dev_err(&hdev->dev, "failed to set page select to 0.\n"); 1222 goto exit; 1223 } 1224 1225 ret = rmi_populate(hdev); 1226 if (ret) 1227 goto exit; 1228 1229 hid_info(hdev, "firmware id: %ld\n", data->firmware_id); 1230 1231 __set_bit(EV_ABS, input->evbit); 1232 input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0); 1233 input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0); 1234 1235 if (data->x_size_mm && data->y_size_mm) { 1236 res_x = (data->max_x - 1) / data->x_size_mm; 1237 res_y = (data->max_y - 1) / data->y_size_mm; 1238 1239 input_abs_set_res(input, ABS_MT_POSITION_X, res_x); 1240 input_abs_set_res(input, ABS_MT_POSITION_Y, res_y); 1241 } 1242 1243 input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0); 1244 input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0); 1245 input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0); 1246 input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0); 1247 1248 ret = input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER); 1249 if (ret < 0) 1250 goto exit; 1251 1252 if (data->button_count) { 1253 __set_bit(EV_KEY, input->evbit); 1254 for (i = 0; i < data->button_count; i++) 1255 __set_bit(BTN_LEFT + i, input->keybit); 1256 1257 if (data->button_count == 1) 1258 __set_bit(INPUT_PROP_BUTTONPAD, input->propbit); 1259 } 1260 1261 set_bit(RMI_STARTED, &data->flags); 1262 1263 exit: 1264 hid_device_io_stop(hdev); 1265 hid_hw_close(hdev); 1266 return ret; 1267 } 1268 1269 static int rmi_input_mapping(struct hid_device *hdev, 1270 struct hid_input *hi, struct hid_field *field, 1271 struct hid_usage *usage, unsigned long **bit, int *max) 1272 { 1273 struct rmi_data *data = hid_get_drvdata(hdev); 1274 1275 /* 1276 * we want to make HID ignore the advertised HID collection 1277 * for RMI deivces 1278 */ 1279 if (data->device_flags & RMI_DEVICE) { 1280 if ((data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) && 1281 ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON)) 1282 return 0; 1283 1284 return -1; 1285 } 1286 1287 return 0; 1288 } 1289 1290 static int rmi_check_valid_report_id(struct hid_device *hdev, unsigned type, 1291 unsigned id, struct hid_report **report) 1292 { 1293 int i; 1294 1295 *report = hdev->report_enum[type].report_id_hash[id]; 1296 if (*report) { 1297 for (i = 0; i < (*report)->maxfield; i++) { 1298 unsigned app = (*report)->field[i]->application; 1299 if ((app & HID_USAGE_PAGE) >= HID_UP_MSVENDOR) 1300 return 1; 1301 } 1302 } 1303 1304 return 0; 1305 } 1306 1307 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id) 1308 { 1309 struct rmi_data *data = NULL; 1310 int ret; 1311 size_t alloc_size; 1312 struct hid_report *input_report; 1313 struct hid_report *output_report; 1314 struct hid_report *feature_report; 1315 1316 data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL); 1317 if (!data) 1318 return -ENOMEM; 1319 1320 INIT_WORK(&data->reset_work, rmi_reset_work); 1321 data->hdev = hdev; 1322 1323 hid_set_drvdata(hdev, data); 1324 1325 hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS; 1326 1327 ret = hid_parse(hdev); 1328 if (ret) { 1329 hid_err(hdev, "parse failed\n"); 1330 return ret; 1331 } 1332 1333 if (id->driver_data) 1334 data->device_flags = id->driver_data; 1335 1336 /* 1337 * Check for the RMI specific report ids. If they are misisng 1338 * simply return and let the events be processed by hid-input 1339 */ 1340 if (!rmi_check_valid_report_id(hdev, HID_FEATURE_REPORT, 1341 RMI_SET_RMI_MODE_REPORT_ID, &feature_report)) { 1342 hid_dbg(hdev, "device does not have set mode feature report\n"); 1343 goto start; 1344 } 1345 1346 if (!rmi_check_valid_report_id(hdev, HID_INPUT_REPORT, 1347 RMI_ATTN_REPORT_ID, &input_report)) { 1348 hid_dbg(hdev, "device does not have attention input report\n"); 1349 goto start; 1350 } 1351 1352 data->input_report_size = hid_report_len(input_report); 1353 1354 if (!rmi_check_valid_report_id(hdev, HID_OUTPUT_REPORT, 1355 RMI_WRITE_REPORT_ID, &output_report)) { 1356 hid_dbg(hdev, 1357 "device does not have rmi write output report\n"); 1358 goto start; 1359 } 1360 1361 data->output_report_size = hid_report_len(output_report); 1362 1363 data->device_flags |= RMI_DEVICE; 1364 alloc_size = data->output_report_size + data->input_report_size; 1365 1366 data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL); 1367 if (!data->writeReport) { 1368 ret = -ENOMEM; 1369 return ret; 1370 } 1371 1372 data->readReport = data->writeReport + data->output_report_size; 1373 1374 init_waitqueue_head(&data->wait); 1375 1376 mutex_init(&data->page_mutex); 1377 1378 start: 1379 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 1380 if (ret) { 1381 hid_err(hdev, "hw start failed\n"); 1382 return ret; 1383 } 1384 1385 if ((data->device_flags & RMI_DEVICE) && 1386 !test_bit(RMI_STARTED, &data->flags)) 1387 /* 1388 * The device maybe in the bootloader if rmi_input_configured 1389 * failed to find F11 in the PDT. Print an error, but don't 1390 * return an error from rmi_probe so that hidraw will be 1391 * accessible from userspace. That way a userspace tool 1392 * can be used to reload working firmware on the touchpad. 1393 */ 1394 hid_err(hdev, "Device failed to be properly configured\n"); 1395 1396 return 0; 1397 } 1398 1399 static void rmi_remove(struct hid_device *hdev) 1400 { 1401 struct rmi_data *hdata = hid_get_drvdata(hdev); 1402 1403 clear_bit(RMI_STARTED, &hdata->flags); 1404 1405 hid_hw_stop(hdev); 1406 } 1407 1408 static const struct hid_device_id rmi_id[] = { 1409 { HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14), 1410 .driver_data = RMI_DEVICE_HAS_PHYS_BUTTONS }, 1411 { HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) }, 1412 { } 1413 }; 1414 MODULE_DEVICE_TABLE(hid, rmi_id); 1415 1416 static struct hid_driver rmi_driver = { 1417 .name = "hid-rmi", 1418 .id_table = rmi_id, 1419 .probe = rmi_probe, 1420 .remove = rmi_remove, 1421 .event = rmi_event, 1422 .raw_event = rmi_raw_event, 1423 .input_mapping = rmi_input_mapping, 1424 .input_configured = rmi_input_configured, 1425 #ifdef CONFIG_PM 1426 .suspend = rmi_suspend, 1427 .resume = rmi_post_resume, 1428 .reset_resume = rmi_post_reset, 1429 #endif 1430 }; 1431 1432 module_hid_driver(rmi_driver); 1433 1434 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>"); 1435 MODULE_DESCRIPTION("RMI HID driver"); 1436 MODULE_LICENSE("GPL"); 1437