xref: /linux/drivers/hid/hid-rmi.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *  Copyright (c) 2013 Andrew Duggan <aduggan@synaptics.com>
3  *  Copyright (c) 2013 Synaptics Incorporated
4  *  Copyright (c) 2014 Benjamin Tissoires <benjamin.tissoires@gmail.com>
5  *  Copyright (c) 2014 Red Hat, Inc
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the Free
9  * Software Foundation; either version 2 of the License, or (at your option)
10  * any later version.
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/hid.h>
15 #include <linux/input.h>
16 #include <linux/input/mt.h>
17 #include <linux/module.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/wait.h>
21 #include <linux/sched.h>
22 #include "hid-ids.h"
23 
24 #define RMI_MOUSE_REPORT_ID		0x01 /* Mouse emulation Report */
25 #define RMI_WRITE_REPORT_ID		0x09 /* Output Report */
26 #define RMI_READ_ADDR_REPORT_ID		0x0a /* Output Report */
27 #define RMI_READ_DATA_REPORT_ID		0x0b /* Input Report */
28 #define RMI_ATTN_REPORT_ID		0x0c /* Input Report */
29 #define RMI_SET_RMI_MODE_REPORT_ID	0x0f /* Feature Report */
30 
31 /* flags */
32 #define RMI_READ_REQUEST_PENDING	0
33 #define RMI_READ_DATA_PENDING		1
34 #define RMI_STARTED			2
35 
36 /* device flags */
37 #define RMI_DEVICE			BIT(0)
38 #define RMI_DEVICE_HAS_PHYS_BUTTONS	BIT(1)
39 
40 enum rmi_mode_type {
41 	RMI_MODE_OFF			= 0,
42 	RMI_MODE_ATTN_REPORTS		= 1,
43 	RMI_MODE_NO_PACKED_ATTN_REPORTS	= 2,
44 };
45 
46 struct rmi_function {
47 	unsigned page;			/* page of the function */
48 	u16 query_base_addr;		/* base address for queries */
49 	u16 command_base_addr;		/* base address for commands */
50 	u16 control_base_addr;		/* base address for controls */
51 	u16 data_base_addr;		/* base address for datas */
52 	unsigned int interrupt_base;	/* cross-function interrupt number
53 					 * (uniq in the device)*/
54 	unsigned int interrupt_count;	/* number of interrupts */
55 	unsigned int report_size;	/* size of a report */
56 	unsigned long irq_mask;		/* mask of the interrupts
57 					 * (to be applied against ATTN IRQ) */
58 };
59 
60 /**
61  * struct rmi_data - stores information for hid communication
62  *
63  * @page_mutex: Locks current page to avoid changing pages in unexpected ways.
64  * @page: Keeps track of the current virtual page
65  *
66  * @wait: Used for waiting for read data
67  *
68  * @writeReport: output buffer when writing RMI registers
69  * @readReport: input buffer when reading RMI registers
70  *
71  * @input_report_size: size of an input report (advertised by HID)
72  * @output_report_size: size of an output report (advertised by HID)
73  *
74  * @flags: flags for the current device (started, reading, etc...)
75  *
76  * @f11: placeholder of internal RMI function F11 description
77  * @f30: placeholder of internal RMI function F30 description
78  *
79  * @max_fingers: maximum finger count reported by the device
80  * @max_x: maximum x value reported by the device
81  * @max_y: maximum y value reported by the device
82  *
83  * @gpio_led_count: count of GPIOs + LEDs reported by F30
84  * @button_count: actual physical buttons count
85  * @button_mask: button mask used to decode GPIO ATTN reports
86  * @button_state_mask: pull state of the buttons
87  *
88  * @input: pointer to the kernel input device
89  *
90  * @reset_work: worker which will be called in case of a mouse report
91  * @hdev: pointer to the struct hid_device
92  */
93 struct rmi_data {
94 	struct mutex page_mutex;
95 	int page;
96 
97 	wait_queue_head_t wait;
98 
99 	u8 *writeReport;
100 	u8 *readReport;
101 
102 	int input_report_size;
103 	int output_report_size;
104 
105 	unsigned long flags;
106 
107 	struct rmi_function f01;
108 	struct rmi_function f11;
109 	struct rmi_function f30;
110 
111 	unsigned int max_fingers;
112 	unsigned int max_x;
113 	unsigned int max_y;
114 	unsigned int x_size_mm;
115 	unsigned int y_size_mm;
116 
117 	unsigned int gpio_led_count;
118 	unsigned int button_count;
119 	unsigned long button_mask;
120 	unsigned long button_state_mask;
121 
122 	struct input_dev *input;
123 
124 	struct work_struct reset_work;
125 	struct hid_device *hdev;
126 
127 	unsigned long device_flags;
128 	unsigned long firmware_id;
129 };
130 
131 #define RMI_PAGE(addr) (((addr) >> 8) & 0xff)
132 
133 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len);
134 
135 /**
136  * rmi_set_page - Set RMI page
137  * @hdev: The pointer to the hid_device struct
138  * @page: The new page address.
139  *
140  * RMI devices have 16-bit addressing, but some of the physical
141  * implementations (like SMBus) only have 8-bit addressing. So RMI implements
142  * a page address at 0xff of every page so we can reliable page addresses
143  * every 256 registers.
144  *
145  * The page_mutex lock must be held when this function is entered.
146  *
147  * Returns zero on success, non-zero on failure.
148  */
149 static int rmi_set_page(struct hid_device *hdev, u8 page)
150 {
151 	struct rmi_data *data = hid_get_drvdata(hdev);
152 	int retval;
153 
154 	data->writeReport[0] = RMI_WRITE_REPORT_ID;
155 	data->writeReport[1] = 1;
156 	data->writeReport[2] = 0xFF;
157 	data->writeReport[4] = page;
158 
159 	retval = rmi_write_report(hdev, data->writeReport,
160 			data->output_report_size);
161 	if (retval != data->output_report_size) {
162 		dev_err(&hdev->dev,
163 			"%s: set page failed: %d.", __func__, retval);
164 		return retval;
165 	}
166 
167 	data->page = page;
168 	return 0;
169 }
170 
171 static int rmi_set_mode(struct hid_device *hdev, u8 mode)
172 {
173 	int ret;
174 	u8 txbuf[2] = {RMI_SET_RMI_MODE_REPORT_ID, mode};
175 
176 	ret = hid_hw_raw_request(hdev, RMI_SET_RMI_MODE_REPORT_ID, txbuf,
177 			sizeof(txbuf), HID_FEATURE_REPORT, HID_REQ_SET_REPORT);
178 	if (ret < 0) {
179 		dev_err(&hdev->dev, "unable to set rmi mode to %d (%d)\n", mode,
180 			ret);
181 		return ret;
182 	}
183 
184 	return 0;
185 }
186 
187 static int rmi_write_report(struct hid_device *hdev, u8 *report, int len)
188 {
189 	int ret;
190 
191 	ret = hid_hw_output_report(hdev, (void *)report, len);
192 	if (ret < 0) {
193 		dev_err(&hdev->dev, "failed to write hid report (%d)\n", ret);
194 		return ret;
195 	}
196 
197 	return ret;
198 }
199 
200 static int rmi_read_block(struct hid_device *hdev, u16 addr, void *buf,
201 		const int len)
202 {
203 	struct rmi_data *data = hid_get_drvdata(hdev);
204 	int ret;
205 	int bytes_read;
206 	int bytes_needed;
207 	int retries;
208 	int read_input_count;
209 
210 	mutex_lock(&data->page_mutex);
211 
212 	if (RMI_PAGE(addr) != data->page) {
213 		ret = rmi_set_page(hdev, RMI_PAGE(addr));
214 		if (ret < 0)
215 			goto exit;
216 	}
217 
218 	for (retries = 5; retries > 0; retries--) {
219 		data->writeReport[0] = RMI_READ_ADDR_REPORT_ID;
220 		data->writeReport[1] = 0; /* old 1 byte read count */
221 		data->writeReport[2] = addr & 0xFF;
222 		data->writeReport[3] = (addr >> 8) & 0xFF;
223 		data->writeReport[4] = len  & 0xFF;
224 		data->writeReport[5] = (len >> 8) & 0xFF;
225 
226 		set_bit(RMI_READ_REQUEST_PENDING, &data->flags);
227 
228 		ret = rmi_write_report(hdev, data->writeReport,
229 						data->output_report_size);
230 		if (ret != data->output_report_size) {
231 			clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
232 			dev_err(&hdev->dev,
233 				"failed to write request output report (%d)\n",
234 				ret);
235 			goto exit;
236 		}
237 
238 		bytes_read = 0;
239 		bytes_needed = len;
240 		while (bytes_read < len) {
241 			if (!wait_event_timeout(data->wait,
242 				test_bit(RMI_READ_DATA_PENDING, &data->flags),
243 					msecs_to_jiffies(1000))) {
244 				hid_warn(hdev, "%s: timeout elapsed\n",
245 					 __func__);
246 				ret = -EAGAIN;
247 				break;
248 			}
249 
250 			read_input_count = data->readReport[1];
251 			memcpy(buf + bytes_read, &data->readReport[2],
252 				read_input_count < bytes_needed ?
253 					read_input_count : bytes_needed);
254 
255 			bytes_read += read_input_count;
256 			bytes_needed -= read_input_count;
257 			clear_bit(RMI_READ_DATA_PENDING, &data->flags);
258 		}
259 
260 		if (ret >= 0) {
261 			ret = 0;
262 			break;
263 		}
264 	}
265 
266 exit:
267 	clear_bit(RMI_READ_REQUEST_PENDING, &data->flags);
268 	mutex_unlock(&data->page_mutex);
269 	return ret;
270 }
271 
272 static inline int rmi_read(struct hid_device *hdev, u16 addr, void *buf)
273 {
274 	return rmi_read_block(hdev, addr, buf, 1);
275 }
276 
277 static int rmi_write_block(struct hid_device *hdev, u16 addr, void *buf,
278 		const int len)
279 {
280 	struct rmi_data *data = hid_get_drvdata(hdev);
281 	int ret;
282 
283 	mutex_lock(&data->page_mutex);
284 
285 	if (RMI_PAGE(addr) != data->page) {
286 		ret = rmi_set_page(hdev, RMI_PAGE(addr));
287 		if (ret < 0)
288 			goto exit;
289 	}
290 
291 	data->writeReport[0] = RMI_WRITE_REPORT_ID;
292 	data->writeReport[1] = len;
293 	data->writeReport[2] = addr & 0xFF;
294 	data->writeReport[3] = (addr >> 8) & 0xFF;
295 	memcpy(&data->writeReport[4], buf, len);
296 
297 	ret = rmi_write_report(hdev, data->writeReport,
298 					data->output_report_size);
299 	if (ret < 0) {
300 		dev_err(&hdev->dev,
301 			"failed to write request output report (%d)\n",
302 			ret);
303 		goto exit;
304 	}
305 	ret = 0;
306 
307 exit:
308 	mutex_unlock(&data->page_mutex);
309 	return ret;
310 }
311 
312 static inline int rmi_write(struct hid_device *hdev, u16 addr, void *buf)
313 {
314 	return rmi_write_block(hdev, addr, buf, 1);
315 }
316 
317 static void rmi_f11_process_touch(struct rmi_data *hdata, int slot,
318 		u8 finger_state, u8 *touch_data)
319 {
320 	int x, y, wx, wy;
321 	int wide, major, minor;
322 	int z;
323 
324 	input_mt_slot(hdata->input, slot);
325 	input_mt_report_slot_state(hdata->input, MT_TOOL_FINGER,
326 			finger_state == 0x01);
327 	if (finger_state == 0x01) {
328 		x = (touch_data[0] << 4) | (touch_data[2] & 0x0F);
329 		y = (touch_data[1] << 4) | (touch_data[2] >> 4);
330 		wx = touch_data[3] & 0x0F;
331 		wy = touch_data[3] >> 4;
332 		wide = (wx > wy);
333 		major = max(wx, wy);
334 		minor = min(wx, wy);
335 		z = touch_data[4];
336 
337 		/* y is inverted */
338 		y = hdata->max_y - y;
339 
340 		input_event(hdata->input, EV_ABS, ABS_MT_POSITION_X, x);
341 		input_event(hdata->input, EV_ABS, ABS_MT_POSITION_Y, y);
342 		input_event(hdata->input, EV_ABS, ABS_MT_ORIENTATION, wide);
343 		input_event(hdata->input, EV_ABS, ABS_MT_PRESSURE, z);
344 		input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MAJOR, major);
345 		input_event(hdata->input, EV_ABS, ABS_MT_TOUCH_MINOR, minor);
346 	}
347 }
348 
349 static void rmi_reset_work(struct work_struct *work)
350 {
351 	struct rmi_data *hdata = container_of(work, struct rmi_data,
352 						reset_work);
353 
354 	/* switch the device to RMI if we receive a generic mouse report */
355 	rmi_set_mode(hdata->hdev, RMI_MODE_ATTN_REPORTS);
356 }
357 
358 static inline int rmi_schedule_reset(struct hid_device *hdev)
359 {
360 	struct rmi_data *hdata = hid_get_drvdata(hdev);
361 	return schedule_work(&hdata->reset_work);
362 }
363 
364 static int rmi_f11_input_event(struct hid_device *hdev, u8 irq, u8 *data,
365 		int size)
366 {
367 	struct rmi_data *hdata = hid_get_drvdata(hdev);
368 	int offset;
369 	int i;
370 
371 	if (!(irq & hdata->f11.irq_mask) || size <= 0)
372 		return 0;
373 
374 	offset = (hdata->max_fingers >> 2) + 1;
375 	for (i = 0; i < hdata->max_fingers; i++) {
376 		int fs_byte_position = i >> 2;
377 		int fs_bit_position = (i & 0x3) << 1;
378 		int finger_state = (data[fs_byte_position] >> fs_bit_position) &
379 					0x03;
380 		int position = offset + 5 * i;
381 
382 		if (position + 5 > size) {
383 			/* partial report, go on with what we received */
384 			printk_once(KERN_WARNING
385 				"%s %s: Detected incomplete finger report. Finger reports may occasionally get dropped on this platform.\n",
386 				 dev_driver_string(&hdev->dev),
387 				 dev_name(&hdev->dev));
388 			hid_dbg(hdev, "Incomplete finger report\n");
389 			break;
390 		}
391 
392 		rmi_f11_process_touch(hdata, i, finger_state, &data[position]);
393 	}
394 	input_mt_sync_frame(hdata->input);
395 	input_sync(hdata->input);
396 	return hdata->f11.report_size;
397 }
398 
399 static int rmi_f30_input_event(struct hid_device *hdev, u8 irq, u8 *data,
400 		int size)
401 {
402 	struct rmi_data *hdata = hid_get_drvdata(hdev);
403 	int i;
404 	int button = 0;
405 	bool value;
406 
407 	if (!(irq & hdata->f30.irq_mask))
408 		return 0;
409 
410 	if (size < (int)hdata->f30.report_size) {
411 		hid_warn(hdev, "Click Button pressed, but the click data is missing\n");
412 		return 0;
413 	}
414 
415 	for (i = 0; i < hdata->gpio_led_count; i++) {
416 		if (test_bit(i, &hdata->button_mask)) {
417 			value = (data[i / 8] >> (i & 0x07)) & BIT(0);
418 			if (test_bit(i, &hdata->button_state_mask))
419 				value = !value;
420 			input_event(hdata->input, EV_KEY, BTN_LEFT + button++,
421 					value);
422 		}
423 	}
424 	return hdata->f30.report_size;
425 }
426 
427 static int rmi_input_event(struct hid_device *hdev, u8 *data, int size)
428 {
429 	struct rmi_data *hdata = hid_get_drvdata(hdev);
430 	unsigned long irq_mask = 0;
431 	unsigned index = 2;
432 
433 	if (!(test_bit(RMI_STARTED, &hdata->flags)))
434 		return 0;
435 
436 	irq_mask |= hdata->f11.irq_mask;
437 	irq_mask |= hdata->f30.irq_mask;
438 
439 	if (data[1] & ~irq_mask)
440 		hid_dbg(hdev, "unknown intr source:%02lx %s:%d\n",
441 			data[1] & ~irq_mask, __FILE__, __LINE__);
442 
443 	if (hdata->f11.interrupt_base < hdata->f30.interrupt_base) {
444 		index += rmi_f11_input_event(hdev, data[1], &data[index],
445 				size - index);
446 		index += rmi_f30_input_event(hdev, data[1], &data[index],
447 				size - index);
448 	} else {
449 		index += rmi_f30_input_event(hdev, data[1], &data[index],
450 				size - index);
451 		index += rmi_f11_input_event(hdev, data[1], &data[index],
452 				size - index);
453 	}
454 
455 	return 1;
456 }
457 
458 static int rmi_read_data_event(struct hid_device *hdev, u8 *data, int size)
459 {
460 	struct rmi_data *hdata = hid_get_drvdata(hdev);
461 
462 	if (!test_bit(RMI_READ_REQUEST_PENDING, &hdata->flags)) {
463 		hid_dbg(hdev, "no read request pending\n");
464 		return 0;
465 	}
466 
467 	memcpy(hdata->readReport, data, size < hdata->input_report_size ?
468 			size : hdata->input_report_size);
469 	set_bit(RMI_READ_DATA_PENDING, &hdata->flags);
470 	wake_up(&hdata->wait);
471 
472 	return 1;
473 }
474 
475 static int rmi_check_sanity(struct hid_device *hdev, u8 *data, int size)
476 {
477 	int valid_size = size;
478 	/*
479 	 * On the Dell XPS 13 9333, the bus sometimes get confused and fills
480 	 * the report with a sentinel value "ff". Synaptics told us that such
481 	 * behavior does not comes from the touchpad itself, so we filter out
482 	 * such reports here.
483 	 */
484 
485 	while ((data[valid_size - 1] == 0xff) && valid_size > 0)
486 		valid_size--;
487 
488 	return valid_size;
489 }
490 
491 static int rmi_raw_event(struct hid_device *hdev,
492 		struct hid_report *report, u8 *data, int size)
493 {
494 	size = rmi_check_sanity(hdev, data, size);
495 	if (size < 2)
496 		return 0;
497 
498 	switch (data[0]) {
499 	case RMI_READ_DATA_REPORT_ID:
500 		return rmi_read_data_event(hdev, data, size);
501 	case RMI_ATTN_REPORT_ID:
502 		return rmi_input_event(hdev, data, size);
503 	default:
504 		return 1;
505 	}
506 
507 	return 0;
508 }
509 
510 static int rmi_event(struct hid_device *hdev, struct hid_field *field,
511 			struct hid_usage *usage, __s32 value)
512 {
513 	struct rmi_data *data = hid_get_drvdata(hdev);
514 
515 	if ((data->device_flags & RMI_DEVICE) &&
516 	    (field->application == HID_GD_POINTER ||
517 	    field->application == HID_GD_MOUSE)) {
518 		if (data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) {
519 			if ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON)
520 				return 0;
521 
522 			if ((usage->hid == HID_GD_X || usage->hid == HID_GD_Y)
523 			    && !value)
524 				return 1;
525 		}
526 
527 		rmi_schedule_reset(hdev);
528 		return 1;
529 	}
530 
531 	return 0;
532 }
533 
534 #ifdef CONFIG_PM
535 static int rmi_post_reset(struct hid_device *hdev)
536 {
537 	return rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
538 }
539 
540 static int rmi_post_resume(struct hid_device *hdev)
541 {
542 	return rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
543 }
544 #endif /* CONFIG_PM */
545 
546 #define RMI4_MAX_PAGE 0xff
547 #define RMI4_PAGE_SIZE 0x0100
548 
549 #define PDT_START_SCAN_LOCATION 0x00e9
550 #define PDT_END_SCAN_LOCATION	0x0005
551 #define RMI4_END_OF_PDT(id) ((id) == 0x00 || (id) == 0xff)
552 
553 struct pdt_entry {
554 	u8 query_base_addr:8;
555 	u8 command_base_addr:8;
556 	u8 control_base_addr:8;
557 	u8 data_base_addr:8;
558 	u8 interrupt_source_count:3;
559 	u8 bits3and4:2;
560 	u8 function_version:2;
561 	u8 bit7:1;
562 	u8 function_number:8;
563 } __attribute__((__packed__));
564 
565 static inline unsigned long rmi_gen_mask(unsigned irq_base, unsigned irq_count)
566 {
567 	return GENMASK(irq_count + irq_base - 1, irq_base);
568 }
569 
570 static void rmi_register_function(struct rmi_data *data,
571 	struct pdt_entry *pdt_entry, int page, unsigned interrupt_count)
572 {
573 	struct rmi_function *f = NULL;
574 	u16 page_base = page << 8;
575 
576 	switch (pdt_entry->function_number) {
577 	case 0x01:
578 		f = &data->f01;
579 		break;
580 	case 0x11:
581 		f = &data->f11;
582 		break;
583 	case 0x30:
584 		f = &data->f30;
585 		break;
586 	}
587 
588 	if (f) {
589 		f->page = page;
590 		f->query_base_addr = page_base | pdt_entry->query_base_addr;
591 		f->command_base_addr = page_base | pdt_entry->command_base_addr;
592 		f->control_base_addr = page_base | pdt_entry->control_base_addr;
593 		f->data_base_addr = page_base | pdt_entry->data_base_addr;
594 		f->interrupt_base = interrupt_count;
595 		f->interrupt_count = pdt_entry->interrupt_source_count;
596 		f->irq_mask = rmi_gen_mask(f->interrupt_base,
597 						f->interrupt_count);
598 	}
599 }
600 
601 static int rmi_scan_pdt(struct hid_device *hdev)
602 {
603 	struct rmi_data *data = hid_get_drvdata(hdev);
604 	struct pdt_entry entry;
605 	int page;
606 	bool page_has_function;
607 	int i;
608 	int retval;
609 	int interrupt = 0;
610 	u16 page_start, pdt_start , pdt_end;
611 
612 	hid_info(hdev, "Scanning PDT...\n");
613 
614 	for (page = 0; (page <= RMI4_MAX_PAGE); page++) {
615 		page_start = RMI4_PAGE_SIZE * page;
616 		pdt_start = page_start + PDT_START_SCAN_LOCATION;
617 		pdt_end = page_start + PDT_END_SCAN_LOCATION;
618 
619 		page_has_function = false;
620 		for (i = pdt_start; i >= pdt_end; i -= sizeof(entry)) {
621 			retval = rmi_read_block(hdev, i, &entry, sizeof(entry));
622 			if (retval) {
623 				hid_err(hdev,
624 					"Read of PDT entry at %#06x failed.\n",
625 					i);
626 				goto error_exit;
627 			}
628 
629 			if (RMI4_END_OF_PDT(entry.function_number))
630 				break;
631 
632 			page_has_function = true;
633 
634 			hid_info(hdev, "Found F%02X on page %#04x\n",
635 					entry.function_number, page);
636 
637 			rmi_register_function(data, &entry, page, interrupt);
638 			interrupt += entry.interrupt_source_count;
639 		}
640 
641 		if (!page_has_function)
642 			break;
643 	}
644 
645 	hid_info(hdev, "%s: Done with PDT scan.\n", __func__);
646 	retval = 0;
647 
648 error_exit:
649 	return retval;
650 }
651 
652 #define RMI_DEVICE_F01_BASIC_QUERY_LEN	11
653 
654 static int rmi_populate_f01(struct hid_device *hdev)
655 {
656 	struct rmi_data *data = hid_get_drvdata(hdev);
657 	u8 basic_queries[RMI_DEVICE_F01_BASIC_QUERY_LEN];
658 	u8 info[3];
659 	int ret;
660 	bool has_query42;
661 	bool has_lts;
662 	bool has_sensor_id;
663 	bool has_ds4_queries = false;
664 	bool has_build_id_query = false;
665 	bool has_package_id_query = false;
666 	u16 query_offset = data->f01.query_base_addr;
667 	u16 prod_info_addr;
668 	u8 ds4_query_len;
669 
670 	ret = rmi_read_block(hdev, query_offset, basic_queries,
671 				RMI_DEVICE_F01_BASIC_QUERY_LEN);
672 	if (ret) {
673 		hid_err(hdev, "Can not read basic queries from Function 0x1.\n");
674 		return ret;
675 	}
676 
677 	has_lts = !!(basic_queries[0] & BIT(2));
678 	has_sensor_id = !!(basic_queries[1] & BIT(3));
679 	has_query42 = !!(basic_queries[1] & BIT(7));
680 
681 	query_offset += 11;
682 	prod_info_addr = query_offset + 6;
683 	query_offset += 10;
684 
685 	if (has_lts)
686 		query_offset += 20;
687 
688 	if (has_sensor_id)
689 		query_offset++;
690 
691 	if (has_query42) {
692 		ret = rmi_read(hdev, query_offset, info);
693 		if (ret) {
694 			hid_err(hdev, "Can not read query42.\n");
695 			return ret;
696 		}
697 		has_ds4_queries = !!(info[0] & BIT(0));
698 		query_offset++;
699 	}
700 
701 	if (has_ds4_queries) {
702 		ret = rmi_read(hdev, query_offset, &ds4_query_len);
703 		if (ret) {
704 			hid_err(hdev, "Can not read DS4 Query length.\n");
705 			return ret;
706 		}
707 		query_offset++;
708 
709 		if (ds4_query_len > 0) {
710 			ret = rmi_read(hdev, query_offset, info);
711 			if (ret) {
712 				hid_err(hdev, "Can not read DS4 query.\n");
713 				return ret;
714 			}
715 
716 			has_package_id_query = !!(info[0] & BIT(0));
717 			has_build_id_query = !!(info[0] & BIT(1));
718 		}
719 	}
720 
721 	if (has_package_id_query)
722 		prod_info_addr++;
723 
724 	if (has_build_id_query) {
725 		ret = rmi_read_block(hdev, prod_info_addr, info, 3);
726 		if (ret) {
727 			hid_err(hdev, "Can not read product info.\n");
728 			return ret;
729 		}
730 
731 		data->firmware_id = info[1] << 8 | info[0];
732 		data->firmware_id += info[2] * 65536;
733 	}
734 
735 	return 0;
736 }
737 
738 static int rmi_populate_f11(struct hid_device *hdev)
739 {
740 	struct rmi_data *data = hid_get_drvdata(hdev);
741 	u8 buf[20];
742 	int ret;
743 	bool has_query9;
744 	bool has_query10 = false;
745 	bool has_query11;
746 	bool has_query12;
747 	bool has_query27;
748 	bool has_query28;
749 	bool has_query36 = false;
750 	bool has_physical_props;
751 	bool has_gestures;
752 	bool has_rel;
753 	bool has_data40 = false;
754 	bool has_dribble = false;
755 	bool has_palm_detect = false;
756 	unsigned x_size, y_size;
757 	u16 query_offset;
758 
759 	if (!data->f11.query_base_addr) {
760 		hid_err(hdev, "No 2D sensor found, giving up.\n");
761 		return -ENODEV;
762 	}
763 
764 	/* query 0 contains some useful information */
765 	ret = rmi_read(hdev, data->f11.query_base_addr, buf);
766 	if (ret) {
767 		hid_err(hdev, "can not get query 0: %d.\n", ret);
768 		return ret;
769 	}
770 	has_query9 = !!(buf[0] & BIT(3));
771 	has_query11 = !!(buf[0] & BIT(4));
772 	has_query12 = !!(buf[0] & BIT(5));
773 	has_query27 = !!(buf[0] & BIT(6));
774 	has_query28 = !!(buf[0] & BIT(7));
775 
776 	/* query 1 to get the max number of fingers */
777 	ret = rmi_read(hdev, data->f11.query_base_addr + 1, buf);
778 	if (ret) {
779 		hid_err(hdev, "can not get NumberOfFingers: %d.\n", ret);
780 		return ret;
781 	}
782 	data->max_fingers = (buf[0] & 0x07) + 1;
783 	if (data->max_fingers > 5)
784 		data->max_fingers = 10;
785 
786 	data->f11.report_size = data->max_fingers * 5 +
787 				DIV_ROUND_UP(data->max_fingers, 4);
788 
789 	if (!(buf[0] & BIT(4))) {
790 		hid_err(hdev, "No absolute events, giving up.\n");
791 		return -ENODEV;
792 	}
793 
794 	has_rel = !!(buf[0] & BIT(3));
795 	has_gestures = !!(buf[0] & BIT(5));
796 
797 	ret = rmi_read(hdev, data->f11.query_base_addr + 5, buf);
798 	if (ret) {
799 		hid_err(hdev, "can not get absolute data sources: %d.\n", ret);
800 		return ret;
801 	}
802 
803 	has_dribble = !!(buf[0] & BIT(4));
804 
805 	/*
806 	 * At least 4 queries are guaranteed to be present in F11
807 	 * +1 for query 5 which is present since absolute events are
808 	 * reported and +1 for query 12.
809 	 */
810 	query_offset = 6;
811 
812 	if (has_rel)
813 		++query_offset; /* query 6 is present */
814 
815 	if (has_gestures) {
816 		/* query 8 to find out if query 10 exists */
817 		ret = rmi_read(hdev,
818 			data->f11.query_base_addr + query_offset + 1, buf);
819 		if (ret) {
820 			hid_err(hdev, "can not read gesture information: %d.\n",
821 				ret);
822 			return ret;
823 		}
824 		has_palm_detect = !!(buf[0] & BIT(0));
825 		has_query10 = !!(buf[0] & BIT(2));
826 
827 		query_offset += 2; /* query 7 and 8 are present */
828 	}
829 
830 	if (has_query9)
831 		++query_offset;
832 
833 	if (has_query10)
834 		++query_offset;
835 
836 	if (has_query11)
837 		++query_offset;
838 
839 	/* query 12 to know if the physical properties are reported */
840 	if (has_query12) {
841 		ret = rmi_read(hdev, data->f11.query_base_addr
842 				+ query_offset, buf);
843 		if (ret) {
844 			hid_err(hdev, "can not get query 12: %d.\n", ret);
845 			return ret;
846 		}
847 		has_physical_props = !!(buf[0] & BIT(5));
848 
849 		if (has_physical_props) {
850 			query_offset += 1;
851 			ret = rmi_read_block(hdev,
852 					data->f11.query_base_addr
853 						+ query_offset, buf, 4);
854 			if (ret) {
855 				hid_err(hdev, "can not read query 15-18: %d.\n",
856 					ret);
857 				return ret;
858 			}
859 
860 			x_size = buf[0] | (buf[1] << 8);
861 			y_size = buf[2] | (buf[3] << 8);
862 
863 			data->x_size_mm = DIV_ROUND_CLOSEST(x_size, 10);
864 			data->y_size_mm = DIV_ROUND_CLOSEST(y_size, 10);
865 
866 			hid_info(hdev, "%s: size in mm: %d x %d\n",
867 				 __func__, data->x_size_mm, data->y_size_mm);
868 
869 			/*
870 			 * query 15 - 18 contain the size of the sensor
871 			 * and query 19 - 26 contain bezel dimensions
872 			 */
873 			query_offset += 12;
874 		}
875 	}
876 
877 	if (has_query27)
878 		++query_offset;
879 
880 	if (has_query28) {
881 		ret = rmi_read(hdev, data->f11.query_base_addr
882 				+ query_offset, buf);
883 		if (ret) {
884 			hid_err(hdev, "can not get query 28: %d.\n", ret);
885 			return ret;
886 		}
887 
888 		has_query36 = !!(buf[0] & BIT(6));
889 	}
890 
891 	if (has_query36) {
892 		query_offset += 2;
893 		ret = rmi_read(hdev, data->f11.query_base_addr
894 				+ query_offset, buf);
895 		if (ret) {
896 			hid_err(hdev, "can not get query 36: %d.\n", ret);
897 			return ret;
898 		}
899 
900 		has_data40 = !!(buf[0] & BIT(5));
901 	}
902 
903 
904 	if (has_data40)
905 		data->f11.report_size += data->max_fingers * 2;
906 
907 	/*
908 	 * retrieve the ctrl registers
909 	 * the ctrl register has a size of 20 but a fw bug split it into 16 + 4,
910 	 * and there is no way to know if the first 20 bytes are here or not.
911 	 * We use only the first 12 bytes, so get only them.
912 	 */
913 	ret = rmi_read_block(hdev, data->f11.control_base_addr, buf, 12);
914 	if (ret) {
915 		hid_err(hdev, "can not read ctrl block of size 11: %d.\n", ret);
916 		return ret;
917 	}
918 
919 	data->max_x = buf[6] | (buf[7] << 8);
920 	data->max_y = buf[8] | (buf[9] << 8);
921 
922 	if (has_dribble) {
923 		buf[0] = buf[0] & ~BIT(6);
924 		ret = rmi_write(hdev, data->f11.control_base_addr, buf);
925 		if (ret) {
926 			hid_err(hdev, "can not write to control reg 0: %d.\n",
927 				ret);
928 			return ret;
929 		}
930 	}
931 
932 	if (has_palm_detect) {
933 		buf[11] = buf[11] & ~BIT(0);
934 		ret = rmi_write(hdev, data->f11.control_base_addr + 11,
935 				&buf[11]);
936 		if (ret) {
937 			hid_err(hdev, "can not write to control reg 11: %d.\n",
938 				ret);
939 			return ret;
940 		}
941 	}
942 
943 	return 0;
944 }
945 
946 static int rmi_populate_f30(struct hid_device *hdev)
947 {
948 	struct rmi_data *data = hid_get_drvdata(hdev);
949 	u8 buf[20];
950 	int ret;
951 	bool has_gpio, has_led;
952 	unsigned bytes_per_ctrl;
953 	u8 ctrl2_addr;
954 	int ctrl2_3_length;
955 	int i;
956 
957 	/* function F30 is for physical buttons */
958 	if (!data->f30.query_base_addr) {
959 		hid_err(hdev, "No GPIO/LEDs found, giving up.\n");
960 		return -ENODEV;
961 	}
962 
963 	ret = rmi_read_block(hdev, data->f30.query_base_addr, buf, 2);
964 	if (ret) {
965 		hid_err(hdev, "can not get F30 query registers: %d.\n", ret);
966 		return ret;
967 	}
968 
969 	has_gpio = !!(buf[0] & BIT(3));
970 	has_led = !!(buf[0] & BIT(2));
971 	data->gpio_led_count = buf[1] & 0x1f;
972 
973 	/* retrieve ctrl 2 & 3 registers */
974 	bytes_per_ctrl = (data->gpio_led_count + 7) / 8;
975 	/* Ctrl0 is present only if both has_gpio and has_led are set*/
976 	ctrl2_addr = (has_gpio && has_led) ? bytes_per_ctrl : 0;
977 	/* Ctrl1 is always be present */
978 	ctrl2_addr += bytes_per_ctrl;
979 	ctrl2_3_length = 2 * bytes_per_ctrl;
980 
981 	data->f30.report_size = bytes_per_ctrl;
982 
983 	ret = rmi_read_block(hdev, data->f30.control_base_addr + ctrl2_addr,
984 				buf, ctrl2_3_length);
985 	if (ret) {
986 		hid_err(hdev, "can not read ctrl 2&3 block of size %d: %d.\n",
987 			ctrl2_3_length, ret);
988 		return ret;
989 	}
990 
991 	for (i = 0; i < data->gpio_led_count; i++) {
992 		int byte_position = i >> 3;
993 		int bit_position = i & 0x07;
994 		u8 dir_byte = buf[byte_position];
995 		u8 data_byte = buf[byte_position + bytes_per_ctrl];
996 		bool dir = (dir_byte >> bit_position) & BIT(0);
997 		bool dat = (data_byte >> bit_position) & BIT(0);
998 
999 		if (dir == 0) {
1000 			/* input mode */
1001 			if (dat) {
1002 				/* actual buttons have pull up resistor */
1003 				data->button_count++;
1004 				set_bit(i, &data->button_mask);
1005 				set_bit(i, &data->button_state_mask);
1006 			}
1007 		}
1008 
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int rmi_populate(struct hid_device *hdev)
1015 {
1016 	struct rmi_data *data = hid_get_drvdata(hdev);
1017 	int ret;
1018 
1019 	ret = rmi_scan_pdt(hdev);
1020 	if (ret) {
1021 		hid_err(hdev, "PDT scan failed with code %d.\n", ret);
1022 		return ret;
1023 	}
1024 
1025 	ret = rmi_populate_f01(hdev);
1026 	if (ret) {
1027 		hid_err(hdev, "Error while initializing F01 (%d).\n", ret);
1028 		return ret;
1029 	}
1030 
1031 	ret = rmi_populate_f11(hdev);
1032 	if (ret) {
1033 		hid_err(hdev, "Error while initializing F11 (%d).\n", ret);
1034 		return ret;
1035 	}
1036 
1037 	if (!(data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS)) {
1038 		ret = rmi_populate_f30(hdev);
1039 		if (ret)
1040 			hid_warn(hdev, "Error while initializing F30 (%d).\n", ret);
1041 	}
1042 
1043 	return 0;
1044 }
1045 
1046 static void rmi_input_configured(struct hid_device *hdev, struct hid_input *hi)
1047 {
1048 	struct rmi_data *data = hid_get_drvdata(hdev);
1049 	struct input_dev *input = hi->input;
1050 	int ret;
1051 	int res_x, res_y, i;
1052 
1053 	data->input = input;
1054 
1055 	hid_dbg(hdev, "Opening low level driver\n");
1056 	ret = hid_hw_open(hdev);
1057 	if (ret)
1058 		return;
1059 
1060 	if (!(data->device_flags & RMI_DEVICE))
1061 		return;
1062 
1063 	/* Allow incoming hid reports */
1064 	hid_device_io_start(hdev);
1065 
1066 	ret = rmi_set_mode(hdev, RMI_MODE_ATTN_REPORTS);
1067 	if (ret < 0) {
1068 		dev_err(&hdev->dev, "failed to set rmi mode\n");
1069 		goto exit;
1070 	}
1071 
1072 	ret = rmi_set_page(hdev, 0);
1073 	if (ret < 0) {
1074 		dev_err(&hdev->dev, "failed to set page select to 0.\n");
1075 		goto exit;
1076 	}
1077 
1078 	ret = rmi_populate(hdev);
1079 	if (ret)
1080 		goto exit;
1081 
1082 	hid_info(hdev, "firmware id: %ld\n", data->firmware_id);
1083 
1084 	__set_bit(EV_ABS, input->evbit);
1085 	input_set_abs_params(input, ABS_MT_POSITION_X, 1, data->max_x, 0, 0);
1086 	input_set_abs_params(input, ABS_MT_POSITION_Y, 1, data->max_y, 0, 0);
1087 
1088 	if (data->x_size_mm && data->y_size_mm) {
1089 		res_x = (data->max_x - 1) / data->x_size_mm;
1090 		res_y = (data->max_y - 1) / data->y_size_mm;
1091 
1092 		input_abs_set_res(input, ABS_MT_POSITION_X, res_x);
1093 		input_abs_set_res(input, ABS_MT_POSITION_Y, res_y);
1094 	}
1095 
1096 	input_set_abs_params(input, ABS_MT_ORIENTATION, 0, 1, 0, 0);
1097 	input_set_abs_params(input, ABS_MT_PRESSURE, 0, 0xff, 0, 0);
1098 	input_set_abs_params(input, ABS_MT_TOUCH_MAJOR, 0, 0x0f, 0, 0);
1099 	input_set_abs_params(input, ABS_MT_TOUCH_MINOR, 0, 0x0f, 0, 0);
1100 
1101 	input_mt_init_slots(input, data->max_fingers, INPUT_MT_POINTER);
1102 
1103 	if (data->button_count) {
1104 		__set_bit(EV_KEY, input->evbit);
1105 		for (i = 0; i < data->button_count; i++)
1106 			__set_bit(BTN_LEFT + i, input->keybit);
1107 
1108 		if (data->button_count == 1)
1109 			__set_bit(INPUT_PROP_BUTTONPAD, input->propbit);
1110 	}
1111 
1112 	set_bit(RMI_STARTED, &data->flags);
1113 
1114 exit:
1115 	hid_device_io_stop(hdev);
1116 	hid_hw_close(hdev);
1117 }
1118 
1119 static int rmi_input_mapping(struct hid_device *hdev,
1120 		struct hid_input *hi, struct hid_field *field,
1121 		struct hid_usage *usage, unsigned long **bit, int *max)
1122 {
1123 	struct rmi_data *data = hid_get_drvdata(hdev);
1124 
1125 	/*
1126 	 * we want to make HID ignore the advertised HID collection
1127 	 * for RMI deivces
1128 	 */
1129 	if (data->device_flags & RMI_DEVICE) {
1130 		if ((data->device_flags & RMI_DEVICE_HAS_PHYS_BUTTONS) &&
1131 		    ((usage->hid & HID_USAGE_PAGE) == HID_UP_BUTTON))
1132 			return 0;
1133 
1134 		return -1;
1135 	}
1136 
1137 	return 0;
1138 }
1139 
1140 static int rmi_check_valid_report_id(struct hid_device *hdev, unsigned type,
1141 		unsigned id, struct hid_report **report)
1142 {
1143 	int i;
1144 
1145 	*report = hdev->report_enum[type].report_id_hash[id];
1146 	if (*report) {
1147 		for (i = 0; i < (*report)->maxfield; i++) {
1148 			unsigned app = (*report)->field[i]->application;
1149 			if ((app & HID_USAGE_PAGE) >= HID_UP_MSVENDOR)
1150 				return 1;
1151 		}
1152 	}
1153 
1154 	return 0;
1155 }
1156 
1157 static int rmi_probe(struct hid_device *hdev, const struct hid_device_id *id)
1158 {
1159 	struct rmi_data *data = NULL;
1160 	int ret;
1161 	size_t alloc_size;
1162 	struct hid_report *input_report;
1163 	struct hid_report *output_report;
1164 	struct hid_report *feature_report;
1165 
1166 	data = devm_kzalloc(&hdev->dev, sizeof(struct rmi_data), GFP_KERNEL);
1167 	if (!data)
1168 		return -ENOMEM;
1169 
1170 	INIT_WORK(&data->reset_work, rmi_reset_work);
1171 	data->hdev = hdev;
1172 
1173 	hid_set_drvdata(hdev, data);
1174 
1175 	hdev->quirks |= HID_QUIRK_NO_INIT_REPORTS;
1176 
1177 	ret = hid_parse(hdev);
1178 	if (ret) {
1179 		hid_err(hdev, "parse failed\n");
1180 		return ret;
1181 	}
1182 
1183 	if (id->driver_data)
1184 		data->device_flags = id->driver_data;
1185 
1186 	/*
1187 	 * Check for the RMI specific report ids. If they are misisng
1188 	 * simply return and let the events be processed by hid-input
1189 	 */
1190 	if (!rmi_check_valid_report_id(hdev, HID_FEATURE_REPORT,
1191 	    RMI_SET_RMI_MODE_REPORT_ID, &feature_report)) {
1192 		hid_dbg(hdev, "device does not have set mode feature report\n");
1193 		goto start;
1194 	}
1195 
1196 	if (!rmi_check_valid_report_id(hdev, HID_INPUT_REPORT,
1197 	    RMI_ATTN_REPORT_ID, &input_report)) {
1198 		hid_dbg(hdev, "device does not have attention input report\n");
1199 		goto start;
1200 	}
1201 
1202 	data->input_report_size = hid_report_len(input_report);
1203 
1204 	if (!rmi_check_valid_report_id(hdev, HID_OUTPUT_REPORT,
1205 	    RMI_WRITE_REPORT_ID, &output_report)) {
1206 		hid_dbg(hdev,
1207 			"device does not have rmi write output report\n");
1208 		goto start;
1209 	}
1210 
1211 	data->output_report_size = hid_report_len(output_report);
1212 
1213 	data->device_flags |= RMI_DEVICE;
1214 	alloc_size = data->output_report_size + data->input_report_size;
1215 
1216 	data->writeReport = devm_kzalloc(&hdev->dev, alloc_size, GFP_KERNEL);
1217 	if (!data->writeReport) {
1218 		ret = -ENOMEM;
1219 		return ret;
1220 	}
1221 
1222 	data->readReport = data->writeReport + data->output_report_size;
1223 
1224 	init_waitqueue_head(&data->wait);
1225 
1226 	mutex_init(&data->page_mutex);
1227 
1228 start:
1229 	ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
1230 	if (ret) {
1231 		hid_err(hdev, "hw start failed\n");
1232 		return ret;
1233 	}
1234 
1235 	if ((data->device_flags & RMI_DEVICE) &&
1236 	    !test_bit(RMI_STARTED, &data->flags))
1237 		/*
1238 		 * The device maybe in the bootloader if rmi_input_configured
1239 		 * failed to find F11 in the PDT. Print an error, but don't
1240 		 * return an error from rmi_probe so that hidraw will be
1241 		 * accessible from userspace. That way a userspace tool
1242 		 * can be used to reload working firmware on the touchpad.
1243 		 */
1244 		hid_err(hdev, "Device failed to be properly configured\n");
1245 
1246 	return 0;
1247 }
1248 
1249 static void rmi_remove(struct hid_device *hdev)
1250 {
1251 	struct rmi_data *hdata = hid_get_drvdata(hdev);
1252 
1253 	clear_bit(RMI_STARTED, &hdata->flags);
1254 
1255 	hid_hw_stop(hdev);
1256 }
1257 
1258 static const struct hid_device_id rmi_id[] = {
1259 	{ HID_USB_DEVICE(USB_VENDOR_ID_RAZER, USB_DEVICE_ID_RAZER_BLADE_14),
1260 		.driver_data = RMI_DEVICE_HAS_PHYS_BUTTONS },
1261 	{ HID_DEVICE(HID_BUS_ANY, HID_GROUP_RMI, HID_ANY_ID, HID_ANY_ID) },
1262 	{ }
1263 };
1264 MODULE_DEVICE_TABLE(hid, rmi_id);
1265 
1266 static struct hid_driver rmi_driver = {
1267 	.name = "hid-rmi",
1268 	.id_table		= rmi_id,
1269 	.probe			= rmi_probe,
1270 	.remove			= rmi_remove,
1271 	.event			= rmi_event,
1272 	.raw_event		= rmi_raw_event,
1273 	.input_mapping		= rmi_input_mapping,
1274 	.input_configured	= rmi_input_configured,
1275 #ifdef CONFIG_PM
1276 	.resume			= rmi_post_resume,
1277 	.reset_resume		= rmi_post_reset,
1278 #endif
1279 };
1280 
1281 module_hid_driver(rmi_driver);
1282 
1283 MODULE_AUTHOR("Andrew Duggan <aduggan@synaptics.com>");
1284 MODULE_DESCRIPTION("RMI HID driver");
1285 MODULE_LICENSE("GPL");
1286