xref: /linux/drivers/hid/hid-playstation.c (revision f2527d8f566a45fa00ee5abd04d1c9476d4d704f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID driver for Sony DualSense(TM) controller.
4  *
5  *  Copyright (c) 2020-2022 Sony Interactive Entertainment
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/crc32.h>
10 #include <linux/device.h>
11 #include <linux/hid.h>
12 #include <linux/idr.h>
13 #include <linux/input/mt.h>
14 #include <linux/leds.h>
15 #include <linux/led-class-multicolor.h>
16 #include <linux/module.h>
17 
18 #include <asm/unaligned.h>
19 
20 #include "hid-ids.h"
21 
22 /* List of connected playstation devices. */
23 static DEFINE_MUTEX(ps_devices_lock);
24 static LIST_HEAD(ps_devices_list);
25 
26 static DEFINE_IDA(ps_player_id_allocator);
27 
28 #define HID_PLAYSTATION_VERSION_PATCH 0x8000
29 
30 /* Base class for playstation devices. */
31 struct ps_device {
32 	struct list_head list;
33 	struct hid_device *hdev;
34 	spinlock_t lock;
35 
36 	uint32_t player_id;
37 
38 	struct power_supply_desc battery_desc;
39 	struct power_supply *battery;
40 	uint8_t battery_capacity;
41 	int battery_status;
42 
43 	const char *input_dev_name; /* Name of primary input device. */
44 	uint8_t mac_address[6]; /* Note: stored in little endian order. */
45 	uint32_t hw_version;
46 	uint32_t fw_version;
47 
48 	int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size);
49 	void (*remove)(struct ps_device *dev);
50 };
51 
52 /* Calibration data for playstation motion sensors. */
53 struct ps_calibration_data {
54 	int abs_code;
55 	short bias;
56 	int sens_numer;
57 	int sens_denom;
58 };
59 
60 struct ps_led_info {
61 	const char *name;
62 	const char *color;
63 	int max_brightness;
64 	enum led_brightness (*brightness_get)(struct led_classdev *cdev);
65 	int (*brightness_set)(struct led_classdev *cdev, enum led_brightness);
66 	int (*blink_set)(struct led_classdev *led, unsigned long *on, unsigned long *off);
67 };
68 
69 /* Seed values for DualShock4 / DualSense CRC32 for different report types. */
70 #define PS_INPUT_CRC32_SEED	0xA1
71 #define PS_OUTPUT_CRC32_SEED	0xA2
72 #define PS_FEATURE_CRC32_SEED	0xA3
73 
74 #define DS_INPUT_REPORT_USB			0x01
75 #define DS_INPUT_REPORT_USB_SIZE		64
76 #define DS_INPUT_REPORT_BT			0x31
77 #define DS_INPUT_REPORT_BT_SIZE			78
78 #define DS_OUTPUT_REPORT_USB			0x02
79 #define DS_OUTPUT_REPORT_USB_SIZE		63
80 #define DS_OUTPUT_REPORT_BT			0x31
81 #define DS_OUTPUT_REPORT_BT_SIZE		78
82 
83 #define DS_FEATURE_REPORT_CALIBRATION		0x05
84 #define DS_FEATURE_REPORT_CALIBRATION_SIZE	41
85 #define DS_FEATURE_REPORT_PAIRING_INFO		0x09
86 #define DS_FEATURE_REPORT_PAIRING_INFO_SIZE	20
87 #define DS_FEATURE_REPORT_FIRMWARE_INFO		0x20
88 #define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE	64
89 
90 /* Button masks for DualSense input report. */
91 #define DS_BUTTONS0_HAT_SWITCH	GENMASK(3, 0)
92 #define DS_BUTTONS0_SQUARE	BIT(4)
93 #define DS_BUTTONS0_CROSS	BIT(5)
94 #define DS_BUTTONS0_CIRCLE	BIT(6)
95 #define DS_BUTTONS0_TRIANGLE	BIT(7)
96 #define DS_BUTTONS1_L1		BIT(0)
97 #define DS_BUTTONS1_R1		BIT(1)
98 #define DS_BUTTONS1_L2		BIT(2)
99 #define DS_BUTTONS1_R2		BIT(3)
100 #define DS_BUTTONS1_CREATE	BIT(4)
101 #define DS_BUTTONS1_OPTIONS	BIT(5)
102 #define DS_BUTTONS1_L3		BIT(6)
103 #define DS_BUTTONS1_R3		BIT(7)
104 #define DS_BUTTONS2_PS_HOME	BIT(0)
105 #define DS_BUTTONS2_TOUCHPAD	BIT(1)
106 #define DS_BUTTONS2_MIC_MUTE	BIT(2)
107 
108 /* Status field of DualSense input report. */
109 #define DS_STATUS_BATTERY_CAPACITY	GENMASK(3, 0)
110 #define DS_STATUS_CHARGING		GENMASK(7, 4)
111 #define DS_STATUS_CHARGING_SHIFT	4
112 
113 /* Feature version from DualSense Firmware Info report. */
114 #define DS_FEATURE_VERSION(major, minor) ((major & 0xff) << 8 | (minor & 0xff))
115 
116 /*
117  * Status of a DualSense touch point contact.
118  * Contact IDs, with highest bit set are 'inactive'
119  * and any associated data is then invalid.
120  */
121 #define DS_TOUCH_POINT_INACTIVE BIT(7)
122 
123  /* Magic value required in tag field of Bluetooth output report. */
124 #define DS_OUTPUT_TAG 0x10
125 /* Flags for DualSense output report. */
126 #define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION BIT(0)
127 #define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT BIT(1)
128 #define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE BIT(0)
129 #define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE BIT(1)
130 #define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE BIT(2)
131 #define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS BIT(3)
132 #define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE BIT(4)
133 #define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE BIT(1)
134 #define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2 BIT(2)
135 #define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE BIT(4)
136 #define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT BIT(1)
137 
138 /* DualSense hardware limits */
139 #define DS_ACC_RES_PER_G	8192
140 #define DS_ACC_RANGE		(4*DS_ACC_RES_PER_G)
141 #define DS_GYRO_RES_PER_DEG_S	1024
142 #define DS_GYRO_RANGE		(2048*DS_GYRO_RES_PER_DEG_S)
143 #define DS_TOUCHPAD_WIDTH	1920
144 #define DS_TOUCHPAD_HEIGHT	1080
145 
146 struct dualsense {
147 	struct ps_device base;
148 	struct input_dev *gamepad;
149 	struct input_dev *sensors;
150 	struct input_dev *touchpad;
151 
152 	/* Update version is used as a feature/capability version. */
153 	uint16_t update_version;
154 
155 	/* Calibration data for accelerometer and gyroscope. */
156 	struct ps_calibration_data accel_calib_data[3];
157 	struct ps_calibration_data gyro_calib_data[3];
158 
159 	/* Timestamp for sensor data */
160 	bool sensor_timestamp_initialized;
161 	uint32_t prev_sensor_timestamp;
162 	uint32_t sensor_timestamp_us;
163 
164 	/* Compatible rumble state */
165 	bool use_vibration_v2;
166 	bool update_rumble;
167 	uint8_t motor_left;
168 	uint8_t motor_right;
169 
170 	/* RGB lightbar */
171 	struct led_classdev_mc lightbar;
172 	bool update_lightbar;
173 	uint8_t lightbar_red;
174 	uint8_t lightbar_green;
175 	uint8_t lightbar_blue;
176 
177 	/* Microphone */
178 	bool update_mic_mute;
179 	bool mic_muted;
180 	bool last_btn_mic_state;
181 
182 	/* Player leds */
183 	bool update_player_leds;
184 	uint8_t player_leds_state;
185 	struct led_classdev player_leds[5];
186 
187 	struct work_struct output_worker;
188 	bool output_worker_initialized;
189 	void *output_report_dmabuf;
190 	uint8_t output_seq; /* Sequence number for output report. */
191 };
192 
193 struct dualsense_touch_point {
194 	uint8_t contact;
195 	uint8_t x_lo;
196 	uint8_t x_hi:4, y_lo:4;
197 	uint8_t y_hi;
198 } __packed;
199 static_assert(sizeof(struct dualsense_touch_point) == 4);
200 
201 /* Main DualSense input report excluding any BT/USB specific headers. */
202 struct dualsense_input_report {
203 	uint8_t x, y;
204 	uint8_t rx, ry;
205 	uint8_t z, rz;
206 	uint8_t seq_number;
207 	uint8_t buttons[4];
208 	uint8_t reserved[4];
209 
210 	/* Motion sensors */
211 	__le16 gyro[3]; /* x, y, z */
212 	__le16 accel[3]; /* x, y, z */
213 	__le32 sensor_timestamp;
214 	uint8_t reserved2;
215 
216 	/* Touchpad */
217 	struct dualsense_touch_point points[2];
218 
219 	uint8_t reserved3[12];
220 	uint8_t status;
221 	uint8_t reserved4[10];
222 } __packed;
223 /* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */
224 static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1);
225 
226 /* Common data between DualSense BT/USB main output report. */
227 struct dualsense_output_report_common {
228 	uint8_t valid_flag0;
229 	uint8_t valid_flag1;
230 
231 	/* For DualShock 4 compatibility mode. */
232 	uint8_t motor_right;
233 	uint8_t motor_left;
234 
235 	/* Audio controls */
236 	uint8_t reserved[4];
237 	uint8_t mute_button_led;
238 
239 	uint8_t power_save_control;
240 	uint8_t reserved2[28];
241 
242 	/* LEDs and lightbar */
243 	uint8_t valid_flag2;
244 	uint8_t reserved3[2];
245 	uint8_t lightbar_setup;
246 	uint8_t led_brightness;
247 	uint8_t player_leds;
248 	uint8_t lightbar_red;
249 	uint8_t lightbar_green;
250 	uint8_t lightbar_blue;
251 } __packed;
252 static_assert(sizeof(struct dualsense_output_report_common) == 47);
253 
254 struct dualsense_output_report_bt {
255 	uint8_t report_id; /* 0x31 */
256 	uint8_t seq_tag;
257 	uint8_t tag;
258 	struct dualsense_output_report_common common;
259 	uint8_t reserved[24];
260 	__le32 crc32;
261 } __packed;
262 static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE);
263 
264 struct dualsense_output_report_usb {
265 	uint8_t report_id; /* 0x02 */
266 	struct dualsense_output_report_common common;
267 	uint8_t reserved[15];
268 } __packed;
269 static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE);
270 
271 /*
272  * The DualSense has a main output report used to control most features. It is
273  * largely the same between Bluetooth and USB except for different headers and CRC.
274  * This structure hide the differences between the two to simplify sending output reports.
275  */
276 struct dualsense_output_report {
277 	uint8_t *data; /* Start of data */
278 	uint8_t len; /* Size of output report */
279 
280 	/* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
281 	struct dualsense_output_report_bt *bt;
282 	/* Points to USB data payload in case for a USB report else NULL. */
283 	struct dualsense_output_report_usb *usb;
284 	/* Points to common section of report, so past any headers. */
285 	struct dualsense_output_report_common *common;
286 };
287 
288 #define DS4_INPUT_REPORT_USB			0x01
289 #define DS4_INPUT_REPORT_USB_SIZE		64
290 #define DS4_INPUT_REPORT_BT			0x11
291 #define DS4_INPUT_REPORT_BT_SIZE		78
292 #define DS4_OUTPUT_REPORT_USB			0x05
293 #define DS4_OUTPUT_REPORT_USB_SIZE		32
294 #define DS4_OUTPUT_REPORT_BT			0x11
295 #define DS4_OUTPUT_REPORT_BT_SIZE		78
296 
297 #define DS4_FEATURE_REPORT_CALIBRATION		0x02
298 #define DS4_FEATURE_REPORT_CALIBRATION_SIZE	37
299 #define DS4_FEATURE_REPORT_CALIBRATION_BT	0x05
300 #define DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE	41
301 #define DS4_FEATURE_REPORT_FIRMWARE_INFO	0xa3
302 #define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE	49
303 #define DS4_FEATURE_REPORT_PAIRING_INFO		0x12
304 #define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE	16
305 
306 /*
307  * Status of a DualShock4 touch point contact.
308  * Contact IDs, with highest bit set are 'inactive'
309  * and any associated data is then invalid.
310  */
311 #define DS4_TOUCH_POINT_INACTIVE BIT(7)
312 
313 /* Status field of DualShock4 input report. */
314 #define DS4_STATUS0_BATTERY_CAPACITY	GENMASK(3, 0)
315 #define DS4_STATUS0_CABLE_STATE		BIT(4)
316 /* Battery status within batery_status field. */
317 #define DS4_BATTERY_STATUS_FULL		11
318 /* Status1 bit2 contains dongle connection state:
319  * 0 = connectd
320  * 1 = disconnected
321  */
322 #define DS4_STATUS1_DONGLE_STATE	BIT(2)
323 
324 /* The lower 6 bits of hw_control of the Bluetooth main output report
325  * control the interval at which Dualshock 4 reports data:
326  * 0x00 - 1ms
327  * 0x01 - 1ms
328  * 0x02 - 2ms
329  * 0x3E - 62ms
330  * 0x3F - disabled
331  */
332 #define DS4_OUTPUT_HWCTL_BT_POLL_MASK	0x3F
333 /* Default to 4ms poll interval, which is same as USB (not adjustable). */
334 #define DS4_BT_DEFAULT_POLL_INTERVAL_MS	4
335 #define DS4_OUTPUT_HWCTL_CRC32		0x40
336 #define DS4_OUTPUT_HWCTL_HID		0x80
337 
338 /* Flags for DualShock4 output report. */
339 #define DS4_OUTPUT_VALID_FLAG0_MOTOR		0x01
340 #define DS4_OUTPUT_VALID_FLAG0_LED		0x02
341 #define DS4_OUTPUT_VALID_FLAG0_LED_BLINK	0x04
342 
343 /* DualShock4 hardware limits */
344 #define DS4_ACC_RES_PER_G	8192
345 #define DS4_ACC_RANGE		(4*DS_ACC_RES_PER_G)
346 #define DS4_GYRO_RES_PER_DEG_S	1024
347 #define DS4_GYRO_RANGE		(2048*DS_GYRO_RES_PER_DEG_S)
348 #define DS4_LIGHTBAR_MAX_BLINK	255 /* 255 centiseconds */
349 #define DS4_TOUCHPAD_WIDTH	1920
350 #define DS4_TOUCHPAD_HEIGHT	942
351 
352 enum dualshock4_dongle_state {
353 	DONGLE_DISCONNECTED,
354 	DONGLE_CALIBRATING,
355 	DONGLE_CONNECTED,
356 	DONGLE_DISABLED
357 };
358 
359 struct dualshock4 {
360 	struct ps_device base;
361 	struct input_dev *gamepad;
362 	struct input_dev *sensors;
363 	struct input_dev *touchpad;
364 
365 	/* Calibration data for accelerometer and gyroscope. */
366 	struct ps_calibration_data accel_calib_data[3];
367 	struct ps_calibration_data gyro_calib_data[3];
368 
369 	/* Only used on dongle to track state transitions. */
370 	enum dualshock4_dongle_state dongle_state;
371 	/* Used during calibration. */
372 	struct work_struct dongle_hotplug_worker;
373 
374 	/* Timestamp for sensor data */
375 	bool sensor_timestamp_initialized;
376 	uint32_t prev_sensor_timestamp;
377 	uint32_t sensor_timestamp_us;
378 
379 	/* Bluetooth poll interval */
380 	bool update_bt_poll_interval;
381 	uint8_t bt_poll_interval;
382 
383 	bool update_rumble;
384 	uint8_t motor_left;
385 	uint8_t motor_right;
386 
387 	/* Lightbar leds */
388 	bool update_lightbar;
389 	bool update_lightbar_blink;
390 	bool lightbar_enabled; /* For use by global LED control. */
391 	uint8_t lightbar_red;
392 	uint8_t lightbar_green;
393 	uint8_t lightbar_blue;
394 	uint8_t lightbar_blink_on; /* In increments of 10ms. */
395 	uint8_t lightbar_blink_off; /* In increments of 10ms. */
396 	struct led_classdev lightbar_leds[4];
397 
398 	struct work_struct output_worker;
399 	bool output_worker_initialized;
400 	void *output_report_dmabuf;
401 };
402 
403 struct dualshock4_touch_point {
404 	uint8_t contact;
405 	uint8_t x_lo;
406 	uint8_t x_hi:4, y_lo:4;
407 	uint8_t y_hi;
408 } __packed;
409 static_assert(sizeof(struct dualshock4_touch_point) == 4);
410 
411 struct dualshock4_touch_report {
412 	uint8_t timestamp;
413 	struct dualshock4_touch_point points[2];
414 } __packed;
415 static_assert(sizeof(struct dualshock4_touch_report) == 9);
416 
417 /* Main DualShock4 input report excluding any BT/USB specific headers. */
418 struct dualshock4_input_report_common {
419 	uint8_t x, y;
420 	uint8_t rx, ry;
421 	uint8_t buttons[3];
422 	uint8_t z, rz;
423 
424 	/* Motion sensors */
425 	__le16 sensor_timestamp;
426 	uint8_t sensor_temperature;
427 	__le16 gyro[3]; /* x, y, z */
428 	__le16 accel[3]; /* x, y, z */
429 	uint8_t reserved2[5];
430 
431 	uint8_t status[2];
432 	uint8_t reserved3;
433 } __packed;
434 static_assert(sizeof(struct dualshock4_input_report_common) == 32);
435 
436 struct dualshock4_input_report_usb {
437 	uint8_t report_id; /* 0x01 */
438 	struct dualshock4_input_report_common common;
439 	uint8_t num_touch_reports;
440 	struct dualshock4_touch_report touch_reports[3];
441 	uint8_t reserved[3];
442 } __packed;
443 static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE);
444 
445 struct dualshock4_input_report_bt {
446 	uint8_t report_id; /* 0x11 */
447 	uint8_t reserved[2];
448 	struct dualshock4_input_report_common common;
449 	uint8_t num_touch_reports;
450 	struct dualshock4_touch_report touch_reports[4]; /* BT has 4 compared to 3 for USB */
451 	uint8_t reserved2[2];
452 	__le32 crc32;
453 } __packed;
454 static_assert(sizeof(struct dualshock4_input_report_bt) == DS4_INPUT_REPORT_BT_SIZE);
455 
456 /* Common data between Bluetooth and USB DualShock4 output reports. */
457 struct dualshock4_output_report_common {
458 	uint8_t valid_flag0;
459 	uint8_t valid_flag1;
460 
461 	uint8_t reserved;
462 
463 	uint8_t motor_right;
464 	uint8_t motor_left;
465 
466 	uint8_t lightbar_red;
467 	uint8_t lightbar_green;
468 	uint8_t lightbar_blue;
469 	uint8_t lightbar_blink_on;
470 	uint8_t lightbar_blink_off;
471 } __packed;
472 
473 struct dualshock4_output_report_usb {
474 	uint8_t report_id; /* 0x5 */
475 	struct dualshock4_output_report_common common;
476 	uint8_t reserved[21];
477 } __packed;
478 static_assert(sizeof(struct dualshock4_output_report_usb) == DS4_OUTPUT_REPORT_USB_SIZE);
479 
480 struct dualshock4_output_report_bt {
481 	uint8_t report_id; /* 0x11 */
482 	uint8_t hw_control;
483 	uint8_t audio_control;
484 	struct dualshock4_output_report_common common;
485 	uint8_t reserved[61];
486 	__le32 crc32;
487 } __packed;
488 static_assert(sizeof(struct dualshock4_output_report_bt) == DS4_OUTPUT_REPORT_BT_SIZE);
489 
490 /*
491  * The DualShock4 has a main output report used to control most features. It is
492  * largely the same between Bluetooth and USB except for different headers and CRC.
493  * This structure hide the differences between the two to simplify sending output reports.
494  */
495 struct dualshock4_output_report {
496 	uint8_t *data; /* Start of data */
497 	uint8_t len; /* Size of output report */
498 
499 	/* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */
500 	struct dualshock4_output_report_bt *bt;
501 	/* Points to USB data payload in case for a USB report else NULL. */
502 	struct dualshock4_output_report_usb *usb;
503 	/* Points to common section of report, so past any headers. */
504 	struct dualshock4_output_report_common *common;
505 };
506 
507 /*
508  * Common gamepad buttons across DualShock 3 / 4 and DualSense.
509  * Note: for device with a touchpad, touchpad button is not included
510  *        as it will be part of the touchpad device.
511  */
512 static const int ps_gamepad_buttons[] = {
513 	BTN_WEST, /* Square */
514 	BTN_NORTH, /* Triangle */
515 	BTN_EAST, /* Circle */
516 	BTN_SOUTH, /* Cross */
517 	BTN_TL, /* L1 */
518 	BTN_TR, /* R1 */
519 	BTN_TL2, /* L2 */
520 	BTN_TR2, /* R2 */
521 	BTN_SELECT, /* Create (PS5) / Share (PS4) */
522 	BTN_START, /* Option */
523 	BTN_THUMBL, /* L3 */
524 	BTN_THUMBR, /* R3 */
525 	BTN_MODE, /* PS Home */
526 };
527 
528 static const struct {int x; int y; } ps_gamepad_hat_mapping[] = {
529 	{0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1},
530 	{0, 0},
531 };
532 
533 static int dualshock4_get_calibration_data(struct dualshock4 *ds4);
534 static inline void dualsense_schedule_work(struct dualsense *ds);
535 static inline void dualshock4_schedule_work(struct dualshock4 *ds4);
536 static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue);
537 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4);
538 
539 /*
540  * Add a new ps_device to ps_devices if it doesn't exist.
541  * Return error on duplicate device, which can happen if the same
542  * device is connected using both Bluetooth and USB.
543  */
544 static int ps_devices_list_add(struct ps_device *dev)
545 {
546 	struct ps_device *entry;
547 
548 	mutex_lock(&ps_devices_lock);
549 	list_for_each_entry(entry, &ps_devices_list, list) {
550 		if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) {
551 			hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n",
552 					dev->mac_address);
553 			mutex_unlock(&ps_devices_lock);
554 			return -EEXIST;
555 		}
556 	}
557 
558 	list_add_tail(&dev->list, &ps_devices_list);
559 	mutex_unlock(&ps_devices_lock);
560 	return 0;
561 }
562 
563 static int ps_devices_list_remove(struct ps_device *dev)
564 {
565 	mutex_lock(&ps_devices_lock);
566 	list_del(&dev->list);
567 	mutex_unlock(&ps_devices_lock);
568 	return 0;
569 }
570 
571 static int ps_device_set_player_id(struct ps_device *dev)
572 {
573 	int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL);
574 
575 	if (ret < 0)
576 		return ret;
577 
578 	dev->player_id = ret;
579 	return 0;
580 }
581 
582 static void ps_device_release_player_id(struct ps_device *dev)
583 {
584 	ida_free(&ps_player_id_allocator, dev->player_id);
585 
586 	dev->player_id = U32_MAX;
587 }
588 
589 static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev, const char *name_suffix)
590 {
591 	struct input_dev *input_dev;
592 
593 	input_dev = devm_input_allocate_device(&hdev->dev);
594 	if (!input_dev)
595 		return ERR_PTR(-ENOMEM);
596 
597 	input_dev->id.bustype = hdev->bus;
598 	input_dev->id.vendor = hdev->vendor;
599 	input_dev->id.product = hdev->product;
600 	input_dev->id.version = hdev->version;
601 	input_dev->uniq = hdev->uniq;
602 
603 	if (name_suffix) {
604 		input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s", hdev->name,
605 				name_suffix);
606 		if (!input_dev->name)
607 			return ERR_PTR(-ENOMEM);
608 	} else {
609 		input_dev->name = hdev->name;
610 	}
611 
612 	input_set_drvdata(input_dev, hdev);
613 
614 	return input_dev;
615 }
616 
617 static enum power_supply_property ps_power_supply_props[] = {
618 	POWER_SUPPLY_PROP_STATUS,
619 	POWER_SUPPLY_PROP_PRESENT,
620 	POWER_SUPPLY_PROP_CAPACITY,
621 	POWER_SUPPLY_PROP_SCOPE,
622 };
623 
624 static int ps_battery_get_property(struct power_supply *psy,
625 		enum power_supply_property psp,
626 		union power_supply_propval *val)
627 {
628 	struct ps_device *dev = power_supply_get_drvdata(psy);
629 	uint8_t battery_capacity;
630 	int battery_status;
631 	unsigned long flags;
632 	int ret = 0;
633 
634 	spin_lock_irqsave(&dev->lock, flags);
635 	battery_capacity = dev->battery_capacity;
636 	battery_status = dev->battery_status;
637 	spin_unlock_irqrestore(&dev->lock, flags);
638 
639 	switch (psp) {
640 	case POWER_SUPPLY_PROP_STATUS:
641 		val->intval = battery_status;
642 		break;
643 	case POWER_SUPPLY_PROP_PRESENT:
644 		val->intval = 1;
645 		break;
646 	case POWER_SUPPLY_PROP_CAPACITY:
647 		val->intval = battery_capacity;
648 		break;
649 	case POWER_SUPPLY_PROP_SCOPE:
650 		val->intval = POWER_SUPPLY_SCOPE_DEVICE;
651 		break;
652 	default:
653 		ret = -EINVAL;
654 		break;
655 	}
656 
657 	return ret;
658 }
659 
660 static int ps_device_register_battery(struct ps_device *dev)
661 {
662 	struct power_supply *battery;
663 	struct power_supply_config battery_cfg = { .drv_data = dev };
664 	int ret;
665 
666 	dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY;
667 	dev->battery_desc.properties = ps_power_supply_props;
668 	dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props);
669 	dev->battery_desc.get_property = ps_battery_get_property;
670 	dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL,
671 			"ps-controller-battery-%pMR", dev->mac_address);
672 	if (!dev->battery_desc.name)
673 		return -ENOMEM;
674 
675 	battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg);
676 	if (IS_ERR(battery)) {
677 		ret = PTR_ERR(battery);
678 		hid_err(dev->hdev, "Unable to register battery device: %d\n", ret);
679 		return ret;
680 	}
681 	dev->battery = battery;
682 
683 	ret = power_supply_powers(dev->battery, &dev->hdev->dev);
684 	if (ret) {
685 		hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret);
686 		return ret;
687 	}
688 
689 	return 0;
690 }
691 
692 /* Compute crc32 of HID data and compare against expected CRC. */
693 static bool ps_check_crc32(uint8_t seed, uint8_t *data, size_t len, uint32_t report_crc)
694 {
695 	uint32_t crc;
696 
697 	crc = crc32_le(0xFFFFFFFF, &seed, 1);
698 	crc = ~crc32_le(crc, data, len);
699 
700 	return crc == report_crc;
701 }
702 
703 static struct input_dev *ps_gamepad_create(struct hid_device *hdev,
704 		int (*play_effect)(struct input_dev *, void *, struct ff_effect *))
705 {
706 	struct input_dev *gamepad;
707 	unsigned int i;
708 	int ret;
709 
710 	gamepad = ps_allocate_input_dev(hdev, NULL);
711 	if (IS_ERR(gamepad))
712 		return ERR_CAST(gamepad);
713 
714 	input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0);
715 	input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0);
716 	input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0);
717 	input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0);
718 	input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0);
719 	input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0);
720 
721 	input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0);
722 	input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0);
723 
724 	for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++)
725 		input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]);
726 
727 #if IS_ENABLED(CONFIG_PLAYSTATION_FF)
728 	if (play_effect) {
729 		input_set_capability(gamepad, EV_FF, FF_RUMBLE);
730 		input_ff_create_memless(gamepad, NULL, play_effect);
731 	}
732 #endif
733 
734 	ret = input_register_device(gamepad);
735 	if (ret)
736 		return ERR_PTR(ret);
737 
738 	return gamepad;
739 }
740 
741 static int ps_get_report(struct hid_device *hdev, uint8_t report_id, uint8_t *buf, size_t size,
742 		bool check_crc)
743 {
744 	int ret;
745 
746 	ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT,
747 				 HID_REQ_GET_REPORT);
748 	if (ret < 0) {
749 		hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret);
750 		return ret;
751 	}
752 
753 	if (ret != size) {
754 		hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret);
755 		return -EINVAL;
756 	}
757 
758 	if (buf[0] != report_id) {
759 		hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]);
760 		return -EINVAL;
761 	}
762 
763 	if (hdev->bus == BUS_BLUETOOTH && check_crc) {
764 		/* Last 4 bytes contains crc32. */
765 		uint8_t crc_offset = size - 4;
766 		uint32_t report_crc = get_unaligned_le32(&buf[crc_offset]);
767 
768 		if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) {
769 			hid_err(hdev, "CRC check failed for reportID=%d\n", report_id);
770 			return -EILSEQ;
771 		}
772 	}
773 
774 	return 0;
775 }
776 
777 static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led,
778 		const struct ps_led_info *led_info)
779 {
780 	int ret;
781 
782 	if (led_info->name) {
783 		led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL,
784 				"%s:%s:%s", ps_dev->input_dev_name, led_info->color, led_info->name);
785 	} else {
786 		/* Backwards compatible mode for hid-sony, but not compliant with LED class spec. */
787 		led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL,
788 				"%s:%s", ps_dev->input_dev_name, led_info->color);
789 	}
790 
791 	if (!led->name)
792 		return -ENOMEM;
793 
794 	led->brightness = 0;
795 	led->max_brightness = led_info->max_brightness;
796 	led->flags = LED_CORE_SUSPENDRESUME;
797 	led->brightness_get = led_info->brightness_get;
798 	led->brightness_set_blocking = led_info->brightness_set;
799 	led->blink_set = led_info->blink_set;
800 
801 	ret = devm_led_classdev_register(&ps_dev->hdev->dev, led);
802 	if (ret) {
803 		hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret);
804 		return ret;
805 	}
806 
807 	return 0;
808 }
809 
810 /* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */
811 static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev,
812 	int (*brightness_set)(struct led_classdev *, enum led_brightness))
813 {
814 	struct hid_device *hdev = ps_dev->hdev;
815 	struct mc_subled *mc_led_info;
816 	struct led_classdev *led_cdev;
817 	int ret;
818 
819 	mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info),
820 					 GFP_KERNEL | __GFP_ZERO);
821 	if (!mc_led_info)
822 		return -ENOMEM;
823 
824 	mc_led_info[0].color_index = LED_COLOR_ID_RED;
825 	mc_led_info[1].color_index = LED_COLOR_ID_GREEN;
826 	mc_led_info[2].color_index = LED_COLOR_ID_BLUE;
827 
828 	lightbar_mc_dev->subled_info = mc_led_info;
829 	lightbar_mc_dev->num_colors = 3;
830 
831 	led_cdev = &lightbar_mc_dev->led_cdev;
832 	led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator",
833 			ps_dev->input_dev_name);
834 	if (!led_cdev->name)
835 		return -ENOMEM;
836 	led_cdev->brightness = 255;
837 	led_cdev->max_brightness = 255;
838 	led_cdev->brightness_set_blocking = brightness_set;
839 
840 	ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev);
841 	if (ret < 0) {
842 		hid_err(hdev, "Cannot register multicolor LED device\n");
843 		return ret;
844 	}
845 
846 	return 0;
847 }
848 
849 static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range, int accel_res,
850 		int gyro_range, int gyro_res)
851 {
852 	struct input_dev *sensors;
853 	int ret;
854 
855 	sensors = ps_allocate_input_dev(hdev, "Motion Sensors");
856 	if (IS_ERR(sensors))
857 		return ERR_CAST(sensors);
858 
859 	__set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit);
860 	__set_bit(EV_MSC, sensors->evbit);
861 	__set_bit(MSC_TIMESTAMP, sensors->mscbit);
862 
863 	/* Accelerometer */
864 	input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0);
865 	input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0);
866 	input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0);
867 	input_abs_set_res(sensors, ABS_X, accel_res);
868 	input_abs_set_res(sensors, ABS_Y, accel_res);
869 	input_abs_set_res(sensors, ABS_Z, accel_res);
870 
871 	/* Gyroscope */
872 	input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0);
873 	input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0);
874 	input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0);
875 	input_abs_set_res(sensors, ABS_RX, gyro_res);
876 	input_abs_set_res(sensors, ABS_RY, gyro_res);
877 	input_abs_set_res(sensors, ABS_RZ, gyro_res);
878 
879 	ret = input_register_device(sensors);
880 	if (ret)
881 		return ERR_PTR(ret);
882 
883 	return sensors;
884 }
885 
886 static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width, int height,
887 		unsigned int num_contacts)
888 {
889 	struct input_dev *touchpad;
890 	int ret;
891 
892 	touchpad = ps_allocate_input_dev(hdev, "Touchpad");
893 	if (IS_ERR(touchpad))
894 		return ERR_CAST(touchpad);
895 
896 	/* Map button underneath touchpad to BTN_LEFT. */
897 	input_set_capability(touchpad, EV_KEY, BTN_LEFT);
898 	__set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit);
899 
900 	input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0);
901 	input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0);
902 
903 	ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER);
904 	if (ret)
905 		return ERR_PTR(ret);
906 
907 	ret = input_register_device(touchpad);
908 	if (ret)
909 		return ERR_PTR(ret);
910 
911 	return touchpad;
912 }
913 
914 static ssize_t firmware_version_show(struct device *dev,
915 				struct device_attribute
916 				*attr, char *buf)
917 {
918 	struct hid_device *hdev = to_hid_device(dev);
919 	struct ps_device *ps_dev = hid_get_drvdata(hdev);
920 
921 	return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version);
922 }
923 
924 static DEVICE_ATTR_RO(firmware_version);
925 
926 static ssize_t hardware_version_show(struct device *dev,
927 				struct device_attribute
928 				*attr, char *buf)
929 {
930 	struct hid_device *hdev = to_hid_device(dev);
931 	struct ps_device *ps_dev = hid_get_drvdata(hdev);
932 
933 	return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version);
934 }
935 
936 static DEVICE_ATTR_RO(hardware_version);
937 
938 static struct attribute *ps_device_attrs[] = {
939 	&dev_attr_firmware_version.attr,
940 	&dev_attr_hardware_version.attr,
941 	NULL
942 };
943 ATTRIBUTE_GROUPS(ps_device);
944 
945 static int dualsense_get_calibration_data(struct dualsense *ds)
946 {
947 	struct hid_device *hdev = ds->base.hdev;
948 	short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
949 	short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
950 	short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
951 	short gyro_speed_plus, gyro_speed_minus;
952 	short acc_x_plus, acc_x_minus;
953 	short acc_y_plus, acc_y_minus;
954 	short acc_z_plus, acc_z_minus;
955 	int speed_2x;
956 	int range_2g;
957 	int ret = 0;
958 	int i;
959 	uint8_t *buf;
960 
961 	buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
962 	if (!buf)
963 		return -ENOMEM;
964 
965 	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf,
966 			DS_FEATURE_REPORT_CALIBRATION_SIZE, true);
967 	if (ret) {
968 		hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret);
969 		goto err_free;
970 	}
971 
972 	gyro_pitch_bias  = get_unaligned_le16(&buf[1]);
973 	gyro_yaw_bias    = get_unaligned_le16(&buf[3]);
974 	gyro_roll_bias   = get_unaligned_le16(&buf[5]);
975 	gyro_pitch_plus  = get_unaligned_le16(&buf[7]);
976 	gyro_pitch_minus = get_unaligned_le16(&buf[9]);
977 	gyro_yaw_plus    = get_unaligned_le16(&buf[11]);
978 	gyro_yaw_minus   = get_unaligned_le16(&buf[13]);
979 	gyro_roll_plus   = get_unaligned_le16(&buf[15]);
980 	gyro_roll_minus  = get_unaligned_le16(&buf[17]);
981 	gyro_speed_plus  = get_unaligned_le16(&buf[19]);
982 	gyro_speed_minus = get_unaligned_le16(&buf[21]);
983 	acc_x_plus       = get_unaligned_le16(&buf[23]);
984 	acc_x_minus      = get_unaligned_le16(&buf[25]);
985 	acc_y_plus       = get_unaligned_le16(&buf[27]);
986 	acc_y_minus      = get_unaligned_le16(&buf[29]);
987 	acc_z_plus       = get_unaligned_le16(&buf[31]);
988 	acc_z_minus      = get_unaligned_le16(&buf[33]);
989 
990 	/*
991 	 * Set gyroscope calibration and normalization parameters.
992 	 * Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s.
993 	 */
994 	speed_2x = (gyro_speed_plus + gyro_speed_minus);
995 	ds->gyro_calib_data[0].abs_code = ABS_RX;
996 	ds->gyro_calib_data[0].bias = gyro_pitch_bias;
997 	ds->gyro_calib_data[0].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
998 	ds->gyro_calib_data[0].sens_denom = gyro_pitch_plus - gyro_pitch_minus;
999 
1000 	ds->gyro_calib_data[1].abs_code = ABS_RY;
1001 	ds->gyro_calib_data[1].bias = gyro_yaw_bias;
1002 	ds->gyro_calib_data[1].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
1003 	ds->gyro_calib_data[1].sens_denom = gyro_yaw_plus - gyro_yaw_minus;
1004 
1005 	ds->gyro_calib_data[2].abs_code = ABS_RZ;
1006 	ds->gyro_calib_data[2].bias = gyro_roll_bias;
1007 	ds->gyro_calib_data[2].sens_numer = speed_2x*DS_GYRO_RES_PER_DEG_S;
1008 	ds->gyro_calib_data[2].sens_denom = gyro_roll_plus - gyro_roll_minus;
1009 
1010 	/*
1011 	 * Sanity check gyro calibration data. This is needed to prevent crashes
1012 	 * during report handling of virtual, clone or broken devices not implementing
1013 	 * calibration data properly.
1014 	 */
1015 	for (i = 0; i < ARRAY_SIZE(ds->gyro_calib_data); i++) {
1016 		if (ds->gyro_calib_data[i].sens_denom == 0) {
1017 			hid_warn(hdev, "Invalid gyro calibration data for axis (%d), disabling calibration.",
1018 					ds->gyro_calib_data[i].abs_code);
1019 			ds->gyro_calib_data[i].bias = 0;
1020 			ds->gyro_calib_data[i].sens_numer = DS_GYRO_RANGE;
1021 			ds->gyro_calib_data[i].sens_denom = S16_MAX;
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * Set accelerometer calibration and normalization parameters.
1027 	 * Data values will be normalized to 1/DS_ACC_RES_PER_G g.
1028 	 */
1029 	range_2g = acc_x_plus - acc_x_minus;
1030 	ds->accel_calib_data[0].abs_code = ABS_X;
1031 	ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
1032 	ds->accel_calib_data[0].sens_numer = 2*DS_ACC_RES_PER_G;
1033 	ds->accel_calib_data[0].sens_denom = range_2g;
1034 
1035 	range_2g = acc_y_plus - acc_y_minus;
1036 	ds->accel_calib_data[1].abs_code = ABS_Y;
1037 	ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
1038 	ds->accel_calib_data[1].sens_numer = 2*DS_ACC_RES_PER_G;
1039 	ds->accel_calib_data[1].sens_denom = range_2g;
1040 
1041 	range_2g = acc_z_plus - acc_z_minus;
1042 	ds->accel_calib_data[2].abs_code = ABS_Z;
1043 	ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
1044 	ds->accel_calib_data[2].sens_numer = 2*DS_ACC_RES_PER_G;
1045 	ds->accel_calib_data[2].sens_denom = range_2g;
1046 
1047 	/*
1048 	 * Sanity check accelerometer calibration data. This is needed to prevent crashes
1049 	 * during report handling of virtual, clone or broken devices not implementing calibration
1050 	 * data properly.
1051 	 */
1052 	for (i = 0; i < ARRAY_SIZE(ds->accel_calib_data); i++) {
1053 		if (ds->accel_calib_data[i].sens_denom == 0) {
1054 			hid_warn(hdev, "Invalid accelerometer calibration data for axis (%d), disabling calibration.",
1055 					ds->accel_calib_data[i].abs_code);
1056 			ds->accel_calib_data[i].bias = 0;
1057 			ds->accel_calib_data[i].sens_numer = DS_ACC_RANGE;
1058 			ds->accel_calib_data[i].sens_denom = S16_MAX;
1059 		}
1060 	}
1061 
1062 err_free:
1063 	kfree(buf);
1064 	return ret;
1065 }
1066 
1067 
1068 static int dualsense_get_firmware_info(struct dualsense *ds)
1069 {
1070 	uint8_t *buf;
1071 	int ret;
1072 
1073 	buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
1074 	if (!buf)
1075 		return -ENOMEM;
1076 
1077 	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf,
1078 			DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, true);
1079 	if (ret) {
1080 		hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret);
1081 		goto err_free;
1082 	}
1083 
1084 	ds->base.hw_version = get_unaligned_le32(&buf[24]);
1085 	ds->base.fw_version = get_unaligned_le32(&buf[28]);
1086 
1087 	/* Update version is some kind of feature version. It is distinct from
1088 	 * the firmware version as there can be many different variations of a
1089 	 * controller over time with the same physical shell, but with different
1090 	 * PCBs and other internal changes. The update version (internal name) is
1091 	 * used as a means to detect what features are available and change behavior.
1092 	 * Note: the version is different between DualSense and DualSense Edge.
1093 	 */
1094 	ds->update_version = get_unaligned_le16(&buf[44]);
1095 
1096 err_free:
1097 	kfree(buf);
1098 	return ret;
1099 }
1100 
1101 static int dualsense_get_mac_address(struct dualsense *ds)
1102 {
1103 	uint8_t *buf;
1104 	int ret = 0;
1105 
1106 	buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
1107 	if (!buf)
1108 		return -ENOMEM;
1109 
1110 	ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf,
1111 			DS_FEATURE_REPORT_PAIRING_INFO_SIZE, true);
1112 	if (ret) {
1113 		hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret);
1114 		goto err_free;
1115 	}
1116 
1117 	memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address));
1118 
1119 err_free:
1120 	kfree(buf);
1121 	return ret;
1122 }
1123 
1124 static int dualsense_lightbar_set_brightness(struct led_classdev *cdev,
1125 	enum led_brightness brightness)
1126 {
1127 	struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev);
1128 	struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar);
1129 	uint8_t red, green, blue;
1130 
1131 	led_mc_calc_color_components(mc_cdev, brightness);
1132 	red = mc_cdev->subled_info[0].brightness;
1133 	green = mc_cdev->subled_info[1].brightness;
1134 	blue = mc_cdev->subled_info[2].brightness;
1135 
1136 	dualsense_set_lightbar(ds, red, green, blue);
1137 	return 0;
1138 }
1139 
1140 static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led)
1141 {
1142 	struct hid_device *hdev = to_hid_device(led->dev->parent);
1143 	struct dualsense *ds = hid_get_drvdata(hdev);
1144 
1145 	return !!(ds->player_leds_state & BIT(led - ds->player_leds));
1146 }
1147 
1148 static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value)
1149 {
1150 	struct hid_device *hdev = to_hid_device(led->dev->parent);
1151 	struct dualsense *ds = hid_get_drvdata(hdev);
1152 	unsigned long flags;
1153 	unsigned int led_index;
1154 
1155 	spin_lock_irqsave(&ds->base.lock, flags);
1156 
1157 	led_index = led - ds->player_leds;
1158 	if (value == LED_OFF)
1159 		ds->player_leds_state &= ~BIT(led_index);
1160 	else
1161 		ds->player_leds_state |= BIT(led_index);
1162 
1163 	ds->update_player_leds = true;
1164 	spin_unlock_irqrestore(&ds->base.lock, flags);
1165 
1166 	dualsense_schedule_work(ds);
1167 
1168 	return 0;
1169 }
1170 
1171 static void dualsense_init_output_report(struct dualsense *ds, struct dualsense_output_report *rp,
1172 		void *buf)
1173 {
1174 	struct hid_device *hdev = ds->base.hdev;
1175 
1176 	if (hdev->bus == BUS_BLUETOOTH) {
1177 		struct dualsense_output_report_bt *bt = buf;
1178 
1179 		memset(bt, 0, sizeof(*bt));
1180 		bt->report_id = DS_OUTPUT_REPORT_BT;
1181 		bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */
1182 
1183 		/*
1184 		 * Highest 4-bit is a sequence number, which needs to be increased
1185 		 * every report. Lowest 4-bit is tag and can be zero for now.
1186 		 */
1187 		bt->seq_tag = (ds->output_seq << 4) | 0x0;
1188 		if (++ds->output_seq == 16)
1189 			ds->output_seq = 0;
1190 
1191 		rp->data = buf;
1192 		rp->len = sizeof(*bt);
1193 		rp->bt = bt;
1194 		rp->usb = NULL;
1195 		rp->common = &bt->common;
1196 	} else { /* USB */
1197 		struct dualsense_output_report_usb *usb = buf;
1198 
1199 		memset(usb, 0, sizeof(*usb));
1200 		usb->report_id = DS_OUTPUT_REPORT_USB;
1201 
1202 		rp->data = buf;
1203 		rp->len = sizeof(*usb);
1204 		rp->bt = NULL;
1205 		rp->usb = usb;
1206 		rp->common = &usb->common;
1207 	}
1208 }
1209 
1210 static inline void dualsense_schedule_work(struct dualsense *ds)
1211 {
1212 	unsigned long flags;
1213 
1214 	spin_lock_irqsave(&ds->base.lock, flags);
1215 	if (ds->output_worker_initialized)
1216 		schedule_work(&ds->output_worker);
1217 	spin_unlock_irqrestore(&ds->base.lock, flags);
1218 }
1219 
1220 /*
1221  * Helper function to send DualSense output reports. Applies a CRC at the end of a report
1222  * for Bluetooth reports.
1223  */
1224 static void dualsense_send_output_report(struct dualsense *ds,
1225 		struct dualsense_output_report *report)
1226 {
1227 	struct hid_device *hdev = ds->base.hdev;
1228 
1229 	/* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */
1230 	if (report->bt) {
1231 		uint32_t crc;
1232 		uint8_t seed = PS_OUTPUT_CRC32_SEED;
1233 
1234 		crc = crc32_le(0xFFFFFFFF, &seed, 1);
1235 		crc = ~crc32_le(crc, report->data, report->len - 4);
1236 
1237 		report->bt->crc32 = cpu_to_le32(crc);
1238 	}
1239 
1240 	hid_hw_output_report(hdev, report->data, report->len);
1241 }
1242 
1243 static void dualsense_output_worker(struct work_struct *work)
1244 {
1245 	struct dualsense *ds = container_of(work, struct dualsense, output_worker);
1246 	struct dualsense_output_report report;
1247 	struct dualsense_output_report_common *common;
1248 	unsigned long flags;
1249 
1250 	dualsense_init_output_report(ds, &report, ds->output_report_dmabuf);
1251 	common = report.common;
1252 
1253 	spin_lock_irqsave(&ds->base.lock, flags);
1254 
1255 	if (ds->update_rumble) {
1256 		/* Select classic rumble style haptics and enable it. */
1257 		common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT;
1258 		if (ds->use_vibration_v2)
1259 			common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2;
1260 		else
1261 			common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION;
1262 		common->motor_left = ds->motor_left;
1263 		common->motor_right = ds->motor_right;
1264 		ds->update_rumble = false;
1265 	}
1266 
1267 	if (ds->update_lightbar) {
1268 		common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE;
1269 		common->lightbar_red = ds->lightbar_red;
1270 		common->lightbar_green = ds->lightbar_green;
1271 		common->lightbar_blue = ds->lightbar_blue;
1272 
1273 		ds->update_lightbar = false;
1274 	}
1275 
1276 	if (ds->update_player_leds) {
1277 		common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE;
1278 		common->player_leds = ds->player_leds_state;
1279 
1280 		ds->update_player_leds = false;
1281 	}
1282 
1283 	if (ds->update_mic_mute) {
1284 		common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE;
1285 		common->mute_button_led = ds->mic_muted;
1286 
1287 		if (ds->mic_muted) {
1288 			/* Disable microphone */
1289 			common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
1290 			common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
1291 		} else {
1292 			/* Enable microphone */
1293 			common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE;
1294 			common->power_save_control &= ~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE;
1295 		}
1296 
1297 		ds->update_mic_mute = false;
1298 	}
1299 
1300 	spin_unlock_irqrestore(&ds->base.lock, flags);
1301 
1302 	dualsense_send_output_report(ds, &report);
1303 }
1304 
1305 static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report,
1306 		u8 *data, int size)
1307 {
1308 	struct hid_device *hdev = ps_dev->hdev;
1309 	struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
1310 	struct dualsense_input_report *ds_report;
1311 	uint8_t battery_data, battery_capacity, charging_status, value;
1312 	int battery_status;
1313 	uint32_t sensor_timestamp;
1314 	bool btn_mic_state;
1315 	unsigned long flags;
1316 	int i;
1317 
1318 	/*
1319 	 * DualSense in USB uses the full HID report for reportID 1, but
1320 	 * Bluetooth uses a minimal HID report for reportID 1 and reports
1321 	 * the full report using reportID 49.
1322 	 */
1323 	if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB &&
1324 			size == DS_INPUT_REPORT_USB_SIZE) {
1325 		ds_report = (struct dualsense_input_report *)&data[1];
1326 	} else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT &&
1327 			size == DS_INPUT_REPORT_BT_SIZE) {
1328 		/* Last 4 bytes of input report contain crc32 */
1329 		uint32_t report_crc = get_unaligned_le32(&data[size - 4]);
1330 
1331 		if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
1332 			hid_err(hdev, "DualSense input CRC's check failed\n");
1333 			return -EILSEQ;
1334 		}
1335 
1336 		ds_report = (struct dualsense_input_report *)&data[2];
1337 	} else {
1338 		hid_err(hdev, "Unhandled reportID=%d\n", report->id);
1339 		return -1;
1340 	}
1341 
1342 	input_report_abs(ds->gamepad, ABS_X,  ds_report->x);
1343 	input_report_abs(ds->gamepad, ABS_Y,  ds_report->y);
1344 	input_report_abs(ds->gamepad, ABS_RX, ds_report->rx);
1345 	input_report_abs(ds->gamepad, ABS_RY, ds_report->ry);
1346 	input_report_abs(ds->gamepad, ABS_Z,  ds_report->z);
1347 	input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz);
1348 
1349 	value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
1350 	if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
1351 		value = 8; /* center */
1352 	input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
1353 	input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);
1354 
1355 	input_report_key(ds->gamepad, BTN_WEST,   ds_report->buttons[0] & DS_BUTTONS0_SQUARE);
1356 	input_report_key(ds->gamepad, BTN_SOUTH,  ds_report->buttons[0] & DS_BUTTONS0_CROSS);
1357 	input_report_key(ds->gamepad, BTN_EAST,   ds_report->buttons[0] & DS_BUTTONS0_CIRCLE);
1358 	input_report_key(ds->gamepad, BTN_NORTH,  ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
1359 	input_report_key(ds->gamepad, BTN_TL,     ds_report->buttons[1] & DS_BUTTONS1_L1);
1360 	input_report_key(ds->gamepad, BTN_TR,     ds_report->buttons[1] & DS_BUTTONS1_R1);
1361 	input_report_key(ds->gamepad, BTN_TL2,    ds_report->buttons[1] & DS_BUTTONS1_L2);
1362 	input_report_key(ds->gamepad, BTN_TR2,    ds_report->buttons[1] & DS_BUTTONS1_R2);
1363 	input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE);
1364 	input_report_key(ds->gamepad, BTN_START,  ds_report->buttons[1] & DS_BUTTONS1_OPTIONS);
1365 	input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3);
1366 	input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3);
1367 	input_report_key(ds->gamepad, BTN_MODE,   ds_report->buttons[2] & DS_BUTTONS2_PS_HOME);
1368 	input_sync(ds->gamepad);
1369 
1370 	/*
1371 	 * The DualSense has an internal microphone, which can be muted through a mute button
1372 	 * on the device. The driver is expected to read the button state and program the device
1373 	 * to mute/unmute audio at the hardware level.
1374 	 */
1375 	btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE);
1376 	if (btn_mic_state && !ds->last_btn_mic_state) {
1377 		spin_lock_irqsave(&ps_dev->lock, flags);
1378 		ds->update_mic_mute = true;
1379 		ds->mic_muted = !ds->mic_muted; /* toggle */
1380 		spin_unlock_irqrestore(&ps_dev->lock, flags);
1381 
1382 		/* Schedule updating of microphone state at hardware level. */
1383 		dualsense_schedule_work(ds);
1384 	}
1385 	ds->last_btn_mic_state = btn_mic_state;
1386 
1387 	/* Parse and calibrate gyroscope data. */
1388 	for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) {
1389 		int raw_data = (short)le16_to_cpu(ds_report->gyro[i]);
1390 		int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer,
1391 					   raw_data - ds->gyro_calib_data[i].bias,
1392 					   ds->gyro_calib_data[i].sens_denom);
1393 
1394 		input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data);
1395 	}
1396 
1397 	/* Parse and calibrate accelerometer data. */
1398 	for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) {
1399 		int raw_data = (short)le16_to_cpu(ds_report->accel[i]);
1400 		int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer,
1401 					   raw_data - ds->accel_calib_data[i].bias,
1402 					   ds->accel_calib_data[i].sens_denom);
1403 
1404 		input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data);
1405 	}
1406 
1407 	/* Convert timestamp (in 0.33us unit) to timestamp_us */
1408 	sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp);
1409 	if (!ds->sensor_timestamp_initialized) {
1410 		ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3);
1411 		ds->sensor_timestamp_initialized = true;
1412 	} else {
1413 		uint32_t delta;
1414 
1415 		if (ds->prev_sensor_timestamp > sensor_timestamp)
1416 			delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1);
1417 		else
1418 			delta = sensor_timestamp - ds->prev_sensor_timestamp;
1419 		ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3);
1420 	}
1421 	ds->prev_sensor_timestamp = sensor_timestamp;
1422 	input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us);
1423 	input_sync(ds->sensors);
1424 
1425 	for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) {
1426 		struct dualsense_touch_point *point = &ds_report->points[i];
1427 		bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true;
1428 
1429 		input_mt_slot(ds->touchpad, i);
1430 		input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active);
1431 
1432 		if (active) {
1433 			int x = (point->x_hi << 8) | point->x_lo;
1434 			int y = (point->y_hi << 4) | point->y_lo;
1435 
1436 			input_report_abs(ds->touchpad, ABS_MT_POSITION_X, x);
1437 			input_report_abs(ds->touchpad, ABS_MT_POSITION_Y, y);
1438 		}
1439 	}
1440 	input_mt_sync_frame(ds->touchpad);
1441 	input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
1442 	input_sync(ds->touchpad);
1443 
1444 	battery_data = ds_report->status & DS_STATUS_BATTERY_CAPACITY;
1445 	charging_status = (ds_report->status & DS_STATUS_CHARGING) >> DS_STATUS_CHARGING_SHIFT;
1446 
1447 	switch (charging_status) {
1448 	case 0x0:
1449 		/*
1450 		 * Each unit of battery data corresponds to 10%
1451 		 * 0 = 0-9%, 1 = 10-19%, .. and 10 = 100%
1452 		 */
1453 		battery_capacity = min(battery_data * 10 + 5, 100);
1454 		battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
1455 		break;
1456 	case 0x1:
1457 		battery_capacity = min(battery_data * 10 + 5, 100);
1458 		battery_status = POWER_SUPPLY_STATUS_CHARGING;
1459 		break;
1460 	case 0x2:
1461 		battery_capacity = 100;
1462 		battery_status = POWER_SUPPLY_STATUS_FULL;
1463 		break;
1464 	case 0xa: /* voltage or temperature out of range */
1465 	case 0xb: /* temperature error */
1466 		battery_capacity = 0;
1467 		battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1468 		break;
1469 	case 0xf: /* charging error */
1470 	default:
1471 		battery_capacity = 0;
1472 		battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
1473 	}
1474 
1475 	spin_lock_irqsave(&ps_dev->lock, flags);
1476 	ps_dev->battery_capacity = battery_capacity;
1477 	ps_dev->battery_status = battery_status;
1478 	spin_unlock_irqrestore(&ps_dev->lock, flags);
1479 
1480 	return 0;
1481 }
1482 
1483 static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
1484 {
1485 	struct hid_device *hdev = input_get_drvdata(dev);
1486 	struct dualsense *ds = hid_get_drvdata(hdev);
1487 	unsigned long flags;
1488 
1489 	if (effect->type != FF_RUMBLE)
1490 		return 0;
1491 
1492 	spin_lock_irqsave(&ds->base.lock, flags);
1493 	ds->update_rumble = true;
1494 	ds->motor_left = effect->u.rumble.strong_magnitude / 256;
1495 	ds->motor_right = effect->u.rumble.weak_magnitude / 256;
1496 	spin_unlock_irqrestore(&ds->base.lock, flags);
1497 
1498 	dualsense_schedule_work(ds);
1499 	return 0;
1500 }
1501 
1502 static void dualsense_remove(struct ps_device *ps_dev)
1503 {
1504 	struct dualsense *ds = container_of(ps_dev, struct dualsense, base);
1505 	unsigned long flags;
1506 
1507 	spin_lock_irqsave(&ds->base.lock, flags);
1508 	ds->output_worker_initialized = false;
1509 	spin_unlock_irqrestore(&ds->base.lock, flags);
1510 
1511 	cancel_work_sync(&ds->output_worker);
1512 }
1513 
1514 static int dualsense_reset_leds(struct dualsense *ds)
1515 {
1516 	struct dualsense_output_report report;
1517 	uint8_t *buf;
1518 
1519 	buf = kzalloc(sizeof(struct dualsense_output_report_bt), GFP_KERNEL);
1520 	if (!buf)
1521 		return -ENOMEM;
1522 
1523 	dualsense_init_output_report(ds, &report, buf);
1524 	/*
1525 	 * On Bluetooth the DualSense outputs an animation on the lightbar
1526 	 * during startup and maintains a color afterwards. We need to explicitly
1527 	 * reconfigure the lightbar before we can do any programming later on.
1528 	 * In USB the lightbar is not on by default, but redoing the setup there
1529 	 * doesn't hurt.
1530 	 */
1531 	report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE;
1532 	report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */
1533 	dualsense_send_output_report(ds, &report);
1534 
1535 	kfree(buf);
1536 	return 0;
1537 }
1538 
1539 static void dualsense_set_lightbar(struct dualsense *ds, uint8_t red, uint8_t green, uint8_t blue)
1540 {
1541 	unsigned long flags;
1542 
1543 	spin_lock_irqsave(&ds->base.lock, flags);
1544 	ds->update_lightbar = true;
1545 	ds->lightbar_red = red;
1546 	ds->lightbar_green = green;
1547 	ds->lightbar_blue = blue;
1548 	spin_unlock_irqrestore(&ds->base.lock, flags);
1549 
1550 	dualsense_schedule_work(ds);
1551 }
1552 
1553 static void dualsense_set_player_leds(struct dualsense *ds)
1554 {
1555 	/*
1556 	 * The DualSense controller has a row of 5 LEDs used for player ids.
1557 	 * Behavior on the PlayStation 5 console is to center the player id
1558 	 * across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'.
1559 	 * Follow a similar mapping here.
1560 	 */
1561 	static const int player_ids[5] = {
1562 		BIT(2),
1563 		BIT(3) | BIT(1),
1564 		BIT(4) | BIT(2) | BIT(0),
1565 		BIT(4) | BIT(3) | BIT(1) | BIT(0),
1566 		BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0)
1567 	};
1568 
1569 	uint8_t player_id = ds->base.player_id % ARRAY_SIZE(player_ids);
1570 
1571 	ds->update_player_leds = true;
1572 	ds->player_leds_state = player_ids[player_id];
1573 	dualsense_schedule_work(ds);
1574 }
1575 
1576 static struct ps_device *dualsense_create(struct hid_device *hdev)
1577 {
1578 	struct dualsense *ds;
1579 	struct ps_device *ps_dev;
1580 	uint8_t max_output_report_size;
1581 	int i, ret;
1582 
1583 	static const struct ps_led_info player_leds_info[] = {
1584 		{ LED_FUNCTION_PLAYER1, "white", 1, dualsense_player_led_get_brightness,
1585 				dualsense_player_led_set_brightness },
1586 		{ LED_FUNCTION_PLAYER2, "white", 1, dualsense_player_led_get_brightness,
1587 				dualsense_player_led_set_brightness },
1588 		{ LED_FUNCTION_PLAYER3, "white", 1, dualsense_player_led_get_brightness,
1589 				dualsense_player_led_set_brightness },
1590 		{ LED_FUNCTION_PLAYER4, "white", 1, dualsense_player_led_get_brightness,
1591 				dualsense_player_led_set_brightness },
1592 		{ LED_FUNCTION_PLAYER5, "white", 1, dualsense_player_led_get_brightness,
1593 				dualsense_player_led_set_brightness }
1594 	};
1595 
1596 	ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL);
1597 	if (!ds)
1598 		return ERR_PTR(-ENOMEM);
1599 
1600 	/*
1601 	 * Patch version to allow userspace to distinguish between
1602 	 * hid-generic vs hid-playstation axis and button mapping.
1603 	 */
1604 	hdev->version |= HID_PLAYSTATION_VERSION_PATCH;
1605 
1606 	ps_dev = &ds->base;
1607 	ps_dev->hdev = hdev;
1608 	spin_lock_init(&ps_dev->lock);
1609 	ps_dev->battery_capacity = 100; /* initial value until parse_report. */
1610 	ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
1611 	ps_dev->parse_report = dualsense_parse_report;
1612 	ps_dev->remove = dualsense_remove;
1613 	INIT_WORK(&ds->output_worker, dualsense_output_worker);
1614 	ds->output_worker_initialized = true;
1615 	hid_set_drvdata(hdev, ds);
1616 
1617 	max_output_report_size = sizeof(struct dualsense_output_report_bt);
1618 	ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
1619 	if (!ds->output_report_dmabuf)
1620 		return ERR_PTR(-ENOMEM);
1621 
1622 	ret = dualsense_get_mac_address(ds);
1623 	if (ret) {
1624 		hid_err(hdev, "Failed to get MAC address from DualSense\n");
1625 		return ERR_PTR(ret);
1626 	}
1627 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address);
1628 
1629 	ret = dualsense_get_firmware_info(ds);
1630 	if (ret) {
1631 		hid_err(hdev, "Failed to get firmware info from DualSense\n");
1632 		return ERR_PTR(ret);
1633 	}
1634 
1635 	/* Original DualSense firmware simulated classic controller rumble through
1636 	 * its new haptics hardware. It felt different from classic rumble users
1637 	 * were used to. Since then new firmwares were introduced to change behavior
1638 	 * and make this new 'v2' behavior default on PlayStation and other platforms.
1639 	 * The original DualSense requires a new enough firmware as bundled with PS5
1640 	 * software released in 2021. DualSense edge supports it out of the box.
1641 	 * Both devices also support the old mode, but it is not really used.
1642 	 */
1643 	if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) {
1644 		/* Feature version 2.21 introduced new vibration method. */
1645 		ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21);
1646 	} else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) {
1647 		ds->use_vibration_v2 = true;
1648 	}
1649 
1650 	ret = ps_devices_list_add(ps_dev);
1651 	if (ret)
1652 		return ERR_PTR(ret);
1653 
1654 	ret = dualsense_get_calibration_data(ds);
1655 	if (ret) {
1656 		hid_err(hdev, "Failed to get calibration data from DualSense\n");
1657 		goto err;
1658 	}
1659 
1660 	ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect);
1661 	if (IS_ERR(ds->gamepad)) {
1662 		ret = PTR_ERR(ds->gamepad);
1663 		goto err;
1664 	}
1665 	/* Use gamepad input device name as primary device name for e.g. LEDs */
1666 	ps_dev->input_dev_name = dev_name(&ds->gamepad->dev);
1667 
1668 	ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G,
1669 			DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S);
1670 	if (IS_ERR(ds->sensors)) {
1671 		ret = PTR_ERR(ds->sensors);
1672 		goto err;
1673 	}
1674 
1675 	ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2);
1676 	if (IS_ERR(ds->touchpad)) {
1677 		ret = PTR_ERR(ds->touchpad);
1678 		goto err;
1679 	}
1680 
1681 	ret = ps_device_register_battery(ps_dev);
1682 	if (ret)
1683 		goto err;
1684 
1685 	/*
1686 	 * The hardware may have control over the LEDs (e.g. in Bluetooth on startup).
1687 	 * Reset the LEDs (lightbar, mute, player leds), so we can control them
1688 	 * from software.
1689 	 */
1690 	ret = dualsense_reset_leds(ds);
1691 	if (ret)
1692 		goto err;
1693 
1694 	ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness);
1695 	if (ret)
1696 		goto err;
1697 
1698 	/* Set default lightbar color. */
1699 	dualsense_set_lightbar(ds, 0, 0, 128); /* blue */
1700 
1701 	for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) {
1702 		const struct ps_led_info *led_info = &player_leds_info[i];
1703 
1704 		ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info);
1705 		if (ret < 0)
1706 			goto err;
1707 	}
1708 
1709 	ret = ps_device_set_player_id(ps_dev);
1710 	if (ret) {
1711 		hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret);
1712 		goto err;
1713 	}
1714 
1715 	/* Set player LEDs to our player id. */
1716 	dualsense_set_player_leds(ds);
1717 
1718 	/*
1719 	 * Reporting hardware and firmware is important as there are frequent updates, which
1720 	 * can change behavior.
1721 	 */
1722 	hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n",
1723 			ds->base.hw_version, ds->base.fw_version);
1724 
1725 	return &ds->base;
1726 
1727 err:
1728 	ps_devices_list_remove(ps_dev);
1729 	return ERR_PTR(ret);
1730 }
1731 
1732 static void dualshock4_dongle_calibration_work(struct work_struct *work)
1733 {
1734 	struct dualshock4 *ds4 = container_of(work, struct dualshock4, dongle_hotplug_worker);
1735 	unsigned long flags;
1736 	enum dualshock4_dongle_state dongle_state;
1737 	int ret;
1738 
1739 	ret = dualshock4_get_calibration_data(ds4);
1740 	if (ret < 0) {
1741 		/* This call is very unlikely to fail for the dongle. When it
1742 		 * fails we are probably in a very bad state, so mark the
1743 		 * dongle as disabled. We will re-enable the dongle if a new
1744 		 * DS4 hotplug is detect from sony_raw_event as any issues
1745 		 * are likely resolved then (the dongle is quite stupid).
1746 		 */
1747 		hid_err(ds4->base.hdev, "DualShock 4 USB dongle: calibration failed, disabling device\n");
1748 		dongle_state = DONGLE_DISABLED;
1749 	} else {
1750 		hid_info(ds4->base.hdev, "DualShock 4 USB dongle: calibration completed\n");
1751 		dongle_state = DONGLE_CONNECTED;
1752 	}
1753 
1754 	spin_lock_irqsave(&ds4->base.lock, flags);
1755 	ds4->dongle_state = dongle_state;
1756 	spin_unlock_irqrestore(&ds4->base.lock, flags);
1757 }
1758 
1759 static int dualshock4_get_calibration_data(struct dualshock4 *ds4)
1760 {
1761 	struct hid_device *hdev = ds4->base.hdev;
1762 	short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus;
1763 	short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus;
1764 	short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus;
1765 	short gyro_speed_plus, gyro_speed_minus;
1766 	short acc_x_plus, acc_x_minus;
1767 	short acc_y_plus, acc_y_minus;
1768 	short acc_z_plus, acc_z_minus;
1769 	int speed_2x;
1770 	int range_2g;
1771 	int ret = 0;
1772 	int i;
1773 	uint8_t *buf;
1774 
1775 	if (ds4->base.hdev->bus == BUS_USB) {
1776 		int retries;
1777 
1778 		buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL);
1779 		if (!buf)
1780 			return -ENOMEM;
1781 
1782 		/* We should normally receive the feature report data we asked
1783 		 * for, but hidraw applications such as Steam can issue feature
1784 		 * reports as well. In particular for Dongle reconnects, Steam
1785 		 * and this function are competing resulting in often receiving
1786 		 * data for a different HID report, so retry a few times.
1787 		 */
1788 		for (retries = 0; retries < 3; retries++) {
1789 			ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf,
1790 					DS4_FEATURE_REPORT_CALIBRATION_SIZE, true);
1791 			if (ret) {
1792 				if (retries < 2) {
1793 					hid_warn(hdev, "Retrying DualShock 4 get calibration report (0x02) request\n");
1794 					continue;
1795 				} else {
1796 					ret = -EILSEQ;
1797 					goto err_free;
1798 				}
1799 				hid_err(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret);
1800 				goto err_free;
1801 			} else {
1802 				break;
1803 			}
1804 		}
1805 	} else { /* Bluetooth */
1806 		buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, GFP_KERNEL);
1807 		if (!buf)
1808 			return -ENOMEM;
1809 
1810 		ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION_BT, buf,
1811 				DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, true);
1812 		if (ret) {
1813 			hid_err(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret);
1814 			goto err_free;
1815 		}
1816 	}
1817 
1818 	gyro_pitch_bias  = get_unaligned_le16(&buf[1]);
1819 	gyro_yaw_bias    = get_unaligned_le16(&buf[3]);
1820 	gyro_roll_bias   = get_unaligned_le16(&buf[5]);
1821 	if (ds4->base.hdev->bus == BUS_USB) {
1822 		gyro_pitch_plus  = get_unaligned_le16(&buf[7]);
1823 		gyro_pitch_minus = get_unaligned_le16(&buf[9]);
1824 		gyro_yaw_plus    = get_unaligned_le16(&buf[11]);
1825 		gyro_yaw_minus   = get_unaligned_le16(&buf[13]);
1826 		gyro_roll_plus   = get_unaligned_le16(&buf[15]);
1827 		gyro_roll_minus  = get_unaligned_le16(&buf[17]);
1828 	} else {
1829 		/* BT + Dongle */
1830 		gyro_pitch_plus  = get_unaligned_le16(&buf[7]);
1831 		gyro_yaw_plus    = get_unaligned_le16(&buf[9]);
1832 		gyro_roll_plus   = get_unaligned_le16(&buf[11]);
1833 		gyro_pitch_minus = get_unaligned_le16(&buf[13]);
1834 		gyro_yaw_minus   = get_unaligned_le16(&buf[15]);
1835 		gyro_roll_minus  = get_unaligned_le16(&buf[17]);
1836 	}
1837 	gyro_speed_plus  = get_unaligned_le16(&buf[19]);
1838 	gyro_speed_minus = get_unaligned_le16(&buf[21]);
1839 	acc_x_plus       = get_unaligned_le16(&buf[23]);
1840 	acc_x_minus      = get_unaligned_le16(&buf[25]);
1841 	acc_y_plus       = get_unaligned_le16(&buf[27]);
1842 	acc_y_minus      = get_unaligned_le16(&buf[29]);
1843 	acc_z_plus       = get_unaligned_le16(&buf[31]);
1844 	acc_z_minus      = get_unaligned_le16(&buf[33]);
1845 
1846 	/*
1847 	 * Set gyroscope calibration and normalization parameters.
1848 	 * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s.
1849 	 */
1850 	speed_2x = (gyro_speed_plus + gyro_speed_minus);
1851 	ds4->gyro_calib_data[0].abs_code = ABS_RX;
1852 	ds4->gyro_calib_data[0].bias = gyro_pitch_bias;
1853 	ds4->gyro_calib_data[0].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
1854 	ds4->gyro_calib_data[0].sens_denom = gyro_pitch_plus - gyro_pitch_minus;
1855 
1856 	ds4->gyro_calib_data[1].abs_code = ABS_RY;
1857 	ds4->gyro_calib_data[1].bias = gyro_yaw_bias;
1858 	ds4->gyro_calib_data[1].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
1859 	ds4->gyro_calib_data[1].sens_denom = gyro_yaw_plus - gyro_yaw_minus;
1860 
1861 	ds4->gyro_calib_data[2].abs_code = ABS_RZ;
1862 	ds4->gyro_calib_data[2].bias = gyro_roll_bias;
1863 	ds4->gyro_calib_data[2].sens_numer = speed_2x*DS4_GYRO_RES_PER_DEG_S;
1864 	ds4->gyro_calib_data[2].sens_denom = gyro_roll_plus - gyro_roll_minus;
1865 
1866 	/*
1867 	 * Sanity check gyro calibration data. This is needed to prevent crashes
1868 	 * during report handling of virtual, clone or broken devices not implementing
1869 	 * calibration data properly.
1870 	 */
1871 	for (i = 0; i < ARRAY_SIZE(ds4->gyro_calib_data); i++) {
1872 		if (ds4->gyro_calib_data[i].sens_denom == 0) {
1873 			hid_warn(hdev, "Invalid gyro calibration data for axis (%d), disabling calibration.",
1874 					ds4->gyro_calib_data[i].abs_code);
1875 			ds4->gyro_calib_data[i].bias = 0;
1876 			ds4->gyro_calib_data[i].sens_numer = DS4_GYRO_RANGE;
1877 			ds4->gyro_calib_data[i].sens_denom = S16_MAX;
1878 		}
1879 	}
1880 
1881 	/*
1882 	 * Set accelerometer calibration and normalization parameters.
1883 	 * Data values will be normalized to 1/DS4_ACC_RES_PER_G g.
1884 	 */
1885 	range_2g = acc_x_plus - acc_x_minus;
1886 	ds4->accel_calib_data[0].abs_code = ABS_X;
1887 	ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2;
1888 	ds4->accel_calib_data[0].sens_numer = 2*DS4_ACC_RES_PER_G;
1889 	ds4->accel_calib_data[0].sens_denom = range_2g;
1890 
1891 	range_2g = acc_y_plus - acc_y_minus;
1892 	ds4->accel_calib_data[1].abs_code = ABS_Y;
1893 	ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2;
1894 	ds4->accel_calib_data[1].sens_numer = 2*DS4_ACC_RES_PER_G;
1895 	ds4->accel_calib_data[1].sens_denom = range_2g;
1896 
1897 	range_2g = acc_z_plus - acc_z_minus;
1898 	ds4->accel_calib_data[2].abs_code = ABS_Z;
1899 	ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2;
1900 	ds4->accel_calib_data[2].sens_numer = 2*DS4_ACC_RES_PER_G;
1901 	ds4->accel_calib_data[2].sens_denom = range_2g;
1902 
1903 	/*
1904 	 * Sanity check accelerometer calibration data. This is needed to prevent crashes
1905 	 * during report handling of virtual, clone or broken devices not implementing calibration
1906 	 * data properly.
1907 	 */
1908 	for (i = 0; i < ARRAY_SIZE(ds4->accel_calib_data); i++) {
1909 		if (ds4->accel_calib_data[i].sens_denom == 0) {
1910 			hid_warn(hdev, "Invalid accelerometer calibration data for axis (%d), disabling calibration.",
1911 					ds4->accel_calib_data[i].abs_code);
1912 			ds4->accel_calib_data[i].bias = 0;
1913 			ds4->accel_calib_data[i].sens_numer = DS4_ACC_RANGE;
1914 			ds4->accel_calib_data[i].sens_denom = S16_MAX;
1915 		}
1916 	}
1917 
1918 err_free:
1919 	kfree(buf);
1920 	return ret;
1921 }
1922 
1923 static int dualshock4_get_firmware_info(struct dualshock4 *ds4)
1924 {
1925 	uint8_t *buf;
1926 	int ret;
1927 
1928 	buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL);
1929 	if (!buf)
1930 		return -ENOMEM;
1931 
1932 	/* Note USB and BT support the same feature report, but this report
1933 	 * lacks CRC support, so must be disabled in ps_get_report.
1934 	 */
1935 	ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf,
1936 			DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, false);
1937 	if (ret) {
1938 		hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret);
1939 		goto err_free;
1940 	}
1941 
1942 	ds4->base.hw_version = get_unaligned_le16(&buf[35]);
1943 	ds4->base.fw_version = get_unaligned_le16(&buf[41]);
1944 
1945 err_free:
1946 	kfree(buf);
1947 	return ret;
1948 }
1949 
1950 static int dualshock4_get_mac_address(struct dualshock4 *ds4)
1951 {
1952 	struct hid_device *hdev = ds4->base.hdev;
1953 	uint8_t *buf;
1954 	int ret = 0;
1955 
1956 	if (hdev->bus == BUS_USB) {
1957 		buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL);
1958 		if (!buf)
1959 			return -ENOMEM;
1960 
1961 		ret = ps_get_report(hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf,
1962 				DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, false);
1963 		if (ret) {
1964 			hid_err(hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret);
1965 			goto err_free;
1966 		}
1967 
1968 		memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address));
1969 	} else {
1970 		/* Rely on HIDP for Bluetooth */
1971 		if (strlen(hdev->uniq) != 17)
1972 			return -EINVAL;
1973 
1974 		ret = sscanf(hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx",
1975 				&ds4->base.mac_address[5], &ds4->base.mac_address[4],
1976 				&ds4->base.mac_address[3], &ds4->base.mac_address[2],
1977 				&ds4->base.mac_address[1], &ds4->base.mac_address[0]);
1978 
1979 		if (ret != sizeof(ds4->base.mac_address))
1980 			return -EINVAL;
1981 
1982 		return 0;
1983 	}
1984 
1985 err_free:
1986 	kfree(buf);
1987 	return ret;
1988 }
1989 
1990 static enum led_brightness dualshock4_led_get_brightness(struct led_classdev *led)
1991 {
1992 	struct hid_device *hdev = to_hid_device(led->dev->parent);
1993 	struct dualshock4 *ds4 = hid_get_drvdata(hdev);
1994 	unsigned int led_index;
1995 
1996 	led_index = led - ds4->lightbar_leds;
1997 	switch (led_index) {
1998 	case 0:
1999 		return ds4->lightbar_red;
2000 	case 1:
2001 		return ds4->lightbar_green;
2002 	case 2:
2003 		return ds4->lightbar_blue;
2004 	case 3:
2005 		return ds4->lightbar_enabled;
2006 	}
2007 
2008 	return -1;
2009 }
2010 
2011 static int dualshock4_led_set_blink(struct led_classdev *led, unsigned long *delay_on,
2012 		unsigned long *delay_off)
2013 {
2014 	struct hid_device *hdev = to_hid_device(led->dev->parent);
2015 	struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2016 	unsigned long flags;
2017 
2018 	spin_lock_irqsave(&ds4->base.lock, flags);
2019 
2020 	if (!*delay_on && !*delay_off) {
2021 		/* Default to 1 Hz (50 centiseconds on, 50 centiseconds off). */
2022 		ds4->lightbar_blink_on = 50;
2023 		ds4->lightbar_blink_off = 50;
2024 	} else {
2025 		/* Blink delays in centiseconds. */
2026 		ds4->lightbar_blink_on = min_t(unsigned long, *delay_on/10, DS4_LIGHTBAR_MAX_BLINK);
2027 		ds4->lightbar_blink_off = min_t(unsigned long, *delay_off/10, DS4_LIGHTBAR_MAX_BLINK);
2028 	}
2029 
2030 	ds4->update_lightbar_blink = true;
2031 
2032 	spin_unlock_irqrestore(&ds4->base.lock, flags);
2033 
2034 	dualshock4_schedule_work(ds4);
2035 
2036 	*delay_on = ds4->lightbar_blink_on;
2037 	*delay_off = ds4->lightbar_blink_off;
2038 
2039 	return 0;
2040 }
2041 
2042 static int dualshock4_led_set_brightness(struct led_classdev *led, enum led_brightness value)
2043 {
2044 	struct hid_device *hdev = to_hid_device(led->dev->parent);
2045 	struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2046 	unsigned long flags;
2047 	unsigned int led_index;
2048 
2049 	spin_lock_irqsave(&ds4->base.lock, flags);
2050 
2051 	led_index = led - ds4->lightbar_leds;
2052 	switch (led_index) {
2053 	case 0:
2054 		ds4->lightbar_red = value;
2055 		break;
2056 	case 1:
2057 		ds4->lightbar_green = value;
2058 		break;
2059 	case 2:
2060 		ds4->lightbar_blue = value;
2061 		break;
2062 	case 3:
2063 		ds4->lightbar_enabled = !!value;
2064 	}
2065 
2066 	ds4->update_lightbar = true;
2067 
2068 	spin_unlock_irqrestore(&ds4->base.lock, flags);
2069 
2070 	dualshock4_schedule_work(ds4);
2071 
2072 	return 0;
2073 }
2074 
2075 static void dualshock4_init_output_report(struct dualshock4 *ds4,
2076 		struct dualshock4_output_report *rp, void *buf)
2077 {
2078 	struct hid_device *hdev = ds4->base.hdev;
2079 
2080 	if (hdev->bus == BUS_BLUETOOTH) {
2081 		struct dualshock4_output_report_bt *bt = buf;
2082 
2083 		memset(bt, 0, sizeof(*bt));
2084 		bt->report_id = DS4_OUTPUT_REPORT_BT;
2085 
2086 		rp->data = buf;
2087 		rp->len = sizeof(*bt);
2088 		rp->bt = bt;
2089 		rp->usb = NULL;
2090 		rp->common = &bt->common;
2091 	} else { /* USB */
2092 		struct dualshock4_output_report_usb *usb = buf;
2093 
2094 		memset(usb, 0, sizeof(*usb));
2095 		usb->report_id = DS4_OUTPUT_REPORT_USB;
2096 
2097 		rp->data = buf;
2098 		rp->len = sizeof(*usb);
2099 		rp->bt = NULL;
2100 		rp->usb = usb;
2101 		rp->common = &usb->common;
2102 	}
2103 }
2104 
2105 static void dualshock4_output_worker(struct work_struct *work)
2106 {
2107 	struct dualshock4 *ds4 = container_of(work, struct dualshock4, output_worker);
2108 	struct dualshock4_output_report report;
2109 	struct dualshock4_output_report_common *common;
2110 	unsigned long flags;
2111 
2112 	dualshock4_init_output_report(ds4, &report, ds4->output_report_dmabuf);
2113 	common = report.common;
2114 
2115 	spin_lock_irqsave(&ds4->base.lock, flags);
2116 
2117 	if (ds4->update_rumble) {
2118 		/* Select classic rumble style haptics and enable it. */
2119 		common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_MOTOR;
2120 		common->motor_left = ds4->motor_left;
2121 		common->motor_right = ds4->motor_right;
2122 		ds4->update_rumble = false;
2123 	}
2124 
2125 	if (ds4->update_lightbar) {
2126 		common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED;
2127 		/* Comptabile behavior with hid-sony, which used a dummy global LED to
2128 		 * allow enabling/disabling the lightbar. The global LED maps to
2129 		 * lightbar_enabled.
2130 		 */
2131 		common->lightbar_red = ds4->lightbar_enabled ? ds4->lightbar_red : 0;
2132 		common->lightbar_green = ds4->lightbar_enabled ? ds4->lightbar_green : 0;
2133 		common->lightbar_blue = ds4->lightbar_enabled ? ds4->lightbar_blue : 0;
2134 		ds4->update_lightbar = false;
2135 	}
2136 
2137 	if (ds4->update_lightbar_blink) {
2138 		common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED_BLINK;
2139 		common->lightbar_blink_on = ds4->lightbar_blink_on;
2140 		common->lightbar_blink_off = ds4->lightbar_blink_off;
2141 		ds4->update_lightbar_blink = false;
2142 	}
2143 
2144 	spin_unlock_irqrestore(&ds4->base.lock, flags);
2145 
2146 	/* Bluetooth packets need additional flags as well as a CRC in the last 4 bytes. */
2147 	if (report.bt) {
2148 		uint32_t crc;
2149 		uint8_t seed = PS_OUTPUT_CRC32_SEED;
2150 
2151 		/* Hardware control flags need to set to let the device know
2152 		 * there is HID data as well as CRC.
2153 		 */
2154 		report.bt->hw_control = DS4_OUTPUT_HWCTL_HID | DS4_OUTPUT_HWCTL_CRC32;
2155 
2156 		if (ds4->update_bt_poll_interval) {
2157 			report.bt->hw_control |= ds4->bt_poll_interval;
2158 			ds4->update_bt_poll_interval = false;
2159 		}
2160 
2161 		crc = crc32_le(0xFFFFFFFF, &seed, 1);
2162 		crc = ~crc32_le(crc, report.data, report.len - 4);
2163 
2164 		report.bt->crc32 = cpu_to_le32(crc);
2165 	}
2166 
2167 	hid_hw_output_report(ds4->base.hdev, report.data, report.len);
2168 }
2169 
2170 static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report,
2171 		u8 *data, int size)
2172 {
2173 	struct hid_device *hdev = ps_dev->hdev;
2174 	struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2175 	struct dualshock4_input_report_common *ds4_report;
2176 	struct dualshock4_touch_report *touch_reports;
2177 	uint8_t battery_capacity, num_touch_reports, value;
2178 	int battery_status, i, j;
2179 	uint16_t sensor_timestamp;
2180 	unsigned long flags;
2181 
2182 	/*
2183 	 * DualShock4 in USB uses the full HID report for reportID 1, but
2184 	 * Bluetooth uses a minimal HID report for reportID 1 and reports
2185 	 * the full report using reportID 17.
2186 	 */
2187 	if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB &&
2188 			size == DS4_INPUT_REPORT_USB_SIZE) {
2189 		struct dualshock4_input_report_usb *usb = (struct dualshock4_input_report_usb *)data;
2190 
2191 		ds4_report = &usb->common;
2192 		num_touch_reports = usb->num_touch_reports;
2193 		touch_reports = usb->touch_reports;
2194 	} else if (hdev->bus == BUS_BLUETOOTH && report->id == DS4_INPUT_REPORT_BT &&
2195 			size == DS4_INPUT_REPORT_BT_SIZE) {
2196 		struct dualshock4_input_report_bt *bt = (struct dualshock4_input_report_bt *)data;
2197 		uint32_t report_crc = get_unaligned_le32(&bt->crc32);
2198 
2199 		/* Last 4 bytes of input report contains CRC. */
2200 		if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) {
2201 			hid_err(hdev, "DualShock4 input CRC's check failed\n");
2202 			return -EILSEQ;
2203 		}
2204 
2205 		ds4_report = &bt->common;
2206 		num_touch_reports = bt->num_touch_reports;
2207 		touch_reports = bt->touch_reports;
2208 	} else {
2209 		hid_err(hdev, "Unhandled reportID=%d\n", report->id);
2210 		return -1;
2211 	}
2212 
2213 	input_report_abs(ds4->gamepad, ABS_X,  ds4_report->x);
2214 	input_report_abs(ds4->gamepad, ABS_Y,  ds4_report->y);
2215 	input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx);
2216 	input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry);
2217 	input_report_abs(ds4->gamepad, ABS_Z,  ds4_report->z);
2218 	input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz);
2219 
2220 	value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH;
2221 	if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping))
2222 		value = 8; /* center */
2223 	input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x);
2224 	input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y);
2225 
2226 	input_report_key(ds4->gamepad, BTN_WEST,   ds4_report->buttons[0] & DS_BUTTONS0_SQUARE);
2227 	input_report_key(ds4->gamepad, BTN_SOUTH,  ds4_report->buttons[0] & DS_BUTTONS0_CROSS);
2228 	input_report_key(ds4->gamepad, BTN_EAST,   ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE);
2229 	input_report_key(ds4->gamepad, BTN_NORTH,  ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE);
2230 	input_report_key(ds4->gamepad, BTN_TL,     ds4_report->buttons[1] & DS_BUTTONS1_L1);
2231 	input_report_key(ds4->gamepad, BTN_TR,     ds4_report->buttons[1] & DS_BUTTONS1_R1);
2232 	input_report_key(ds4->gamepad, BTN_TL2,    ds4_report->buttons[1] & DS_BUTTONS1_L2);
2233 	input_report_key(ds4->gamepad, BTN_TR2,    ds4_report->buttons[1] & DS_BUTTONS1_R2);
2234 	input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE);
2235 	input_report_key(ds4->gamepad, BTN_START,  ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS);
2236 	input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3);
2237 	input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3);
2238 	input_report_key(ds4->gamepad, BTN_MODE,   ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME);
2239 	input_sync(ds4->gamepad);
2240 
2241 	/* Parse and calibrate gyroscope data. */
2242 	for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) {
2243 		int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]);
2244 		int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer,
2245 					   raw_data - ds4->gyro_calib_data[i].bias,
2246 					   ds4->gyro_calib_data[i].sens_denom);
2247 
2248 		input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data);
2249 	}
2250 
2251 	/* Parse and calibrate accelerometer data. */
2252 	for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) {
2253 		int raw_data = (short)le16_to_cpu(ds4_report->accel[i]);
2254 		int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer,
2255 					   raw_data - ds4->accel_calib_data[i].bias,
2256 					   ds4->accel_calib_data[i].sens_denom);
2257 
2258 		input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data);
2259 	}
2260 
2261 	/* Convert timestamp (in 5.33us unit) to timestamp_us */
2262 	sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp);
2263 	if (!ds4->sensor_timestamp_initialized) {
2264 		ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp*16, 3);
2265 		ds4->sensor_timestamp_initialized = true;
2266 	} else {
2267 		uint16_t delta;
2268 
2269 		if (ds4->prev_sensor_timestamp > sensor_timestamp)
2270 			delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1);
2271 		else
2272 			delta = sensor_timestamp - ds4->prev_sensor_timestamp;
2273 		ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta*16, 3);
2274 	}
2275 	ds4->prev_sensor_timestamp = sensor_timestamp;
2276 	input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us);
2277 	input_sync(ds4->sensors);
2278 
2279 	for (i = 0; i < num_touch_reports; i++) {
2280 		struct dualshock4_touch_report *touch_report = &touch_reports[i];
2281 
2282 		for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) {
2283 			struct dualshock4_touch_point *point = &touch_report->points[j];
2284 			bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true;
2285 
2286 			input_mt_slot(ds4->touchpad, j);
2287 			input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active);
2288 
2289 			if (active) {
2290 				int x = (point->x_hi << 8) | point->x_lo;
2291 				int y = (point->y_hi << 4) | point->y_lo;
2292 
2293 				input_report_abs(ds4->touchpad, ABS_MT_POSITION_X, x);
2294 				input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y, y);
2295 			}
2296 		}
2297 		input_mt_sync_frame(ds4->touchpad);
2298 		input_sync(ds4->touchpad);
2299 	}
2300 	input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD);
2301 
2302 	/*
2303 	 * Interpretation of the battery_capacity data depends on the cable state.
2304 	 * When no cable is connected (bit4 is 0):
2305 	 * - 0:10: percentage in units of 10%.
2306 	 * When a cable is plugged in:
2307 	 * - 0-10: percentage in units of 10%.
2308 	 * - 11: battery is full
2309 	 * - 14: not charging due to Voltage or temperature error
2310 	 * - 15: charge error
2311 	 */
2312 	if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) {
2313 		uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;
2314 
2315 		if (battery_data < 10) {
2316 			/* Take the mid-point for each battery capacity value,
2317 			 * because on the hardware side 0 = 0-9%, 1=10-19%, etc.
2318 			 * This matches official platform behavior, which does
2319 			 * the same.
2320 			 */
2321 			battery_capacity = battery_data * 10 + 5;
2322 			battery_status = POWER_SUPPLY_STATUS_CHARGING;
2323 		} else if (battery_data == 10) {
2324 			battery_capacity = 100;
2325 			battery_status = POWER_SUPPLY_STATUS_CHARGING;
2326 		} else if (battery_data == DS4_BATTERY_STATUS_FULL) {
2327 			battery_capacity = 100;
2328 			battery_status = POWER_SUPPLY_STATUS_FULL;
2329 		} else { /* 14, 15 and undefined values */
2330 			battery_capacity = 0;
2331 			battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
2332 		}
2333 	} else {
2334 		uint8_t battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY;
2335 
2336 		if (battery_data < 10)
2337 			battery_capacity = battery_data * 10 + 5;
2338 		else /* 10 */
2339 			battery_capacity = 100;
2340 
2341 		battery_status = POWER_SUPPLY_STATUS_DISCHARGING;
2342 	}
2343 
2344 	spin_lock_irqsave(&ps_dev->lock, flags);
2345 	ps_dev->battery_capacity = battery_capacity;
2346 	ps_dev->battery_status = battery_status;
2347 	spin_unlock_irqrestore(&ps_dev->lock, flags);
2348 
2349 	return 0;
2350 }
2351 
2352 static int dualshock4_dongle_parse_report(struct ps_device *ps_dev, struct hid_report *report,
2353 		u8 *data, int size)
2354 {
2355 	struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2356 	bool connected = false;
2357 
2358 	/* The dongle reports data using the main USB report (0x1) no matter whether a controller
2359 	 * is connected with mostly zeros. The report does contain dongle status, which we use to
2360 	 * determine if a controller is connected and if so we forward to the regular DualShock4
2361 	 * parsing code.
2362 	 */
2363 	if (data[0] == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) {
2364 		struct dualshock4_input_report_common *ds4_report = (struct dualshock4_input_report_common *)&data[1];
2365 		unsigned long flags;
2366 
2367 		connected = ds4_report->status[1] & DS4_STATUS1_DONGLE_STATE ? false : true;
2368 
2369 		if (ds4->dongle_state == DONGLE_DISCONNECTED && connected) {
2370 			hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller connected\n");
2371 
2372 			dualshock4_set_default_lightbar_colors(ds4);
2373 
2374 			spin_lock_irqsave(&ps_dev->lock, flags);
2375 			ds4->dongle_state = DONGLE_CALIBRATING;
2376 			spin_unlock_irqrestore(&ps_dev->lock, flags);
2377 
2378 			schedule_work(&ds4->dongle_hotplug_worker);
2379 
2380 			/* Don't process the report since we don't have
2381 			 * calibration data, but let hidraw have it anyway.
2382 			 */
2383 			return 0;
2384 		} else if ((ds4->dongle_state == DONGLE_CONNECTED ||
2385 			    ds4->dongle_state == DONGLE_DISABLED) && !connected) {
2386 			hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller disconnected\n");
2387 
2388 			spin_lock_irqsave(&ps_dev->lock, flags);
2389 			ds4->dongle_state = DONGLE_DISCONNECTED;
2390 			spin_unlock_irqrestore(&ps_dev->lock, flags);
2391 
2392 			/* Return 0, so hidraw can get the report. */
2393 			return 0;
2394 		} else if (ds4->dongle_state == DONGLE_CALIBRATING ||
2395 			   ds4->dongle_state == DONGLE_DISABLED ||
2396 			   ds4->dongle_state == DONGLE_DISCONNECTED) {
2397 			/* Return 0, so hidraw can get the report. */
2398 			return 0;
2399 		}
2400 	}
2401 
2402 	if (connected)
2403 		return dualshock4_parse_report(ps_dev, report, data, size);
2404 
2405 	return 0;
2406 }
2407 
2408 static int dualshock4_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect)
2409 {
2410 	struct hid_device *hdev = input_get_drvdata(dev);
2411 	struct dualshock4 *ds4 = hid_get_drvdata(hdev);
2412 	unsigned long flags;
2413 
2414 	if (effect->type != FF_RUMBLE)
2415 		return 0;
2416 
2417 	spin_lock_irqsave(&ds4->base.lock, flags);
2418 	ds4->update_rumble = true;
2419 	ds4->motor_left = effect->u.rumble.strong_magnitude / 256;
2420 	ds4->motor_right = effect->u.rumble.weak_magnitude / 256;
2421 	spin_unlock_irqrestore(&ds4->base.lock, flags);
2422 
2423 	dualshock4_schedule_work(ds4);
2424 	return 0;
2425 }
2426 
2427 static void dualshock4_remove(struct ps_device *ps_dev)
2428 {
2429 	struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base);
2430 	unsigned long flags;
2431 
2432 	spin_lock_irqsave(&ds4->base.lock, flags);
2433 	ds4->output_worker_initialized = false;
2434 	spin_unlock_irqrestore(&ds4->base.lock, flags);
2435 
2436 	cancel_work_sync(&ds4->output_worker);
2437 
2438 	if (ps_dev->hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE)
2439 		cancel_work_sync(&ds4->dongle_hotplug_worker);
2440 }
2441 
2442 static inline void dualshock4_schedule_work(struct dualshock4 *ds4)
2443 {
2444 	unsigned long flags;
2445 
2446 	spin_lock_irqsave(&ds4->base.lock, flags);
2447 	if (ds4->output_worker_initialized)
2448 		schedule_work(&ds4->output_worker);
2449 	spin_unlock_irqrestore(&ds4->base.lock, flags);
2450 }
2451 
2452 static void dualshock4_set_bt_poll_interval(struct dualshock4 *ds4, uint8_t interval)
2453 {
2454 	ds4->bt_poll_interval = interval;
2455 	ds4->update_bt_poll_interval = true;
2456 	dualshock4_schedule_work(ds4);
2457 }
2458 
2459 /* Set default lightbar color based on player. */
2460 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4)
2461 {
2462 	/* Use same player colors as PlayStation 4.
2463 	 * Array of colors is in RGB.
2464 	 */
2465 	static const int player_colors[4][3] = {
2466 		{ 0x00, 0x00, 0x40 }, /* Blue */
2467 		{ 0x40, 0x00, 0x00 }, /* Red */
2468 		{ 0x00, 0x40, 0x00 }, /* Green */
2469 		{ 0x20, 0x00, 0x20 }  /* Pink */
2470 	};
2471 
2472 	uint8_t player_id = ds4->base.player_id % ARRAY_SIZE(player_colors);
2473 
2474 	ds4->lightbar_enabled = true;
2475 	ds4->lightbar_red = player_colors[player_id][0];
2476 	ds4->lightbar_green = player_colors[player_id][1];
2477 	ds4->lightbar_blue = player_colors[player_id][2];
2478 
2479 	ds4->update_lightbar = true;
2480 	dualshock4_schedule_work(ds4);
2481 }
2482 
2483 static struct ps_device *dualshock4_create(struct hid_device *hdev)
2484 {
2485 	struct dualshock4 *ds4;
2486 	struct ps_device *ps_dev;
2487 	uint8_t max_output_report_size;
2488 	int i, ret;
2489 
2490 	/* The DualShock4 has an RGB lightbar, which the original hid-sony driver
2491 	 * exposed as a set of 4 LEDs for the 3 color channels and a global control.
2492 	 * Ideally this should have used the multi-color LED class, which didn't exist
2493 	 * yet. In addition the driver used a naming scheme not compliant with the LED
2494 	 * naming spec by using "<mac_address>:<color>", which contained many colons.
2495 	 * We use a more compliant by using "<device_name>:<color>" name now. Ideally
2496 	 * would have been "<device_name>:<color>:indicator", but that would break
2497 	 * existing applications (e.g. Android). Nothing matches against MAC address.
2498 	 */
2499 	static const struct ps_led_info lightbar_leds_info[] = {
2500 		{ NULL, "red", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
2501 		{ NULL, "green", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
2502 		{ NULL, "blue", 255, dualshock4_led_get_brightness, dualshock4_led_set_brightness },
2503 		{ NULL, "global", 1, dualshock4_led_get_brightness, dualshock4_led_set_brightness,
2504 				dualshock4_led_set_blink },
2505 	};
2506 
2507 	ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL);
2508 	if (!ds4)
2509 		return ERR_PTR(-ENOMEM);
2510 
2511 	/*
2512 	 * Patch version to allow userspace to distinguish between
2513 	 * hid-generic vs hid-playstation axis and button mapping.
2514 	 */
2515 	hdev->version |= HID_PLAYSTATION_VERSION_PATCH;
2516 
2517 	ps_dev = &ds4->base;
2518 	ps_dev->hdev = hdev;
2519 	spin_lock_init(&ps_dev->lock);
2520 	ps_dev->battery_capacity = 100; /* initial value until parse_report. */
2521 	ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN;
2522 	ps_dev->parse_report = dualshock4_parse_report;
2523 	ps_dev->remove = dualshock4_remove;
2524 	INIT_WORK(&ds4->output_worker, dualshock4_output_worker);
2525 	ds4->output_worker_initialized = true;
2526 	hid_set_drvdata(hdev, ds4);
2527 
2528 	max_output_report_size = sizeof(struct dualshock4_output_report_bt);
2529 	ds4->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL);
2530 	if (!ds4->output_report_dmabuf)
2531 		return ERR_PTR(-ENOMEM);
2532 
2533 	if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) {
2534 		ds4->dongle_state = DONGLE_DISCONNECTED;
2535 		INIT_WORK(&ds4->dongle_hotplug_worker, dualshock4_dongle_calibration_work);
2536 
2537 		/* Override parse report for dongle specific hotplug handling. */
2538 		ps_dev->parse_report = dualshock4_dongle_parse_report;
2539 	}
2540 
2541 	ret = dualshock4_get_mac_address(ds4);
2542 	if (ret) {
2543 		hid_err(hdev, "Failed to get MAC address from DualShock4\n");
2544 		return ERR_PTR(ret);
2545 	}
2546 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address);
2547 
2548 	ret = dualshock4_get_firmware_info(ds4);
2549 	if (ret) {
2550 		hid_err(hdev, "Failed to get firmware info from DualShock4\n");
2551 		return ERR_PTR(ret);
2552 	}
2553 
2554 	ret = ps_devices_list_add(ps_dev);
2555 	if (ret)
2556 		return ERR_PTR(ret);
2557 
2558 	ret = dualshock4_get_calibration_data(ds4);
2559 	if (ret) {
2560 		hid_err(hdev, "Failed to get calibration data from DualShock4\n");
2561 		goto err;
2562 	}
2563 
2564 	ds4->gamepad = ps_gamepad_create(hdev, dualshock4_play_effect);
2565 	if (IS_ERR(ds4->gamepad)) {
2566 		ret = PTR_ERR(ds4->gamepad);
2567 		goto err;
2568 	}
2569 
2570 	/* Use gamepad input device name as primary device name for e.g. LEDs */
2571 	ps_dev->input_dev_name = dev_name(&ds4->gamepad->dev);
2572 
2573 	ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G,
2574 			DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S);
2575 	if (IS_ERR(ds4->sensors)) {
2576 		ret = PTR_ERR(ds4->sensors);
2577 		goto err;
2578 	}
2579 
2580 	ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2);
2581 	if (IS_ERR(ds4->touchpad)) {
2582 		ret = PTR_ERR(ds4->touchpad);
2583 		goto err;
2584 	}
2585 
2586 	ret = ps_device_register_battery(ps_dev);
2587 	if (ret)
2588 		goto err;
2589 
2590 	for (i = 0; i < ARRAY_SIZE(lightbar_leds_info); i++) {
2591 		const struct ps_led_info *led_info = &lightbar_leds_info[i];
2592 
2593 		ret = ps_led_register(ps_dev, &ds4->lightbar_leds[i], led_info);
2594 		if (ret < 0)
2595 			goto err;
2596 	}
2597 
2598 	dualshock4_set_bt_poll_interval(ds4, DS4_BT_DEFAULT_POLL_INTERVAL_MS);
2599 
2600 	ret = ps_device_set_player_id(ps_dev);
2601 	if (ret) {
2602 		hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret);
2603 		goto err;
2604 	}
2605 
2606 	dualshock4_set_default_lightbar_colors(ds4);
2607 
2608 	/*
2609 	 * Reporting hardware and firmware is important as there are frequent updates, which
2610 	 * can change behavior.
2611 	 */
2612 	hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n",
2613 			ds4->base.hw_version, ds4->base.fw_version);
2614 	return &ds4->base;
2615 
2616 err:
2617 	ps_devices_list_remove(ps_dev);
2618 	return ERR_PTR(ret);
2619 }
2620 
2621 static int ps_raw_event(struct hid_device *hdev, struct hid_report *report,
2622 		u8 *data, int size)
2623 {
2624 	struct ps_device *dev = hid_get_drvdata(hdev);
2625 
2626 	if (dev && dev->parse_report)
2627 		return dev->parse_report(dev, report, data, size);
2628 
2629 	return 0;
2630 }
2631 
2632 static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id)
2633 {
2634 	struct ps_device *dev;
2635 	int ret;
2636 
2637 	ret = hid_parse(hdev);
2638 	if (ret) {
2639 		hid_err(hdev, "Parse failed\n");
2640 		return ret;
2641 	}
2642 
2643 	ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW);
2644 	if (ret) {
2645 		hid_err(hdev, "Failed to start HID device\n");
2646 		return ret;
2647 	}
2648 
2649 	ret = hid_hw_open(hdev);
2650 	if (ret) {
2651 		hid_err(hdev, "Failed to open HID device\n");
2652 		goto err_stop;
2653 	}
2654 
2655 	if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER ||
2656 		hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_2 ||
2657 		hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) {
2658 		dev = dualshock4_create(hdev);
2659 		if (IS_ERR(dev)) {
2660 			hid_err(hdev, "Failed to create dualshock4.\n");
2661 			ret = PTR_ERR(dev);
2662 			goto err_close;
2663 		}
2664 	} else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER ||
2665 		hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) {
2666 		dev = dualsense_create(hdev);
2667 		if (IS_ERR(dev)) {
2668 			hid_err(hdev, "Failed to create dualsense.\n");
2669 			ret = PTR_ERR(dev);
2670 			goto err_close;
2671 		}
2672 	}
2673 
2674 	return ret;
2675 
2676 err_close:
2677 	hid_hw_close(hdev);
2678 err_stop:
2679 	hid_hw_stop(hdev);
2680 	return ret;
2681 }
2682 
2683 static void ps_remove(struct hid_device *hdev)
2684 {
2685 	struct ps_device *dev = hid_get_drvdata(hdev);
2686 
2687 	ps_devices_list_remove(dev);
2688 	ps_device_release_player_id(dev);
2689 
2690 	if (dev->remove)
2691 		dev->remove(dev);
2692 
2693 	hid_hw_close(hdev);
2694 	hid_hw_stop(hdev);
2695 }
2696 
2697 static const struct hid_device_id ps_devices[] = {
2698 	/* Sony DualShock 4 controllers for PS4 */
2699 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
2700 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER) },
2701 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2) },
2702 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2) },
2703 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) },
2704 	/* Sony DualSense controllers for PS5 */
2705 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER) },
2706 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER) },
2707 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) },
2708 	{ HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) },
2709 	{ }
2710 };
2711 MODULE_DEVICE_TABLE(hid, ps_devices);
2712 
2713 static struct hid_driver ps_driver = {
2714 	.name		= "playstation",
2715 	.id_table	= ps_devices,
2716 	.probe		= ps_probe,
2717 	.remove		= ps_remove,
2718 	.raw_event	= ps_raw_event,
2719 	.driver = {
2720 		.dev_groups = ps_device_groups,
2721 	},
2722 };
2723 
2724 static int __init ps_init(void)
2725 {
2726 	return hid_register_driver(&ps_driver);
2727 }
2728 
2729 static void __exit ps_exit(void)
2730 {
2731 	hid_unregister_driver(&ps_driver);
2732 	ida_destroy(&ps_player_id_allocator);
2733 }
2734 
2735 module_init(ps_init);
2736 module_exit(ps_exit);
2737 
2738 MODULE_AUTHOR("Sony Interactive Entertainment");
2739 MODULE_DESCRIPTION("HID Driver for PlayStation peripherals.");
2740 MODULE_LICENSE("GPL");
2741