1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID driver for Sony DualSense(TM) controller. 4 * 5 * Copyright (c) 2020-2022 Sony Interactive Entertainment 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/bits.h> 10 #include <linux/cleanup.h> 11 #include <linux/crc32.h> 12 #include <linux/device.h> 13 #include <linux/hid.h> 14 #include <linux/idr.h> 15 #include <linux/input/mt.h> 16 #include <linux/leds.h> 17 #include <linux/led-class-multicolor.h> 18 #include <linux/module.h> 19 20 #include <linux/unaligned.h> 21 22 #include "hid-ids.h" 23 24 /* List of connected playstation devices. */ 25 static DEFINE_MUTEX(ps_devices_lock); 26 static LIST_HEAD(ps_devices_list); 27 28 static DEFINE_IDA(ps_player_id_allocator); 29 30 #define HID_PLAYSTATION_VERSION_PATCH 0x8000 31 32 enum PS_TYPE { 33 PS_TYPE_PS4_DUALSHOCK4, 34 PS_TYPE_PS5_DUALSENSE, 35 }; 36 37 /* Base class for playstation devices. */ 38 struct ps_device { 39 struct list_head list; 40 struct hid_device *hdev; 41 spinlock_t lock; /* Sync between event handler and workqueue */ 42 43 u32 player_id; 44 45 struct power_supply_desc battery_desc; 46 struct power_supply *battery; 47 u8 battery_capacity; 48 int battery_status; 49 50 const char *input_dev_name; /* Name of primary input device. */ 51 u8 mac_address[6]; /* Note: stored in little endian order. */ 52 u32 hw_version; 53 u32 fw_version; 54 55 int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size); 56 void (*remove)(struct ps_device *dev); 57 }; 58 59 /* Calibration data for playstation motion sensors. */ 60 struct ps_calibration_data { 61 int abs_code; 62 short bias; 63 int sens_numer; 64 int sens_denom; 65 }; 66 67 struct ps_led_info { 68 const char *name; 69 const char *color; 70 int max_brightness; 71 enum led_brightness (*brightness_get)(struct led_classdev *cdev); 72 int (*brightness_set)(struct led_classdev *cdev, enum led_brightness); 73 int (*blink_set)(struct led_classdev *led, unsigned long *on, unsigned long *off); 74 }; 75 76 /* Seed values for DualShock4 / DualSense CRC32 for different report types. */ 77 #define PS_INPUT_CRC32_SEED 0xA1 78 #define PS_OUTPUT_CRC32_SEED 0xA2 79 #define PS_FEATURE_CRC32_SEED 0xA3 80 81 #define DS_INPUT_REPORT_USB 0x01 82 #define DS_INPUT_REPORT_USB_SIZE 64 83 #define DS_INPUT_REPORT_BT 0x31 84 #define DS_INPUT_REPORT_BT_SIZE 78 85 #define DS_OUTPUT_REPORT_USB 0x02 86 #define DS_OUTPUT_REPORT_USB_SIZE 63 87 #define DS_OUTPUT_REPORT_BT 0x31 88 #define DS_OUTPUT_REPORT_BT_SIZE 78 89 90 #define DS_FEATURE_REPORT_CALIBRATION 0x05 91 #define DS_FEATURE_REPORT_CALIBRATION_SIZE 41 92 #define DS_FEATURE_REPORT_PAIRING_INFO 0x09 93 #define DS_FEATURE_REPORT_PAIRING_INFO_SIZE 20 94 #define DS_FEATURE_REPORT_FIRMWARE_INFO 0x20 95 #define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE 64 96 97 /* Button masks for DualSense input report. */ 98 #define DS_BUTTONS0_HAT_SWITCH GENMASK(3, 0) 99 #define DS_BUTTONS0_SQUARE BIT(4) 100 #define DS_BUTTONS0_CROSS BIT(5) 101 #define DS_BUTTONS0_CIRCLE BIT(6) 102 #define DS_BUTTONS0_TRIANGLE BIT(7) 103 #define DS_BUTTONS1_L1 BIT(0) 104 #define DS_BUTTONS1_R1 BIT(1) 105 #define DS_BUTTONS1_L2 BIT(2) 106 #define DS_BUTTONS1_R2 BIT(3) 107 #define DS_BUTTONS1_CREATE BIT(4) 108 #define DS_BUTTONS1_OPTIONS BIT(5) 109 #define DS_BUTTONS1_L3 BIT(6) 110 #define DS_BUTTONS1_R3 BIT(7) 111 #define DS_BUTTONS2_PS_HOME BIT(0) 112 #define DS_BUTTONS2_TOUCHPAD BIT(1) 113 #define DS_BUTTONS2_MIC_MUTE BIT(2) 114 115 /* Status fields of DualSense input report. */ 116 #define DS_STATUS0_BATTERY_CAPACITY GENMASK(3, 0) 117 #define DS_STATUS0_CHARGING GENMASK(7, 4) 118 #define DS_STATUS1_HP_DETECT BIT(0) 119 #define DS_STATUS1_MIC_DETECT BIT(1) 120 #define DS_STATUS1_JACK_DETECT (DS_STATUS1_HP_DETECT | DS_STATUS1_MIC_DETECT) 121 #define DS_STATUS1_MIC_MUTE BIT(2) 122 123 /* Feature version from DualSense Firmware Info report. */ 124 #define DS_FEATURE_VERSION_MINOR GENMASK(7, 0) 125 #define DS_FEATURE_VERSION_MAJOR GENMASK(15, 8) 126 #define DS_FEATURE_VERSION(major, minor) (FIELD_PREP(DS_FEATURE_VERSION_MAJOR, major) | \ 127 FIELD_PREP(DS_FEATURE_VERSION_MINOR, minor)) 128 /* 129 * Status of a DualSense touch point contact. 130 * Contact IDs, with highest bit set are 'inactive' 131 * and any associated data is then invalid. 132 */ 133 #define DS_TOUCH_POINT_INACTIVE BIT(7) 134 #define DS_TOUCH_POINT_X_LO GENMASK(7, 0) 135 #define DS_TOUCH_POINT_X_HI GENMASK(11, 8) 136 #define DS_TOUCH_POINT_X(hi, lo) (FIELD_PREP(DS_TOUCH_POINT_X_HI, hi) | \ 137 FIELD_PREP(DS_TOUCH_POINT_X_LO, lo)) 138 #define DS_TOUCH_POINT_Y_LO GENMASK(3, 0) 139 #define DS_TOUCH_POINT_Y_HI GENMASK(11, 4) 140 #define DS_TOUCH_POINT_Y(hi, lo) (FIELD_PREP(DS_TOUCH_POINT_Y_HI, hi) | \ 141 FIELD_PREP(DS_TOUCH_POINT_Y_LO, lo)) 142 143 /* Magic value required in tag field of Bluetooth output report. */ 144 #define DS_OUTPUT_TAG 0x10 145 #define DS_OUTPUT_SEQ_TAG GENMASK(3, 0) 146 #define DS_OUTPUT_SEQ_NO GENMASK(7, 4) 147 /* Flags for DualSense output report. */ 148 #define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION BIT(0) 149 #define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT BIT(1) 150 #define DS_OUTPUT_VALID_FLAG0_SPEAKER_VOLUME_ENABLE BIT(5) 151 #define DS_OUTPUT_VALID_FLAG0_MIC_VOLUME_ENABLE BIT(6) 152 #define DS_OUTPUT_VALID_FLAG0_AUDIO_CONTROL_ENABLE BIT(7) 153 #define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE BIT(0) 154 #define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE BIT(1) 155 #define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE BIT(2) 156 #define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS BIT(3) 157 #define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE BIT(4) 158 #define DS_OUTPUT_VALID_FLAG1_AUDIO_CONTROL2_ENABLE BIT(7) 159 #define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE BIT(1) 160 #define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2 BIT(2) 161 #define DS_OUTPUT_AUDIO_FLAGS_OUTPUT_PATH_SEL GENMASK(5, 4) 162 #define DS_OUTPUT_AUDIO_FLAGS2_SP_PREAMP_GAIN GENMASK(2, 0) 163 #define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE BIT(4) 164 #define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT BIT(1) 165 166 /* DualSense hardware limits */ 167 #define DS_ACC_RES_PER_G 8192 168 #define DS_ACC_RANGE (4 * DS_ACC_RES_PER_G) 169 #define DS_GYRO_RES_PER_DEG_S 1024 170 #define DS_GYRO_RANGE (2048 * DS_GYRO_RES_PER_DEG_S) 171 #define DS_TOUCHPAD_WIDTH 1920 172 #define DS_TOUCHPAD_HEIGHT 1080 173 174 struct dualsense { 175 struct ps_device base; 176 struct input_dev *gamepad; 177 struct input_dev *sensors; 178 struct input_dev *touchpad; 179 struct input_dev *jack; 180 181 /* Update version is used as a feature/capability version. */ 182 u16 update_version; 183 184 /* Calibration data for accelerometer and gyroscope. */ 185 struct ps_calibration_data accel_calib_data[3]; 186 struct ps_calibration_data gyro_calib_data[3]; 187 188 /* Timestamp for sensor data */ 189 bool sensor_timestamp_initialized; 190 u32 prev_sensor_timestamp; 191 u32 sensor_timestamp_us; 192 193 /* Compatible rumble state */ 194 bool use_vibration_v2; 195 bool update_rumble; 196 u8 motor_left; 197 u8 motor_right; 198 199 /* RGB lightbar */ 200 struct led_classdev_mc lightbar; 201 bool update_lightbar; 202 u8 lightbar_red; 203 u8 lightbar_green; 204 u8 lightbar_blue; 205 206 /* Audio Jack plugged state */ 207 u8 plugged_state; 208 u8 prev_plugged_state; 209 bool prev_plugged_state_valid; 210 211 /* Microphone */ 212 bool update_mic_mute; 213 bool mic_muted; 214 bool last_btn_mic_state; 215 216 /* Player leds */ 217 bool update_player_leds; 218 u8 player_leds_state; 219 struct led_classdev player_leds[5]; 220 221 struct work_struct output_worker; 222 bool output_worker_initialized; 223 void *output_report_dmabuf; 224 u8 output_seq; /* Sequence number for output report. */ 225 }; 226 227 struct dualsense_touch_point { 228 u8 contact; 229 u8 x_lo; 230 u8 x_hi:4, y_lo:4; 231 u8 y_hi; 232 } __packed; 233 static_assert(sizeof(struct dualsense_touch_point) == 4); 234 235 /* Main DualSense input report excluding any BT/USB specific headers. */ 236 struct dualsense_input_report { 237 u8 x, y; 238 u8 rx, ry; 239 u8 z, rz; 240 u8 seq_number; 241 u8 buttons[4]; 242 u8 reserved[4]; 243 244 /* Motion sensors */ 245 __le16 gyro[3]; /* x, y, z */ 246 __le16 accel[3]; /* x, y, z */ 247 __le32 sensor_timestamp; 248 u8 reserved2; 249 250 /* Touchpad */ 251 struct dualsense_touch_point points[2]; 252 253 u8 reserved3[12]; 254 u8 status[3]; 255 u8 reserved4[8]; 256 } __packed; 257 /* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */ 258 static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1); 259 260 /* Common data between DualSense BT/USB main output report. */ 261 struct dualsense_output_report_common { 262 u8 valid_flag0; 263 u8 valid_flag1; 264 265 /* For DualShock 4 compatibility mode. */ 266 u8 motor_right; 267 u8 motor_left; 268 269 /* Audio controls */ 270 u8 headphone_volume; /* 0x0 - 0x7f */ 271 u8 speaker_volume; /* 0x0 - 0xff */ 272 u8 mic_volume; /* 0x0 - 0x40 */ 273 u8 audio_control; 274 u8 mute_button_led; 275 276 u8 power_save_control; 277 u8 reserved2[27]; 278 u8 audio_control2; 279 280 /* LEDs and lightbar */ 281 u8 valid_flag2; 282 u8 reserved3[2]; 283 u8 lightbar_setup; 284 u8 led_brightness; 285 u8 player_leds; 286 u8 lightbar_red; 287 u8 lightbar_green; 288 u8 lightbar_blue; 289 } __packed; 290 static_assert(sizeof(struct dualsense_output_report_common) == 47); 291 292 struct dualsense_output_report_bt { 293 u8 report_id; /* 0x31 */ 294 u8 seq_tag; 295 u8 tag; 296 struct dualsense_output_report_common common; 297 u8 reserved[24]; 298 __le32 crc32; 299 } __packed; 300 static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE); 301 302 struct dualsense_output_report_usb { 303 u8 report_id; /* 0x02 */ 304 struct dualsense_output_report_common common; 305 u8 reserved[15]; 306 } __packed; 307 static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE); 308 309 /* 310 * The DualSense has a main output report used to control most features. It is 311 * largely the same between Bluetooth and USB except for different headers and CRC. 312 * This structure hide the differences between the two to simplify sending output reports. 313 */ 314 struct dualsense_output_report { 315 u8 *data; /* Start of data */ 316 u8 len; /* Size of output report */ 317 318 /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */ 319 struct dualsense_output_report_bt *bt; 320 /* Points to USB data payload in case for a USB report else NULL. */ 321 struct dualsense_output_report_usb *usb; 322 /* Points to common section of report, so past any headers. */ 323 struct dualsense_output_report_common *common; 324 }; 325 326 #define DS4_INPUT_REPORT_USB 0x01 327 #define DS4_INPUT_REPORT_USB_SIZE 64 328 #define DS4_INPUT_REPORT_BT_MINIMAL 0x01 329 #define DS4_INPUT_REPORT_BT_MINIMAL_SIZE 10 330 #define DS4_INPUT_REPORT_BT 0x11 331 #define DS4_INPUT_REPORT_BT_SIZE 78 332 #define DS4_OUTPUT_REPORT_USB 0x05 333 #define DS4_OUTPUT_REPORT_USB_SIZE 32 334 #define DS4_OUTPUT_REPORT_BT 0x11 335 #define DS4_OUTPUT_REPORT_BT_SIZE 78 336 337 #define DS4_FEATURE_REPORT_CALIBRATION 0x02 338 #define DS4_FEATURE_REPORT_CALIBRATION_SIZE 37 339 #define DS4_FEATURE_REPORT_CALIBRATION_BT 0x05 340 #define DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE 41 341 #define DS4_FEATURE_REPORT_FIRMWARE_INFO 0xa3 342 #define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE 49 343 #define DS4_FEATURE_REPORT_PAIRING_INFO 0x12 344 #define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE 16 345 346 /* 347 * Status of a DualShock4 touch point contact. 348 * Contact IDs, with highest bit set are 'inactive' 349 * and any associated data is then invalid. 350 */ 351 #define DS4_TOUCH_POINT_INACTIVE BIT(7) 352 #define DS4_TOUCH_POINT_X(hi, lo) DS_TOUCH_POINT_X(hi, lo) 353 #define DS4_TOUCH_POINT_Y(hi, lo) DS_TOUCH_POINT_Y(hi, lo) 354 355 /* Status field of DualShock4 input report. */ 356 #define DS4_STATUS0_BATTERY_CAPACITY GENMASK(3, 0) 357 #define DS4_STATUS0_CABLE_STATE BIT(4) 358 /* Battery status within batery_status field. */ 359 #define DS4_BATTERY_STATUS_FULL 11 360 /* Status1 bit2 contains dongle connection state: 361 * 0 = connected 362 * 1 = disconnected 363 */ 364 #define DS4_STATUS1_DONGLE_STATE BIT(2) 365 366 /* The lower 6 bits of hw_control of the Bluetooth main output report 367 * control the interval at which Dualshock 4 reports data: 368 * 0x00 - 1ms 369 * 0x01 - 1ms 370 * 0x02 - 2ms 371 * 0x3E - 62ms 372 * 0x3F - disabled 373 */ 374 #define DS4_OUTPUT_HWCTL_BT_POLL_MASK 0x3F 375 /* Default to 4ms poll interval, which is same as USB (not adjustable). */ 376 #define DS4_BT_DEFAULT_POLL_INTERVAL_MS 4 377 #define DS4_OUTPUT_HWCTL_CRC32 0x40 378 #define DS4_OUTPUT_HWCTL_HID 0x80 379 380 /* Flags for DualShock4 output report. */ 381 #define DS4_OUTPUT_VALID_FLAG0_MOTOR 0x01 382 #define DS4_OUTPUT_VALID_FLAG0_LED 0x02 383 #define DS4_OUTPUT_VALID_FLAG0_LED_BLINK 0x04 384 385 /* DualShock4 hardware limits */ 386 #define DS4_ACC_RES_PER_G 8192 387 #define DS4_ACC_RANGE (4 * DS_ACC_RES_PER_G) 388 #define DS4_GYRO_RES_PER_DEG_S 1024 389 #define DS4_GYRO_RANGE (2048 * DS_GYRO_RES_PER_DEG_S) 390 #define DS4_LIGHTBAR_MAX_BLINK 255 /* 255 centiseconds */ 391 #define DS4_TOUCHPAD_WIDTH 1920 392 #define DS4_TOUCHPAD_HEIGHT 942 393 394 enum dualshock4_dongle_state { 395 DONGLE_DISCONNECTED, 396 DONGLE_CALIBRATING, 397 DONGLE_CONNECTED, 398 DONGLE_DISABLED 399 }; 400 401 struct dualshock4 { 402 struct ps_device base; 403 struct input_dev *gamepad; 404 struct input_dev *sensors; 405 struct input_dev *touchpad; 406 407 /* Calibration data for accelerometer and gyroscope. */ 408 struct ps_calibration_data accel_calib_data[3]; 409 struct ps_calibration_data gyro_calib_data[3]; 410 411 /* Only used on dongle to track state transitions. */ 412 enum dualshock4_dongle_state dongle_state; 413 /* Used during calibration. */ 414 struct work_struct dongle_hotplug_worker; 415 416 /* Timestamp for sensor data */ 417 bool sensor_timestamp_initialized; 418 u32 prev_sensor_timestamp; 419 u32 sensor_timestamp_us; 420 421 /* Bluetooth poll interval */ 422 bool update_bt_poll_interval; 423 u8 bt_poll_interval; 424 425 bool update_rumble; 426 u8 motor_left; 427 u8 motor_right; 428 429 /* Lightbar leds */ 430 bool update_lightbar; 431 bool update_lightbar_blink; 432 bool lightbar_enabled; /* For use by global LED control. */ 433 u8 lightbar_red; 434 u8 lightbar_green; 435 u8 lightbar_blue; 436 u8 lightbar_blink_on; /* In increments of 10ms. */ 437 u8 lightbar_blink_off; /* In increments of 10ms. */ 438 struct led_classdev lightbar_leds[4]; 439 440 struct work_struct output_worker; 441 bool output_worker_initialized; 442 void *output_report_dmabuf; 443 }; 444 445 struct dualshock4_touch_point { 446 u8 contact; 447 u8 x_lo; 448 u8 x_hi:4, y_lo:4; 449 u8 y_hi; 450 } __packed; 451 static_assert(sizeof(struct dualshock4_touch_point) == 4); 452 453 struct dualshock4_touch_report { 454 u8 timestamp; 455 struct dualshock4_touch_point points[2]; 456 } __packed; 457 static_assert(sizeof(struct dualshock4_touch_report) == 9); 458 459 /* Main DualShock4 input report excluding any BT/USB specific headers. */ 460 struct dualshock4_input_report_common { 461 u8 x, y; 462 u8 rx, ry; 463 u8 buttons[3]; 464 u8 z, rz; 465 466 /* Motion sensors */ 467 __le16 sensor_timestamp; 468 u8 sensor_temperature; 469 __le16 gyro[3]; /* x, y, z */ 470 __le16 accel[3]; /* x, y, z */ 471 u8 reserved2[5]; 472 473 u8 status[2]; 474 u8 reserved3; 475 } __packed; 476 static_assert(sizeof(struct dualshock4_input_report_common) == 32); 477 478 struct dualshock4_input_report_usb { 479 u8 report_id; /* 0x01 */ 480 struct dualshock4_input_report_common common; 481 u8 num_touch_reports; 482 struct dualshock4_touch_report touch_reports[3]; 483 u8 reserved[3]; 484 } __packed; 485 static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE); 486 487 struct dualshock4_input_report_bt { 488 u8 report_id; /* 0x11 */ 489 u8 reserved[2]; 490 struct dualshock4_input_report_common common; 491 u8 num_touch_reports; 492 struct dualshock4_touch_report touch_reports[4]; /* BT has 4 compared to 3 for USB */ 493 u8 reserved2[2]; 494 __le32 crc32; 495 } __packed; 496 static_assert(sizeof(struct dualshock4_input_report_bt) == DS4_INPUT_REPORT_BT_SIZE); 497 498 /* Common data between Bluetooth and USB DualShock4 output reports. */ 499 struct dualshock4_output_report_common { 500 u8 valid_flag0; 501 u8 valid_flag1; 502 503 u8 reserved; 504 505 u8 motor_right; 506 u8 motor_left; 507 508 u8 lightbar_red; 509 u8 lightbar_green; 510 u8 lightbar_blue; 511 u8 lightbar_blink_on; 512 u8 lightbar_blink_off; 513 } __packed; 514 515 struct dualshock4_output_report_usb { 516 u8 report_id; /* 0x5 */ 517 struct dualshock4_output_report_common common; 518 u8 reserved[21]; 519 } __packed; 520 static_assert(sizeof(struct dualshock4_output_report_usb) == DS4_OUTPUT_REPORT_USB_SIZE); 521 522 struct dualshock4_output_report_bt { 523 u8 report_id; /* 0x11 */ 524 u8 hw_control; 525 u8 audio_control; 526 struct dualshock4_output_report_common common; 527 u8 reserved[61]; 528 __le32 crc32; 529 } __packed; 530 static_assert(sizeof(struct dualshock4_output_report_bt) == DS4_OUTPUT_REPORT_BT_SIZE); 531 532 /* 533 * The DualShock4 has a main output report used to control most features. It is 534 * largely the same between Bluetooth and USB except for different headers and CRC. 535 * This structure hide the differences between the two to simplify sending output reports. 536 */ 537 struct dualshock4_output_report { 538 u8 *data; /* Start of data */ 539 u8 len; /* Size of output report */ 540 541 /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */ 542 struct dualshock4_output_report_bt *bt; 543 /* Points to USB data payload in case for a USB report else NULL. */ 544 struct dualshock4_output_report_usb *usb; 545 /* Points to common section of report, so past any headers. */ 546 struct dualshock4_output_report_common *common; 547 }; 548 549 /* 550 * Common gamepad buttons across DualShock 3 / 4 and DualSense. 551 * Note: for device with a touchpad, touchpad button is not included 552 * as it will be part of the touchpad device. 553 */ 554 static const int ps_gamepad_buttons[] = { 555 BTN_WEST, /* Square */ 556 BTN_NORTH, /* Triangle */ 557 BTN_EAST, /* Circle */ 558 BTN_SOUTH, /* Cross */ 559 BTN_TL, /* L1 */ 560 BTN_TR, /* R1 */ 561 BTN_TL2, /* L2 */ 562 BTN_TR2, /* R2 */ 563 BTN_SELECT, /* Create (PS5) / Share (PS4) */ 564 BTN_START, /* Option */ 565 BTN_THUMBL, /* L3 */ 566 BTN_THUMBR, /* R3 */ 567 BTN_MODE, /* PS Home */ 568 }; 569 570 static const struct {int x; int y; } ps_gamepad_hat_mapping[] = { 571 {0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, 572 {0, 0}, 573 }; 574 575 static int dualshock4_get_calibration_data(struct dualshock4 *ds4); 576 static inline void dualsense_schedule_work(struct dualsense *ds); 577 static inline void dualshock4_schedule_work(struct dualshock4 *ds4); 578 static void dualsense_set_lightbar(struct dualsense *ds, u8 red, u8 green, u8 blue); 579 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4); 580 581 /* 582 * Add a new ps_device to ps_devices if it doesn't exist. 583 * Return error on duplicate device, which can happen if the same 584 * device is connected using both Bluetooth and USB. 585 */ 586 static int ps_devices_list_add(struct ps_device *dev) 587 { 588 struct ps_device *entry; 589 590 guard(mutex)(&ps_devices_lock); 591 592 list_for_each_entry(entry, &ps_devices_list, list) { 593 if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) { 594 hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n", 595 dev->mac_address); 596 return -EEXIST; 597 } 598 } 599 600 list_add_tail(&dev->list, &ps_devices_list); 601 return 0; 602 } 603 604 static int ps_devices_list_remove(struct ps_device *dev) 605 { 606 guard(mutex)(&ps_devices_lock); 607 608 list_del(&dev->list); 609 return 0; 610 } 611 612 static int ps_device_set_player_id(struct ps_device *dev) 613 { 614 int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL); 615 616 if (ret < 0) 617 return ret; 618 619 dev->player_id = ret; 620 return 0; 621 } 622 623 static void ps_device_release_player_id(struct ps_device *dev) 624 { 625 ida_free(&ps_player_id_allocator, dev->player_id); 626 627 dev->player_id = U32_MAX; 628 } 629 630 static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev, 631 const char *name_suffix) 632 { 633 struct input_dev *input_dev; 634 635 input_dev = devm_input_allocate_device(&hdev->dev); 636 if (!input_dev) 637 return ERR_PTR(-ENOMEM); 638 639 input_dev->id.bustype = hdev->bus; 640 input_dev->id.vendor = hdev->vendor; 641 input_dev->id.product = hdev->product; 642 input_dev->id.version = hdev->version; 643 input_dev->uniq = hdev->uniq; 644 645 if (name_suffix) { 646 input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s", 647 hdev->name, name_suffix); 648 if (!input_dev->name) 649 return ERR_PTR(-ENOMEM); 650 } else { 651 input_dev->name = hdev->name; 652 } 653 654 input_set_drvdata(input_dev, hdev); 655 656 return input_dev; 657 } 658 659 static enum power_supply_property ps_power_supply_props[] = { 660 POWER_SUPPLY_PROP_STATUS, 661 POWER_SUPPLY_PROP_PRESENT, 662 POWER_SUPPLY_PROP_CAPACITY, 663 POWER_SUPPLY_PROP_SCOPE, 664 }; 665 666 static int ps_battery_get_property(struct power_supply *psy, 667 enum power_supply_property psp, 668 union power_supply_propval *val) 669 { 670 struct ps_device *dev = power_supply_get_drvdata(psy); 671 u8 battery_capacity; 672 int battery_status; 673 int ret = 0; 674 675 scoped_guard(spinlock_irqsave, &dev->lock) { 676 battery_capacity = dev->battery_capacity; 677 battery_status = dev->battery_status; 678 } 679 680 switch (psp) { 681 case POWER_SUPPLY_PROP_STATUS: 682 val->intval = battery_status; 683 break; 684 case POWER_SUPPLY_PROP_PRESENT: 685 val->intval = 1; 686 break; 687 case POWER_SUPPLY_PROP_CAPACITY: 688 val->intval = battery_capacity; 689 break; 690 case POWER_SUPPLY_PROP_SCOPE: 691 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 692 break; 693 default: 694 ret = -EINVAL; 695 break; 696 } 697 698 return ret; 699 } 700 701 static int ps_device_register_battery(struct ps_device *dev) 702 { 703 struct power_supply *battery; 704 struct power_supply_config battery_cfg = { .drv_data = dev }; 705 int ret; 706 707 dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY; 708 dev->battery_desc.properties = ps_power_supply_props; 709 dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props); 710 dev->battery_desc.get_property = ps_battery_get_property; 711 dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL, 712 "ps-controller-battery-%pMR", dev->mac_address); 713 if (!dev->battery_desc.name) 714 return -ENOMEM; 715 716 battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg); 717 if (IS_ERR(battery)) { 718 ret = PTR_ERR(battery); 719 hid_err(dev->hdev, "Unable to register battery device: %d\n", ret); 720 return ret; 721 } 722 dev->battery = battery; 723 724 ret = power_supply_powers(dev->battery, &dev->hdev->dev); 725 if (ret) { 726 hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret); 727 return ret; 728 } 729 730 return 0; 731 } 732 733 /* Compute crc32 of HID data and compare against expected CRC. */ 734 static bool ps_check_crc32(u8 seed, u8 *data, size_t len, u32 report_crc) 735 { 736 u32 crc; 737 738 crc = crc32_le(0xFFFFFFFF, &seed, 1); 739 crc = ~crc32_le(crc, data, len); 740 741 return crc == report_crc; 742 } 743 744 static struct input_dev * 745 ps_gamepad_create(struct hid_device *hdev, 746 int (*play_effect)(struct input_dev *, void *, struct ff_effect *)) 747 { 748 struct input_dev *gamepad; 749 unsigned int i; 750 int ret; 751 752 gamepad = ps_allocate_input_dev(hdev, NULL); 753 if (IS_ERR(gamepad)) 754 return ERR_CAST(gamepad); 755 756 input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0); 757 input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0); 758 input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0); 759 input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0); 760 input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0); 761 input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0); 762 763 input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0); 764 input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0); 765 766 for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++) 767 input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]); 768 769 #if IS_ENABLED(CONFIG_PLAYSTATION_FF) 770 if (play_effect) { 771 input_set_capability(gamepad, EV_FF, FF_RUMBLE); 772 input_ff_create_memless(gamepad, NULL, play_effect); 773 } 774 #endif 775 776 ret = input_register_device(gamepad); 777 if (ret) 778 return ERR_PTR(ret); 779 780 return gamepad; 781 } 782 783 static int ps_get_report(struct hid_device *hdev, u8 report_id, u8 *buf, 784 size_t size, bool check_crc) 785 { 786 int ret; 787 788 ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT, 789 HID_REQ_GET_REPORT); 790 if (ret < 0) { 791 hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret); 792 return ret; 793 } 794 795 if (ret != size) { 796 hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret); 797 return -EINVAL; 798 } 799 800 if (buf[0] != report_id) { 801 hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]); 802 return -EINVAL; 803 } 804 805 if (hdev->bus == BUS_BLUETOOTH && check_crc) { 806 /* Last 4 bytes contains crc32. */ 807 u8 crc_offset = size - 4; 808 u32 report_crc = get_unaligned_le32(&buf[crc_offset]); 809 810 if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) { 811 hid_err(hdev, "CRC check failed for reportID=%d\n", report_id); 812 return -EILSEQ; 813 } 814 } 815 816 return 0; 817 } 818 819 static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led, 820 const struct ps_led_info *led_info) 821 { 822 int ret; 823 824 if (led_info->name) { 825 led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s:%s", 826 ps_dev->input_dev_name, led_info->color, 827 led_info->name); 828 } else { 829 /* Backwards compatible mode for hid-sony, but not compliant 830 * with LED class spec. 831 */ 832 led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s", 833 ps_dev->input_dev_name, led_info->color); 834 } 835 836 if (!led->name) 837 return -ENOMEM; 838 839 led->brightness = 0; 840 led->max_brightness = led_info->max_brightness; 841 led->flags = LED_CORE_SUSPENDRESUME; 842 led->brightness_get = led_info->brightness_get; 843 led->brightness_set_blocking = led_info->brightness_set; 844 led->blink_set = led_info->blink_set; 845 846 ret = devm_led_classdev_register(&ps_dev->hdev->dev, led); 847 if (ret) { 848 hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret); 849 return ret; 850 } 851 852 return 0; 853 } 854 855 /* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */ 856 static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev, 857 int (*brightness_set)(struct led_classdev *, enum led_brightness)) 858 { 859 struct hid_device *hdev = ps_dev->hdev; 860 struct mc_subled *mc_led_info; 861 struct led_classdev *led_cdev; 862 int ret; 863 864 mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info), 865 GFP_KERNEL | __GFP_ZERO); 866 if (!mc_led_info) 867 return -ENOMEM; 868 869 mc_led_info[0].color_index = LED_COLOR_ID_RED; 870 mc_led_info[1].color_index = LED_COLOR_ID_GREEN; 871 mc_led_info[2].color_index = LED_COLOR_ID_BLUE; 872 873 lightbar_mc_dev->subled_info = mc_led_info; 874 lightbar_mc_dev->num_colors = 3; 875 876 led_cdev = &lightbar_mc_dev->led_cdev; 877 led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator", 878 ps_dev->input_dev_name); 879 if (!led_cdev->name) 880 return -ENOMEM; 881 led_cdev->brightness = 255; 882 led_cdev->max_brightness = 255; 883 led_cdev->brightness_set_blocking = brightness_set; 884 885 ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev); 886 if (ret < 0) { 887 hid_err(hdev, "Cannot register multicolor LED device\n"); 888 return ret; 889 } 890 891 return 0; 892 } 893 894 static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range, 895 int accel_res, int gyro_range, int gyro_res) 896 { 897 struct input_dev *sensors; 898 int ret; 899 900 sensors = ps_allocate_input_dev(hdev, "Motion Sensors"); 901 if (IS_ERR(sensors)) 902 return ERR_CAST(sensors); 903 904 __set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit); 905 __set_bit(EV_MSC, sensors->evbit); 906 __set_bit(MSC_TIMESTAMP, sensors->mscbit); 907 908 /* Accelerometer */ 909 input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0); 910 input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0); 911 input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0); 912 input_abs_set_res(sensors, ABS_X, accel_res); 913 input_abs_set_res(sensors, ABS_Y, accel_res); 914 input_abs_set_res(sensors, ABS_Z, accel_res); 915 916 /* Gyroscope */ 917 input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0); 918 input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0); 919 input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0); 920 input_abs_set_res(sensors, ABS_RX, gyro_res); 921 input_abs_set_res(sensors, ABS_RY, gyro_res); 922 input_abs_set_res(sensors, ABS_RZ, gyro_res); 923 924 ret = input_register_device(sensors); 925 if (ret) 926 return ERR_PTR(ret); 927 928 return sensors; 929 } 930 931 static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width, 932 int height, unsigned int num_contacts) 933 { 934 struct input_dev *touchpad; 935 int ret; 936 937 touchpad = ps_allocate_input_dev(hdev, "Touchpad"); 938 if (IS_ERR(touchpad)) 939 return ERR_CAST(touchpad); 940 941 /* Map button underneath touchpad to BTN_LEFT. */ 942 input_set_capability(touchpad, EV_KEY, BTN_LEFT); 943 __set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit); 944 945 input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0); 946 input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0); 947 948 ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER); 949 if (ret) 950 return ERR_PTR(ret); 951 952 ret = input_register_device(touchpad); 953 if (ret) 954 return ERR_PTR(ret); 955 956 return touchpad; 957 } 958 959 static struct input_dev *ps_headset_jack_create(struct hid_device *hdev) 960 { 961 struct input_dev *jack; 962 int ret; 963 964 jack = ps_allocate_input_dev(hdev, "Headset Jack"); 965 if (IS_ERR(jack)) 966 return ERR_CAST(jack); 967 968 input_set_capability(jack, EV_SW, SW_HEADPHONE_INSERT); 969 input_set_capability(jack, EV_SW, SW_MICROPHONE_INSERT); 970 971 ret = input_register_device(jack); 972 if (ret) 973 return ERR_PTR(ret); 974 975 return jack; 976 } 977 978 static ssize_t firmware_version_show(struct device *dev, 979 struct device_attribute *attr, char *buf) 980 { 981 struct hid_device *hdev = to_hid_device(dev); 982 struct ps_device *ps_dev = hid_get_drvdata(hdev); 983 984 return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version); 985 } 986 987 static DEVICE_ATTR_RO(firmware_version); 988 989 static ssize_t hardware_version_show(struct device *dev, 990 struct device_attribute *attr, char *buf) 991 { 992 struct hid_device *hdev = to_hid_device(dev); 993 struct ps_device *ps_dev = hid_get_drvdata(hdev); 994 995 return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version); 996 } 997 998 static DEVICE_ATTR_RO(hardware_version); 999 1000 static struct attribute *ps_device_attrs[] = { 1001 &dev_attr_firmware_version.attr, 1002 &dev_attr_hardware_version.attr, 1003 NULL 1004 }; 1005 ATTRIBUTE_GROUPS(ps_device); 1006 1007 static int dualsense_get_calibration_data(struct dualsense *ds) 1008 { 1009 struct hid_device *hdev = ds->base.hdev; 1010 short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; 1011 short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; 1012 short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; 1013 short gyro_speed_plus, gyro_speed_minus; 1014 short acc_x_plus, acc_x_minus; 1015 short acc_y_plus, acc_y_minus; 1016 short acc_z_plus, acc_z_minus; 1017 int speed_2x; 1018 int range_2g; 1019 int ret = 0; 1020 int i; 1021 u8 *buf; 1022 1023 buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL); 1024 if (!buf) 1025 return -ENOMEM; 1026 1027 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf, 1028 DS_FEATURE_REPORT_CALIBRATION_SIZE, true); 1029 if (ret) { 1030 hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret); 1031 goto err_free; 1032 } 1033 1034 gyro_pitch_bias = get_unaligned_le16(&buf[1]); 1035 gyro_yaw_bias = get_unaligned_le16(&buf[3]); 1036 gyro_roll_bias = get_unaligned_le16(&buf[5]); 1037 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1038 gyro_pitch_minus = get_unaligned_le16(&buf[9]); 1039 gyro_yaw_plus = get_unaligned_le16(&buf[11]); 1040 gyro_yaw_minus = get_unaligned_le16(&buf[13]); 1041 gyro_roll_plus = get_unaligned_le16(&buf[15]); 1042 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1043 gyro_speed_plus = get_unaligned_le16(&buf[19]); 1044 gyro_speed_minus = get_unaligned_le16(&buf[21]); 1045 acc_x_plus = get_unaligned_le16(&buf[23]); 1046 acc_x_minus = get_unaligned_le16(&buf[25]); 1047 acc_y_plus = get_unaligned_le16(&buf[27]); 1048 acc_y_minus = get_unaligned_le16(&buf[29]); 1049 acc_z_plus = get_unaligned_le16(&buf[31]); 1050 acc_z_minus = get_unaligned_le16(&buf[33]); 1051 1052 /* 1053 * Set gyroscope calibration and normalization parameters. 1054 * Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s. 1055 */ 1056 speed_2x = (gyro_speed_plus + gyro_speed_minus); 1057 ds->gyro_calib_data[0].abs_code = ABS_RX; 1058 ds->gyro_calib_data[0].bias = 0; 1059 ds->gyro_calib_data[0].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1060 ds->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) + 1061 abs(gyro_pitch_minus - gyro_pitch_bias); 1062 1063 ds->gyro_calib_data[1].abs_code = ABS_RY; 1064 ds->gyro_calib_data[1].bias = 0; 1065 ds->gyro_calib_data[1].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1066 ds->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) + 1067 abs(gyro_yaw_minus - gyro_yaw_bias); 1068 1069 ds->gyro_calib_data[2].abs_code = ABS_RZ; 1070 ds->gyro_calib_data[2].bias = 0; 1071 ds->gyro_calib_data[2].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1072 ds->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) + 1073 abs(gyro_roll_minus - gyro_roll_bias); 1074 1075 /* 1076 * Sanity check gyro calibration data. This is needed to prevent crashes 1077 * during report handling of virtual, clone or broken devices not implementing 1078 * calibration data properly. 1079 */ 1080 for (i = 0; i < ARRAY_SIZE(ds->gyro_calib_data); i++) { 1081 if (ds->gyro_calib_data[i].sens_denom == 0) { 1082 hid_warn(hdev, 1083 "Invalid gyro calibration data for axis (%d), disabling calibration.", 1084 ds->gyro_calib_data[i].abs_code); 1085 ds->gyro_calib_data[i].bias = 0; 1086 ds->gyro_calib_data[i].sens_numer = DS_GYRO_RANGE; 1087 ds->gyro_calib_data[i].sens_denom = S16_MAX; 1088 } 1089 } 1090 1091 /* 1092 * Set accelerometer calibration and normalization parameters. 1093 * Data values will be normalized to 1/DS_ACC_RES_PER_G g. 1094 */ 1095 range_2g = acc_x_plus - acc_x_minus; 1096 ds->accel_calib_data[0].abs_code = ABS_X; 1097 ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2; 1098 ds->accel_calib_data[0].sens_numer = 2 * DS_ACC_RES_PER_G; 1099 ds->accel_calib_data[0].sens_denom = range_2g; 1100 1101 range_2g = acc_y_plus - acc_y_minus; 1102 ds->accel_calib_data[1].abs_code = ABS_Y; 1103 ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2; 1104 ds->accel_calib_data[1].sens_numer = 2 * DS_ACC_RES_PER_G; 1105 ds->accel_calib_data[1].sens_denom = range_2g; 1106 1107 range_2g = acc_z_plus - acc_z_minus; 1108 ds->accel_calib_data[2].abs_code = ABS_Z; 1109 ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2; 1110 ds->accel_calib_data[2].sens_numer = 2 * DS_ACC_RES_PER_G; 1111 ds->accel_calib_data[2].sens_denom = range_2g; 1112 1113 /* 1114 * Sanity check accelerometer calibration data. This is needed to prevent crashes 1115 * during report handling of virtual, clone or broken devices not implementing calibration 1116 * data properly. 1117 */ 1118 for (i = 0; i < ARRAY_SIZE(ds->accel_calib_data); i++) { 1119 if (ds->accel_calib_data[i].sens_denom == 0) { 1120 hid_warn(hdev, 1121 "Invalid accelerometer calibration data for axis (%d), disabling calibration.", 1122 ds->accel_calib_data[i].abs_code); 1123 ds->accel_calib_data[i].bias = 0; 1124 ds->accel_calib_data[i].sens_numer = DS_ACC_RANGE; 1125 ds->accel_calib_data[i].sens_denom = S16_MAX; 1126 } 1127 } 1128 1129 err_free: 1130 kfree(buf); 1131 return ret; 1132 } 1133 1134 static int dualsense_get_firmware_info(struct dualsense *ds) 1135 { 1136 u8 *buf; 1137 int ret; 1138 1139 buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL); 1140 if (!buf) 1141 return -ENOMEM; 1142 1143 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf, 1144 DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, true); 1145 if (ret) { 1146 hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret); 1147 goto err_free; 1148 } 1149 1150 ds->base.hw_version = get_unaligned_le32(&buf[24]); 1151 ds->base.fw_version = get_unaligned_le32(&buf[28]); 1152 1153 /* Update version is some kind of feature version. It is distinct from 1154 * the firmware version as there can be many different variations of a 1155 * controller over time with the same physical shell, but with different 1156 * PCBs and other internal changes. The update version (internal name) is 1157 * used as a means to detect what features are available and change behavior. 1158 * Note: the version is different between DualSense and DualSense Edge. 1159 */ 1160 ds->update_version = get_unaligned_le16(&buf[44]); 1161 1162 err_free: 1163 kfree(buf); 1164 return ret; 1165 } 1166 1167 static int dualsense_get_mac_address(struct dualsense *ds) 1168 { 1169 u8 *buf; 1170 int ret = 0; 1171 1172 buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL); 1173 if (!buf) 1174 return -ENOMEM; 1175 1176 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf, 1177 DS_FEATURE_REPORT_PAIRING_INFO_SIZE, true); 1178 if (ret) { 1179 hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret); 1180 goto err_free; 1181 } 1182 1183 memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address)); 1184 1185 err_free: 1186 kfree(buf); 1187 return ret; 1188 } 1189 1190 static int dualsense_lightbar_set_brightness(struct led_classdev *cdev, 1191 enum led_brightness brightness) 1192 { 1193 struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev); 1194 struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar); 1195 u8 red, green, blue; 1196 1197 led_mc_calc_color_components(mc_cdev, brightness); 1198 red = mc_cdev->subled_info[0].brightness; 1199 green = mc_cdev->subled_info[1].brightness; 1200 blue = mc_cdev->subled_info[2].brightness; 1201 1202 dualsense_set_lightbar(ds, red, green, blue); 1203 return 0; 1204 } 1205 1206 static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led) 1207 { 1208 struct hid_device *hdev = to_hid_device(led->dev->parent); 1209 struct dualsense *ds = hid_get_drvdata(hdev); 1210 1211 return !!(ds->player_leds_state & BIT(led - ds->player_leds)); 1212 } 1213 1214 static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value) 1215 { 1216 struct hid_device *hdev = to_hid_device(led->dev->parent); 1217 struct dualsense *ds = hid_get_drvdata(hdev); 1218 unsigned int led_index; 1219 1220 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1221 led_index = led - ds->player_leds; 1222 if (value == LED_OFF) 1223 ds->player_leds_state &= ~BIT(led_index); 1224 else 1225 ds->player_leds_state |= BIT(led_index); 1226 1227 ds->update_player_leds = true; 1228 } 1229 1230 dualsense_schedule_work(ds); 1231 1232 return 0; 1233 } 1234 1235 static void dualsense_init_output_report(struct dualsense *ds, 1236 struct dualsense_output_report *rp, void *buf) 1237 { 1238 struct hid_device *hdev = ds->base.hdev; 1239 1240 if (hdev->bus == BUS_BLUETOOTH) { 1241 struct dualsense_output_report_bt *bt = buf; 1242 1243 memset(bt, 0, sizeof(*bt)); 1244 bt->report_id = DS_OUTPUT_REPORT_BT; 1245 bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */ 1246 1247 /* 1248 * Highest 4-bit is a sequence number, which needs to be increased 1249 * every report. Lowest 4-bit is tag and can be zero for now. 1250 */ 1251 bt->seq_tag = FIELD_PREP(DS_OUTPUT_SEQ_NO, ds->output_seq) | 1252 FIELD_PREP(DS_OUTPUT_SEQ_TAG, 0x0); 1253 if (++ds->output_seq == 16) 1254 ds->output_seq = 0; 1255 1256 rp->data = buf; 1257 rp->len = sizeof(*bt); 1258 rp->bt = bt; 1259 rp->usb = NULL; 1260 rp->common = &bt->common; 1261 } else { /* USB */ 1262 struct dualsense_output_report_usb *usb = buf; 1263 1264 memset(usb, 0, sizeof(*usb)); 1265 usb->report_id = DS_OUTPUT_REPORT_USB; 1266 1267 rp->data = buf; 1268 rp->len = sizeof(*usb); 1269 rp->bt = NULL; 1270 rp->usb = usb; 1271 rp->common = &usb->common; 1272 } 1273 } 1274 1275 static inline void dualsense_schedule_work(struct dualsense *ds) 1276 { 1277 /* Using scoped_guard() instead of guard() to make sparse happy */ 1278 scoped_guard(spinlock_irqsave, &ds->base.lock) 1279 if (ds->output_worker_initialized) 1280 schedule_work(&ds->output_worker); 1281 } 1282 1283 /* 1284 * Helper function to send DualSense output reports. Applies a CRC at the end of a report 1285 * for Bluetooth reports. 1286 */ 1287 static void dualsense_send_output_report(struct dualsense *ds, 1288 struct dualsense_output_report *report) 1289 { 1290 struct hid_device *hdev = ds->base.hdev; 1291 1292 /* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */ 1293 if (report->bt) { 1294 u32 crc; 1295 u8 seed = PS_OUTPUT_CRC32_SEED; 1296 1297 crc = crc32_le(0xFFFFFFFF, &seed, 1); 1298 crc = ~crc32_le(crc, report->data, report->len - 4); 1299 1300 report->bt->crc32 = cpu_to_le32(crc); 1301 } 1302 1303 hid_hw_output_report(hdev, report->data, report->len); 1304 } 1305 1306 static void dualsense_output_worker(struct work_struct *work) 1307 { 1308 struct dualsense *ds = container_of(work, struct dualsense, output_worker); 1309 struct dualsense_output_report report; 1310 struct dualsense_output_report_common *common; 1311 1312 dualsense_init_output_report(ds, &report, ds->output_report_dmabuf); 1313 common = report.common; 1314 1315 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1316 if (ds->update_rumble) { 1317 /* Select classic rumble style haptics and enable it. */ 1318 common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT; 1319 if (ds->use_vibration_v2) 1320 common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2; 1321 else 1322 common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION; 1323 common->motor_left = ds->motor_left; 1324 common->motor_right = ds->motor_right; 1325 ds->update_rumble = false; 1326 } 1327 1328 if (ds->update_lightbar) { 1329 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE; 1330 common->lightbar_red = ds->lightbar_red; 1331 common->lightbar_green = ds->lightbar_green; 1332 common->lightbar_blue = ds->lightbar_blue; 1333 1334 ds->update_lightbar = false; 1335 } 1336 1337 if (ds->update_player_leds) { 1338 common->valid_flag1 |= 1339 DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE; 1340 common->player_leds = ds->player_leds_state; 1341 1342 ds->update_player_leds = false; 1343 } 1344 1345 if (ds->plugged_state != ds->prev_plugged_state) { 1346 u8 val = ds->plugged_state & DS_STATUS1_HP_DETECT; 1347 1348 if (val != (ds->prev_plugged_state & DS_STATUS1_HP_DETECT)) { 1349 common->valid_flag0 = DS_OUTPUT_VALID_FLAG0_AUDIO_CONTROL_ENABLE; 1350 /* 1351 * _--------> Output path setup in audio_flag0 1352 * / _------> Headphone (HP) Left channel sink 1353 * | / _----> Headphone (HP) Right channel sink 1354 * | | / _--> Internal Speaker (SP) sink 1355 * | | | / 1356 * | | | | L/R - Left/Right channel source 1357 * 0 L-R X X - Unrouted (muted) channel source 1358 * 1 L-L X 1359 * 2 L-L R 1360 * 3 X-X R 1361 */ 1362 if (val) { 1363 /* Mute SP and route L+R channels to HP */ 1364 common->audio_control = 0; 1365 } else { 1366 /* Mute HP and route R channel to SP */ 1367 common->audio_control = 1368 FIELD_PREP(DS_OUTPUT_AUDIO_FLAGS_OUTPUT_PATH_SEL, 1369 0x3); 1370 /* 1371 * Set SP hardware volume to 100%. 1372 * Note the accepted range seems to be [0x3d..0x64] 1373 */ 1374 common->valid_flag0 |= 1375 DS_OUTPUT_VALID_FLAG0_SPEAKER_VOLUME_ENABLE; 1376 common->speaker_volume = 0x64; 1377 /* Set SP preamp gain to +6dB */ 1378 common->valid_flag1 = 1379 DS_OUTPUT_VALID_FLAG1_AUDIO_CONTROL2_ENABLE; 1380 common->audio_control2 = 1381 FIELD_PREP(DS_OUTPUT_AUDIO_FLAGS2_SP_PREAMP_GAIN, 1382 0x2); 1383 } 1384 1385 input_report_switch(ds->jack, SW_HEADPHONE_INSERT, val); 1386 } 1387 1388 val = ds->plugged_state & DS_STATUS1_MIC_DETECT; 1389 if (val != (ds->prev_plugged_state & DS_STATUS1_MIC_DETECT)) 1390 input_report_switch(ds->jack, SW_MICROPHONE_INSERT, val); 1391 1392 input_sync(ds->jack); 1393 ds->prev_plugged_state = ds->plugged_state; 1394 } 1395 1396 if (ds->update_mic_mute) { 1397 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE; 1398 common->mute_button_led = ds->mic_muted; 1399 1400 if (ds->mic_muted) { 1401 /* Disable microphone */ 1402 common->valid_flag1 |= 1403 DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE; 1404 common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE; 1405 } else { 1406 /* Enable microphone */ 1407 common->valid_flag1 |= 1408 DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE; 1409 common->power_save_control &= 1410 ~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE; 1411 } 1412 1413 ds->update_mic_mute = false; 1414 } 1415 } 1416 1417 dualsense_send_output_report(ds, &report); 1418 } 1419 1420 static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report, 1421 u8 *data, int size) 1422 { 1423 struct hid_device *hdev = ps_dev->hdev; 1424 struct dualsense *ds = container_of(ps_dev, struct dualsense, base); 1425 struct dualsense_input_report *ds_report; 1426 u8 battery_data, battery_capacity, charging_status, value; 1427 int battery_status; 1428 u32 sensor_timestamp; 1429 bool btn_mic_state; 1430 int i; 1431 1432 /* 1433 * DualSense in USB uses the full HID report for reportID 1, but 1434 * Bluetooth uses a minimal HID report for reportID 1 and reports 1435 * the full report using reportID 49. 1436 */ 1437 if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB && 1438 size == DS_INPUT_REPORT_USB_SIZE) { 1439 ds_report = (struct dualsense_input_report *)&data[1]; 1440 } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT && 1441 size == DS_INPUT_REPORT_BT_SIZE) { 1442 /* Last 4 bytes of input report contain crc32 */ 1443 u32 report_crc = get_unaligned_le32(&data[size - 4]); 1444 1445 if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) { 1446 hid_err(hdev, "DualSense input CRC's check failed\n"); 1447 return -EILSEQ; 1448 } 1449 1450 ds_report = (struct dualsense_input_report *)&data[2]; 1451 } else { 1452 hid_err(hdev, "Unhandled reportID=%d\n", report->id); 1453 return -1; 1454 } 1455 1456 input_report_abs(ds->gamepad, ABS_X, ds_report->x); 1457 input_report_abs(ds->gamepad, ABS_Y, ds_report->y); 1458 input_report_abs(ds->gamepad, ABS_RX, ds_report->rx); 1459 input_report_abs(ds->gamepad, ABS_RY, ds_report->ry); 1460 input_report_abs(ds->gamepad, ABS_Z, ds_report->z); 1461 input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz); 1462 1463 value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH; 1464 if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping)) 1465 value = 8; /* center */ 1466 input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x); 1467 input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y); 1468 1469 input_report_key(ds->gamepad, BTN_WEST, ds_report->buttons[0] & DS_BUTTONS0_SQUARE); 1470 input_report_key(ds->gamepad, BTN_SOUTH, ds_report->buttons[0] & DS_BUTTONS0_CROSS); 1471 input_report_key(ds->gamepad, BTN_EAST, ds_report->buttons[0] & DS_BUTTONS0_CIRCLE); 1472 input_report_key(ds->gamepad, BTN_NORTH, ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE); 1473 input_report_key(ds->gamepad, BTN_TL, ds_report->buttons[1] & DS_BUTTONS1_L1); 1474 input_report_key(ds->gamepad, BTN_TR, ds_report->buttons[1] & DS_BUTTONS1_R1); 1475 input_report_key(ds->gamepad, BTN_TL2, ds_report->buttons[1] & DS_BUTTONS1_L2); 1476 input_report_key(ds->gamepad, BTN_TR2, ds_report->buttons[1] & DS_BUTTONS1_R2); 1477 input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE); 1478 input_report_key(ds->gamepad, BTN_START, ds_report->buttons[1] & DS_BUTTONS1_OPTIONS); 1479 input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3); 1480 input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3); 1481 input_report_key(ds->gamepad, BTN_MODE, ds_report->buttons[2] & DS_BUTTONS2_PS_HOME); 1482 input_sync(ds->gamepad); 1483 1484 /* 1485 * The DualSense has an internal microphone, which can be muted through a mute button 1486 * on the device. The driver is expected to read the button state and program the device 1487 * to mute/unmute audio at the hardware level. 1488 */ 1489 btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE); 1490 if (btn_mic_state && !ds->last_btn_mic_state) { 1491 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1492 ds->update_mic_mute = true; 1493 ds->mic_muted = !ds->mic_muted; /* toggle */ 1494 } 1495 1496 /* Schedule updating of microphone state at hardware level. */ 1497 dualsense_schedule_work(ds); 1498 } 1499 ds->last_btn_mic_state = btn_mic_state; 1500 1501 /* 1502 * Parse HP/MIC plugged state data for USB use case, since Bluetooth 1503 * audio is currently not supported. 1504 */ 1505 if (hdev->bus == BUS_USB) { 1506 value = ds_report->status[1] & DS_STATUS1_JACK_DETECT; 1507 1508 if (!ds->prev_plugged_state_valid) { 1509 /* Initial handling of the plugged state report */ 1510 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1511 ds->plugged_state = (~value) & DS_STATUS1_JACK_DETECT; 1512 ds->prev_plugged_state_valid = true; 1513 } 1514 } 1515 1516 if (value != ds->plugged_state) { 1517 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1518 ds->prev_plugged_state = ds->plugged_state; 1519 ds->plugged_state = value; 1520 } 1521 1522 /* Schedule audio routing towards active endpoint. */ 1523 dualsense_schedule_work(ds); 1524 } 1525 } 1526 1527 /* Parse and calibrate gyroscope data. */ 1528 for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) { 1529 int raw_data = (short)le16_to_cpu(ds_report->gyro[i]); 1530 int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer, 1531 raw_data, ds->gyro_calib_data[i].sens_denom); 1532 1533 input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data); 1534 } 1535 1536 /* Parse and calibrate accelerometer data. */ 1537 for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) { 1538 int raw_data = (short)le16_to_cpu(ds_report->accel[i]); 1539 int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer, 1540 raw_data - ds->accel_calib_data[i].bias, 1541 ds->accel_calib_data[i].sens_denom); 1542 1543 input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data); 1544 } 1545 1546 /* Convert timestamp (in 0.33us unit) to timestamp_us */ 1547 sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp); 1548 if (!ds->sensor_timestamp_initialized) { 1549 ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3); 1550 ds->sensor_timestamp_initialized = true; 1551 } else { 1552 u32 delta; 1553 1554 if (ds->prev_sensor_timestamp > sensor_timestamp) 1555 delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1); 1556 else 1557 delta = sensor_timestamp - ds->prev_sensor_timestamp; 1558 ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3); 1559 } 1560 ds->prev_sensor_timestamp = sensor_timestamp; 1561 input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us); 1562 input_sync(ds->sensors); 1563 1564 for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) { 1565 struct dualsense_touch_point *point = &ds_report->points[i]; 1566 bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true; 1567 1568 input_mt_slot(ds->touchpad, i); 1569 input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active); 1570 1571 if (active) { 1572 input_report_abs(ds->touchpad, ABS_MT_POSITION_X, 1573 DS_TOUCH_POINT_X(point->x_hi, point->x_lo)); 1574 input_report_abs(ds->touchpad, ABS_MT_POSITION_Y, 1575 DS_TOUCH_POINT_Y(point->y_hi, point->y_lo)); 1576 } 1577 } 1578 input_mt_sync_frame(ds->touchpad); 1579 input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD); 1580 input_sync(ds->touchpad); 1581 1582 battery_data = FIELD_GET(DS_STATUS0_BATTERY_CAPACITY, ds_report->status[0]); 1583 charging_status = FIELD_GET(DS_STATUS0_CHARGING, ds_report->status[0]); 1584 1585 switch (charging_status) { 1586 case 0x0: 1587 /* 1588 * Each unit of battery data corresponds to 10% 1589 * 0 = 0-9%, 1 = 10-19%, .. and 10 = 100% 1590 */ 1591 battery_capacity = min(battery_data * 10 + 5, 100); 1592 battery_status = POWER_SUPPLY_STATUS_DISCHARGING; 1593 break; 1594 case 0x1: 1595 battery_capacity = min(battery_data * 10 + 5, 100); 1596 battery_status = POWER_SUPPLY_STATUS_CHARGING; 1597 break; 1598 case 0x2: 1599 battery_capacity = 100; 1600 battery_status = POWER_SUPPLY_STATUS_FULL; 1601 break; 1602 case 0xa: /* voltage or temperature out of range */ 1603 case 0xb: /* temperature error */ 1604 battery_capacity = 0; 1605 battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1606 break; 1607 case 0xf: /* charging error */ 1608 default: 1609 battery_capacity = 0; 1610 battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 1611 } 1612 1613 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1614 ps_dev->battery_capacity = battery_capacity; 1615 ps_dev->battery_status = battery_status; 1616 } 1617 1618 return 0; 1619 } 1620 1621 static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) 1622 { 1623 struct hid_device *hdev = input_get_drvdata(dev); 1624 struct dualsense *ds = hid_get_drvdata(hdev); 1625 1626 if (effect->type != FF_RUMBLE) 1627 return 0; 1628 1629 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1630 ds->update_rumble = true; 1631 ds->motor_left = effect->u.rumble.strong_magnitude / 256; 1632 ds->motor_right = effect->u.rumble.weak_magnitude / 256; 1633 } 1634 1635 dualsense_schedule_work(ds); 1636 return 0; 1637 } 1638 1639 static void dualsense_remove(struct ps_device *ps_dev) 1640 { 1641 struct dualsense *ds = container_of(ps_dev, struct dualsense, base); 1642 1643 scoped_guard(spinlock_irqsave, &ds->base.lock) 1644 ds->output_worker_initialized = false; 1645 1646 cancel_work_sync(&ds->output_worker); 1647 } 1648 1649 static int dualsense_reset_leds(struct dualsense *ds) 1650 { 1651 struct dualsense_output_report report; 1652 struct dualsense_output_report_bt *buf; 1653 1654 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 1655 if (!buf) 1656 return -ENOMEM; 1657 1658 dualsense_init_output_report(ds, &report, buf); 1659 /* 1660 * On Bluetooth the DualSense outputs an animation on the lightbar 1661 * during startup and maintains a color afterwards. We need to explicitly 1662 * reconfigure the lightbar before we can do any programming later on. 1663 * In USB the lightbar is not on by default, but redoing the setup there 1664 * doesn't hurt. 1665 */ 1666 report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE; 1667 report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */ 1668 dualsense_send_output_report(ds, &report); 1669 1670 kfree(buf); 1671 return 0; 1672 } 1673 1674 static void dualsense_set_lightbar(struct dualsense *ds, u8 red, u8 green, u8 blue) 1675 { 1676 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1677 ds->update_lightbar = true; 1678 ds->lightbar_red = red; 1679 ds->lightbar_green = green; 1680 ds->lightbar_blue = blue; 1681 } 1682 1683 dualsense_schedule_work(ds); 1684 } 1685 1686 static void dualsense_set_player_leds(struct dualsense *ds) 1687 { 1688 /* 1689 * The DualSense controller has a row of 5 LEDs used for player ids. 1690 * Behavior on the PlayStation 5 console is to center the player id 1691 * across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'. 1692 * Follow a similar mapping here. 1693 */ 1694 static const int player_ids[5] = { 1695 BIT(2), 1696 BIT(3) | BIT(1), 1697 BIT(4) | BIT(2) | BIT(0), 1698 BIT(4) | BIT(3) | BIT(1) | BIT(0), 1699 BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0) 1700 }; 1701 1702 u8 player_id = ds->base.player_id % ARRAY_SIZE(player_ids); 1703 1704 ds->update_player_leds = true; 1705 ds->player_leds_state = player_ids[player_id]; 1706 dualsense_schedule_work(ds); 1707 } 1708 1709 static struct ps_device *dualsense_create(struct hid_device *hdev) 1710 { 1711 struct dualsense *ds; 1712 struct ps_device *ps_dev; 1713 u8 max_output_report_size; 1714 int i, ret; 1715 1716 static const struct ps_led_info player_leds_info[] = { 1717 { LED_FUNCTION_PLAYER1, "white", 1, dualsense_player_led_get_brightness, 1718 dualsense_player_led_set_brightness }, 1719 { LED_FUNCTION_PLAYER2, "white", 1, dualsense_player_led_get_brightness, 1720 dualsense_player_led_set_brightness }, 1721 { LED_FUNCTION_PLAYER3, "white", 1, dualsense_player_led_get_brightness, 1722 dualsense_player_led_set_brightness }, 1723 { LED_FUNCTION_PLAYER4, "white", 1, dualsense_player_led_get_brightness, 1724 dualsense_player_led_set_brightness }, 1725 { LED_FUNCTION_PLAYER5, "white", 1, dualsense_player_led_get_brightness, 1726 dualsense_player_led_set_brightness } 1727 }; 1728 1729 ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL); 1730 if (!ds) 1731 return ERR_PTR(-ENOMEM); 1732 1733 /* 1734 * Patch version to allow userspace to distinguish between 1735 * hid-generic vs hid-playstation axis and button mapping. 1736 */ 1737 hdev->version |= HID_PLAYSTATION_VERSION_PATCH; 1738 1739 ps_dev = &ds->base; 1740 ps_dev->hdev = hdev; 1741 spin_lock_init(&ps_dev->lock); 1742 ps_dev->battery_capacity = 100; /* initial value until parse_report. */ 1743 ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 1744 ps_dev->parse_report = dualsense_parse_report; 1745 ps_dev->remove = dualsense_remove; 1746 INIT_WORK(&ds->output_worker, dualsense_output_worker); 1747 ds->output_worker_initialized = true; 1748 hid_set_drvdata(hdev, ds); 1749 1750 max_output_report_size = sizeof(struct dualsense_output_report_bt); 1751 ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL); 1752 if (!ds->output_report_dmabuf) 1753 return ERR_PTR(-ENOMEM); 1754 1755 ret = dualsense_get_mac_address(ds); 1756 if (ret) { 1757 hid_err(hdev, "Failed to get MAC address from DualSense\n"); 1758 return ERR_PTR(ret); 1759 } 1760 snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address); 1761 1762 ret = dualsense_get_firmware_info(ds); 1763 if (ret) { 1764 hid_err(hdev, "Failed to get firmware info from DualSense\n"); 1765 return ERR_PTR(ret); 1766 } 1767 1768 /* Original DualSense firmware simulated classic controller rumble through 1769 * its new haptics hardware. It felt different from classic rumble users 1770 * were used to. Since then new firmwares were introduced to change behavior 1771 * and make this new 'v2' behavior default on PlayStation and other platforms. 1772 * The original DualSense requires a new enough firmware as bundled with PS5 1773 * software released in 2021. DualSense edge supports it out of the box. 1774 * Both devices also support the old mode, but it is not really used. 1775 */ 1776 if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) { 1777 /* Feature version 2.21 introduced new vibration method. */ 1778 ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21); 1779 } else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) { 1780 ds->use_vibration_v2 = true; 1781 } 1782 1783 ret = ps_devices_list_add(ps_dev); 1784 if (ret) 1785 return ERR_PTR(ret); 1786 1787 ret = dualsense_get_calibration_data(ds); 1788 if (ret) { 1789 hid_err(hdev, "Failed to get calibration data from DualSense\n"); 1790 goto err; 1791 } 1792 1793 ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect); 1794 if (IS_ERR(ds->gamepad)) { 1795 ret = PTR_ERR(ds->gamepad); 1796 goto err; 1797 } 1798 /* Use gamepad input device name as primary device name for e.g. LEDs */ 1799 ps_dev->input_dev_name = dev_name(&ds->gamepad->dev); 1800 1801 ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G, 1802 DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S); 1803 if (IS_ERR(ds->sensors)) { 1804 ret = PTR_ERR(ds->sensors); 1805 goto err; 1806 } 1807 1808 ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2); 1809 if (IS_ERR(ds->touchpad)) { 1810 ret = PTR_ERR(ds->touchpad); 1811 goto err; 1812 } 1813 1814 /* Bluetooth audio is currently not supported. */ 1815 if (hdev->bus == BUS_USB) { 1816 ds->jack = ps_headset_jack_create(hdev); 1817 if (IS_ERR(ds->jack)) { 1818 ret = PTR_ERR(ds->jack); 1819 goto err; 1820 } 1821 } 1822 1823 ret = ps_device_register_battery(ps_dev); 1824 if (ret) 1825 goto err; 1826 1827 /* 1828 * The hardware may have control over the LEDs (e.g. in Bluetooth on startup). 1829 * Reset the LEDs (lightbar, mute, player leds), so we can control them 1830 * from software. 1831 */ 1832 ret = dualsense_reset_leds(ds); 1833 if (ret) 1834 goto err; 1835 1836 ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness); 1837 if (ret) 1838 goto err; 1839 1840 /* Set default lightbar color. */ 1841 dualsense_set_lightbar(ds, 0, 0, 128); /* blue */ 1842 1843 for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) { 1844 const struct ps_led_info *led_info = &player_leds_info[i]; 1845 1846 ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info); 1847 if (ret < 0) 1848 goto err; 1849 } 1850 1851 ret = ps_device_set_player_id(ps_dev); 1852 if (ret) { 1853 hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret); 1854 goto err; 1855 } 1856 1857 /* Set player LEDs to our player id. */ 1858 dualsense_set_player_leds(ds); 1859 1860 /* 1861 * Reporting hardware and firmware is important as there are frequent updates, which 1862 * can change behavior. 1863 */ 1864 hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n", 1865 ds->base.hw_version, ds->base.fw_version); 1866 1867 return &ds->base; 1868 1869 err: 1870 ps_devices_list_remove(ps_dev); 1871 return ERR_PTR(ret); 1872 } 1873 1874 static void dualshock4_dongle_calibration_work(struct work_struct *work) 1875 { 1876 struct dualshock4 *ds4 = container_of(work, struct dualshock4, dongle_hotplug_worker); 1877 enum dualshock4_dongle_state dongle_state; 1878 int ret; 1879 1880 ret = dualshock4_get_calibration_data(ds4); 1881 if (ret < 0) { 1882 /* This call is very unlikely to fail for the dongle. When it 1883 * fails we are probably in a very bad state, so mark the 1884 * dongle as disabled. We will re-enable the dongle if a new 1885 * DS4 hotplug is detect from sony_raw_event as any issues 1886 * are likely resolved then (the dongle is quite stupid). 1887 */ 1888 hid_err(ds4->base.hdev, 1889 "DualShock 4 USB dongle: calibration failed, disabling device\n"); 1890 dongle_state = DONGLE_DISABLED; 1891 } else { 1892 hid_info(ds4->base.hdev, "DualShock 4 USB dongle: calibration completed\n"); 1893 dongle_state = DONGLE_CONNECTED; 1894 } 1895 1896 scoped_guard(spinlock_irqsave, &ds4->base.lock) 1897 ds4->dongle_state = dongle_state; 1898 } 1899 1900 static int dualshock4_get_calibration_data(struct dualshock4 *ds4) 1901 { 1902 struct hid_device *hdev = ds4->base.hdev; 1903 short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; 1904 short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; 1905 short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; 1906 short gyro_speed_plus, gyro_speed_minus; 1907 short acc_x_plus, acc_x_minus; 1908 short acc_y_plus, acc_y_minus; 1909 short acc_z_plus, acc_z_minus; 1910 int speed_2x; 1911 int range_2g; 1912 int ret = 0; 1913 int i; 1914 u8 *buf; 1915 1916 if (ds4->base.hdev->bus == BUS_USB) { 1917 int retries; 1918 1919 buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL); 1920 if (!buf) { 1921 ret = -ENOMEM; 1922 goto transfer_failed; 1923 } 1924 1925 /* We should normally receive the feature report data we asked 1926 * for, but hidraw applications such as Steam can issue feature 1927 * reports as well. In particular for Dongle reconnects, Steam 1928 * and this function are competing resulting in often receiving 1929 * data for a different HID report, so retry a few times. 1930 */ 1931 for (retries = 0; retries < 3; retries++) { 1932 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf, 1933 DS4_FEATURE_REPORT_CALIBRATION_SIZE, true); 1934 if (ret) { 1935 if (retries < 2) { 1936 hid_warn(hdev, 1937 "Retrying DualShock 4 get calibration report (0x02) request\n"); 1938 continue; 1939 } 1940 1941 hid_warn(hdev, 1942 "Failed to retrieve DualShock4 calibration info: %d\n", 1943 ret); 1944 ret = -EILSEQ; 1945 kfree(buf); 1946 goto transfer_failed; 1947 } else { 1948 break; 1949 } 1950 } 1951 } else { /* Bluetooth */ 1952 buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, GFP_KERNEL); 1953 if (!buf) { 1954 ret = -ENOMEM; 1955 goto transfer_failed; 1956 } 1957 1958 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION_BT, buf, 1959 DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, true); 1960 1961 if (ret) { 1962 hid_warn(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret); 1963 kfree(buf); 1964 goto transfer_failed; 1965 } 1966 } 1967 1968 /* Transfer succeeded - parse the calibration data received. */ 1969 gyro_pitch_bias = get_unaligned_le16(&buf[1]); 1970 gyro_yaw_bias = get_unaligned_le16(&buf[3]); 1971 gyro_roll_bias = get_unaligned_le16(&buf[5]); 1972 if (ds4->base.hdev->bus == BUS_USB) { 1973 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1974 gyro_pitch_minus = get_unaligned_le16(&buf[9]); 1975 gyro_yaw_plus = get_unaligned_le16(&buf[11]); 1976 gyro_yaw_minus = get_unaligned_le16(&buf[13]); 1977 gyro_roll_plus = get_unaligned_le16(&buf[15]); 1978 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1979 } else { 1980 /* BT + Dongle */ 1981 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1982 gyro_yaw_plus = get_unaligned_le16(&buf[9]); 1983 gyro_roll_plus = get_unaligned_le16(&buf[11]); 1984 gyro_pitch_minus = get_unaligned_le16(&buf[13]); 1985 gyro_yaw_minus = get_unaligned_le16(&buf[15]); 1986 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1987 } 1988 gyro_speed_plus = get_unaligned_le16(&buf[19]); 1989 gyro_speed_minus = get_unaligned_le16(&buf[21]); 1990 acc_x_plus = get_unaligned_le16(&buf[23]); 1991 acc_x_minus = get_unaligned_le16(&buf[25]); 1992 acc_y_plus = get_unaligned_le16(&buf[27]); 1993 acc_y_minus = get_unaligned_le16(&buf[29]); 1994 acc_z_plus = get_unaligned_le16(&buf[31]); 1995 acc_z_minus = get_unaligned_le16(&buf[33]); 1996 1997 /* Done parsing the buffer, so let's free it. */ 1998 kfree(buf); 1999 2000 /* 2001 * Set gyroscope calibration and normalization parameters. 2002 * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s. 2003 */ 2004 speed_2x = (gyro_speed_plus + gyro_speed_minus); 2005 ds4->gyro_calib_data[0].abs_code = ABS_RX; 2006 ds4->gyro_calib_data[0].bias = 0; 2007 ds4->gyro_calib_data[0].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2008 ds4->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) + 2009 abs(gyro_pitch_minus - gyro_pitch_bias); 2010 2011 ds4->gyro_calib_data[1].abs_code = ABS_RY; 2012 ds4->gyro_calib_data[1].bias = 0; 2013 ds4->gyro_calib_data[1].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2014 ds4->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) + 2015 abs(gyro_yaw_minus - gyro_yaw_bias); 2016 2017 ds4->gyro_calib_data[2].abs_code = ABS_RZ; 2018 ds4->gyro_calib_data[2].bias = 0; 2019 ds4->gyro_calib_data[2].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2020 ds4->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) + 2021 abs(gyro_roll_minus - gyro_roll_bias); 2022 2023 /* 2024 * Set accelerometer calibration and normalization parameters. 2025 * Data values will be normalized to 1/DS4_ACC_RES_PER_G g. 2026 */ 2027 range_2g = acc_x_plus - acc_x_minus; 2028 ds4->accel_calib_data[0].abs_code = ABS_X; 2029 ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2; 2030 ds4->accel_calib_data[0].sens_numer = 2 * DS4_ACC_RES_PER_G; 2031 ds4->accel_calib_data[0].sens_denom = range_2g; 2032 2033 range_2g = acc_y_plus - acc_y_minus; 2034 ds4->accel_calib_data[1].abs_code = ABS_Y; 2035 ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2; 2036 ds4->accel_calib_data[1].sens_numer = 2 * DS4_ACC_RES_PER_G; 2037 ds4->accel_calib_data[1].sens_denom = range_2g; 2038 2039 range_2g = acc_z_plus - acc_z_minus; 2040 ds4->accel_calib_data[2].abs_code = ABS_Z; 2041 ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2; 2042 ds4->accel_calib_data[2].sens_numer = 2 * DS4_ACC_RES_PER_G; 2043 ds4->accel_calib_data[2].sens_denom = range_2g; 2044 2045 transfer_failed: 2046 /* 2047 * Sanity check gyro calibration data. This is needed to prevent crashes 2048 * during report handling of virtual, clone or broken devices not implementing 2049 * calibration data properly. 2050 */ 2051 for (i = 0; i < ARRAY_SIZE(ds4->gyro_calib_data); i++) { 2052 if (ds4->gyro_calib_data[i].sens_denom == 0) { 2053 ds4->gyro_calib_data[i].abs_code = ABS_RX + i; 2054 hid_warn(hdev, 2055 "Invalid gyro calibration data for axis (%d), disabling calibration.", 2056 ds4->gyro_calib_data[i].abs_code); 2057 ds4->gyro_calib_data[i].bias = 0; 2058 ds4->gyro_calib_data[i].sens_numer = DS4_GYRO_RANGE; 2059 ds4->gyro_calib_data[i].sens_denom = S16_MAX; 2060 } 2061 } 2062 2063 /* 2064 * Sanity check accelerometer calibration data. This is needed to prevent crashes 2065 * during report handling of virtual, clone or broken devices not implementing calibration 2066 * data properly. 2067 */ 2068 for (i = 0; i < ARRAY_SIZE(ds4->accel_calib_data); i++) { 2069 if (ds4->accel_calib_data[i].sens_denom == 0) { 2070 ds4->accel_calib_data[i].abs_code = ABS_X + i; 2071 hid_warn(hdev, 2072 "Invalid accelerometer calibration data for axis (%d), disabling calibration.", 2073 ds4->accel_calib_data[i].abs_code); 2074 ds4->accel_calib_data[i].bias = 0; 2075 ds4->accel_calib_data[i].sens_numer = DS4_ACC_RANGE; 2076 ds4->accel_calib_data[i].sens_denom = S16_MAX; 2077 } 2078 } 2079 2080 return ret; 2081 } 2082 2083 static int dualshock4_get_firmware_info(struct dualshock4 *ds4) 2084 { 2085 u8 *buf; 2086 int ret; 2087 2088 buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL); 2089 if (!buf) 2090 return -ENOMEM; 2091 2092 /* Note USB and BT support the same feature report, but this report 2093 * lacks CRC support, so must be disabled in ps_get_report. 2094 */ 2095 ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf, 2096 DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, false); 2097 if (ret) { 2098 hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret); 2099 goto err_free; 2100 } 2101 2102 ds4->base.hw_version = get_unaligned_le16(&buf[35]); 2103 ds4->base.fw_version = get_unaligned_le16(&buf[41]); 2104 2105 err_free: 2106 kfree(buf); 2107 return ret; 2108 } 2109 2110 static int dualshock4_get_mac_address(struct dualshock4 *ds4) 2111 { 2112 struct hid_device *hdev = ds4->base.hdev; 2113 u8 *buf; 2114 int ret = 0; 2115 2116 if (hdev->bus == BUS_USB) { 2117 buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL); 2118 if (!buf) 2119 return -ENOMEM; 2120 2121 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf, 2122 DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, false); 2123 if (ret) { 2124 hid_err(hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret); 2125 goto err_free; 2126 } 2127 2128 memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address)); 2129 } else { 2130 /* Rely on HIDP for Bluetooth */ 2131 if (strlen(hdev->uniq) != 17) 2132 return -EINVAL; 2133 2134 ret = sscanf(hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", 2135 &ds4->base.mac_address[5], &ds4->base.mac_address[4], 2136 &ds4->base.mac_address[3], &ds4->base.mac_address[2], 2137 &ds4->base.mac_address[1], &ds4->base.mac_address[0]); 2138 2139 if (ret != sizeof(ds4->base.mac_address)) 2140 return -EINVAL; 2141 2142 return 0; 2143 } 2144 2145 err_free: 2146 kfree(buf); 2147 return ret; 2148 } 2149 2150 static enum led_brightness dualshock4_led_get_brightness(struct led_classdev *led) 2151 { 2152 struct hid_device *hdev = to_hid_device(led->dev->parent); 2153 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2154 unsigned int led_index; 2155 2156 led_index = led - ds4->lightbar_leds; 2157 switch (led_index) { 2158 case 0: 2159 return ds4->lightbar_red; 2160 case 1: 2161 return ds4->lightbar_green; 2162 case 2: 2163 return ds4->lightbar_blue; 2164 case 3: 2165 return ds4->lightbar_enabled; 2166 } 2167 2168 return -1; 2169 } 2170 2171 static int dualshock4_led_set_blink(struct led_classdev *led, unsigned long *delay_on, 2172 unsigned long *delay_off) 2173 { 2174 struct hid_device *hdev = to_hid_device(led->dev->parent); 2175 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2176 2177 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2178 if (!*delay_on && !*delay_off) { 2179 /* Default to 1 Hz (50 centiseconds on, 50 centiseconds off). */ 2180 ds4->lightbar_blink_on = 50; 2181 ds4->lightbar_blink_off = 50; 2182 } else { 2183 /* Blink delays in centiseconds. */ 2184 ds4->lightbar_blink_on = min_t(unsigned long, *delay_on / 10, 2185 DS4_LIGHTBAR_MAX_BLINK); 2186 ds4->lightbar_blink_off = min_t(unsigned long, *delay_off / 10, 2187 DS4_LIGHTBAR_MAX_BLINK); 2188 } 2189 2190 ds4->update_lightbar_blink = true; 2191 } 2192 2193 dualshock4_schedule_work(ds4); 2194 2195 /* Report scaled values back to LED subsystem */ 2196 *delay_on = ds4->lightbar_blink_on * 10; 2197 *delay_off = ds4->lightbar_blink_off * 10; 2198 2199 return 0; 2200 } 2201 2202 static int dualshock4_led_set_brightness(struct led_classdev *led, enum led_brightness value) 2203 { 2204 struct hid_device *hdev = to_hid_device(led->dev->parent); 2205 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2206 unsigned int led_index; 2207 2208 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2209 led_index = led - ds4->lightbar_leds; 2210 switch (led_index) { 2211 case 0: 2212 ds4->lightbar_red = value; 2213 break; 2214 case 1: 2215 ds4->lightbar_green = value; 2216 break; 2217 case 2: 2218 ds4->lightbar_blue = value; 2219 break; 2220 case 3: 2221 ds4->lightbar_enabled = !!value; 2222 2223 /* brightness = 0 also cancels blinking in Linux. */ 2224 if (!ds4->lightbar_enabled) { 2225 ds4->lightbar_blink_off = 0; 2226 ds4->lightbar_blink_on = 0; 2227 ds4->update_lightbar_blink = true; 2228 } 2229 } 2230 2231 ds4->update_lightbar = true; 2232 } 2233 2234 dualshock4_schedule_work(ds4); 2235 2236 return 0; 2237 } 2238 2239 static void dualshock4_init_output_report(struct dualshock4 *ds4, 2240 struct dualshock4_output_report *rp, void *buf) 2241 { 2242 struct hid_device *hdev = ds4->base.hdev; 2243 2244 if (hdev->bus == BUS_BLUETOOTH) { 2245 struct dualshock4_output_report_bt *bt = buf; 2246 2247 memset(bt, 0, sizeof(*bt)); 2248 bt->report_id = DS4_OUTPUT_REPORT_BT; 2249 2250 rp->data = buf; 2251 rp->len = sizeof(*bt); 2252 rp->bt = bt; 2253 rp->usb = NULL; 2254 rp->common = &bt->common; 2255 } else { /* USB */ 2256 struct dualshock4_output_report_usb *usb = buf; 2257 2258 memset(usb, 0, sizeof(*usb)); 2259 usb->report_id = DS4_OUTPUT_REPORT_USB; 2260 2261 rp->data = buf; 2262 rp->len = sizeof(*usb); 2263 rp->bt = NULL; 2264 rp->usb = usb; 2265 rp->common = &usb->common; 2266 } 2267 } 2268 2269 static void dualshock4_output_worker(struct work_struct *work) 2270 { 2271 struct dualshock4 *ds4 = container_of(work, struct dualshock4, output_worker); 2272 struct dualshock4_output_report report; 2273 struct dualshock4_output_report_common *common; 2274 2275 dualshock4_init_output_report(ds4, &report, ds4->output_report_dmabuf); 2276 common = report.common; 2277 2278 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2279 /* 2280 * Some 3rd party gamepads expect updates to rumble and lightbar 2281 * together, and setting one may cancel the other. 2282 * 2283 * Let's maximise compatibility by always sending rumble and lightbar 2284 * updates together, even when only one has been scheduled, resulting 2285 * in: 2286 * 2287 * ds4->valid_flag0 >= 0x03 2288 * 2289 * Hopefully this will maximise compatibility with third-party pads. 2290 * 2291 * Any further update bits, such as 0x04 for lightbar blinking, will 2292 * be or'd on top of this like before. 2293 */ 2294 if (ds4->update_rumble || ds4->update_lightbar) { 2295 ds4->update_rumble = true; /* 0x01 */ 2296 ds4->update_lightbar = true; /* 0x02 */ 2297 } 2298 2299 if (ds4->update_rumble) { 2300 /* Select classic rumble style haptics and enable it. */ 2301 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_MOTOR; 2302 common->motor_left = ds4->motor_left; 2303 common->motor_right = ds4->motor_right; 2304 ds4->update_rumble = false; 2305 } 2306 2307 if (ds4->update_lightbar) { 2308 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED; 2309 /* Compatible behavior with hid-sony, which used a dummy global LED to 2310 * allow enabling/disabling the lightbar. The global LED maps to 2311 * lightbar_enabled. 2312 */ 2313 common->lightbar_red = ds4->lightbar_enabled ? ds4->lightbar_red : 0; 2314 common->lightbar_green = ds4->lightbar_enabled ? ds4->lightbar_green : 0; 2315 common->lightbar_blue = ds4->lightbar_enabled ? ds4->lightbar_blue : 0; 2316 ds4->update_lightbar = false; 2317 } 2318 2319 if (ds4->update_lightbar_blink) { 2320 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED_BLINK; 2321 common->lightbar_blink_on = ds4->lightbar_blink_on; 2322 common->lightbar_blink_off = ds4->lightbar_blink_off; 2323 ds4->update_lightbar_blink = false; 2324 } 2325 } 2326 2327 /* Bluetooth packets need additional flags as well as a CRC in the last 4 bytes. */ 2328 if (report.bt) { 2329 u32 crc; 2330 u8 seed = PS_OUTPUT_CRC32_SEED; 2331 2332 /* Hardware control flags need to set to let the device know 2333 * there is HID data as well as CRC. 2334 */ 2335 report.bt->hw_control = DS4_OUTPUT_HWCTL_HID | DS4_OUTPUT_HWCTL_CRC32; 2336 2337 if (ds4->update_bt_poll_interval) { 2338 report.bt->hw_control |= ds4->bt_poll_interval; 2339 ds4->update_bt_poll_interval = false; 2340 } 2341 2342 crc = crc32_le(0xFFFFFFFF, &seed, 1); 2343 crc = ~crc32_le(crc, report.data, report.len - 4); 2344 2345 report.bt->crc32 = cpu_to_le32(crc); 2346 } 2347 2348 hid_hw_output_report(ds4->base.hdev, report.data, report.len); 2349 } 2350 2351 static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report, 2352 u8 *data, int size) 2353 { 2354 struct hid_device *hdev = ps_dev->hdev; 2355 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2356 struct dualshock4_input_report_common *ds4_report; 2357 struct dualshock4_touch_report *touch_reports; 2358 u8 battery_capacity, num_touch_reports, value; 2359 int battery_status, i, j; 2360 u16 sensor_timestamp; 2361 bool is_minimal = false; 2362 2363 /* 2364 * DualShock4 in USB uses the full HID report for reportID 1, but 2365 * Bluetooth uses a minimal HID report for reportID 1 and reports 2366 * the full report using reportID 17. 2367 */ 2368 if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB && 2369 size == DS4_INPUT_REPORT_USB_SIZE) { 2370 struct dualshock4_input_report_usb *usb = 2371 (struct dualshock4_input_report_usb *)data; 2372 2373 ds4_report = &usb->common; 2374 num_touch_reports = usb->num_touch_reports; 2375 touch_reports = usb->touch_reports; 2376 } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS4_INPUT_REPORT_BT && 2377 size == DS4_INPUT_REPORT_BT_SIZE) { 2378 struct dualshock4_input_report_bt *bt = (struct dualshock4_input_report_bt *)data; 2379 u32 report_crc = get_unaligned_le32(&bt->crc32); 2380 2381 /* Last 4 bytes of input report contains CRC. */ 2382 if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) { 2383 hid_err(hdev, "DualShock4 input CRC's check failed\n"); 2384 return -EILSEQ; 2385 } 2386 2387 ds4_report = &bt->common; 2388 num_touch_reports = bt->num_touch_reports; 2389 touch_reports = bt->touch_reports; 2390 } else if (hdev->bus == BUS_BLUETOOTH && 2391 report->id == DS4_INPUT_REPORT_BT_MINIMAL && 2392 size == DS4_INPUT_REPORT_BT_MINIMAL_SIZE) { 2393 /* Some third-party pads never switch to the full 0x11 report. 2394 * The short 0x01 report is 10 bytes long: 2395 * u8 report_id == 0x01 2396 * u8 first_bytes_of_full_report[9] 2397 * So let's reuse the full report parser, and stop it after 2398 * parsing the buttons. 2399 */ 2400 ds4_report = (struct dualshock4_input_report_common *)&data[1]; 2401 is_minimal = true; 2402 } else { 2403 hid_err(hdev, "Unhandled reportID=%d\n", report->id); 2404 return -1; 2405 } 2406 2407 input_report_abs(ds4->gamepad, ABS_X, ds4_report->x); 2408 input_report_abs(ds4->gamepad, ABS_Y, ds4_report->y); 2409 input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx); 2410 input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry); 2411 input_report_abs(ds4->gamepad, ABS_Z, ds4_report->z); 2412 input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz); 2413 2414 value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH; 2415 if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping)) 2416 value = 8; /* center */ 2417 input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x); 2418 input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y); 2419 2420 input_report_key(ds4->gamepad, BTN_WEST, ds4_report->buttons[0] & DS_BUTTONS0_SQUARE); 2421 input_report_key(ds4->gamepad, BTN_SOUTH, ds4_report->buttons[0] & DS_BUTTONS0_CROSS); 2422 input_report_key(ds4->gamepad, BTN_EAST, ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE); 2423 input_report_key(ds4->gamepad, BTN_NORTH, ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE); 2424 input_report_key(ds4->gamepad, BTN_TL, ds4_report->buttons[1] & DS_BUTTONS1_L1); 2425 input_report_key(ds4->gamepad, BTN_TR, ds4_report->buttons[1] & DS_BUTTONS1_R1); 2426 input_report_key(ds4->gamepad, BTN_TL2, ds4_report->buttons[1] & DS_BUTTONS1_L2); 2427 input_report_key(ds4->gamepad, BTN_TR2, ds4_report->buttons[1] & DS_BUTTONS1_R2); 2428 input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE); 2429 input_report_key(ds4->gamepad, BTN_START, ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS); 2430 input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3); 2431 input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3); 2432 input_report_key(ds4->gamepad, BTN_MODE, ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME); 2433 input_sync(ds4->gamepad); 2434 2435 if (is_minimal) 2436 return 0; 2437 2438 /* Parse and calibrate gyroscope data. */ 2439 for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) { 2440 int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]); 2441 int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer, 2442 raw_data, ds4->gyro_calib_data[i].sens_denom); 2443 2444 input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data); 2445 } 2446 2447 /* Parse and calibrate accelerometer data. */ 2448 for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) { 2449 int raw_data = (short)le16_to_cpu(ds4_report->accel[i]); 2450 int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer, 2451 raw_data - ds4->accel_calib_data[i].bias, 2452 ds4->accel_calib_data[i].sens_denom); 2453 2454 input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data); 2455 } 2456 2457 /* Convert timestamp (in 5.33us unit) to timestamp_us */ 2458 sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp); 2459 if (!ds4->sensor_timestamp_initialized) { 2460 ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp * 16, 3); 2461 ds4->sensor_timestamp_initialized = true; 2462 } else { 2463 u16 delta; 2464 2465 if (ds4->prev_sensor_timestamp > sensor_timestamp) 2466 delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1); 2467 else 2468 delta = sensor_timestamp - ds4->prev_sensor_timestamp; 2469 ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta * 16, 3); 2470 } 2471 ds4->prev_sensor_timestamp = sensor_timestamp; 2472 input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us); 2473 input_sync(ds4->sensors); 2474 2475 for (i = 0; i < num_touch_reports; i++) { 2476 struct dualshock4_touch_report *touch_report = &touch_reports[i]; 2477 2478 for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) { 2479 struct dualshock4_touch_point *point = &touch_report->points[j]; 2480 bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true; 2481 2482 input_mt_slot(ds4->touchpad, j); 2483 input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active); 2484 2485 if (active) { 2486 input_report_abs(ds4->touchpad, ABS_MT_POSITION_X, 2487 DS4_TOUCH_POINT_X(point->x_hi, point->x_lo)); 2488 input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y, 2489 DS4_TOUCH_POINT_Y(point->y_hi, point->y_lo)); 2490 } 2491 } 2492 input_mt_sync_frame(ds4->touchpad); 2493 input_sync(ds4->touchpad); 2494 } 2495 input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD); 2496 2497 /* 2498 * Interpretation of the battery_capacity data depends on the cable state. 2499 * When no cable is connected (bit4 is 0): 2500 * - 0:10: percentage in units of 10%. 2501 * When a cable is plugged in: 2502 * - 0-10: percentage in units of 10%. 2503 * - 11: battery is full 2504 * - 14: not charging due to Voltage or temperature error 2505 * - 15: charge error 2506 */ 2507 if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) { 2508 u8 battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY; 2509 2510 if (battery_data < 10) { 2511 /* Take the mid-point for each battery capacity value, 2512 * because on the hardware side 0 = 0-9%, 1=10-19%, etc. 2513 * This matches official platform behavior, which does 2514 * the same. 2515 */ 2516 battery_capacity = battery_data * 10 + 5; 2517 battery_status = POWER_SUPPLY_STATUS_CHARGING; 2518 } else if (battery_data == 10) { 2519 battery_capacity = 100; 2520 battery_status = POWER_SUPPLY_STATUS_CHARGING; 2521 } else if (battery_data == DS4_BATTERY_STATUS_FULL) { 2522 battery_capacity = 100; 2523 battery_status = POWER_SUPPLY_STATUS_FULL; 2524 } else { /* 14, 15 and undefined values */ 2525 battery_capacity = 0; 2526 battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 2527 } 2528 } else { 2529 u8 battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY; 2530 2531 if (battery_data < 10) 2532 battery_capacity = battery_data * 10 + 5; 2533 else /* 10 */ 2534 battery_capacity = 100; 2535 2536 battery_status = POWER_SUPPLY_STATUS_DISCHARGING; 2537 } 2538 2539 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 2540 ps_dev->battery_capacity = battery_capacity; 2541 ps_dev->battery_status = battery_status; 2542 } 2543 2544 return 0; 2545 } 2546 2547 static int dualshock4_dongle_parse_report(struct ps_device *ps_dev, struct hid_report *report, 2548 u8 *data, int size) 2549 { 2550 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2551 bool connected = false; 2552 2553 /* The dongle reports data using the main USB report (0x1) no matter whether a controller 2554 * is connected with mostly zeros. The report does contain dongle status, which we use to 2555 * determine if a controller is connected and if so we forward to the regular DualShock4 2556 * parsing code. 2557 */ 2558 if (data[0] == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) { 2559 struct dualshock4_input_report_common *ds4_report = 2560 (struct dualshock4_input_report_common *)&data[1]; 2561 2562 connected = ds4_report->status[1] & DS4_STATUS1_DONGLE_STATE ? false : true; 2563 2564 if (ds4->dongle_state == DONGLE_DISCONNECTED && connected) { 2565 hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller connected\n"); 2566 2567 dualshock4_set_default_lightbar_colors(ds4); 2568 2569 scoped_guard(spinlock_irqsave, &ps_dev->lock) 2570 ds4->dongle_state = DONGLE_CALIBRATING; 2571 2572 schedule_work(&ds4->dongle_hotplug_worker); 2573 2574 /* Don't process the report since we don't have 2575 * calibration data, but let hidraw have it anyway. 2576 */ 2577 return 0; 2578 } else if ((ds4->dongle_state == DONGLE_CONNECTED || 2579 ds4->dongle_state == DONGLE_DISABLED) && !connected) { 2580 hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller disconnected\n"); 2581 2582 scoped_guard(spinlock_irqsave, &ps_dev->lock) 2583 ds4->dongle_state = DONGLE_DISCONNECTED; 2584 2585 /* Return 0, so hidraw can get the report. */ 2586 return 0; 2587 } else if (ds4->dongle_state == DONGLE_CALIBRATING || 2588 ds4->dongle_state == DONGLE_DISABLED || 2589 ds4->dongle_state == DONGLE_DISCONNECTED) { 2590 /* Return 0, so hidraw can get the report. */ 2591 return 0; 2592 } 2593 } 2594 2595 if (connected) 2596 return dualshock4_parse_report(ps_dev, report, data, size); 2597 2598 return 0; 2599 } 2600 2601 static int dualshock4_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) 2602 { 2603 struct hid_device *hdev = input_get_drvdata(dev); 2604 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2605 2606 if (effect->type != FF_RUMBLE) 2607 return 0; 2608 2609 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2610 ds4->update_rumble = true; 2611 ds4->motor_left = effect->u.rumble.strong_magnitude / 256; 2612 ds4->motor_right = effect->u.rumble.weak_magnitude / 256; 2613 } 2614 2615 dualshock4_schedule_work(ds4); 2616 return 0; 2617 } 2618 2619 static void dualshock4_remove(struct ps_device *ps_dev) 2620 { 2621 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2622 2623 scoped_guard(spinlock_irqsave, &ds4->base.lock) 2624 ds4->output_worker_initialized = false; 2625 2626 cancel_work_sync(&ds4->output_worker); 2627 2628 if (ps_dev->hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) 2629 cancel_work_sync(&ds4->dongle_hotplug_worker); 2630 } 2631 2632 static inline void dualshock4_schedule_work(struct dualshock4 *ds4) 2633 { 2634 /* Using scoped_guard() instead of guard() to make sparse happy */ 2635 scoped_guard(spinlock_irqsave, &ds4->base.lock) 2636 if (ds4->output_worker_initialized) 2637 schedule_work(&ds4->output_worker); 2638 } 2639 2640 static void dualshock4_set_bt_poll_interval(struct dualshock4 *ds4, u8 interval) 2641 { 2642 ds4->bt_poll_interval = interval; 2643 ds4->update_bt_poll_interval = true; 2644 dualshock4_schedule_work(ds4); 2645 } 2646 2647 /* Set default lightbar color based on player. */ 2648 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4) 2649 { 2650 /* Use same player colors as PlayStation 4. 2651 * Array of colors is in RGB. 2652 */ 2653 static const int player_colors[4][3] = { 2654 { 0x00, 0x00, 0x40 }, /* Blue */ 2655 { 0x40, 0x00, 0x00 }, /* Red */ 2656 { 0x00, 0x40, 0x00 }, /* Green */ 2657 { 0x20, 0x00, 0x20 } /* Pink */ 2658 }; 2659 2660 u8 player_id = ds4->base.player_id % ARRAY_SIZE(player_colors); 2661 2662 ds4->lightbar_enabled = true; 2663 ds4->lightbar_red = player_colors[player_id][0]; 2664 ds4->lightbar_green = player_colors[player_id][1]; 2665 ds4->lightbar_blue = player_colors[player_id][2]; 2666 2667 ds4->update_lightbar = true; 2668 dualshock4_schedule_work(ds4); 2669 } 2670 2671 static struct ps_device *dualshock4_create(struct hid_device *hdev) 2672 { 2673 struct dualshock4 *ds4; 2674 struct ps_device *ps_dev; 2675 u8 max_output_report_size; 2676 int i, ret; 2677 2678 /* The DualShock4 has an RGB lightbar, which the original hid-sony driver 2679 * exposed as a set of 4 LEDs for the 3 color channels and a global control. 2680 * Ideally this should have used the multi-color LED class, which didn't exist 2681 * yet. In addition the driver used a naming scheme not compliant with the LED 2682 * naming spec by using "<mac_address>:<color>", which contained many colons. 2683 * We use a more compliant by using "<device_name>:<color>" name now. Ideally 2684 * would have been "<device_name>:<color>:indicator", but that would break 2685 * existing applications (e.g. Android). Nothing matches against MAC address. 2686 */ 2687 static const struct ps_led_info lightbar_leds_info[] = { 2688 { NULL, "red", 255, dualshock4_led_get_brightness, 2689 dualshock4_led_set_brightness }, 2690 { NULL, "green", 255, dualshock4_led_get_brightness, 2691 dualshock4_led_set_brightness }, 2692 { NULL, "blue", 255, dualshock4_led_get_brightness, 2693 dualshock4_led_set_brightness }, 2694 { NULL, "global", 1, dualshock4_led_get_brightness, 2695 dualshock4_led_set_brightness, dualshock4_led_set_blink }, 2696 }; 2697 2698 ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL); 2699 if (!ds4) 2700 return ERR_PTR(-ENOMEM); 2701 2702 /* 2703 * Patch version to allow userspace to distinguish between 2704 * hid-generic vs hid-playstation axis and button mapping. 2705 */ 2706 hdev->version |= HID_PLAYSTATION_VERSION_PATCH; 2707 2708 ps_dev = &ds4->base; 2709 ps_dev->hdev = hdev; 2710 spin_lock_init(&ps_dev->lock); 2711 ps_dev->battery_capacity = 100; /* initial value until parse_report. */ 2712 ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 2713 ps_dev->parse_report = dualshock4_parse_report; 2714 ps_dev->remove = dualshock4_remove; 2715 INIT_WORK(&ds4->output_worker, dualshock4_output_worker); 2716 ds4->output_worker_initialized = true; 2717 hid_set_drvdata(hdev, ds4); 2718 2719 max_output_report_size = sizeof(struct dualshock4_output_report_bt); 2720 ds4->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL); 2721 if (!ds4->output_report_dmabuf) 2722 return ERR_PTR(-ENOMEM); 2723 2724 if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) { 2725 ds4->dongle_state = DONGLE_DISCONNECTED; 2726 INIT_WORK(&ds4->dongle_hotplug_worker, dualshock4_dongle_calibration_work); 2727 2728 /* Override parse report for dongle specific hotplug handling. */ 2729 ps_dev->parse_report = dualshock4_dongle_parse_report; 2730 } 2731 2732 ret = dualshock4_get_mac_address(ds4); 2733 if (ret) { 2734 hid_err(hdev, "Failed to get MAC address from DualShock4\n"); 2735 return ERR_PTR(ret); 2736 } 2737 snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address); 2738 2739 ret = dualshock4_get_firmware_info(ds4); 2740 if (ret) { 2741 hid_warn(hdev, "Failed to get firmware info from DualShock4\n"); 2742 hid_warn(hdev, "HW/FW version data in sysfs will be invalid.\n"); 2743 } 2744 2745 ret = ps_devices_list_add(ps_dev); 2746 if (ret) 2747 return ERR_PTR(ret); 2748 2749 ret = dualshock4_get_calibration_data(ds4); 2750 if (ret) { 2751 hid_warn(hdev, "Failed to get calibration data from DualShock4\n"); 2752 hid_warn(hdev, "Gyroscope and accelerometer will be inaccurate.\n"); 2753 } 2754 2755 ds4->gamepad = ps_gamepad_create(hdev, dualshock4_play_effect); 2756 if (IS_ERR(ds4->gamepad)) { 2757 ret = PTR_ERR(ds4->gamepad); 2758 goto err; 2759 } 2760 2761 /* Use gamepad input device name as primary device name for e.g. LEDs */ 2762 ps_dev->input_dev_name = dev_name(&ds4->gamepad->dev); 2763 2764 ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G, 2765 DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S); 2766 if (IS_ERR(ds4->sensors)) { 2767 ret = PTR_ERR(ds4->sensors); 2768 goto err; 2769 } 2770 2771 ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2); 2772 if (IS_ERR(ds4->touchpad)) { 2773 ret = PTR_ERR(ds4->touchpad); 2774 goto err; 2775 } 2776 2777 ret = ps_device_register_battery(ps_dev); 2778 if (ret) 2779 goto err; 2780 2781 for (i = 0; i < ARRAY_SIZE(lightbar_leds_info); i++) { 2782 const struct ps_led_info *led_info = &lightbar_leds_info[i]; 2783 2784 ret = ps_led_register(ps_dev, &ds4->lightbar_leds[i], led_info); 2785 if (ret < 0) 2786 goto err; 2787 } 2788 2789 dualshock4_set_bt_poll_interval(ds4, DS4_BT_DEFAULT_POLL_INTERVAL_MS); 2790 2791 ret = ps_device_set_player_id(ps_dev); 2792 if (ret) { 2793 hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret); 2794 goto err; 2795 } 2796 2797 dualshock4_set_default_lightbar_colors(ds4); 2798 2799 /* 2800 * Reporting hardware and firmware is important as there are frequent updates, which 2801 * can change behavior. 2802 */ 2803 hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n", 2804 ds4->base.hw_version, ds4->base.fw_version); 2805 return &ds4->base; 2806 2807 err: 2808 ps_devices_list_remove(ps_dev); 2809 return ERR_PTR(ret); 2810 } 2811 2812 static int ps_raw_event(struct hid_device *hdev, struct hid_report *report, 2813 u8 *data, int size) 2814 { 2815 struct ps_device *dev = hid_get_drvdata(hdev); 2816 2817 if (dev && dev->parse_report) 2818 return dev->parse_report(dev, report, data, size); 2819 2820 return 0; 2821 } 2822 2823 static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id) 2824 { 2825 struct ps_device *dev; 2826 int ret; 2827 2828 ret = hid_parse(hdev); 2829 if (ret) { 2830 hid_err(hdev, "Parse failed\n"); 2831 return ret; 2832 } 2833 2834 ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); 2835 if (ret) { 2836 hid_err(hdev, "Failed to start HID device\n"); 2837 return ret; 2838 } 2839 2840 ret = hid_hw_open(hdev); 2841 if (ret) { 2842 hid_err(hdev, "Failed to open HID device\n"); 2843 goto err_stop; 2844 } 2845 2846 if (id->driver_data == PS_TYPE_PS4_DUALSHOCK4) { 2847 dev = dualshock4_create(hdev); 2848 if (IS_ERR(dev)) { 2849 hid_err(hdev, "Failed to create dualshock4.\n"); 2850 ret = PTR_ERR(dev); 2851 goto err_close; 2852 } 2853 } else if (id->driver_data == PS_TYPE_PS5_DUALSENSE) { 2854 dev = dualsense_create(hdev); 2855 if (IS_ERR(dev)) { 2856 hid_err(hdev, "Failed to create dualsense.\n"); 2857 ret = PTR_ERR(dev); 2858 goto err_close; 2859 } 2860 } 2861 2862 return ret; 2863 2864 err_close: 2865 hid_hw_close(hdev); 2866 err_stop: 2867 hid_hw_stop(hdev); 2868 return ret; 2869 } 2870 2871 static void ps_remove(struct hid_device *hdev) 2872 { 2873 struct ps_device *dev = hid_get_drvdata(hdev); 2874 2875 ps_devices_list_remove(dev); 2876 ps_device_release_player_id(dev); 2877 2878 if (dev->remove) 2879 dev->remove(dev); 2880 2881 hid_hw_close(hdev); 2882 hid_hw_stop(hdev); 2883 } 2884 2885 static const struct hid_device_id ps_devices[] = { 2886 /* Sony DualShock 4 controllers for PS4 */ 2887 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), 2888 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2889 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), 2890 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2891 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), 2892 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2893 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), 2894 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2895 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE), 2896 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2897 2898 /* Sony DualSense controllers for PS5 */ 2899 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER), 2900 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2901 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER), 2902 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2903 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2), 2904 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2905 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2), 2906 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2907 { } 2908 }; 2909 MODULE_DEVICE_TABLE(hid, ps_devices); 2910 2911 static struct hid_driver ps_driver = { 2912 .name = "playstation", 2913 .id_table = ps_devices, 2914 .probe = ps_probe, 2915 .remove = ps_remove, 2916 .raw_event = ps_raw_event, 2917 .driver = { 2918 .dev_groups = ps_device_groups, 2919 }, 2920 }; 2921 2922 static int __init ps_init(void) 2923 { 2924 return hid_register_driver(&ps_driver); 2925 } 2926 2927 static void __exit ps_exit(void) 2928 { 2929 hid_unregister_driver(&ps_driver); 2930 ida_destroy(&ps_player_id_allocator); 2931 } 2932 2933 module_init(ps_init); 2934 module_exit(ps_exit); 2935 2936 MODULE_AUTHOR("Sony Interactive Entertainment"); 2937 MODULE_DESCRIPTION("HID Driver for PlayStation peripherals."); 2938 MODULE_LICENSE("GPL"); 2939