1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID driver for Sony DualSense(TM) controller. 4 * 5 * Copyright (c) 2020-2022 Sony Interactive Entertainment 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/bits.h> 10 #include <linux/cleanup.h> 11 #include <linux/crc32.h> 12 #include <linux/device.h> 13 #include <linux/hid.h> 14 #include <linux/idr.h> 15 #include <linux/input/mt.h> 16 #include <linux/leds.h> 17 #include <linux/led-class-multicolor.h> 18 #include <linux/module.h> 19 20 #include <linux/unaligned.h> 21 22 #include "hid-ids.h" 23 24 /* List of connected playstation devices. */ 25 static DEFINE_MUTEX(ps_devices_lock); 26 static LIST_HEAD(ps_devices_list); 27 28 static DEFINE_IDA(ps_player_id_allocator); 29 30 #define HID_PLAYSTATION_VERSION_PATCH 0x8000 31 32 enum PS_TYPE { 33 PS_TYPE_PS4_DUALSHOCK4, 34 PS_TYPE_PS5_DUALSENSE, 35 }; 36 37 /* Base class for playstation devices. */ 38 struct ps_device { 39 struct list_head list; 40 struct hid_device *hdev; 41 spinlock_t lock; /* Sync between event handler and workqueue */ 42 43 u32 player_id; 44 45 struct power_supply_desc battery_desc; 46 struct power_supply *battery; 47 u8 battery_capacity; 48 int battery_status; 49 50 const char *input_dev_name; /* Name of primary input device. */ 51 u8 mac_address[6]; /* Note: stored in little endian order. */ 52 u32 hw_version; 53 u32 fw_version; 54 55 int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size); 56 void (*remove)(struct ps_device *dev); 57 }; 58 59 /* Calibration data for playstation motion sensors. */ 60 struct ps_calibration_data { 61 int abs_code; 62 short bias; 63 int sens_numer; 64 int sens_denom; 65 }; 66 67 struct ps_led_info { 68 const char *name; 69 const char *color; 70 int max_brightness; 71 enum led_brightness (*brightness_get)(struct led_classdev *cdev); 72 int (*brightness_set)(struct led_classdev *cdev, enum led_brightness); 73 int (*blink_set)(struct led_classdev *led, unsigned long *on, unsigned long *off); 74 }; 75 76 /* Seed values for DualShock4 / DualSense CRC32 for different report types. */ 77 #define PS_INPUT_CRC32_SEED 0xA1 78 #define PS_OUTPUT_CRC32_SEED 0xA2 79 #define PS_FEATURE_CRC32_SEED 0xA3 80 81 #define DS_INPUT_REPORT_USB 0x01 82 #define DS_INPUT_REPORT_USB_SIZE 64 83 #define DS_INPUT_REPORT_BT 0x31 84 #define DS_INPUT_REPORT_BT_SIZE 78 85 #define DS_OUTPUT_REPORT_USB 0x02 86 #define DS_OUTPUT_REPORT_USB_SIZE 63 87 #define DS_OUTPUT_REPORT_BT 0x31 88 #define DS_OUTPUT_REPORT_BT_SIZE 78 89 90 #define DS_FEATURE_REPORT_CALIBRATION 0x05 91 #define DS_FEATURE_REPORT_CALIBRATION_SIZE 41 92 #define DS_FEATURE_REPORT_PAIRING_INFO 0x09 93 #define DS_FEATURE_REPORT_PAIRING_INFO_SIZE 20 94 #define DS_FEATURE_REPORT_FIRMWARE_INFO 0x20 95 #define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE 64 96 97 /* Button masks for DualSense input report. */ 98 #define DS_BUTTONS0_HAT_SWITCH GENMASK(3, 0) 99 #define DS_BUTTONS0_SQUARE BIT(4) 100 #define DS_BUTTONS0_CROSS BIT(5) 101 #define DS_BUTTONS0_CIRCLE BIT(6) 102 #define DS_BUTTONS0_TRIANGLE BIT(7) 103 #define DS_BUTTONS1_L1 BIT(0) 104 #define DS_BUTTONS1_R1 BIT(1) 105 #define DS_BUTTONS1_L2 BIT(2) 106 #define DS_BUTTONS1_R2 BIT(3) 107 #define DS_BUTTONS1_CREATE BIT(4) 108 #define DS_BUTTONS1_OPTIONS BIT(5) 109 #define DS_BUTTONS1_L3 BIT(6) 110 #define DS_BUTTONS1_R3 BIT(7) 111 #define DS_BUTTONS2_PS_HOME BIT(0) 112 #define DS_BUTTONS2_TOUCHPAD BIT(1) 113 #define DS_BUTTONS2_MIC_MUTE BIT(2) 114 115 /* Status fields of DualSense input report. */ 116 #define DS_STATUS0_BATTERY_CAPACITY GENMASK(3, 0) 117 #define DS_STATUS0_CHARGING GENMASK(7, 4) 118 #define DS_STATUS1_HP_DETECT BIT(0) 119 #define DS_STATUS1_MIC_DETECT BIT(1) 120 #define DS_STATUS1_JACK_DETECT (DS_STATUS1_HP_DETECT | DS_STATUS1_MIC_DETECT) 121 #define DS_STATUS1_MIC_MUTE BIT(2) 122 123 /* Feature version from DualSense Firmware Info report. */ 124 #define DS_FEATURE_VERSION_MINOR GENMASK(7, 0) 125 #define DS_FEATURE_VERSION_MAJOR GENMASK(15, 8) 126 #define DS_FEATURE_VERSION(major, minor) (FIELD_PREP(DS_FEATURE_VERSION_MAJOR, major) | \ 127 FIELD_PREP(DS_FEATURE_VERSION_MINOR, minor)) 128 /* 129 * Status of a DualSense touch point contact. 130 * Contact IDs, with highest bit set are 'inactive' 131 * and any associated data is then invalid. 132 */ 133 #define DS_TOUCH_POINT_INACTIVE BIT(7) 134 #define DS_TOUCH_POINT_X_LO GENMASK(7, 0) 135 #define DS_TOUCH_POINT_X_HI GENMASK(11, 8) 136 #define DS_TOUCH_POINT_X(hi, lo) (FIELD_PREP(DS_TOUCH_POINT_X_HI, hi) | \ 137 FIELD_PREP(DS_TOUCH_POINT_X_LO, lo)) 138 #define DS_TOUCH_POINT_Y_LO GENMASK(3, 0) 139 #define DS_TOUCH_POINT_Y_HI GENMASK(11, 4) 140 #define DS_TOUCH_POINT_Y(hi, lo) (FIELD_PREP(DS_TOUCH_POINT_Y_HI, hi) | \ 141 FIELD_PREP(DS_TOUCH_POINT_Y_LO, lo)) 142 143 /* Magic value required in tag field of Bluetooth output report. */ 144 #define DS_OUTPUT_TAG 0x10 145 #define DS_OUTPUT_SEQ_TAG GENMASK(3, 0) 146 #define DS_OUTPUT_SEQ_NO GENMASK(7, 4) 147 /* Flags for DualSense output report. */ 148 #define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION BIT(0) 149 #define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT BIT(1) 150 #define DS_OUTPUT_VALID_FLAG0_SPEAKER_VOLUME_ENABLE BIT(5) 151 #define DS_OUTPUT_VALID_FLAG0_MIC_VOLUME_ENABLE BIT(6) 152 #define DS_OUTPUT_VALID_FLAG0_AUDIO_CONTROL_ENABLE BIT(7) 153 #define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE BIT(0) 154 #define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE BIT(1) 155 #define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE BIT(2) 156 #define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS BIT(3) 157 #define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE BIT(4) 158 #define DS_OUTPUT_VALID_FLAG1_AUDIO_CONTROL2_ENABLE BIT(7) 159 #define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE BIT(1) 160 #define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2 BIT(2) 161 #define DS_OUTPUT_AUDIO_FLAGS_OUTPUT_PATH_SEL GENMASK(5, 4) 162 #define DS_OUTPUT_AUDIO_FLAGS2_SP_PREAMP_GAIN GENMASK(2, 0) 163 #define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE BIT(4) 164 #define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT BIT(1) 165 166 /* DualSense hardware limits */ 167 #define DS_ACC_RES_PER_G 8192 168 #define DS_ACC_RANGE (4 * DS_ACC_RES_PER_G) 169 #define DS_GYRO_RES_PER_DEG_S 1024 170 #define DS_GYRO_RANGE (2048 * DS_GYRO_RES_PER_DEG_S) 171 #define DS_TOUCHPAD_WIDTH 1920 172 #define DS_TOUCHPAD_HEIGHT 1080 173 174 struct dualsense { 175 struct ps_device base; 176 struct input_dev *gamepad; 177 struct input_dev *sensors; 178 struct input_dev *touchpad; 179 struct input_dev *jack; 180 181 /* Update version is used as a feature/capability version. */ 182 u16 update_version; 183 184 /* Calibration data for accelerometer and gyroscope. */ 185 struct ps_calibration_data accel_calib_data[3]; 186 struct ps_calibration_data gyro_calib_data[3]; 187 188 /* Timestamp for sensor data */ 189 bool sensor_timestamp_initialized; 190 u32 prev_sensor_timestamp; 191 u32 sensor_timestamp_us; 192 193 /* Compatible rumble state */ 194 bool use_vibration_v2; 195 bool update_rumble; 196 u8 motor_left; 197 u8 motor_right; 198 199 /* RGB lightbar */ 200 struct led_classdev_mc lightbar; 201 bool update_lightbar; 202 u8 lightbar_red; 203 u8 lightbar_green; 204 u8 lightbar_blue; 205 206 /* Audio Jack plugged state */ 207 u8 plugged_state; 208 u8 prev_plugged_state; 209 bool prev_plugged_state_valid; 210 211 /* Microphone */ 212 bool update_mic_mute; 213 bool mic_muted; 214 bool last_btn_mic_state; 215 216 /* Player leds */ 217 bool update_player_leds; 218 u8 player_leds_state; 219 struct led_classdev player_leds[5]; 220 221 struct work_struct output_worker; 222 bool output_worker_initialized; 223 void *output_report_dmabuf; 224 u8 output_seq; /* Sequence number for output report. */ 225 }; 226 227 struct dualsense_touch_point { 228 u8 contact; 229 u8 x_lo; 230 u8 x_hi:4, y_lo:4; 231 u8 y_hi; 232 } __packed; 233 static_assert(sizeof(struct dualsense_touch_point) == 4); 234 235 /* Main DualSense input report excluding any BT/USB specific headers. */ 236 struct dualsense_input_report { 237 u8 x, y; 238 u8 rx, ry; 239 u8 z, rz; 240 u8 seq_number; 241 u8 buttons[4]; 242 u8 reserved[4]; 243 244 /* Motion sensors */ 245 __le16 gyro[3]; /* x, y, z */ 246 __le16 accel[3]; /* x, y, z */ 247 __le32 sensor_timestamp; 248 u8 reserved2; 249 250 /* Touchpad */ 251 struct dualsense_touch_point points[2]; 252 253 u8 reserved3[12]; 254 u8 status[3]; 255 u8 reserved4[8]; 256 } __packed; 257 /* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */ 258 static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1); 259 260 /* Common data between DualSense BT/USB main output report. */ 261 struct dualsense_output_report_common { 262 u8 valid_flag0; 263 u8 valid_flag1; 264 265 /* For DualShock 4 compatibility mode. */ 266 u8 motor_right; 267 u8 motor_left; 268 269 /* Audio controls */ 270 u8 headphone_volume; /* 0x0 - 0x7f */ 271 u8 speaker_volume; /* 0x0 - 0xff */ 272 u8 mic_volume; /* 0x0 - 0x40 */ 273 u8 audio_control; 274 u8 mute_button_led; 275 276 u8 power_save_control; 277 u8 reserved2[27]; 278 u8 audio_control2; 279 280 /* LEDs and lightbar */ 281 u8 valid_flag2; 282 u8 reserved3[2]; 283 u8 lightbar_setup; 284 u8 led_brightness; 285 u8 player_leds; 286 u8 lightbar_red; 287 u8 lightbar_green; 288 u8 lightbar_blue; 289 } __packed; 290 static_assert(sizeof(struct dualsense_output_report_common) == 47); 291 292 struct dualsense_output_report_bt { 293 u8 report_id; /* 0x31 */ 294 u8 seq_tag; 295 u8 tag; 296 struct dualsense_output_report_common common; 297 u8 reserved[24]; 298 __le32 crc32; 299 } __packed; 300 static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE); 301 302 struct dualsense_output_report_usb { 303 u8 report_id; /* 0x02 */ 304 struct dualsense_output_report_common common; 305 u8 reserved[15]; 306 } __packed; 307 static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE); 308 309 /* 310 * The DualSense has a main output report used to control most features. It is 311 * largely the same between Bluetooth and USB except for different headers and CRC. 312 * This structure hide the differences between the two to simplify sending output reports. 313 */ 314 struct dualsense_output_report { 315 u8 *data; /* Start of data */ 316 u8 len; /* Size of output report */ 317 318 /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */ 319 struct dualsense_output_report_bt *bt; 320 /* Points to USB data payload in case for a USB report else NULL. */ 321 struct dualsense_output_report_usb *usb; 322 /* Points to common section of report, so past any headers. */ 323 struct dualsense_output_report_common *common; 324 }; 325 326 #define DS4_INPUT_REPORT_USB 0x01 327 #define DS4_INPUT_REPORT_USB_SIZE 64 328 #define DS4_INPUT_REPORT_BT_MINIMAL 0x01 329 #define DS4_INPUT_REPORT_BT_MINIMAL_SIZE 10 330 #define DS4_INPUT_REPORT_BT 0x11 331 #define DS4_INPUT_REPORT_BT_SIZE 78 332 #define DS4_OUTPUT_REPORT_USB 0x05 333 #define DS4_OUTPUT_REPORT_USB_SIZE 32 334 #define DS4_OUTPUT_REPORT_BT 0x11 335 #define DS4_OUTPUT_REPORT_BT_SIZE 78 336 337 #define DS4_FEATURE_REPORT_CALIBRATION 0x02 338 #define DS4_FEATURE_REPORT_CALIBRATION_SIZE 37 339 #define DS4_FEATURE_REPORT_CALIBRATION_BT 0x05 340 #define DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE 41 341 #define DS4_FEATURE_REPORT_FIRMWARE_INFO 0xa3 342 #define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE 49 343 #define DS4_FEATURE_REPORT_PAIRING_INFO 0x12 344 #define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE 16 345 346 /* 347 * Status of a DualShock4 touch point contact. 348 * Contact IDs, with highest bit set are 'inactive' 349 * and any associated data is then invalid. 350 */ 351 #define DS4_TOUCH_POINT_INACTIVE BIT(7) 352 #define DS4_TOUCH_POINT_X(hi, lo) DS_TOUCH_POINT_X(hi, lo) 353 #define DS4_TOUCH_POINT_Y(hi, lo) DS_TOUCH_POINT_Y(hi, lo) 354 355 /* Status field of DualShock4 input report. */ 356 #define DS4_STATUS0_BATTERY_CAPACITY GENMASK(3, 0) 357 #define DS4_STATUS0_CABLE_STATE BIT(4) 358 /* Battery status within batery_status field. */ 359 #define DS4_BATTERY_STATUS_FULL 11 360 /* Status1 bit2 contains dongle connection state: 361 * 0 = connected 362 * 1 = disconnected 363 */ 364 #define DS4_STATUS1_DONGLE_STATE BIT(2) 365 366 /* The lower 6 bits of hw_control of the Bluetooth main output report 367 * control the interval at which Dualshock 4 reports data: 368 * 0x00 - 1ms 369 * 0x01 - 1ms 370 * 0x02 - 2ms 371 * 0x3E - 62ms 372 * 0x3F - disabled 373 */ 374 #define DS4_OUTPUT_HWCTL_BT_POLL_MASK 0x3F 375 /* Default to 4ms poll interval, which is same as USB (not adjustable). */ 376 #define DS4_BT_DEFAULT_POLL_INTERVAL_MS 4 377 #define DS4_OUTPUT_HWCTL_CRC32 0x40 378 #define DS4_OUTPUT_HWCTL_HID 0x80 379 380 /* Flags for DualShock4 output report. */ 381 #define DS4_OUTPUT_VALID_FLAG0_MOTOR 0x01 382 #define DS4_OUTPUT_VALID_FLAG0_LED 0x02 383 #define DS4_OUTPUT_VALID_FLAG0_LED_BLINK 0x04 384 385 /* DualShock4 hardware limits */ 386 #define DS4_ACC_RES_PER_G 8192 387 #define DS4_ACC_RANGE (4 * DS_ACC_RES_PER_G) 388 #define DS4_GYRO_RES_PER_DEG_S 1024 389 #define DS4_GYRO_RANGE (2048 * DS_GYRO_RES_PER_DEG_S) 390 #define DS4_LIGHTBAR_MAX_BLINK 255 /* 255 centiseconds */ 391 #define DS4_TOUCHPAD_WIDTH 1920 392 #define DS4_TOUCHPAD_HEIGHT 942 393 394 enum dualshock4_dongle_state { 395 DONGLE_DISCONNECTED, 396 DONGLE_CALIBRATING, 397 DONGLE_CONNECTED, 398 DONGLE_DISABLED 399 }; 400 401 struct dualshock4 { 402 struct ps_device base; 403 struct input_dev *gamepad; 404 struct input_dev *sensors; 405 struct input_dev *touchpad; 406 407 /* Calibration data for accelerometer and gyroscope. */ 408 struct ps_calibration_data accel_calib_data[3]; 409 struct ps_calibration_data gyro_calib_data[3]; 410 411 /* Only used on dongle to track state transitions. */ 412 enum dualshock4_dongle_state dongle_state; 413 /* Used during calibration. */ 414 struct work_struct dongle_hotplug_worker; 415 416 /* Timestamp for sensor data */ 417 bool sensor_timestamp_initialized; 418 u32 prev_sensor_timestamp; 419 u32 sensor_timestamp_us; 420 421 /* Bluetooth poll interval */ 422 bool update_bt_poll_interval; 423 u8 bt_poll_interval; 424 425 bool update_rumble; 426 u8 motor_left; 427 u8 motor_right; 428 429 /* Lightbar leds */ 430 bool update_lightbar; 431 bool update_lightbar_blink; 432 bool lightbar_enabled; /* For use by global LED control. */ 433 u8 lightbar_red; 434 u8 lightbar_green; 435 u8 lightbar_blue; 436 u8 lightbar_blink_on; /* In increments of 10ms. */ 437 u8 lightbar_blink_off; /* In increments of 10ms. */ 438 struct led_classdev lightbar_leds[4]; 439 440 struct work_struct output_worker; 441 bool output_worker_initialized; 442 void *output_report_dmabuf; 443 }; 444 445 struct dualshock4_touch_point { 446 u8 contact; 447 u8 x_lo; 448 u8 x_hi:4, y_lo:4; 449 u8 y_hi; 450 } __packed; 451 static_assert(sizeof(struct dualshock4_touch_point) == 4); 452 453 struct dualshock4_touch_report { 454 u8 timestamp; 455 struct dualshock4_touch_point points[2]; 456 } __packed; 457 static_assert(sizeof(struct dualshock4_touch_report) == 9); 458 459 /* Main DualShock4 input report excluding any BT/USB specific headers. */ 460 struct dualshock4_input_report_common { 461 u8 x, y; 462 u8 rx, ry; 463 u8 buttons[3]; 464 u8 z, rz; 465 466 /* Motion sensors */ 467 __le16 sensor_timestamp; 468 u8 sensor_temperature; 469 __le16 gyro[3]; /* x, y, z */ 470 __le16 accel[3]; /* x, y, z */ 471 u8 reserved2[5]; 472 473 u8 status[2]; 474 u8 reserved3; 475 } __packed; 476 static_assert(sizeof(struct dualshock4_input_report_common) == 32); 477 478 struct dualshock4_input_report_usb { 479 u8 report_id; /* 0x01 */ 480 struct dualshock4_input_report_common common; 481 u8 num_touch_reports; 482 struct dualshock4_touch_report touch_reports[3]; 483 u8 reserved[3]; 484 } __packed; 485 static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE); 486 487 struct dualshock4_input_report_bt { 488 u8 report_id; /* 0x11 */ 489 u8 reserved[2]; 490 struct dualshock4_input_report_common common; 491 u8 num_touch_reports; 492 struct dualshock4_touch_report touch_reports[4]; /* BT has 4 compared to 3 for USB */ 493 u8 reserved2[2]; 494 __le32 crc32; 495 } __packed; 496 static_assert(sizeof(struct dualshock4_input_report_bt) == DS4_INPUT_REPORT_BT_SIZE); 497 498 /* Common data between Bluetooth and USB DualShock4 output reports. */ 499 struct dualshock4_output_report_common { 500 u8 valid_flag0; 501 u8 valid_flag1; 502 503 u8 reserved; 504 505 u8 motor_right; 506 u8 motor_left; 507 508 u8 lightbar_red; 509 u8 lightbar_green; 510 u8 lightbar_blue; 511 u8 lightbar_blink_on; 512 u8 lightbar_blink_off; 513 } __packed; 514 515 struct dualshock4_output_report_usb { 516 u8 report_id; /* 0x5 */ 517 struct dualshock4_output_report_common common; 518 u8 reserved[21]; 519 } __packed; 520 static_assert(sizeof(struct dualshock4_output_report_usb) == DS4_OUTPUT_REPORT_USB_SIZE); 521 522 struct dualshock4_output_report_bt { 523 u8 report_id; /* 0x11 */ 524 u8 hw_control; 525 u8 audio_control; 526 struct dualshock4_output_report_common common; 527 u8 reserved[61]; 528 __le32 crc32; 529 } __packed; 530 static_assert(sizeof(struct dualshock4_output_report_bt) == DS4_OUTPUT_REPORT_BT_SIZE); 531 532 /* 533 * The DualShock4 has a main output report used to control most features. It is 534 * largely the same between Bluetooth and USB except for different headers and CRC. 535 * This structure hide the differences between the two to simplify sending output reports. 536 */ 537 struct dualshock4_output_report { 538 u8 *data; /* Start of data */ 539 u8 len; /* Size of output report */ 540 541 /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */ 542 struct dualshock4_output_report_bt *bt; 543 /* Points to USB data payload in case for a USB report else NULL. */ 544 struct dualshock4_output_report_usb *usb; 545 /* Points to common section of report, so past any headers. */ 546 struct dualshock4_output_report_common *common; 547 }; 548 549 /* 550 * Common gamepad buttons across DualShock 3 / 4 and DualSense. 551 * Note: for device with a touchpad, touchpad button is not included 552 * as it will be part of the touchpad device. 553 */ 554 static const int ps_gamepad_buttons[] = { 555 BTN_WEST, /* Square */ 556 BTN_NORTH, /* Triangle */ 557 BTN_EAST, /* Circle */ 558 BTN_SOUTH, /* Cross */ 559 BTN_TL, /* L1 */ 560 BTN_TR, /* R1 */ 561 BTN_TL2, /* L2 */ 562 BTN_TR2, /* R2 */ 563 BTN_SELECT, /* Create (PS5) / Share (PS4) */ 564 BTN_START, /* Option */ 565 BTN_THUMBL, /* L3 */ 566 BTN_THUMBR, /* R3 */ 567 BTN_MODE, /* PS Home */ 568 }; 569 570 static const struct {int x; int y; } ps_gamepad_hat_mapping[] = { 571 {0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, 572 {0, 0}, 573 }; 574 575 static int dualshock4_get_calibration_data(struct dualshock4 *ds4); 576 static inline void dualsense_schedule_work(struct dualsense *ds); 577 static inline void dualshock4_schedule_work(struct dualshock4 *ds4); 578 static void dualsense_set_lightbar(struct dualsense *ds, u8 red, u8 green, u8 blue); 579 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4); 580 581 /* 582 * Add a new ps_device to ps_devices if it doesn't exist. 583 * Return error on duplicate device, which can happen if the same 584 * device is connected using both Bluetooth and USB. 585 */ 586 static int ps_devices_list_add(struct ps_device *dev) 587 { 588 struct ps_device *entry; 589 590 guard(mutex)(&ps_devices_lock); 591 592 list_for_each_entry(entry, &ps_devices_list, list) { 593 if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) { 594 hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n", 595 dev->mac_address); 596 return -EEXIST; 597 } 598 } 599 600 list_add_tail(&dev->list, &ps_devices_list); 601 return 0; 602 } 603 604 static int ps_devices_list_remove(struct ps_device *dev) 605 { 606 guard(mutex)(&ps_devices_lock); 607 608 list_del(&dev->list); 609 return 0; 610 } 611 612 static int ps_device_set_player_id(struct ps_device *dev) 613 { 614 int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL); 615 616 if (ret < 0) 617 return ret; 618 619 dev->player_id = ret; 620 return 0; 621 } 622 623 static void ps_device_release_player_id(struct ps_device *dev) 624 { 625 ida_free(&ps_player_id_allocator, dev->player_id); 626 627 dev->player_id = U32_MAX; 628 } 629 630 static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev, 631 const char *name_suffix) 632 { 633 struct input_dev *input_dev; 634 635 input_dev = devm_input_allocate_device(&hdev->dev); 636 if (!input_dev) 637 return ERR_PTR(-ENOMEM); 638 639 input_dev->id.bustype = hdev->bus; 640 input_dev->id.vendor = hdev->vendor; 641 input_dev->id.product = hdev->product; 642 input_dev->id.version = hdev->version; 643 input_dev->uniq = hdev->uniq; 644 645 if (name_suffix) { 646 input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s", 647 hdev->name, name_suffix); 648 if (!input_dev->name) 649 return ERR_PTR(-ENOMEM); 650 } else { 651 input_dev->name = hdev->name; 652 } 653 654 input_set_drvdata(input_dev, hdev); 655 656 return input_dev; 657 } 658 659 static enum power_supply_property ps_power_supply_props[] = { 660 POWER_SUPPLY_PROP_STATUS, 661 POWER_SUPPLY_PROP_PRESENT, 662 POWER_SUPPLY_PROP_CAPACITY, 663 POWER_SUPPLY_PROP_SCOPE, 664 }; 665 666 static int ps_battery_get_property(struct power_supply *psy, 667 enum power_supply_property psp, 668 union power_supply_propval *val) 669 { 670 struct ps_device *dev = power_supply_get_drvdata(psy); 671 u8 battery_capacity; 672 int battery_status; 673 int ret = 0; 674 675 scoped_guard(spinlock_irqsave, &dev->lock) { 676 battery_capacity = dev->battery_capacity; 677 battery_status = dev->battery_status; 678 } 679 680 switch (psp) { 681 case POWER_SUPPLY_PROP_STATUS: 682 val->intval = battery_status; 683 break; 684 case POWER_SUPPLY_PROP_PRESENT: 685 val->intval = 1; 686 break; 687 case POWER_SUPPLY_PROP_CAPACITY: 688 val->intval = battery_capacity; 689 break; 690 case POWER_SUPPLY_PROP_SCOPE: 691 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 692 break; 693 default: 694 ret = -EINVAL; 695 break; 696 } 697 698 return ret; 699 } 700 701 static int ps_device_register_battery(struct ps_device *dev) 702 { 703 struct power_supply *battery; 704 struct power_supply_config battery_cfg = { .drv_data = dev }; 705 int ret; 706 707 dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY; 708 dev->battery_desc.properties = ps_power_supply_props; 709 dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props); 710 dev->battery_desc.get_property = ps_battery_get_property; 711 dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL, 712 "ps-controller-battery-%pMR", dev->mac_address); 713 if (!dev->battery_desc.name) 714 return -ENOMEM; 715 716 battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg); 717 if (IS_ERR(battery)) { 718 ret = PTR_ERR(battery); 719 hid_err(dev->hdev, "Unable to register battery device: %d\n", ret); 720 return ret; 721 } 722 dev->battery = battery; 723 724 ret = power_supply_powers(dev->battery, &dev->hdev->dev); 725 if (ret) { 726 hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret); 727 return ret; 728 } 729 730 return 0; 731 } 732 733 /* Compute crc32 of HID data and compare against expected CRC. */ 734 static bool ps_check_crc32(u8 seed, u8 *data, size_t len, u32 report_crc) 735 { 736 u32 crc; 737 738 crc = crc32_le(0xFFFFFFFF, &seed, 1); 739 crc = ~crc32_le(crc, data, len); 740 741 return crc == report_crc; 742 } 743 744 static struct input_dev * 745 ps_gamepad_create(struct hid_device *hdev, 746 int (*play_effect)(struct input_dev *, void *, struct ff_effect *)) 747 { 748 struct input_dev *gamepad; 749 unsigned int i; 750 int ret; 751 752 gamepad = ps_allocate_input_dev(hdev, NULL); 753 if (IS_ERR(gamepad)) 754 return ERR_CAST(gamepad); 755 756 /* Set initial resting state for joysticks to 128 (center) */ 757 input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0); 758 gamepad->absinfo[ABS_X].value = 128; 759 input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0); 760 gamepad->absinfo[ABS_Y].value = 128; 761 input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0); 762 input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0); 763 gamepad->absinfo[ABS_RX].value = 128; 764 input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0); 765 gamepad->absinfo[ABS_RY].value = 128; 766 input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0); 767 768 input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0); 769 input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0); 770 771 for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++) 772 input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]); 773 774 #if IS_ENABLED(CONFIG_PLAYSTATION_FF) 775 if (play_effect) { 776 input_set_capability(gamepad, EV_FF, FF_RUMBLE); 777 input_ff_create_memless(gamepad, NULL, play_effect); 778 } 779 #endif 780 781 ret = input_register_device(gamepad); 782 if (ret) 783 return ERR_PTR(ret); 784 785 return gamepad; 786 } 787 788 static int ps_get_report(struct hid_device *hdev, u8 report_id, u8 *buf, 789 size_t size, bool check_crc) 790 { 791 int ret; 792 793 ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT, 794 HID_REQ_GET_REPORT); 795 if (ret < 0) { 796 hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret); 797 return ret; 798 } 799 800 if (ret != size) { 801 hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret); 802 return -EINVAL; 803 } 804 805 if (buf[0] != report_id) { 806 hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]); 807 return -EINVAL; 808 } 809 810 if (hdev->bus == BUS_BLUETOOTH && check_crc) { 811 /* Last 4 bytes contains crc32. */ 812 u8 crc_offset = size - 4; 813 u32 report_crc = get_unaligned_le32(&buf[crc_offset]); 814 815 if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) { 816 hid_err(hdev, "CRC check failed for reportID=%d\n", report_id); 817 return -EILSEQ; 818 } 819 } 820 821 return 0; 822 } 823 824 static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led, 825 const struct ps_led_info *led_info) 826 { 827 int ret; 828 829 if (led_info->name) { 830 led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s:%s", 831 ps_dev->input_dev_name, led_info->color, 832 led_info->name); 833 } else { 834 /* Backwards compatible mode for hid-sony, but not compliant 835 * with LED class spec. 836 */ 837 led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s", 838 ps_dev->input_dev_name, led_info->color); 839 } 840 841 if (!led->name) 842 return -ENOMEM; 843 844 led->brightness = 0; 845 led->max_brightness = led_info->max_brightness; 846 led->flags = LED_CORE_SUSPENDRESUME; 847 led->brightness_get = led_info->brightness_get; 848 led->brightness_set_blocking = led_info->brightness_set; 849 led->blink_set = led_info->blink_set; 850 851 ret = devm_led_classdev_register(&ps_dev->hdev->dev, led); 852 if (ret) { 853 hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret); 854 return ret; 855 } 856 857 return 0; 858 } 859 860 /* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */ 861 static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev, 862 int (*brightness_set)(struct led_classdev *, enum led_brightness)) 863 { 864 struct hid_device *hdev = ps_dev->hdev; 865 struct mc_subled *mc_led_info; 866 struct led_classdev *led_cdev; 867 int ret; 868 869 mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info), 870 GFP_KERNEL | __GFP_ZERO); 871 if (!mc_led_info) 872 return -ENOMEM; 873 874 mc_led_info[0].color_index = LED_COLOR_ID_RED; 875 mc_led_info[1].color_index = LED_COLOR_ID_GREEN; 876 mc_led_info[2].color_index = LED_COLOR_ID_BLUE; 877 878 lightbar_mc_dev->subled_info = mc_led_info; 879 lightbar_mc_dev->num_colors = 3; 880 881 led_cdev = &lightbar_mc_dev->led_cdev; 882 led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator", 883 ps_dev->input_dev_name); 884 if (!led_cdev->name) 885 return -ENOMEM; 886 led_cdev->brightness = 255; 887 led_cdev->max_brightness = 255; 888 led_cdev->brightness_set_blocking = brightness_set; 889 890 ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev); 891 if (ret < 0) { 892 hid_err(hdev, "Cannot register multicolor LED device\n"); 893 return ret; 894 } 895 896 return 0; 897 } 898 899 static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range, 900 int accel_res, int gyro_range, int gyro_res) 901 { 902 struct input_dev *sensors; 903 int ret; 904 905 sensors = ps_allocate_input_dev(hdev, "Motion Sensors"); 906 if (IS_ERR(sensors)) 907 return ERR_CAST(sensors); 908 909 __set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit); 910 __set_bit(EV_MSC, sensors->evbit); 911 __set_bit(MSC_TIMESTAMP, sensors->mscbit); 912 913 /* Accelerometer */ 914 input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0); 915 input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0); 916 input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0); 917 input_abs_set_res(sensors, ABS_X, accel_res); 918 input_abs_set_res(sensors, ABS_Y, accel_res); 919 input_abs_set_res(sensors, ABS_Z, accel_res); 920 921 /* Gyroscope */ 922 input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0); 923 input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0); 924 input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0); 925 input_abs_set_res(sensors, ABS_RX, gyro_res); 926 input_abs_set_res(sensors, ABS_RY, gyro_res); 927 input_abs_set_res(sensors, ABS_RZ, gyro_res); 928 929 ret = input_register_device(sensors); 930 if (ret) 931 return ERR_PTR(ret); 932 933 return sensors; 934 } 935 936 static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width, 937 int height, unsigned int num_contacts) 938 { 939 struct input_dev *touchpad; 940 int ret; 941 942 touchpad = ps_allocate_input_dev(hdev, "Touchpad"); 943 if (IS_ERR(touchpad)) 944 return ERR_CAST(touchpad); 945 946 /* Map button underneath touchpad to BTN_LEFT. */ 947 input_set_capability(touchpad, EV_KEY, BTN_LEFT); 948 __set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit); 949 950 input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0); 951 input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0); 952 953 ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER); 954 if (ret) 955 return ERR_PTR(ret); 956 957 ret = input_register_device(touchpad); 958 if (ret) 959 return ERR_PTR(ret); 960 961 return touchpad; 962 } 963 964 static struct input_dev *ps_headset_jack_create(struct hid_device *hdev) 965 { 966 struct input_dev *jack; 967 int ret; 968 969 jack = ps_allocate_input_dev(hdev, "Headset Jack"); 970 if (IS_ERR(jack)) 971 return ERR_CAST(jack); 972 973 input_set_capability(jack, EV_SW, SW_HEADPHONE_INSERT); 974 input_set_capability(jack, EV_SW, SW_MICROPHONE_INSERT); 975 976 ret = input_register_device(jack); 977 if (ret) 978 return ERR_PTR(ret); 979 980 return jack; 981 } 982 983 static ssize_t firmware_version_show(struct device *dev, 984 struct device_attribute *attr, char *buf) 985 { 986 struct hid_device *hdev = to_hid_device(dev); 987 struct ps_device *ps_dev = hid_get_drvdata(hdev); 988 989 return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version); 990 } 991 992 static DEVICE_ATTR_RO(firmware_version); 993 994 static ssize_t hardware_version_show(struct device *dev, 995 struct device_attribute *attr, char *buf) 996 { 997 struct hid_device *hdev = to_hid_device(dev); 998 struct ps_device *ps_dev = hid_get_drvdata(hdev); 999 1000 return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version); 1001 } 1002 1003 static DEVICE_ATTR_RO(hardware_version); 1004 1005 static struct attribute *ps_device_attrs[] = { 1006 &dev_attr_firmware_version.attr, 1007 &dev_attr_hardware_version.attr, 1008 NULL 1009 }; 1010 ATTRIBUTE_GROUPS(ps_device); 1011 1012 static int dualsense_get_calibration_data(struct dualsense *ds) 1013 { 1014 struct hid_device *hdev = ds->base.hdev; 1015 short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; 1016 short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; 1017 short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; 1018 short gyro_speed_plus, gyro_speed_minus; 1019 short acc_x_plus, acc_x_minus; 1020 short acc_y_plus, acc_y_minus; 1021 short acc_z_plus, acc_z_minus; 1022 int speed_2x; 1023 int range_2g; 1024 int ret = 0; 1025 int i; 1026 u8 *buf; 1027 1028 buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL); 1029 if (!buf) 1030 return -ENOMEM; 1031 1032 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf, 1033 DS_FEATURE_REPORT_CALIBRATION_SIZE, true); 1034 if (ret) { 1035 hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret); 1036 goto err_free; 1037 } 1038 1039 gyro_pitch_bias = get_unaligned_le16(&buf[1]); 1040 gyro_yaw_bias = get_unaligned_le16(&buf[3]); 1041 gyro_roll_bias = get_unaligned_le16(&buf[5]); 1042 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1043 gyro_pitch_minus = get_unaligned_le16(&buf[9]); 1044 gyro_yaw_plus = get_unaligned_le16(&buf[11]); 1045 gyro_yaw_minus = get_unaligned_le16(&buf[13]); 1046 gyro_roll_plus = get_unaligned_le16(&buf[15]); 1047 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1048 gyro_speed_plus = get_unaligned_le16(&buf[19]); 1049 gyro_speed_minus = get_unaligned_le16(&buf[21]); 1050 acc_x_plus = get_unaligned_le16(&buf[23]); 1051 acc_x_minus = get_unaligned_le16(&buf[25]); 1052 acc_y_plus = get_unaligned_le16(&buf[27]); 1053 acc_y_minus = get_unaligned_le16(&buf[29]); 1054 acc_z_plus = get_unaligned_le16(&buf[31]); 1055 acc_z_minus = get_unaligned_le16(&buf[33]); 1056 1057 /* 1058 * Set gyroscope calibration and normalization parameters. 1059 * Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s. 1060 */ 1061 speed_2x = (gyro_speed_plus + gyro_speed_minus); 1062 ds->gyro_calib_data[0].abs_code = ABS_RX; 1063 ds->gyro_calib_data[0].bias = 0; 1064 ds->gyro_calib_data[0].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1065 ds->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) + 1066 abs(gyro_pitch_minus - gyro_pitch_bias); 1067 1068 ds->gyro_calib_data[1].abs_code = ABS_RY; 1069 ds->gyro_calib_data[1].bias = 0; 1070 ds->gyro_calib_data[1].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1071 ds->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) + 1072 abs(gyro_yaw_minus - gyro_yaw_bias); 1073 1074 ds->gyro_calib_data[2].abs_code = ABS_RZ; 1075 ds->gyro_calib_data[2].bias = 0; 1076 ds->gyro_calib_data[2].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1077 ds->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) + 1078 abs(gyro_roll_minus - gyro_roll_bias); 1079 1080 /* 1081 * Sanity check gyro calibration data. This is needed to prevent crashes 1082 * during report handling of virtual, clone or broken devices not implementing 1083 * calibration data properly. 1084 */ 1085 for (i = 0; i < ARRAY_SIZE(ds->gyro_calib_data); i++) { 1086 if (ds->gyro_calib_data[i].sens_denom == 0) { 1087 hid_warn(hdev, 1088 "Invalid gyro calibration data for axis (%d), disabling calibration.", 1089 ds->gyro_calib_data[i].abs_code); 1090 ds->gyro_calib_data[i].bias = 0; 1091 ds->gyro_calib_data[i].sens_numer = DS_GYRO_RANGE; 1092 ds->gyro_calib_data[i].sens_denom = S16_MAX; 1093 } 1094 } 1095 1096 /* 1097 * Set accelerometer calibration and normalization parameters. 1098 * Data values will be normalized to 1/DS_ACC_RES_PER_G g. 1099 */ 1100 range_2g = acc_x_plus - acc_x_minus; 1101 ds->accel_calib_data[0].abs_code = ABS_X; 1102 ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2; 1103 ds->accel_calib_data[0].sens_numer = 2 * DS_ACC_RES_PER_G; 1104 ds->accel_calib_data[0].sens_denom = range_2g; 1105 1106 range_2g = acc_y_plus - acc_y_minus; 1107 ds->accel_calib_data[1].abs_code = ABS_Y; 1108 ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2; 1109 ds->accel_calib_data[1].sens_numer = 2 * DS_ACC_RES_PER_G; 1110 ds->accel_calib_data[1].sens_denom = range_2g; 1111 1112 range_2g = acc_z_plus - acc_z_minus; 1113 ds->accel_calib_data[2].abs_code = ABS_Z; 1114 ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2; 1115 ds->accel_calib_data[2].sens_numer = 2 * DS_ACC_RES_PER_G; 1116 ds->accel_calib_data[2].sens_denom = range_2g; 1117 1118 /* 1119 * Sanity check accelerometer calibration data. This is needed to prevent crashes 1120 * during report handling of virtual, clone or broken devices not implementing calibration 1121 * data properly. 1122 */ 1123 for (i = 0; i < ARRAY_SIZE(ds->accel_calib_data); i++) { 1124 if (ds->accel_calib_data[i].sens_denom == 0) { 1125 hid_warn(hdev, 1126 "Invalid accelerometer calibration data for axis (%d), disabling calibration.", 1127 ds->accel_calib_data[i].abs_code); 1128 ds->accel_calib_data[i].bias = 0; 1129 ds->accel_calib_data[i].sens_numer = DS_ACC_RANGE; 1130 ds->accel_calib_data[i].sens_denom = S16_MAX; 1131 } 1132 } 1133 1134 err_free: 1135 kfree(buf); 1136 return ret; 1137 } 1138 1139 static int dualsense_get_firmware_info(struct dualsense *ds) 1140 { 1141 u8 *buf; 1142 int ret; 1143 1144 buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL); 1145 if (!buf) 1146 return -ENOMEM; 1147 1148 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf, 1149 DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, true); 1150 if (ret) { 1151 hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret); 1152 goto err_free; 1153 } 1154 1155 ds->base.hw_version = get_unaligned_le32(&buf[24]); 1156 ds->base.fw_version = get_unaligned_le32(&buf[28]); 1157 1158 /* Update version is some kind of feature version. It is distinct from 1159 * the firmware version as there can be many different variations of a 1160 * controller over time with the same physical shell, but with different 1161 * PCBs and other internal changes. The update version (internal name) is 1162 * used as a means to detect what features are available and change behavior. 1163 * Note: the version is different between DualSense and DualSense Edge. 1164 */ 1165 ds->update_version = get_unaligned_le16(&buf[44]); 1166 1167 err_free: 1168 kfree(buf); 1169 return ret; 1170 } 1171 1172 static int dualsense_get_mac_address(struct dualsense *ds) 1173 { 1174 u8 *buf; 1175 int ret = 0; 1176 1177 buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL); 1178 if (!buf) 1179 return -ENOMEM; 1180 1181 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf, 1182 DS_FEATURE_REPORT_PAIRING_INFO_SIZE, true); 1183 if (ret) { 1184 hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret); 1185 goto err_free; 1186 } 1187 1188 memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address)); 1189 1190 err_free: 1191 kfree(buf); 1192 return ret; 1193 } 1194 1195 static int dualsense_lightbar_set_brightness(struct led_classdev *cdev, 1196 enum led_brightness brightness) 1197 { 1198 struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev); 1199 struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar); 1200 u8 red, green, blue; 1201 1202 led_mc_calc_color_components(mc_cdev, brightness); 1203 red = mc_cdev->subled_info[0].brightness; 1204 green = mc_cdev->subled_info[1].brightness; 1205 blue = mc_cdev->subled_info[2].brightness; 1206 1207 dualsense_set_lightbar(ds, red, green, blue); 1208 return 0; 1209 } 1210 1211 static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led) 1212 { 1213 struct hid_device *hdev = to_hid_device(led->dev->parent); 1214 struct dualsense *ds = hid_get_drvdata(hdev); 1215 1216 return !!(ds->player_leds_state & BIT(led - ds->player_leds)); 1217 } 1218 1219 static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value) 1220 { 1221 struct hid_device *hdev = to_hid_device(led->dev->parent); 1222 struct dualsense *ds = hid_get_drvdata(hdev); 1223 unsigned int led_index; 1224 1225 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1226 led_index = led - ds->player_leds; 1227 if (value == LED_OFF) 1228 ds->player_leds_state &= ~BIT(led_index); 1229 else 1230 ds->player_leds_state |= BIT(led_index); 1231 1232 ds->update_player_leds = true; 1233 } 1234 1235 dualsense_schedule_work(ds); 1236 1237 return 0; 1238 } 1239 1240 static void dualsense_init_output_report(struct dualsense *ds, 1241 struct dualsense_output_report *rp, void *buf) 1242 { 1243 struct hid_device *hdev = ds->base.hdev; 1244 1245 if (hdev->bus == BUS_BLUETOOTH) { 1246 struct dualsense_output_report_bt *bt = buf; 1247 1248 memset(bt, 0, sizeof(*bt)); 1249 bt->report_id = DS_OUTPUT_REPORT_BT; 1250 bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */ 1251 1252 /* 1253 * Highest 4-bit is a sequence number, which needs to be increased 1254 * every report. Lowest 4-bit is tag and can be zero for now. 1255 */ 1256 bt->seq_tag = FIELD_PREP(DS_OUTPUT_SEQ_NO, ds->output_seq) | 1257 FIELD_PREP(DS_OUTPUT_SEQ_TAG, 0x0); 1258 if (++ds->output_seq == 16) 1259 ds->output_seq = 0; 1260 1261 rp->data = buf; 1262 rp->len = sizeof(*bt); 1263 rp->bt = bt; 1264 rp->usb = NULL; 1265 rp->common = &bt->common; 1266 } else { /* USB */ 1267 struct dualsense_output_report_usb *usb = buf; 1268 1269 memset(usb, 0, sizeof(*usb)); 1270 usb->report_id = DS_OUTPUT_REPORT_USB; 1271 1272 rp->data = buf; 1273 rp->len = sizeof(*usb); 1274 rp->bt = NULL; 1275 rp->usb = usb; 1276 rp->common = &usb->common; 1277 } 1278 } 1279 1280 static inline void dualsense_schedule_work(struct dualsense *ds) 1281 { 1282 /* Using scoped_guard() instead of guard() to make sparse happy */ 1283 scoped_guard(spinlock_irqsave, &ds->base.lock) 1284 if (ds->output_worker_initialized) 1285 schedule_work(&ds->output_worker); 1286 } 1287 1288 /* 1289 * Helper function to send DualSense output reports. Applies a CRC at the end of a report 1290 * for Bluetooth reports. 1291 */ 1292 static void dualsense_send_output_report(struct dualsense *ds, 1293 struct dualsense_output_report *report) 1294 { 1295 struct hid_device *hdev = ds->base.hdev; 1296 1297 /* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */ 1298 if (report->bt) { 1299 u32 crc; 1300 u8 seed = PS_OUTPUT_CRC32_SEED; 1301 1302 crc = crc32_le(0xFFFFFFFF, &seed, 1); 1303 crc = ~crc32_le(crc, report->data, report->len - 4); 1304 1305 report->bt->crc32 = cpu_to_le32(crc); 1306 } 1307 1308 hid_hw_output_report(hdev, report->data, report->len); 1309 } 1310 1311 static void dualsense_output_worker(struct work_struct *work) 1312 { 1313 struct dualsense *ds = container_of(work, struct dualsense, output_worker); 1314 struct dualsense_output_report report; 1315 struct dualsense_output_report_common *common; 1316 1317 dualsense_init_output_report(ds, &report, ds->output_report_dmabuf); 1318 common = report.common; 1319 1320 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1321 if (ds->update_rumble) { 1322 /* Select classic rumble style haptics and enable it. */ 1323 common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT; 1324 if (ds->use_vibration_v2) 1325 common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2; 1326 else 1327 common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION; 1328 common->motor_left = ds->motor_left; 1329 common->motor_right = ds->motor_right; 1330 ds->update_rumble = false; 1331 } 1332 1333 if (ds->update_lightbar) { 1334 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE; 1335 common->lightbar_red = ds->lightbar_red; 1336 common->lightbar_green = ds->lightbar_green; 1337 common->lightbar_blue = ds->lightbar_blue; 1338 1339 ds->update_lightbar = false; 1340 } 1341 1342 if (ds->update_player_leds) { 1343 common->valid_flag1 |= 1344 DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE; 1345 common->player_leds = ds->player_leds_state; 1346 1347 ds->update_player_leds = false; 1348 } 1349 1350 if (ds->plugged_state != ds->prev_plugged_state) { 1351 u8 val = ds->plugged_state & DS_STATUS1_HP_DETECT; 1352 1353 if (val != (ds->prev_plugged_state & DS_STATUS1_HP_DETECT)) { 1354 common->valid_flag0 = DS_OUTPUT_VALID_FLAG0_AUDIO_CONTROL_ENABLE; 1355 /* 1356 * _--------> Output path setup in audio_flag0 1357 * / _------> Headphone (HP) Left channel sink 1358 * | / _----> Headphone (HP) Right channel sink 1359 * | | / _--> Internal Speaker (SP) sink 1360 * | | | / 1361 * | | | | L/R - Left/Right channel source 1362 * 0 L-R X X - Unrouted (muted) channel source 1363 * 1 L-L X 1364 * 2 L-L R 1365 * 3 X-X R 1366 */ 1367 if (val) { 1368 /* Mute SP and route L+R channels to HP */ 1369 common->audio_control = 0; 1370 } else { 1371 /* Mute HP and route R channel to SP */ 1372 common->audio_control = 1373 FIELD_PREP(DS_OUTPUT_AUDIO_FLAGS_OUTPUT_PATH_SEL, 1374 0x3); 1375 /* 1376 * Set SP hardware volume to 100%. 1377 * Note the accepted range seems to be [0x3d..0x64] 1378 */ 1379 common->valid_flag0 |= 1380 DS_OUTPUT_VALID_FLAG0_SPEAKER_VOLUME_ENABLE; 1381 common->speaker_volume = 0x64; 1382 /* Set SP preamp gain to +6dB */ 1383 common->valid_flag1 = 1384 DS_OUTPUT_VALID_FLAG1_AUDIO_CONTROL2_ENABLE; 1385 common->audio_control2 = 1386 FIELD_PREP(DS_OUTPUT_AUDIO_FLAGS2_SP_PREAMP_GAIN, 1387 0x2); 1388 } 1389 1390 input_report_switch(ds->jack, SW_HEADPHONE_INSERT, val); 1391 } 1392 1393 val = ds->plugged_state & DS_STATUS1_MIC_DETECT; 1394 if (val != (ds->prev_plugged_state & DS_STATUS1_MIC_DETECT)) 1395 input_report_switch(ds->jack, SW_MICROPHONE_INSERT, val); 1396 1397 input_sync(ds->jack); 1398 ds->prev_plugged_state = ds->plugged_state; 1399 } 1400 1401 if (ds->update_mic_mute) { 1402 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE; 1403 common->mute_button_led = ds->mic_muted; 1404 1405 if (ds->mic_muted) { 1406 /* Disable microphone */ 1407 common->valid_flag1 |= 1408 DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE; 1409 common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE; 1410 } else { 1411 /* Enable microphone */ 1412 common->valid_flag1 |= 1413 DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE; 1414 common->power_save_control &= 1415 ~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE; 1416 } 1417 1418 ds->update_mic_mute = false; 1419 } 1420 } 1421 1422 dualsense_send_output_report(ds, &report); 1423 } 1424 1425 static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report, 1426 u8 *data, int size) 1427 { 1428 struct hid_device *hdev = ps_dev->hdev; 1429 struct dualsense *ds = container_of(ps_dev, struct dualsense, base); 1430 struct dualsense_input_report *ds_report; 1431 u8 battery_data, battery_capacity, charging_status, value; 1432 int battery_status; 1433 u32 sensor_timestamp; 1434 bool btn_mic_state; 1435 int i; 1436 1437 /* 1438 * DualSense in USB uses the full HID report for reportID 1, but 1439 * Bluetooth uses a minimal HID report for reportID 1 and reports 1440 * the full report using reportID 49. 1441 */ 1442 if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB && 1443 size == DS_INPUT_REPORT_USB_SIZE) { 1444 ds_report = (struct dualsense_input_report *)&data[1]; 1445 } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT && 1446 size == DS_INPUT_REPORT_BT_SIZE) { 1447 /* Last 4 bytes of input report contain crc32 */ 1448 u32 report_crc = get_unaligned_le32(&data[size - 4]); 1449 1450 if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) { 1451 hid_err(hdev, "DualSense input CRC's check failed\n"); 1452 return -EILSEQ; 1453 } 1454 1455 ds_report = (struct dualsense_input_report *)&data[2]; 1456 } else { 1457 hid_err(hdev, "Unhandled reportID=%d\n", report->id); 1458 return -1; 1459 } 1460 1461 input_report_abs(ds->gamepad, ABS_X, ds_report->x); 1462 input_report_abs(ds->gamepad, ABS_Y, ds_report->y); 1463 input_report_abs(ds->gamepad, ABS_RX, ds_report->rx); 1464 input_report_abs(ds->gamepad, ABS_RY, ds_report->ry); 1465 input_report_abs(ds->gamepad, ABS_Z, ds_report->z); 1466 input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz); 1467 1468 value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH; 1469 if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping)) 1470 value = 8; /* center */ 1471 input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x); 1472 input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y); 1473 1474 input_report_key(ds->gamepad, BTN_WEST, ds_report->buttons[0] & DS_BUTTONS0_SQUARE); 1475 input_report_key(ds->gamepad, BTN_SOUTH, ds_report->buttons[0] & DS_BUTTONS0_CROSS); 1476 input_report_key(ds->gamepad, BTN_EAST, ds_report->buttons[0] & DS_BUTTONS0_CIRCLE); 1477 input_report_key(ds->gamepad, BTN_NORTH, ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE); 1478 input_report_key(ds->gamepad, BTN_TL, ds_report->buttons[1] & DS_BUTTONS1_L1); 1479 input_report_key(ds->gamepad, BTN_TR, ds_report->buttons[1] & DS_BUTTONS1_R1); 1480 input_report_key(ds->gamepad, BTN_TL2, ds_report->buttons[1] & DS_BUTTONS1_L2); 1481 input_report_key(ds->gamepad, BTN_TR2, ds_report->buttons[1] & DS_BUTTONS1_R2); 1482 input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE); 1483 input_report_key(ds->gamepad, BTN_START, ds_report->buttons[1] & DS_BUTTONS1_OPTIONS); 1484 input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3); 1485 input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3); 1486 input_report_key(ds->gamepad, BTN_MODE, ds_report->buttons[2] & DS_BUTTONS2_PS_HOME); 1487 input_sync(ds->gamepad); 1488 1489 /* 1490 * The DualSense has an internal microphone, which can be muted through a mute button 1491 * on the device. The driver is expected to read the button state and program the device 1492 * to mute/unmute audio at the hardware level. 1493 */ 1494 btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE); 1495 if (btn_mic_state && !ds->last_btn_mic_state) { 1496 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1497 ds->update_mic_mute = true; 1498 ds->mic_muted = !ds->mic_muted; /* toggle */ 1499 } 1500 1501 /* Schedule updating of microphone state at hardware level. */ 1502 dualsense_schedule_work(ds); 1503 } 1504 ds->last_btn_mic_state = btn_mic_state; 1505 1506 /* 1507 * Parse HP/MIC plugged state data for USB use case, since Bluetooth 1508 * audio is currently not supported. 1509 */ 1510 if (hdev->bus == BUS_USB) { 1511 value = ds_report->status[1] & DS_STATUS1_JACK_DETECT; 1512 1513 if (!ds->prev_plugged_state_valid) { 1514 /* Initial handling of the plugged state report */ 1515 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1516 ds->plugged_state = (~value) & DS_STATUS1_JACK_DETECT; 1517 ds->prev_plugged_state_valid = true; 1518 } 1519 } 1520 1521 if (value != ds->plugged_state) { 1522 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1523 ds->prev_plugged_state = ds->plugged_state; 1524 ds->plugged_state = value; 1525 } 1526 1527 /* Schedule audio routing towards active endpoint. */ 1528 dualsense_schedule_work(ds); 1529 } 1530 } 1531 1532 /* Parse and calibrate gyroscope data. */ 1533 for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) { 1534 int raw_data = (short)le16_to_cpu(ds_report->gyro[i]); 1535 int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer, 1536 raw_data, ds->gyro_calib_data[i].sens_denom); 1537 1538 input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data); 1539 } 1540 1541 /* Parse and calibrate accelerometer data. */ 1542 for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) { 1543 int raw_data = (short)le16_to_cpu(ds_report->accel[i]); 1544 int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer, 1545 raw_data - ds->accel_calib_data[i].bias, 1546 ds->accel_calib_data[i].sens_denom); 1547 1548 input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data); 1549 } 1550 1551 /* Convert timestamp (in 0.33us unit) to timestamp_us */ 1552 sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp); 1553 if (!ds->sensor_timestamp_initialized) { 1554 ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3); 1555 ds->sensor_timestamp_initialized = true; 1556 } else { 1557 u32 delta; 1558 1559 if (ds->prev_sensor_timestamp > sensor_timestamp) 1560 delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1); 1561 else 1562 delta = sensor_timestamp - ds->prev_sensor_timestamp; 1563 ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3); 1564 } 1565 ds->prev_sensor_timestamp = sensor_timestamp; 1566 input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us); 1567 input_sync(ds->sensors); 1568 1569 for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) { 1570 struct dualsense_touch_point *point = &ds_report->points[i]; 1571 bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true; 1572 1573 input_mt_slot(ds->touchpad, i); 1574 input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active); 1575 1576 if (active) { 1577 input_report_abs(ds->touchpad, ABS_MT_POSITION_X, 1578 DS_TOUCH_POINT_X(point->x_hi, point->x_lo)); 1579 input_report_abs(ds->touchpad, ABS_MT_POSITION_Y, 1580 DS_TOUCH_POINT_Y(point->y_hi, point->y_lo)); 1581 } 1582 } 1583 input_mt_sync_frame(ds->touchpad); 1584 input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD); 1585 input_sync(ds->touchpad); 1586 1587 battery_data = FIELD_GET(DS_STATUS0_BATTERY_CAPACITY, ds_report->status[0]); 1588 charging_status = FIELD_GET(DS_STATUS0_CHARGING, ds_report->status[0]); 1589 1590 switch (charging_status) { 1591 case 0x0: 1592 /* 1593 * Each unit of battery data corresponds to 10% 1594 * 0 = 0-9%, 1 = 10-19%, .. and 10 = 100% 1595 */ 1596 battery_capacity = min(battery_data * 10 + 5, 100); 1597 battery_status = POWER_SUPPLY_STATUS_DISCHARGING; 1598 break; 1599 case 0x1: 1600 battery_capacity = min(battery_data * 10 + 5, 100); 1601 battery_status = POWER_SUPPLY_STATUS_CHARGING; 1602 break; 1603 case 0x2: 1604 battery_capacity = 100; 1605 battery_status = POWER_SUPPLY_STATUS_FULL; 1606 break; 1607 case 0xa: /* voltage or temperature out of range */ 1608 case 0xb: /* temperature error */ 1609 battery_capacity = 0; 1610 battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1611 break; 1612 case 0xf: /* charging error */ 1613 default: 1614 battery_capacity = 0; 1615 battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 1616 } 1617 1618 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1619 ps_dev->battery_capacity = battery_capacity; 1620 ps_dev->battery_status = battery_status; 1621 } 1622 1623 return 0; 1624 } 1625 1626 static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) 1627 { 1628 struct hid_device *hdev = input_get_drvdata(dev); 1629 struct dualsense *ds = hid_get_drvdata(hdev); 1630 1631 if (effect->type != FF_RUMBLE) 1632 return 0; 1633 1634 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1635 ds->update_rumble = true; 1636 ds->motor_left = effect->u.rumble.strong_magnitude / 256; 1637 ds->motor_right = effect->u.rumble.weak_magnitude / 256; 1638 } 1639 1640 dualsense_schedule_work(ds); 1641 return 0; 1642 } 1643 1644 static void dualsense_remove(struct ps_device *ps_dev) 1645 { 1646 struct dualsense *ds = container_of(ps_dev, struct dualsense, base); 1647 1648 scoped_guard(spinlock_irqsave, &ds->base.lock) 1649 ds->output_worker_initialized = false; 1650 1651 cancel_work_sync(&ds->output_worker); 1652 } 1653 1654 static int dualsense_reset_leds(struct dualsense *ds) 1655 { 1656 struct dualsense_output_report report; 1657 struct dualsense_output_report_bt *buf; 1658 1659 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 1660 if (!buf) 1661 return -ENOMEM; 1662 1663 dualsense_init_output_report(ds, &report, buf); 1664 /* 1665 * On Bluetooth the DualSense outputs an animation on the lightbar 1666 * during startup and maintains a color afterwards. We need to explicitly 1667 * reconfigure the lightbar before we can do any programming later on. 1668 * In USB the lightbar is not on by default, but redoing the setup there 1669 * doesn't hurt. 1670 */ 1671 report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE; 1672 report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */ 1673 dualsense_send_output_report(ds, &report); 1674 1675 kfree(buf); 1676 return 0; 1677 } 1678 1679 static void dualsense_set_lightbar(struct dualsense *ds, u8 red, u8 green, u8 blue) 1680 { 1681 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1682 ds->update_lightbar = true; 1683 ds->lightbar_red = red; 1684 ds->lightbar_green = green; 1685 ds->lightbar_blue = blue; 1686 } 1687 1688 dualsense_schedule_work(ds); 1689 } 1690 1691 static void dualsense_set_player_leds(struct dualsense *ds) 1692 { 1693 /* 1694 * The DualSense controller has a row of 5 LEDs used for player ids. 1695 * Behavior on the PlayStation 5 console is to center the player id 1696 * across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'. 1697 * Follow a similar mapping here. 1698 */ 1699 static const int player_ids[5] = { 1700 BIT(2), 1701 BIT(3) | BIT(1), 1702 BIT(4) | BIT(2) | BIT(0), 1703 BIT(4) | BIT(3) | BIT(1) | BIT(0), 1704 BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0) 1705 }; 1706 1707 u8 player_id = ds->base.player_id % ARRAY_SIZE(player_ids); 1708 1709 ds->update_player_leds = true; 1710 ds->player_leds_state = player_ids[player_id]; 1711 dualsense_schedule_work(ds); 1712 } 1713 1714 static struct ps_device *dualsense_create(struct hid_device *hdev) 1715 { 1716 struct dualsense *ds; 1717 struct ps_device *ps_dev; 1718 u8 max_output_report_size; 1719 int i, ret; 1720 1721 static const struct ps_led_info player_leds_info[] = { 1722 { LED_FUNCTION_PLAYER1, "white", 1, dualsense_player_led_get_brightness, 1723 dualsense_player_led_set_brightness }, 1724 { LED_FUNCTION_PLAYER2, "white", 1, dualsense_player_led_get_brightness, 1725 dualsense_player_led_set_brightness }, 1726 { LED_FUNCTION_PLAYER3, "white", 1, dualsense_player_led_get_brightness, 1727 dualsense_player_led_set_brightness }, 1728 { LED_FUNCTION_PLAYER4, "white", 1, dualsense_player_led_get_brightness, 1729 dualsense_player_led_set_brightness }, 1730 { LED_FUNCTION_PLAYER5, "white", 1, dualsense_player_led_get_brightness, 1731 dualsense_player_led_set_brightness } 1732 }; 1733 1734 ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL); 1735 if (!ds) 1736 return ERR_PTR(-ENOMEM); 1737 1738 /* 1739 * Patch version to allow userspace to distinguish between 1740 * hid-generic vs hid-playstation axis and button mapping. 1741 */ 1742 hdev->version |= HID_PLAYSTATION_VERSION_PATCH; 1743 1744 ps_dev = &ds->base; 1745 ps_dev->hdev = hdev; 1746 spin_lock_init(&ps_dev->lock); 1747 ps_dev->battery_capacity = 100; /* initial value until parse_report. */ 1748 ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 1749 ps_dev->parse_report = dualsense_parse_report; 1750 ps_dev->remove = dualsense_remove; 1751 INIT_WORK(&ds->output_worker, dualsense_output_worker); 1752 ds->output_worker_initialized = true; 1753 hid_set_drvdata(hdev, ds); 1754 1755 max_output_report_size = sizeof(struct dualsense_output_report_bt); 1756 ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL); 1757 if (!ds->output_report_dmabuf) 1758 return ERR_PTR(-ENOMEM); 1759 1760 ret = dualsense_get_mac_address(ds); 1761 if (ret) { 1762 hid_err(hdev, "Failed to get MAC address from DualSense\n"); 1763 return ERR_PTR(ret); 1764 } 1765 snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address); 1766 1767 ret = dualsense_get_firmware_info(ds); 1768 if (ret) { 1769 hid_err(hdev, "Failed to get firmware info from DualSense\n"); 1770 return ERR_PTR(ret); 1771 } 1772 1773 /* Original DualSense firmware simulated classic controller rumble through 1774 * its new haptics hardware. It felt different from classic rumble users 1775 * were used to. Since then new firmwares were introduced to change behavior 1776 * and make this new 'v2' behavior default on PlayStation and other platforms. 1777 * The original DualSense requires a new enough firmware as bundled with PS5 1778 * software released in 2021. DualSense edge supports it out of the box. 1779 * Both devices also support the old mode, but it is not really used. 1780 */ 1781 if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) { 1782 /* Feature version 2.21 introduced new vibration method. */ 1783 ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21); 1784 } else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) { 1785 ds->use_vibration_v2 = true; 1786 } 1787 1788 ret = ps_devices_list_add(ps_dev); 1789 if (ret) 1790 return ERR_PTR(ret); 1791 1792 ret = dualsense_get_calibration_data(ds); 1793 if (ret) { 1794 hid_err(hdev, "Failed to get calibration data from DualSense\n"); 1795 goto err; 1796 } 1797 1798 ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect); 1799 if (IS_ERR(ds->gamepad)) { 1800 ret = PTR_ERR(ds->gamepad); 1801 goto err; 1802 } 1803 /* Use gamepad input device name as primary device name for e.g. LEDs */ 1804 ps_dev->input_dev_name = dev_name(&ds->gamepad->dev); 1805 1806 ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G, 1807 DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S); 1808 if (IS_ERR(ds->sensors)) { 1809 ret = PTR_ERR(ds->sensors); 1810 goto err; 1811 } 1812 1813 ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2); 1814 if (IS_ERR(ds->touchpad)) { 1815 ret = PTR_ERR(ds->touchpad); 1816 goto err; 1817 } 1818 1819 /* Bluetooth audio is currently not supported. */ 1820 if (hdev->bus == BUS_USB) { 1821 ds->jack = ps_headset_jack_create(hdev); 1822 if (IS_ERR(ds->jack)) { 1823 ret = PTR_ERR(ds->jack); 1824 goto err; 1825 } 1826 } 1827 1828 ret = ps_device_register_battery(ps_dev); 1829 if (ret) 1830 goto err; 1831 1832 /* 1833 * The hardware may have control over the LEDs (e.g. in Bluetooth on startup). 1834 * Reset the LEDs (lightbar, mute, player leds), so we can control them 1835 * from software. 1836 */ 1837 ret = dualsense_reset_leds(ds); 1838 if (ret) 1839 goto err; 1840 1841 ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness); 1842 if (ret) 1843 goto err; 1844 1845 /* Set default lightbar color. */ 1846 dualsense_set_lightbar(ds, 0, 0, 128); /* blue */ 1847 1848 for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) { 1849 const struct ps_led_info *led_info = &player_leds_info[i]; 1850 1851 ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info); 1852 if (ret < 0) 1853 goto err; 1854 } 1855 1856 ret = ps_device_set_player_id(ps_dev); 1857 if (ret) { 1858 hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret); 1859 goto err; 1860 } 1861 1862 /* Set player LEDs to our player id. */ 1863 dualsense_set_player_leds(ds); 1864 1865 /* 1866 * Reporting hardware and firmware is important as there are frequent updates, which 1867 * can change behavior. 1868 */ 1869 hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n", 1870 ds->base.hw_version, ds->base.fw_version); 1871 1872 return &ds->base; 1873 1874 err: 1875 ps_devices_list_remove(ps_dev); 1876 return ERR_PTR(ret); 1877 } 1878 1879 static void dualshock4_dongle_calibration_work(struct work_struct *work) 1880 { 1881 struct dualshock4 *ds4 = container_of(work, struct dualshock4, dongle_hotplug_worker); 1882 enum dualshock4_dongle_state dongle_state; 1883 int ret; 1884 1885 ret = dualshock4_get_calibration_data(ds4); 1886 if (ret < 0) { 1887 /* This call is very unlikely to fail for the dongle. When it 1888 * fails we are probably in a very bad state, so mark the 1889 * dongle as disabled. We will re-enable the dongle if a new 1890 * DS4 hotplug is detect from sony_raw_event as any issues 1891 * are likely resolved then (the dongle is quite stupid). 1892 */ 1893 hid_err(ds4->base.hdev, 1894 "DualShock 4 USB dongle: calibration failed, disabling device\n"); 1895 dongle_state = DONGLE_DISABLED; 1896 } else { 1897 hid_info(ds4->base.hdev, "DualShock 4 USB dongle: calibration completed\n"); 1898 dongle_state = DONGLE_CONNECTED; 1899 } 1900 1901 scoped_guard(spinlock_irqsave, &ds4->base.lock) 1902 ds4->dongle_state = dongle_state; 1903 } 1904 1905 static int dualshock4_get_calibration_data(struct dualshock4 *ds4) 1906 { 1907 struct hid_device *hdev = ds4->base.hdev; 1908 short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; 1909 short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; 1910 short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; 1911 short gyro_speed_plus, gyro_speed_minus; 1912 short acc_x_plus, acc_x_minus; 1913 short acc_y_plus, acc_y_minus; 1914 short acc_z_plus, acc_z_minus; 1915 int speed_2x; 1916 int range_2g; 1917 int ret = 0; 1918 int i; 1919 u8 *buf; 1920 1921 if (ds4->base.hdev->bus == BUS_USB) { 1922 int retries; 1923 1924 buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL); 1925 if (!buf) { 1926 ret = -ENOMEM; 1927 goto transfer_failed; 1928 } 1929 1930 /* We should normally receive the feature report data we asked 1931 * for, but hidraw applications such as Steam can issue feature 1932 * reports as well. In particular for Dongle reconnects, Steam 1933 * and this function are competing resulting in often receiving 1934 * data for a different HID report, so retry a few times. 1935 */ 1936 for (retries = 0; retries < 3; retries++) { 1937 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf, 1938 DS4_FEATURE_REPORT_CALIBRATION_SIZE, true); 1939 if (ret) { 1940 if (retries < 2) { 1941 hid_warn(hdev, 1942 "Retrying DualShock 4 get calibration report (0x02) request\n"); 1943 continue; 1944 } 1945 1946 hid_warn(hdev, 1947 "Failed to retrieve DualShock4 calibration info: %d\n", 1948 ret); 1949 ret = -EILSEQ; 1950 kfree(buf); 1951 goto transfer_failed; 1952 } else { 1953 break; 1954 } 1955 } 1956 } else { /* Bluetooth */ 1957 buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, GFP_KERNEL); 1958 if (!buf) { 1959 ret = -ENOMEM; 1960 goto transfer_failed; 1961 } 1962 1963 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION_BT, buf, 1964 DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, true); 1965 1966 if (ret) { 1967 hid_warn(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret); 1968 kfree(buf); 1969 goto transfer_failed; 1970 } 1971 } 1972 1973 /* Transfer succeeded - parse the calibration data received. */ 1974 gyro_pitch_bias = get_unaligned_le16(&buf[1]); 1975 gyro_yaw_bias = get_unaligned_le16(&buf[3]); 1976 gyro_roll_bias = get_unaligned_le16(&buf[5]); 1977 if (ds4->base.hdev->bus == BUS_USB) { 1978 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1979 gyro_pitch_minus = get_unaligned_le16(&buf[9]); 1980 gyro_yaw_plus = get_unaligned_le16(&buf[11]); 1981 gyro_yaw_minus = get_unaligned_le16(&buf[13]); 1982 gyro_roll_plus = get_unaligned_le16(&buf[15]); 1983 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1984 } else { 1985 /* BT + Dongle */ 1986 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1987 gyro_yaw_plus = get_unaligned_le16(&buf[9]); 1988 gyro_roll_plus = get_unaligned_le16(&buf[11]); 1989 gyro_pitch_minus = get_unaligned_le16(&buf[13]); 1990 gyro_yaw_minus = get_unaligned_le16(&buf[15]); 1991 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1992 } 1993 gyro_speed_plus = get_unaligned_le16(&buf[19]); 1994 gyro_speed_minus = get_unaligned_le16(&buf[21]); 1995 acc_x_plus = get_unaligned_le16(&buf[23]); 1996 acc_x_minus = get_unaligned_le16(&buf[25]); 1997 acc_y_plus = get_unaligned_le16(&buf[27]); 1998 acc_y_minus = get_unaligned_le16(&buf[29]); 1999 acc_z_plus = get_unaligned_le16(&buf[31]); 2000 acc_z_minus = get_unaligned_le16(&buf[33]); 2001 2002 /* Done parsing the buffer, so let's free it. */ 2003 kfree(buf); 2004 2005 /* 2006 * Set gyroscope calibration and normalization parameters. 2007 * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s. 2008 */ 2009 speed_2x = (gyro_speed_plus + gyro_speed_minus); 2010 ds4->gyro_calib_data[0].abs_code = ABS_RX; 2011 ds4->gyro_calib_data[0].bias = 0; 2012 ds4->gyro_calib_data[0].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2013 ds4->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) + 2014 abs(gyro_pitch_minus - gyro_pitch_bias); 2015 2016 ds4->gyro_calib_data[1].abs_code = ABS_RY; 2017 ds4->gyro_calib_data[1].bias = 0; 2018 ds4->gyro_calib_data[1].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2019 ds4->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) + 2020 abs(gyro_yaw_minus - gyro_yaw_bias); 2021 2022 ds4->gyro_calib_data[2].abs_code = ABS_RZ; 2023 ds4->gyro_calib_data[2].bias = 0; 2024 ds4->gyro_calib_data[2].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2025 ds4->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) + 2026 abs(gyro_roll_minus - gyro_roll_bias); 2027 2028 /* 2029 * Set accelerometer calibration and normalization parameters. 2030 * Data values will be normalized to 1/DS4_ACC_RES_PER_G g. 2031 */ 2032 range_2g = acc_x_plus - acc_x_minus; 2033 ds4->accel_calib_data[0].abs_code = ABS_X; 2034 ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2; 2035 ds4->accel_calib_data[0].sens_numer = 2 * DS4_ACC_RES_PER_G; 2036 ds4->accel_calib_data[0].sens_denom = range_2g; 2037 2038 range_2g = acc_y_plus - acc_y_minus; 2039 ds4->accel_calib_data[1].abs_code = ABS_Y; 2040 ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2; 2041 ds4->accel_calib_data[1].sens_numer = 2 * DS4_ACC_RES_PER_G; 2042 ds4->accel_calib_data[1].sens_denom = range_2g; 2043 2044 range_2g = acc_z_plus - acc_z_minus; 2045 ds4->accel_calib_data[2].abs_code = ABS_Z; 2046 ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2; 2047 ds4->accel_calib_data[2].sens_numer = 2 * DS4_ACC_RES_PER_G; 2048 ds4->accel_calib_data[2].sens_denom = range_2g; 2049 2050 transfer_failed: 2051 /* 2052 * Sanity check gyro calibration data. This is needed to prevent crashes 2053 * during report handling of virtual, clone or broken devices not implementing 2054 * calibration data properly. 2055 */ 2056 for (i = 0; i < ARRAY_SIZE(ds4->gyro_calib_data); i++) { 2057 if (ds4->gyro_calib_data[i].sens_denom == 0) { 2058 ds4->gyro_calib_data[i].abs_code = ABS_RX + i; 2059 hid_warn(hdev, 2060 "Invalid gyro calibration data for axis (%d), disabling calibration.", 2061 ds4->gyro_calib_data[i].abs_code); 2062 ds4->gyro_calib_data[i].bias = 0; 2063 ds4->gyro_calib_data[i].sens_numer = DS4_GYRO_RANGE; 2064 ds4->gyro_calib_data[i].sens_denom = S16_MAX; 2065 } 2066 } 2067 2068 /* 2069 * Sanity check accelerometer calibration data. This is needed to prevent crashes 2070 * during report handling of virtual, clone or broken devices not implementing calibration 2071 * data properly. 2072 */ 2073 for (i = 0; i < ARRAY_SIZE(ds4->accel_calib_data); i++) { 2074 if (ds4->accel_calib_data[i].sens_denom == 0) { 2075 ds4->accel_calib_data[i].abs_code = ABS_X + i; 2076 hid_warn(hdev, 2077 "Invalid accelerometer calibration data for axis (%d), disabling calibration.", 2078 ds4->accel_calib_data[i].abs_code); 2079 ds4->accel_calib_data[i].bias = 0; 2080 ds4->accel_calib_data[i].sens_numer = DS4_ACC_RANGE; 2081 ds4->accel_calib_data[i].sens_denom = S16_MAX; 2082 } 2083 } 2084 2085 return ret; 2086 } 2087 2088 static int dualshock4_get_firmware_info(struct dualshock4 *ds4) 2089 { 2090 u8 *buf; 2091 int ret; 2092 2093 buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL); 2094 if (!buf) 2095 return -ENOMEM; 2096 2097 /* Note USB and BT support the same feature report, but this report 2098 * lacks CRC support, so must be disabled in ps_get_report. 2099 */ 2100 ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf, 2101 DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, false); 2102 if (ret) { 2103 hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret); 2104 goto err_free; 2105 } 2106 2107 ds4->base.hw_version = get_unaligned_le16(&buf[35]); 2108 ds4->base.fw_version = get_unaligned_le16(&buf[41]); 2109 2110 err_free: 2111 kfree(buf); 2112 return ret; 2113 } 2114 2115 static int dualshock4_get_mac_address(struct dualshock4 *ds4) 2116 { 2117 struct hid_device *hdev = ds4->base.hdev; 2118 u8 *buf; 2119 int ret = 0; 2120 2121 if (hdev->bus == BUS_USB) { 2122 buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL); 2123 if (!buf) 2124 return -ENOMEM; 2125 2126 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf, 2127 DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, false); 2128 if (ret) { 2129 hid_err(hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret); 2130 goto err_free; 2131 } 2132 2133 memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address)); 2134 } else { 2135 /* Rely on HIDP for Bluetooth */ 2136 if (strlen(hdev->uniq) != 17) 2137 return -EINVAL; 2138 2139 ret = sscanf(hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", 2140 &ds4->base.mac_address[5], &ds4->base.mac_address[4], 2141 &ds4->base.mac_address[3], &ds4->base.mac_address[2], 2142 &ds4->base.mac_address[1], &ds4->base.mac_address[0]); 2143 2144 if (ret != sizeof(ds4->base.mac_address)) 2145 return -EINVAL; 2146 2147 return 0; 2148 } 2149 2150 err_free: 2151 kfree(buf); 2152 return ret; 2153 } 2154 2155 static enum led_brightness dualshock4_led_get_brightness(struct led_classdev *led) 2156 { 2157 struct hid_device *hdev = to_hid_device(led->dev->parent); 2158 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2159 unsigned int led_index; 2160 2161 led_index = led - ds4->lightbar_leds; 2162 switch (led_index) { 2163 case 0: 2164 return ds4->lightbar_red; 2165 case 1: 2166 return ds4->lightbar_green; 2167 case 2: 2168 return ds4->lightbar_blue; 2169 case 3: 2170 return ds4->lightbar_enabled; 2171 } 2172 2173 return -1; 2174 } 2175 2176 static int dualshock4_led_set_blink(struct led_classdev *led, unsigned long *delay_on, 2177 unsigned long *delay_off) 2178 { 2179 struct hid_device *hdev = to_hid_device(led->dev->parent); 2180 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2181 2182 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2183 if (!*delay_on && !*delay_off) { 2184 /* Default to 1 Hz (50 centiseconds on, 50 centiseconds off). */ 2185 ds4->lightbar_blink_on = 50; 2186 ds4->lightbar_blink_off = 50; 2187 } else { 2188 /* Blink delays in centiseconds. */ 2189 ds4->lightbar_blink_on = min_t(unsigned long, *delay_on / 10, 2190 DS4_LIGHTBAR_MAX_BLINK); 2191 ds4->lightbar_blink_off = min_t(unsigned long, *delay_off / 10, 2192 DS4_LIGHTBAR_MAX_BLINK); 2193 } 2194 2195 ds4->update_lightbar_blink = true; 2196 } 2197 2198 dualshock4_schedule_work(ds4); 2199 2200 /* Report scaled values back to LED subsystem */ 2201 *delay_on = ds4->lightbar_blink_on * 10; 2202 *delay_off = ds4->lightbar_blink_off * 10; 2203 2204 return 0; 2205 } 2206 2207 static int dualshock4_led_set_brightness(struct led_classdev *led, enum led_brightness value) 2208 { 2209 struct hid_device *hdev = to_hid_device(led->dev->parent); 2210 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2211 unsigned int led_index; 2212 2213 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2214 led_index = led - ds4->lightbar_leds; 2215 switch (led_index) { 2216 case 0: 2217 ds4->lightbar_red = value; 2218 break; 2219 case 1: 2220 ds4->lightbar_green = value; 2221 break; 2222 case 2: 2223 ds4->lightbar_blue = value; 2224 break; 2225 case 3: 2226 ds4->lightbar_enabled = !!value; 2227 2228 /* brightness = 0 also cancels blinking in Linux. */ 2229 if (!ds4->lightbar_enabled) { 2230 ds4->lightbar_blink_off = 0; 2231 ds4->lightbar_blink_on = 0; 2232 ds4->update_lightbar_blink = true; 2233 } 2234 } 2235 2236 ds4->update_lightbar = true; 2237 } 2238 2239 dualshock4_schedule_work(ds4); 2240 2241 return 0; 2242 } 2243 2244 static void dualshock4_init_output_report(struct dualshock4 *ds4, 2245 struct dualshock4_output_report *rp, void *buf) 2246 { 2247 struct hid_device *hdev = ds4->base.hdev; 2248 2249 if (hdev->bus == BUS_BLUETOOTH) { 2250 struct dualshock4_output_report_bt *bt = buf; 2251 2252 memset(bt, 0, sizeof(*bt)); 2253 bt->report_id = DS4_OUTPUT_REPORT_BT; 2254 2255 rp->data = buf; 2256 rp->len = sizeof(*bt); 2257 rp->bt = bt; 2258 rp->usb = NULL; 2259 rp->common = &bt->common; 2260 } else { /* USB */ 2261 struct dualshock4_output_report_usb *usb = buf; 2262 2263 memset(usb, 0, sizeof(*usb)); 2264 usb->report_id = DS4_OUTPUT_REPORT_USB; 2265 2266 rp->data = buf; 2267 rp->len = sizeof(*usb); 2268 rp->bt = NULL; 2269 rp->usb = usb; 2270 rp->common = &usb->common; 2271 } 2272 } 2273 2274 static void dualshock4_output_worker(struct work_struct *work) 2275 { 2276 struct dualshock4 *ds4 = container_of(work, struct dualshock4, output_worker); 2277 struct dualshock4_output_report report; 2278 struct dualshock4_output_report_common *common; 2279 2280 dualshock4_init_output_report(ds4, &report, ds4->output_report_dmabuf); 2281 common = report.common; 2282 2283 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2284 /* 2285 * Some 3rd party gamepads expect updates to rumble and lightbar 2286 * together, and setting one may cancel the other. 2287 * 2288 * Let's maximise compatibility by always sending rumble and lightbar 2289 * updates together, even when only one has been scheduled, resulting 2290 * in: 2291 * 2292 * ds4->valid_flag0 >= 0x03 2293 * 2294 * Hopefully this will maximise compatibility with third-party pads. 2295 * 2296 * Any further update bits, such as 0x04 for lightbar blinking, will 2297 * be or'd on top of this like before. 2298 */ 2299 if (ds4->update_rumble || ds4->update_lightbar) { 2300 ds4->update_rumble = true; /* 0x01 */ 2301 ds4->update_lightbar = true; /* 0x02 */ 2302 } 2303 2304 if (ds4->update_rumble) { 2305 /* Select classic rumble style haptics and enable it. */ 2306 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_MOTOR; 2307 common->motor_left = ds4->motor_left; 2308 common->motor_right = ds4->motor_right; 2309 ds4->update_rumble = false; 2310 } 2311 2312 if (ds4->update_lightbar) { 2313 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED; 2314 /* Compatible behavior with hid-sony, which used a dummy global LED to 2315 * allow enabling/disabling the lightbar. The global LED maps to 2316 * lightbar_enabled. 2317 */ 2318 common->lightbar_red = ds4->lightbar_enabled ? ds4->lightbar_red : 0; 2319 common->lightbar_green = ds4->lightbar_enabled ? ds4->lightbar_green : 0; 2320 common->lightbar_blue = ds4->lightbar_enabled ? ds4->lightbar_blue : 0; 2321 ds4->update_lightbar = false; 2322 } 2323 2324 if (ds4->update_lightbar_blink) { 2325 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED_BLINK; 2326 common->lightbar_blink_on = ds4->lightbar_blink_on; 2327 common->lightbar_blink_off = ds4->lightbar_blink_off; 2328 ds4->update_lightbar_blink = false; 2329 } 2330 } 2331 2332 /* Bluetooth packets need additional flags as well as a CRC in the last 4 bytes. */ 2333 if (report.bt) { 2334 u32 crc; 2335 u8 seed = PS_OUTPUT_CRC32_SEED; 2336 2337 /* Hardware control flags need to set to let the device know 2338 * there is HID data as well as CRC. 2339 */ 2340 report.bt->hw_control = DS4_OUTPUT_HWCTL_HID | DS4_OUTPUT_HWCTL_CRC32; 2341 2342 if (ds4->update_bt_poll_interval) { 2343 report.bt->hw_control |= ds4->bt_poll_interval; 2344 ds4->update_bt_poll_interval = false; 2345 } 2346 2347 crc = crc32_le(0xFFFFFFFF, &seed, 1); 2348 crc = ~crc32_le(crc, report.data, report.len - 4); 2349 2350 report.bt->crc32 = cpu_to_le32(crc); 2351 } 2352 2353 hid_hw_output_report(ds4->base.hdev, report.data, report.len); 2354 } 2355 2356 static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report, 2357 u8 *data, int size) 2358 { 2359 struct hid_device *hdev = ps_dev->hdev; 2360 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2361 struct dualshock4_input_report_common *ds4_report; 2362 struct dualshock4_touch_report *touch_reports; 2363 u8 battery_capacity, num_touch_reports, value; 2364 int battery_status, i, j; 2365 u16 sensor_timestamp; 2366 bool is_minimal = false; 2367 2368 /* 2369 * DualShock4 in USB uses the full HID report for reportID 1, but 2370 * Bluetooth uses a minimal HID report for reportID 1 and reports 2371 * the full report using reportID 17. 2372 */ 2373 if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB && 2374 size == DS4_INPUT_REPORT_USB_SIZE) { 2375 struct dualshock4_input_report_usb *usb = 2376 (struct dualshock4_input_report_usb *)data; 2377 2378 ds4_report = &usb->common; 2379 num_touch_reports = usb->num_touch_reports; 2380 touch_reports = usb->touch_reports; 2381 } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS4_INPUT_REPORT_BT && 2382 size == DS4_INPUT_REPORT_BT_SIZE) { 2383 struct dualshock4_input_report_bt *bt = (struct dualshock4_input_report_bt *)data; 2384 u32 report_crc = get_unaligned_le32(&bt->crc32); 2385 2386 /* Last 4 bytes of input report contains CRC. */ 2387 if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) { 2388 hid_err(hdev, "DualShock4 input CRC's check failed\n"); 2389 return -EILSEQ; 2390 } 2391 2392 ds4_report = &bt->common; 2393 num_touch_reports = bt->num_touch_reports; 2394 touch_reports = bt->touch_reports; 2395 } else if (hdev->bus == BUS_BLUETOOTH && 2396 report->id == DS4_INPUT_REPORT_BT_MINIMAL && 2397 size == DS4_INPUT_REPORT_BT_MINIMAL_SIZE) { 2398 /* Some third-party pads never switch to the full 0x11 report. 2399 * The short 0x01 report is 10 bytes long: 2400 * u8 report_id == 0x01 2401 * u8 first_bytes_of_full_report[9] 2402 * So let's reuse the full report parser, and stop it after 2403 * parsing the buttons. 2404 */ 2405 ds4_report = (struct dualshock4_input_report_common *)&data[1]; 2406 is_minimal = true; 2407 } else { 2408 hid_err(hdev, "Unhandled reportID=%d\n", report->id); 2409 return -1; 2410 } 2411 2412 input_report_abs(ds4->gamepad, ABS_X, ds4_report->x); 2413 input_report_abs(ds4->gamepad, ABS_Y, ds4_report->y); 2414 input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx); 2415 input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry); 2416 input_report_abs(ds4->gamepad, ABS_Z, ds4_report->z); 2417 input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz); 2418 2419 value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH; 2420 if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping)) 2421 value = 8; /* center */ 2422 input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x); 2423 input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y); 2424 2425 input_report_key(ds4->gamepad, BTN_WEST, ds4_report->buttons[0] & DS_BUTTONS0_SQUARE); 2426 input_report_key(ds4->gamepad, BTN_SOUTH, ds4_report->buttons[0] & DS_BUTTONS0_CROSS); 2427 input_report_key(ds4->gamepad, BTN_EAST, ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE); 2428 input_report_key(ds4->gamepad, BTN_NORTH, ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE); 2429 input_report_key(ds4->gamepad, BTN_TL, ds4_report->buttons[1] & DS_BUTTONS1_L1); 2430 input_report_key(ds4->gamepad, BTN_TR, ds4_report->buttons[1] & DS_BUTTONS1_R1); 2431 input_report_key(ds4->gamepad, BTN_TL2, ds4_report->buttons[1] & DS_BUTTONS1_L2); 2432 input_report_key(ds4->gamepad, BTN_TR2, ds4_report->buttons[1] & DS_BUTTONS1_R2); 2433 input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE); 2434 input_report_key(ds4->gamepad, BTN_START, ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS); 2435 input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3); 2436 input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3); 2437 input_report_key(ds4->gamepad, BTN_MODE, ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME); 2438 input_sync(ds4->gamepad); 2439 2440 if (is_minimal) 2441 return 0; 2442 2443 /* Parse and calibrate gyroscope data. */ 2444 for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) { 2445 int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]); 2446 int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer, 2447 raw_data, ds4->gyro_calib_data[i].sens_denom); 2448 2449 input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data); 2450 } 2451 2452 /* Parse and calibrate accelerometer data. */ 2453 for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) { 2454 int raw_data = (short)le16_to_cpu(ds4_report->accel[i]); 2455 int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer, 2456 raw_data - ds4->accel_calib_data[i].bias, 2457 ds4->accel_calib_data[i].sens_denom); 2458 2459 input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data); 2460 } 2461 2462 /* Convert timestamp (in 5.33us unit) to timestamp_us */ 2463 sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp); 2464 if (!ds4->sensor_timestamp_initialized) { 2465 ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp * 16, 3); 2466 ds4->sensor_timestamp_initialized = true; 2467 } else { 2468 u16 delta; 2469 2470 if (ds4->prev_sensor_timestamp > sensor_timestamp) 2471 delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1); 2472 else 2473 delta = sensor_timestamp - ds4->prev_sensor_timestamp; 2474 ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta * 16, 3); 2475 } 2476 ds4->prev_sensor_timestamp = sensor_timestamp; 2477 input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us); 2478 input_sync(ds4->sensors); 2479 2480 for (i = 0; i < num_touch_reports; i++) { 2481 struct dualshock4_touch_report *touch_report = &touch_reports[i]; 2482 2483 for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) { 2484 struct dualshock4_touch_point *point = &touch_report->points[j]; 2485 bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true; 2486 2487 input_mt_slot(ds4->touchpad, j); 2488 input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active); 2489 2490 if (active) { 2491 input_report_abs(ds4->touchpad, ABS_MT_POSITION_X, 2492 DS4_TOUCH_POINT_X(point->x_hi, point->x_lo)); 2493 input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y, 2494 DS4_TOUCH_POINT_Y(point->y_hi, point->y_lo)); 2495 } 2496 } 2497 input_mt_sync_frame(ds4->touchpad); 2498 input_sync(ds4->touchpad); 2499 } 2500 input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD); 2501 2502 /* 2503 * Interpretation of the battery_capacity data depends on the cable state. 2504 * When no cable is connected (bit4 is 0): 2505 * - 0:10: percentage in units of 10%. 2506 * When a cable is plugged in: 2507 * - 0-10: percentage in units of 10%. 2508 * - 11: battery is full 2509 * - 14: not charging due to Voltage or temperature error 2510 * - 15: charge error 2511 */ 2512 if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) { 2513 u8 battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY; 2514 2515 if (battery_data < 10) { 2516 /* Take the mid-point for each battery capacity value, 2517 * because on the hardware side 0 = 0-9%, 1=10-19%, etc. 2518 * This matches official platform behavior, which does 2519 * the same. 2520 */ 2521 battery_capacity = battery_data * 10 + 5; 2522 battery_status = POWER_SUPPLY_STATUS_CHARGING; 2523 } else if (battery_data == 10) { 2524 battery_capacity = 100; 2525 battery_status = POWER_SUPPLY_STATUS_CHARGING; 2526 } else if (battery_data == DS4_BATTERY_STATUS_FULL) { 2527 battery_capacity = 100; 2528 battery_status = POWER_SUPPLY_STATUS_FULL; 2529 } else { /* 14, 15 and undefined values */ 2530 battery_capacity = 0; 2531 battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 2532 } 2533 } else { 2534 u8 battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY; 2535 2536 if (battery_data < 10) 2537 battery_capacity = battery_data * 10 + 5; 2538 else /* 10 */ 2539 battery_capacity = 100; 2540 2541 battery_status = POWER_SUPPLY_STATUS_DISCHARGING; 2542 } 2543 2544 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 2545 ps_dev->battery_capacity = battery_capacity; 2546 ps_dev->battery_status = battery_status; 2547 } 2548 2549 return 0; 2550 } 2551 2552 static int dualshock4_dongle_parse_report(struct ps_device *ps_dev, struct hid_report *report, 2553 u8 *data, int size) 2554 { 2555 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2556 bool connected = false; 2557 2558 /* The dongle reports data using the main USB report (0x1) no matter whether a controller 2559 * is connected with mostly zeros. The report does contain dongle status, which we use to 2560 * determine if a controller is connected and if so we forward to the regular DualShock4 2561 * parsing code. 2562 */ 2563 if (data[0] == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) { 2564 struct dualshock4_input_report_common *ds4_report = 2565 (struct dualshock4_input_report_common *)&data[1]; 2566 2567 connected = ds4_report->status[1] & DS4_STATUS1_DONGLE_STATE ? false : true; 2568 2569 if (ds4->dongle_state == DONGLE_DISCONNECTED && connected) { 2570 hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller connected\n"); 2571 2572 dualshock4_set_default_lightbar_colors(ds4); 2573 2574 scoped_guard(spinlock_irqsave, &ps_dev->lock) 2575 ds4->dongle_state = DONGLE_CALIBRATING; 2576 2577 schedule_work(&ds4->dongle_hotplug_worker); 2578 2579 /* Don't process the report since we don't have 2580 * calibration data, but let hidraw have it anyway. 2581 */ 2582 return 0; 2583 } else if ((ds4->dongle_state == DONGLE_CONNECTED || 2584 ds4->dongle_state == DONGLE_DISABLED) && !connected) { 2585 hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller disconnected\n"); 2586 2587 scoped_guard(spinlock_irqsave, &ps_dev->lock) 2588 ds4->dongle_state = DONGLE_DISCONNECTED; 2589 2590 /* Return 0, so hidraw can get the report. */ 2591 return 0; 2592 } else if (ds4->dongle_state == DONGLE_CALIBRATING || 2593 ds4->dongle_state == DONGLE_DISABLED || 2594 ds4->dongle_state == DONGLE_DISCONNECTED) { 2595 /* Return 0, so hidraw can get the report. */ 2596 return 0; 2597 } 2598 } 2599 2600 if (connected) 2601 return dualshock4_parse_report(ps_dev, report, data, size); 2602 2603 return 0; 2604 } 2605 2606 static int dualshock4_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) 2607 { 2608 struct hid_device *hdev = input_get_drvdata(dev); 2609 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2610 2611 if (effect->type != FF_RUMBLE) 2612 return 0; 2613 2614 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2615 ds4->update_rumble = true; 2616 ds4->motor_left = effect->u.rumble.strong_magnitude / 256; 2617 ds4->motor_right = effect->u.rumble.weak_magnitude / 256; 2618 } 2619 2620 dualshock4_schedule_work(ds4); 2621 return 0; 2622 } 2623 2624 static void dualshock4_remove(struct ps_device *ps_dev) 2625 { 2626 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2627 2628 scoped_guard(spinlock_irqsave, &ds4->base.lock) 2629 ds4->output_worker_initialized = false; 2630 2631 cancel_work_sync(&ds4->output_worker); 2632 2633 if (ps_dev->hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) 2634 cancel_work_sync(&ds4->dongle_hotplug_worker); 2635 } 2636 2637 static inline void dualshock4_schedule_work(struct dualshock4 *ds4) 2638 { 2639 /* Using scoped_guard() instead of guard() to make sparse happy */ 2640 scoped_guard(spinlock_irqsave, &ds4->base.lock) 2641 if (ds4->output_worker_initialized) 2642 schedule_work(&ds4->output_worker); 2643 } 2644 2645 static void dualshock4_set_bt_poll_interval(struct dualshock4 *ds4, u8 interval) 2646 { 2647 ds4->bt_poll_interval = interval; 2648 ds4->update_bt_poll_interval = true; 2649 dualshock4_schedule_work(ds4); 2650 } 2651 2652 /* Set default lightbar color based on player. */ 2653 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4) 2654 { 2655 /* Use same player colors as PlayStation 4. 2656 * Array of colors is in RGB. 2657 */ 2658 static const int player_colors[4][3] = { 2659 { 0x00, 0x00, 0x40 }, /* Blue */ 2660 { 0x40, 0x00, 0x00 }, /* Red */ 2661 { 0x00, 0x40, 0x00 }, /* Green */ 2662 { 0x20, 0x00, 0x20 } /* Pink */ 2663 }; 2664 2665 u8 player_id = ds4->base.player_id % ARRAY_SIZE(player_colors); 2666 2667 ds4->lightbar_enabled = true; 2668 ds4->lightbar_red = player_colors[player_id][0]; 2669 ds4->lightbar_green = player_colors[player_id][1]; 2670 ds4->lightbar_blue = player_colors[player_id][2]; 2671 2672 ds4->update_lightbar = true; 2673 dualshock4_schedule_work(ds4); 2674 } 2675 2676 static struct ps_device *dualshock4_create(struct hid_device *hdev) 2677 { 2678 struct dualshock4 *ds4; 2679 struct ps_device *ps_dev; 2680 u8 max_output_report_size; 2681 int i, ret; 2682 2683 /* The DualShock4 has an RGB lightbar, which the original hid-sony driver 2684 * exposed as a set of 4 LEDs for the 3 color channels and a global control. 2685 * Ideally this should have used the multi-color LED class, which didn't exist 2686 * yet. In addition the driver used a naming scheme not compliant with the LED 2687 * naming spec by using "<mac_address>:<color>", which contained many colons. 2688 * We use a more compliant by using "<device_name>:<color>" name now. Ideally 2689 * would have been "<device_name>:<color>:indicator", but that would break 2690 * existing applications (e.g. Android). Nothing matches against MAC address. 2691 */ 2692 static const struct ps_led_info lightbar_leds_info[] = { 2693 { NULL, "red", 255, dualshock4_led_get_brightness, 2694 dualshock4_led_set_brightness }, 2695 { NULL, "green", 255, dualshock4_led_get_brightness, 2696 dualshock4_led_set_brightness }, 2697 { NULL, "blue", 255, dualshock4_led_get_brightness, 2698 dualshock4_led_set_brightness }, 2699 { NULL, "global", 1, dualshock4_led_get_brightness, 2700 dualshock4_led_set_brightness, dualshock4_led_set_blink }, 2701 }; 2702 2703 ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL); 2704 if (!ds4) 2705 return ERR_PTR(-ENOMEM); 2706 2707 /* 2708 * Patch version to allow userspace to distinguish between 2709 * hid-generic vs hid-playstation axis and button mapping. 2710 */ 2711 hdev->version |= HID_PLAYSTATION_VERSION_PATCH; 2712 2713 ps_dev = &ds4->base; 2714 ps_dev->hdev = hdev; 2715 spin_lock_init(&ps_dev->lock); 2716 ps_dev->battery_capacity = 100; /* initial value until parse_report. */ 2717 ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 2718 ps_dev->parse_report = dualshock4_parse_report; 2719 ps_dev->remove = dualshock4_remove; 2720 INIT_WORK(&ds4->output_worker, dualshock4_output_worker); 2721 ds4->output_worker_initialized = true; 2722 hid_set_drvdata(hdev, ds4); 2723 2724 max_output_report_size = sizeof(struct dualshock4_output_report_bt); 2725 ds4->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL); 2726 if (!ds4->output_report_dmabuf) 2727 return ERR_PTR(-ENOMEM); 2728 2729 if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) { 2730 ds4->dongle_state = DONGLE_DISCONNECTED; 2731 INIT_WORK(&ds4->dongle_hotplug_worker, dualshock4_dongle_calibration_work); 2732 2733 /* Override parse report for dongle specific hotplug handling. */ 2734 ps_dev->parse_report = dualshock4_dongle_parse_report; 2735 } 2736 2737 ret = dualshock4_get_mac_address(ds4); 2738 if (ret) { 2739 hid_err(hdev, "Failed to get MAC address from DualShock4\n"); 2740 return ERR_PTR(ret); 2741 } 2742 snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address); 2743 2744 ret = dualshock4_get_firmware_info(ds4); 2745 if (ret) { 2746 hid_warn(hdev, "Failed to get firmware info from DualShock4\n"); 2747 hid_warn(hdev, "HW/FW version data in sysfs will be invalid.\n"); 2748 } 2749 2750 ret = ps_devices_list_add(ps_dev); 2751 if (ret) 2752 return ERR_PTR(ret); 2753 2754 ret = dualshock4_get_calibration_data(ds4); 2755 if (ret) { 2756 hid_warn(hdev, "Failed to get calibration data from DualShock4\n"); 2757 hid_warn(hdev, "Gyroscope and accelerometer will be inaccurate.\n"); 2758 } 2759 2760 ds4->gamepad = ps_gamepad_create(hdev, dualshock4_play_effect); 2761 if (IS_ERR(ds4->gamepad)) { 2762 ret = PTR_ERR(ds4->gamepad); 2763 goto err; 2764 } 2765 2766 /* Use gamepad input device name as primary device name for e.g. LEDs */ 2767 ps_dev->input_dev_name = dev_name(&ds4->gamepad->dev); 2768 2769 ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G, 2770 DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S); 2771 if (IS_ERR(ds4->sensors)) { 2772 ret = PTR_ERR(ds4->sensors); 2773 goto err; 2774 } 2775 2776 ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2); 2777 if (IS_ERR(ds4->touchpad)) { 2778 ret = PTR_ERR(ds4->touchpad); 2779 goto err; 2780 } 2781 2782 ret = ps_device_register_battery(ps_dev); 2783 if (ret) 2784 goto err; 2785 2786 for (i = 0; i < ARRAY_SIZE(lightbar_leds_info); i++) { 2787 const struct ps_led_info *led_info = &lightbar_leds_info[i]; 2788 2789 ret = ps_led_register(ps_dev, &ds4->lightbar_leds[i], led_info); 2790 if (ret < 0) 2791 goto err; 2792 } 2793 2794 dualshock4_set_bt_poll_interval(ds4, DS4_BT_DEFAULT_POLL_INTERVAL_MS); 2795 2796 ret = ps_device_set_player_id(ps_dev); 2797 if (ret) { 2798 hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret); 2799 goto err; 2800 } 2801 2802 dualshock4_set_default_lightbar_colors(ds4); 2803 2804 /* 2805 * Reporting hardware and firmware is important as there are frequent updates, which 2806 * can change behavior. 2807 */ 2808 hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n", 2809 ds4->base.hw_version, ds4->base.fw_version); 2810 return &ds4->base; 2811 2812 err: 2813 ps_devices_list_remove(ps_dev); 2814 return ERR_PTR(ret); 2815 } 2816 2817 static int ps_raw_event(struct hid_device *hdev, struct hid_report *report, 2818 u8 *data, int size) 2819 { 2820 struct ps_device *dev = hid_get_drvdata(hdev); 2821 2822 if (dev && dev->parse_report) 2823 return dev->parse_report(dev, report, data, size); 2824 2825 return 0; 2826 } 2827 2828 static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id) 2829 { 2830 struct ps_device *dev; 2831 int ret; 2832 2833 ret = hid_parse(hdev); 2834 if (ret) { 2835 hid_err(hdev, "Parse failed\n"); 2836 return ret; 2837 } 2838 2839 ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); 2840 if (ret) { 2841 hid_err(hdev, "Failed to start HID device\n"); 2842 return ret; 2843 } 2844 2845 ret = hid_hw_open(hdev); 2846 if (ret) { 2847 hid_err(hdev, "Failed to open HID device\n"); 2848 goto err_stop; 2849 } 2850 2851 if (id->driver_data == PS_TYPE_PS4_DUALSHOCK4) { 2852 dev = dualshock4_create(hdev); 2853 if (IS_ERR(dev)) { 2854 hid_err(hdev, "Failed to create dualshock4.\n"); 2855 ret = PTR_ERR(dev); 2856 goto err_close; 2857 } 2858 } else if (id->driver_data == PS_TYPE_PS5_DUALSENSE) { 2859 dev = dualsense_create(hdev); 2860 if (IS_ERR(dev)) { 2861 hid_err(hdev, "Failed to create dualsense.\n"); 2862 ret = PTR_ERR(dev); 2863 goto err_close; 2864 } 2865 } 2866 2867 return ret; 2868 2869 err_close: 2870 hid_hw_close(hdev); 2871 err_stop: 2872 hid_hw_stop(hdev); 2873 return ret; 2874 } 2875 2876 static void ps_remove(struct hid_device *hdev) 2877 { 2878 struct ps_device *dev = hid_get_drvdata(hdev); 2879 2880 ps_devices_list_remove(dev); 2881 ps_device_release_player_id(dev); 2882 2883 if (dev->remove) 2884 dev->remove(dev); 2885 2886 hid_hw_close(hdev); 2887 hid_hw_stop(hdev); 2888 } 2889 2890 static const struct hid_device_id ps_devices[] = { 2891 /* Sony DualShock 4 controllers for PS4 */ 2892 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), 2893 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2894 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), 2895 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2896 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), 2897 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2898 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), 2899 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2900 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE), 2901 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2902 2903 /* Sony DualSense controllers for PS5 */ 2904 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER), 2905 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2906 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER), 2907 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2908 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2), 2909 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2910 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2), 2911 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2912 { } 2913 }; 2914 MODULE_DEVICE_TABLE(hid, ps_devices); 2915 2916 static struct hid_driver ps_driver = { 2917 .name = "playstation", 2918 .id_table = ps_devices, 2919 .probe = ps_probe, 2920 .remove = ps_remove, 2921 .raw_event = ps_raw_event, 2922 .driver = { 2923 .dev_groups = ps_device_groups, 2924 }, 2925 }; 2926 2927 static int __init ps_init(void) 2928 { 2929 return hid_register_driver(&ps_driver); 2930 } 2931 2932 static void __exit ps_exit(void) 2933 { 2934 hid_unregister_driver(&ps_driver); 2935 ida_destroy(&ps_player_id_allocator); 2936 } 2937 2938 module_init(ps_init); 2939 module_exit(ps_exit); 2940 2941 MODULE_AUTHOR("Sony Interactive Entertainment"); 2942 MODULE_DESCRIPTION("HID Driver for PlayStation peripherals."); 2943 MODULE_LICENSE("GPL"); 2944