1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech Unifying receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_REPORT_SHORT_SUPPORTED BIT(0) 53 #define HIDPP_REPORT_LONG_SUPPORTED BIT(1) 54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED BIT(2) 55 56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 57 #define HIDPP_SUB_ID_ROLLER 0x05 58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 59 60 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 61 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 62 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 63 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 64 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 65 66 /* bits 2..20 are reserved for classes */ 67 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 69 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 71 #define HIDPP_QUIRK_UNIFYING BIT(25) 72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 75 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 78 79 /* These are just aliases for now */ 80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 82 83 /* Convenience constant to check for any high-res support. */ 84 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 85 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 86 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 87 88 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 89 90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE BIT(4) 95 96 /* 97 * There are two hidpp protocols in use, the first version hidpp10 is known 98 * as register access protocol or RAP, the second version hidpp20 is known as 99 * feature access protocol or FAP 100 * 101 * Most older devices (including the Unifying usb receiver) use the RAP protocol 102 * where as most newer devices use the FAP protocol. Both protocols are 103 * compatible with the underlying transport, which could be usb, Unifiying, or 104 * bluetooth. The message lengths are defined by the hid vendor specific report 105 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 106 * the HIDPP_LONG report type (total message length 20 bytes) 107 * 108 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 109 * messages. The Unifying receiver itself responds to RAP messages (device index 110 * is 0xFF for the receiver), and all messages (short or long) with a device 111 * index between 1 and 6 are passed untouched to the corresponding paired 112 * Unifying device. 113 * 114 * The paired device can be RAP or FAP, it will receive the message untouched 115 * from the Unifiying receiver. 116 */ 117 118 struct fap { 119 u8 feature_index; 120 u8 funcindex_clientid; 121 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 122 }; 123 124 struct rap { 125 u8 sub_id; 126 u8 reg_address; 127 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 128 }; 129 130 struct hidpp_report { 131 u8 report_id; 132 u8 device_index; 133 union { 134 struct fap fap; 135 struct rap rap; 136 u8 rawbytes[sizeof(struct fap)]; 137 }; 138 } __packed; 139 140 struct hidpp_battery { 141 u8 feature_index; 142 u8 solar_feature_index; 143 u8 voltage_feature_index; 144 struct power_supply_desc desc; 145 struct power_supply *ps; 146 char name[64]; 147 int status; 148 int capacity; 149 int level; 150 int voltage; 151 int charge_type; 152 bool online; 153 }; 154 155 /** 156 * struct hidpp_scroll_counter - Utility class for processing high-resolution 157 * scroll events. 158 * @dev: the input device for which events should be reported. 159 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 160 * @remainder: counts the number of high-resolution units moved since the last 161 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 162 * only be used by class methods. 163 * @direction: direction of last movement (1 or -1) 164 * @last_time: last event time, used to reset remainder after inactivity 165 */ 166 struct hidpp_scroll_counter { 167 int wheel_multiplier; 168 int remainder; 169 int direction; 170 unsigned long long last_time; 171 }; 172 173 struct hidpp_device { 174 struct hid_device *hid_dev; 175 struct input_dev *input; 176 struct mutex send_mutex; 177 void *send_receive_buf; 178 char *name; /* will never be NULL and should not be freed */ 179 wait_queue_head_t wait; 180 int very_long_report_length; 181 bool answer_available; 182 u8 protocol_major; 183 u8 protocol_minor; 184 185 void *private_data; 186 187 struct work_struct work; 188 struct kfifo delayed_work_fifo; 189 atomic_t connected; 190 struct input_dev *delayed_input; 191 192 unsigned long quirks; 193 unsigned long capabilities; 194 u8 supported_reports; 195 196 struct hidpp_battery battery; 197 struct hidpp_scroll_counter vertical_wheel_counter; 198 199 u8 wireless_feature_index; 200 }; 201 202 /* HID++ 1.0 error codes */ 203 #define HIDPP_ERROR 0x8f 204 #define HIDPP_ERROR_SUCCESS 0x00 205 #define HIDPP_ERROR_INVALID_SUBID 0x01 206 #define HIDPP_ERROR_INVALID_ADRESS 0x02 207 #define HIDPP_ERROR_INVALID_VALUE 0x03 208 #define HIDPP_ERROR_CONNECT_FAIL 0x04 209 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 210 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 211 #define HIDPP_ERROR_BUSY 0x07 212 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 213 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 214 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 215 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 216 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 217 /* HID++ 2.0 error codes */ 218 #define HIDPP20_ERROR 0xff 219 220 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 221 222 static int __hidpp_send_report(struct hid_device *hdev, 223 struct hidpp_report *hidpp_report) 224 { 225 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 226 int fields_count, ret; 227 228 switch (hidpp_report->report_id) { 229 case REPORT_ID_HIDPP_SHORT: 230 fields_count = HIDPP_REPORT_SHORT_LENGTH; 231 break; 232 case REPORT_ID_HIDPP_LONG: 233 fields_count = HIDPP_REPORT_LONG_LENGTH; 234 break; 235 case REPORT_ID_HIDPP_VERY_LONG: 236 fields_count = hidpp->very_long_report_length; 237 break; 238 default: 239 return -ENODEV; 240 } 241 242 /* 243 * set the device_index as the receiver, it will be overwritten by 244 * hid_hw_request if needed 245 */ 246 hidpp_report->device_index = 0xff; 247 248 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 249 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 250 } else { 251 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 252 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 253 HID_REQ_SET_REPORT); 254 } 255 256 return ret == fields_count ? 0 : -1; 257 } 258 259 /** 260 * hidpp_send_message_sync() returns 0 in case of success, and something else 261 * in case of a failure. 262 * - If ' something else' is positive, that means that an error has been raised 263 * by the protocol itself. 264 * - If ' something else' is negative, that means that we had a classic error 265 * (-ENOMEM, -EPIPE, etc...) 266 */ 267 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 268 struct hidpp_report *message, 269 struct hidpp_report *response) 270 { 271 int ret; 272 273 mutex_lock(&hidpp->send_mutex); 274 275 hidpp->send_receive_buf = response; 276 hidpp->answer_available = false; 277 278 /* 279 * So that we can later validate the answer when it arrives 280 * in hidpp_raw_event 281 */ 282 *response = *message; 283 284 ret = __hidpp_send_report(hidpp->hid_dev, message); 285 286 if (ret) { 287 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 288 memset(response, 0, sizeof(struct hidpp_report)); 289 goto exit; 290 } 291 292 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 293 5*HZ)) { 294 dbg_hid("%s:timeout waiting for response\n", __func__); 295 memset(response, 0, sizeof(struct hidpp_report)); 296 ret = -ETIMEDOUT; 297 } 298 299 if (response->report_id == REPORT_ID_HIDPP_SHORT && 300 response->rap.sub_id == HIDPP_ERROR) { 301 ret = response->rap.params[1]; 302 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 303 goto exit; 304 } 305 306 if ((response->report_id == REPORT_ID_HIDPP_LONG || 307 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 308 response->fap.feature_index == HIDPP20_ERROR) { 309 ret = response->fap.params[1]; 310 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 311 goto exit; 312 } 313 314 exit: 315 mutex_unlock(&hidpp->send_mutex); 316 return ret; 317 318 } 319 320 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 321 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 322 struct hidpp_report *response) 323 { 324 struct hidpp_report *message; 325 int ret; 326 327 if (param_count > sizeof(message->fap.params)) 328 return -EINVAL; 329 330 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 331 if (!message) 332 return -ENOMEM; 333 334 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 335 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 336 else 337 message->report_id = REPORT_ID_HIDPP_LONG; 338 message->fap.feature_index = feat_index; 339 message->fap.funcindex_clientid = funcindex_clientid; 340 memcpy(&message->fap.params, params, param_count); 341 342 ret = hidpp_send_message_sync(hidpp, message, response); 343 kfree(message); 344 return ret; 345 } 346 347 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 348 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 349 struct hidpp_report *response) 350 { 351 struct hidpp_report *message; 352 int ret, max_count; 353 354 /* Send as long report if short reports are not supported. */ 355 if (report_id == REPORT_ID_HIDPP_SHORT && 356 !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED)) 357 report_id = REPORT_ID_HIDPP_LONG; 358 359 switch (report_id) { 360 case REPORT_ID_HIDPP_SHORT: 361 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 362 break; 363 case REPORT_ID_HIDPP_LONG: 364 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 365 break; 366 case REPORT_ID_HIDPP_VERY_LONG: 367 max_count = hidpp_dev->very_long_report_length - 4; 368 break; 369 default: 370 return -EINVAL; 371 } 372 373 if (param_count > max_count) 374 return -EINVAL; 375 376 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 377 if (!message) 378 return -ENOMEM; 379 message->report_id = report_id; 380 message->rap.sub_id = sub_id; 381 message->rap.reg_address = reg_address; 382 memcpy(&message->rap.params, params, param_count); 383 384 ret = hidpp_send_message_sync(hidpp_dev, message, response); 385 kfree(message); 386 return ret; 387 } 388 389 static void delayed_work_cb(struct work_struct *work) 390 { 391 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 392 work); 393 hidpp_connect_event(hidpp); 394 } 395 396 static inline bool hidpp_match_answer(struct hidpp_report *question, 397 struct hidpp_report *answer) 398 { 399 return (answer->fap.feature_index == question->fap.feature_index) && 400 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 401 } 402 403 static inline bool hidpp_match_error(struct hidpp_report *question, 404 struct hidpp_report *answer) 405 { 406 return ((answer->rap.sub_id == HIDPP_ERROR) || 407 (answer->fap.feature_index == HIDPP20_ERROR)) && 408 (answer->fap.funcindex_clientid == question->fap.feature_index) && 409 (answer->fap.params[0] == question->fap.funcindex_clientid); 410 } 411 412 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp, 413 struct hidpp_report *report) 414 { 415 return (hidpp->wireless_feature_index && 416 (report->fap.feature_index == hidpp->wireless_feature_index)) || 417 ((report->report_id == REPORT_ID_HIDPP_SHORT) && 418 (report->rap.sub_id == 0x41)); 419 } 420 421 /** 422 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 423 */ 424 static void hidpp_prefix_name(char **name, int name_length) 425 { 426 #define PREFIX_LENGTH 9 /* "Logitech " */ 427 428 int new_length; 429 char *new_name; 430 431 if (name_length > PREFIX_LENGTH && 432 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 433 /* The prefix has is already in the name */ 434 return; 435 436 new_length = PREFIX_LENGTH + name_length; 437 new_name = kzalloc(new_length, GFP_KERNEL); 438 if (!new_name) 439 return; 440 441 snprintf(new_name, new_length, "Logitech %s", *name); 442 443 kfree(*name); 444 445 *name = new_name; 446 } 447 448 /** 449 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 450 * events given a high-resolution wheel 451 * movement. 452 * @counter: a hid_scroll_counter struct describing the wheel. 453 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 454 * units. 455 * 456 * Given a high-resolution movement, this function converts the movement into 457 * fractions of 120 and emits high-resolution scroll events for the input 458 * device. It also uses the multiplier from &struct hid_scroll_counter to 459 * emit low-resolution scroll events when appropriate for 460 * backwards-compatibility with userspace input libraries. 461 */ 462 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 463 struct hidpp_scroll_counter *counter, 464 int hi_res_value) 465 { 466 int low_res_value, remainder, direction; 467 unsigned long long now, previous; 468 469 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 470 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 471 472 remainder = counter->remainder; 473 direction = hi_res_value > 0 ? 1 : -1; 474 475 now = sched_clock(); 476 previous = counter->last_time; 477 counter->last_time = now; 478 /* 479 * Reset the remainder after a period of inactivity or when the 480 * direction changes. This prevents the REL_WHEEL emulation point 481 * from sliding for devices that don't always provide the same 482 * number of movements per detent. 483 */ 484 if (now - previous > 1000000000 || direction != counter->direction) 485 remainder = 0; 486 487 counter->direction = direction; 488 remainder += hi_res_value; 489 490 /* Some wheels will rest 7/8ths of a detent from the previous detent 491 * after slow movement, so we want the threshold for low-res events to 492 * be in the middle between two detents (e.g. after 4/8ths) as 493 * opposed to on the detents themselves (8/8ths). 494 */ 495 if (abs(remainder) >= 60) { 496 /* Add (or subtract) 1 because we want to trigger when the wheel 497 * is half-way to the next detent (i.e. scroll 1 detent after a 498 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 499 * etc.). 500 */ 501 low_res_value = remainder / 120; 502 if (low_res_value == 0) 503 low_res_value = (hi_res_value > 0 ? 1 : -1); 504 input_report_rel(input_dev, REL_WHEEL, low_res_value); 505 remainder -= low_res_value * 120; 506 } 507 counter->remainder = remainder; 508 } 509 510 /* -------------------------------------------------------------------------- */ 511 /* HIDP++ 1.0 commands */ 512 /* -------------------------------------------------------------------------- */ 513 514 #define HIDPP_SET_REGISTER 0x80 515 #define HIDPP_GET_REGISTER 0x81 516 #define HIDPP_SET_LONG_REGISTER 0x82 517 #define HIDPP_GET_LONG_REGISTER 0x83 518 519 /** 520 * hidpp10_set_register - Modify a HID++ 1.0 register. 521 * @hidpp_dev: the device to set the register on. 522 * @register_address: the address of the register to modify. 523 * @byte: the byte of the register to modify. Should be less than 3. 524 * @mask: mask of the bits to modify 525 * @value: new values for the bits in mask 526 * Return: 0 if successful, otherwise a negative error code. 527 */ 528 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 529 u8 register_address, u8 byte, u8 mask, u8 value) 530 { 531 struct hidpp_report response; 532 int ret; 533 u8 params[3] = { 0 }; 534 535 ret = hidpp_send_rap_command_sync(hidpp_dev, 536 REPORT_ID_HIDPP_SHORT, 537 HIDPP_GET_REGISTER, 538 register_address, 539 NULL, 0, &response); 540 if (ret) 541 return ret; 542 543 memcpy(params, response.rap.params, 3); 544 545 params[byte] &= ~mask; 546 params[byte] |= value & mask; 547 548 return hidpp_send_rap_command_sync(hidpp_dev, 549 REPORT_ID_HIDPP_SHORT, 550 HIDPP_SET_REGISTER, 551 register_address, 552 params, 3, &response); 553 } 554 555 #define HIDPP_REG_ENABLE_REPORTS 0x00 556 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 557 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 558 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 559 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 560 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 561 562 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 563 { 564 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 565 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 566 } 567 568 #define HIDPP_REG_FEATURES 0x01 569 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 570 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 571 572 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 573 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 574 { 575 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 576 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 577 } 578 579 #define HIDPP_REG_BATTERY_STATUS 0x07 580 581 static int hidpp10_battery_status_map_level(u8 param) 582 { 583 int level; 584 585 switch (param) { 586 case 1 ... 2: 587 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 588 break; 589 case 3 ... 4: 590 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 591 break; 592 case 5 ... 6: 593 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 594 break; 595 case 7: 596 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 597 break; 598 default: 599 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 600 } 601 602 return level; 603 } 604 605 static int hidpp10_battery_status_map_status(u8 param) 606 { 607 int status; 608 609 switch (param) { 610 case 0x00: 611 /* discharging (in use) */ 612 status = POWER_SUPPLY_STATUS_DISCHARGING; 613 break; 614 case 0x21: /* (standard) charging */ 615 case 0x24: /* fast charging */ 616 case 0x25: /* slow charging */ 617 status = POWER_SUPPLY_STATUS_CHARGING; 618 break; 619 case 0x26: /* topping charge */ 620 case 0x22: /* charge complete */ 621 status = POWER_SUPPLY_STATUS_FULL; 622 break; 623 case 0x20: /* unknown */ 624 status = POWER_SUPPLY_STATUS_UNKNOWN; 625 break; 626 /* 627 * 0x01...0x1F = reserved (not charging) 628 * 0x23 = charging error 629 * 0x27..0xff = reserved 630 */ 631 default: 632 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 633 break; 634 } 635 636 return status; 637 } 638 639 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 640 { 641 struct hidpp_report response; 642 int ret, status; 643 644 ret = hidpp_send_rap_command_sync(hidpp, 645 REPORT_ID_HIDPP_SHORT, 646 HIDPP_GET_REGISTER, 647 HIDPP_REG_BATTERY_STATUS, 648 NULL, 0, &response); 649 if (ret) 650 return ret; 651 652 hidpp->battery.level = 653 hidpp10_battery_status_map_level(response.rap.params[0]); 654 status = hidpp10_battery_status_map_status(response.rap.params[1]); 655 hidpp->battery.status = status; 656 /* the capacity is only available when discharging or full */ 657 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 658 status == POWER_SUPPLY_STATUS_FULL; 659 660 return 0; 661 } 662 663 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 664 665 static int hidpp10_battery_mileage_map_status(u8 param) 666 { 667 int status; 668 669 switch (param >> 6) { 670 case 0x00: 671 /* discharging (in use) */ 672 status = POWER_SUPPLY_STATUS_DISCHARGING; 673 break; 674 case 0x01: /* charging */ 675 status = POWER_SUPPLY_STATUS_CHARGING; 676 break; 677 case 0x02: /* charge complete */ 678 status = POWER_SUPPLY_STATUS_FULL; 679 break; 680 /* 681 * 0x03 = charging error 682 */ 683 default: 684 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 685 break; 686 } 687 688 return status; 689 } 690 691 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 692 { 693 struct hidpp_report response; 694 int ret, status; 695 696 ret = hidpp_send_rap_command_sync(hidpp, 697 REPORT_ID_HIDPP_SHORT, 698 HIDPP_GET_REGISTER, 699 HIDPP_REG_BATTERY_MILEAGE, 700 NULL, 0, &response); 701 if (ret) 702 return ret; 703 704 hidpp->battery.capacity = response.rap.params[0]; 705 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 706 hidpp->battery.status = status; 707 /* the capacity is only available when discharging or full */ 708 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 709 status == POWER_SUPPLY_STATUS_FULL; 710 711 return 0; 712 } 713 714 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 715 { 716 struct hidpp_report *report = (struct hidpp_report *)data; 717 int status, capacity, level; 718 bool changed; 719 720 if (report->report_id != REPORT_ID_HIDPP_SHORT) 721 return 0; 722 723 switch (report->rap.sub_id) { 724 case HIDPP_REG_BATTERY_STATUS: 725 capacity = hidpp->battery.capacity; 726 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 727 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 728 break; 729 case HIDPP_REG_BATTERY_MILEAGE: 730 capacity = report->rap.params[0]; 731 level = hidpp->battery.level; 732 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 733 break; 734 default: 735 return 0; 736 } 737 738 changed = capacity != hidpp->battery.capacity || 739 level != hidpp->battery.level || 740 status != hidpp->battery.status; 741 742 /* the capacity is only available when discharging or full */ 743 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 744 status == POWER_SUPPLY_STATUS_FULL; 745 746 if (changed) { 747 hidpp->battery.level = level; 748 hidpp->battery.status = status; 749 if (hidpp->battery.ps) 750 power_supply_changed(hidpp->battery.ps); 751 } 752 753 return 0; 754 } 755 756 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 757 #define HIDPP_EXTENDED_PAIRING 0x30 758 #define HIDPP_DEVICE_NAME 0x40 759 760 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 761 { 762 struct hidpp_report response; 763 int ret; 764 u8 params[1] = { HIDPP_DEVICE_NAME }; 765 char *name; 766 int len; 767 768 ret = hidpp_send_rap_command_sync(hidpp_dev, 769 REPORT_ID_HIDPP_SHORT, 770 HIDPP_GET_LONG_REGISTER, 771 HIDPP_REG_PAIRING_INFORMATION, 772 params, 1, &response); 773 if (ret) 774 return NULL; 775 776 len = response.rap.params[1]; 777 778 if (2 + len > sizeof(response.rap.params)) 779 return NULL; 780 781 if (len < 4) /* logitech devices are usually at least Xddd */ 782 return NULL; 783 784 name = kzalloc(len + 1, GFP_KERNEL); 785 if (!name) 786 return NULL; 787 788 memcpy(name, &response.rap.params[2], len); 789 790 /* include the terminating '\0' */ 791 hidpp_prefix_name(&name, len + 1); 792 793 return name; 794 } 795 796 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 797 { 798 struct hidpp_report response; 799 int ret; 800 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 801 802 ret = hidpp_send_rap_command_sync(hidpp, 803 REPORT_ID_HIDPP_SHORT, 804 HIDPP_GET_LONG_REGISTER, 805 HIDPP_REG_PAIRING_INFORMATION, 806 params, 1, &response); 807 if (ret) 808 return ret; 809 810 /* 811 * We don't care about LE or BE, we will output it as a string 812 * with %4phD, so we need to keep the order. 813 */ 814 *serial = *((u32 *)&response.rap.params[1]); 815 return 0; 816 } 817 818 static int hidpp_unifying_init(struct hidpp_device *hidpp) 819 { 820 struct hid_device *hdev = hidpp->hid_dev; 821 const char *name; 822 u32 serial; 823 int ret; 824 825 ret = hidpp_unifying_get_serial(hidpp, &serial); 826 if (ret) 827 return ret; 828 829 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 830 hdev->product, &serial); 831 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 832 833 name = hidpp_unifying_get_name(hidpp); 834 if (!name) 835 return -EIO; 836 837 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 838 dbg_hid("HID++ Unifying: Got name: %s\n", name); 839 840 kfree(name); 841 return 0; 842 } 843 844 /* -------------------------------------------------------------------------- */ 845 /* 0x0000: Root */ 846 /* -------------------------------------------------------------------------- */ 847 848 #define HIDPP_PAGE_ROOT 0x0000 849 #define HIDPP_PAGE_ROOT_IDX 0x00 850 851 #define CMD_ROOT_GET_FEATURE 0x01 852 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 853 854 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 855 u8 *feature_index, u8 *feature_type) 856 { 857 struct hidpp_report response; 858 int ret; 859 u8 params[2] = { feature >> 8, feature & 0x00FF }; 860 861 ret = hidpp_send_fap_command_sync(hidpp, 862 HIDPP_PAGE_ROOT_IDX, 863 CMD_ROOT_GET_FEATURE, 864 params, 2, &response); 865 if (ret) 866 return ret; 867 868 if (response.fap.params[0] == 0) 869 return -ENOENT; 870 871 *feature_index = response.fap.params[0]; 872 *feature_type = response.fap.params[1]; 873 874 return ret; 875 } 876 877 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 878 { 879 const u8 ping_byte = 0x5a; 880 u8 ping_data[3] = { 0, 0, ping_byte }; 881 struct hidpp_report response; 882 int ret; 883 884 ret = hidpp_send_rap_command_sync(hidpp, 885 REPORT_ID_HIDPP_SHORT, 886 HIDPP_PAGE_ROOT_IDX, 887 CMD_ROOT_GET_PROTOCOL_VERSION, 888 ping_data, sizeof(ping_data), &response); 889 890 if (ret == HIDPP_ERROR_INVALID_SUBID) { 891 hidpp->protocol_major = 1; 892 hidpp->protocol_minor = 0; 893 goto print_version; 894 } 895 896 /* the device might not be connected */ 897 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 898 return -EIO; 899 900 if (ret > 0) { 901 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 902 __func__, ret); 903 return -EPROTO; 904 } 905 if (ret) 906 return ret; 907 908 if (response.rap.params[2] != ping_byte) { 909 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 910 __func__, response.rap.params[2], ping_byte); 911 return -EPROTO; 912 } 913 914 hidpp->protocol_major = response.rap.params[0]; 915 hidpp->protocol_minor = response.rap.params[1]; 916 917 print_version: 918 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 919 hidpp->protocol_major, hidpp->protocol_minor); 920 return 0; 921 } 922 923 /* -------------------------------------------------------------------------- */ 924 /* 0x0005: GetDeviceNameType */ 925 /* -------------------------------------------------------------------------- */ 926 927 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 928 929 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 930 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 931 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 932 933 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 934 u8 feature_index, u8 *nameLength) 935 { 936 struct hidpp_report response; 937 int ret; 938 939 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 940 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 941 942 if (ret > 0) { 943 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 944 __func__, ret); 945 return -EPROTO; 946 } 947 if (ret) 948 return ret; 949 950 *nameLength = response.fap.params[0]; 951 952 return ret; 953 } 954 955 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 956 u8 feature_index, u8 char_index, char *device_name, int len_buf) 957 { 958 struct hidpp_report response; 959 int ret, i; 960 int count; 961 962 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 963 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 964 &response); 965 966 if (ret > 0) { 967 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 968 __func__, ret); 969 return -EPROTO; 970 } 971 if (ret) 972 return ret; 973 974 switch (response.report_id) { 975 case REPORT_ID_HIDPP_VERY_LONG: 976 count = hidpp->very_long_report_length - 4; 977 break; 978 case REPORT_ID_HIDPP_LONG: 979 count = HIDPP_REPORT_LONG_LENGTH - 4; 980 break; 981 case REPORT_ID_HIDPP_SHORT: 982 count = HIDPP_REPORT_SHORT_LENGTH - 4; 983 break; 984 default: 985 return -EPROTO; 986 } 987 988 if (len_buf < count) 989 count = len_buf; 990 991 for (i = 0; i < count; i++) 992 device_name[i] = response.fap.params[i]; 993 994 return count; 995 } 996 997 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 998 { 999 u8 feature_type; 1000 u8 feature_index; 1001 u8 __name_length; 1002 char *name; 1003 unsigned index = 0; 1004 int ret; 1005 1006 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 1007 &feature_index, &feature_type); 1008 if (ret) 1009 return NULL; 1010 1011 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 1012 &__name_length); 1013 if (ret) 1014 return NULL; 1015 1016 name = kzalloc(__name_length + 1, GFP_KERNEL); 1017 if (!name) 1018 return NULL; 1019 1020 while (index < __name_length) { 1021 ret = hidpp_devicenametype_get_device_name(hidpp, 1022 feature_index, index, name + index, 1023 __name_length - index); 1024 if (ret <= 0) { 1025 kfree(name); 1026 return NULL; 1027 } 1028 index += ret; 1029 } 1030 1031 /* include the terminating '\0' */ 1032 hidpp_prefix_name(&name, __name_length + 1); 1033 1034 return name; 1035 } 1036 1037 /* -------------------------------------------------------------------------- */ 1038 /* 0x1000: Battery level status */ 1039 /* -------------------------------------------------------------------------- */ 1040 1041 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1042 1043 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1044 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1045 1046 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1047 1048 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1049 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1050 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1051 1052 static int hidpp_map_battery_level(int capacity) 1053 { 1054 if (capacity < 11) 1055 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1056 /* 1057 * The spec says this should be < 31 but some devices report 30 1058 * with brand new batteries and Windows reports 30 as "Good". 1059 */ 1060 else if (capacity < 30) 1061 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1062 else if (capacity < 81) 1063 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1064 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1065 } 1066 1067 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1068 int *next_capacity, 1069 int *level) 1070 { 1071 int status; 1072 1073 *capacity = data[0]; 1074 *next_capacity = data[1]; 1075 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1076 1077 /* When discharging, we can rely on the device reported capacity. 1078 * For all other states the device reports 0 (unknown). 1079 */ 1080 switch (data[2]) { 1081 case 0: /* discharging (in use) */ 1082 status = POWER_SUPPLY_STATUS_DISCHARGING; 1083 *level = hidpp_map_battery_level(*capacity); 1084 break; 1085 case 1: /* recharging */ 1086 status = POWER_SUPPLY_STATUS_CHARGING; 1087 break; 1088 case 2: /* charge in final stage */ 1089 status = POWER_SUPPLY_STATUS_CHARGING; 1090 break; 1091 case 3: /* charge complete */ 1092 status = POWER_SUPPLY_STATUS_FULL; 1093 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1094 *capacity = 100; 1095 break; 1096 case 4: /* recharging below optimal speed */ 1097 status = POWER_SUPPLY_STATUS_CHARGING; 1098 break; 1099 /* 5 = invalid battery type 1100 6 = thermal error 1101 7 = other charging error */ 1102 default: 1103 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1104 break; 1105 } 1106 1107 return status; 1108 } 1109 1110 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1111 u8 feature_index, 1112 int *status, 1113 int *capacity, 1114 int *next_capacity, 1115 int *level) 1116 { 1117 struct hidpp_report response; 1118 int ret; 1119 u8 *params = (u8 *)response.fap.params; 1120 1121 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1122 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1123 NULL, 0, &response); 1124 /* Ignore these intermittent errors */ 1125 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 1126 return -EIO; 1127 if (ret > 0) { 1128 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1129 __func__, ret); 1130 return -EPROTO; 1131 } 1132 if (ret) 1133 return ret; 1134 1135 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1136 next_capacity, 1137 level); 1138 1139 return 0; 1140 } 1141 1142 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1143 u8 feature_index) 1144 { 1145 struct hidpp_report response; 1146 int ret; 1147 u8 *params = (u8 *)response.fap.params; 1148 unsigned int level_count, flags; 1149 1150 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1151 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1152 NULL, 0, &response); 1153 if (ret > 0) { 1154 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1155 __func__, ret); 1156 return -EPROTO; 1157 } 1158 if (ret) 1159 return ret; 1160 1161 level_count = params[0]; 1162 flags = params[1]; 1163 1164 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1165 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1166 else 1167 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1168 1169 return 0; 1170 } 1171 1172 static int hidpp20_query_battery_info(struct hidpp_device *hidpp) 1173 { 1174 u8 feature_type; 1175 int ret; 1176 int status, capacity, next_capacity, level; 1177 1178 if (hidpp->battery.feature_index == 0xff) { 1179 ret = hidpp_root_get_feature(hidpp, 1180 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1181 &hidpp->battery.feature_index, 1182 &feature_type); 1183 if (ret) 1184 return ret; 1185 } 1186 1187 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1188 hidpp->battery.feature_index, 1189 &status, &capacity, 1190 &next_capacity, &level); 1191 if (ret) 1192 return ret; 1193 1194 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1195 hidpp->battery.feature_index); 1196 if (ret) 1197 return ret; 1198 1199 hidpp->battery.status = status; 1200 hidpp->battery.capacity = capacity; 1201 hidpp->battery.level = level; 1202 /* the capacity is only available when discharging or full */ 1203 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1204 status == POWER_SUPPLY_STATUS_FULL; 1205 1206 return 0; 1207 } 1208 1209 static int hidpp20_battery_event(struct hidpp_device *hidpp, 1210 u8 *data, int size) 1211 { 1212 struct hidpp_report *report = (struct hidpp_report *)data; 1213 int status, capacity, next_capacity, level; 1214 bool changed; 1215 1216 if (report->fap.feature_index != hidpp->battery.feature_index || 1217 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1218 return 0; 1219 1220 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1221 &capacity, 1222 &next_capacity, 1223 &level); 1224 1225 /* the capacity is only available when discharging or full */ 1226 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1227 status == POWER_SUPPLY_STATUS_FULL; 1228 1229 changed = capacity != hidpp->battery.capacity || 1230 level != hidpp->battery.level || 1231 status != hidpp->battery.status; 1232 1233 if (changed) { 1234 hidpp->battery.level = level; 1235 hidpp->battery.capacity = capacity; 1236 hidpp->battery.status = status; 1237 if (hidpp->battery.ps) 1238 power_supply_changed(hidpp->battery.ps); 1239 } 1240 1241 return 0; 1242 } 1243 1244 /* -------------------------------------------------------------------------- */ 1245 /* 0x1001: Battery voltage */ 1246 /* -------------------------------------------------------------------------- */ 1247 1248 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001 1249 1250 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00 1251 1252 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00 1253 1254 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage, 1255 int *level, int *charge_type) 1256 { 1257 int status; 1258 1259 long charge_sts = (long)data[2]; 1260 1261 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1262 switch (data[2] & 0xe0) { 1263 case 0x00: 1264 status = POWER_SUPPLY_STATUS_CHARGING; 1265 break; 1266 case 0x20: 1267 status = POWER_SUPPLY_STATUS_FULL; 1268 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1269 break; 1270 case 0x40: 1271 status = POWER_SUPPLY_STATUS_DISCHARGING; 1272 break; 1273 case 0xe0: 1274 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1275 break; 1276 default: 1277 status = POWER_SUPPLY_STATUS_UNKNOWN; 1278 } 1279 1280 *charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD; 1281 if (test_bit(3, &charge_sts)) { 1282 *charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST; 1283 } 1284 if (test_bit(4, &charge_sts)) { 1285 *charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE; 1286 } 1287 1288 if (test_bit(5, &charge_sts)) { 1289 *level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1290 } 1291 1292 *voltage = get_unaligned_be16(data); 1293 1294 return status; 1295 } 1296 1297 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp, 1298 u8 feature_index, 1299 int *status, int *voltage, 1300 int *level, int *charge_type) 1301 { 1302 struct hidpp_report response; 1303 int ret; 1304 u8 *params = (u8 *)response.fap.params; 1305 1306 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1307 CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE, 1308 NULL, 0, &response); 1309 1310 if (ret > 0) { 1311 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1312 __func__, ret); 1313 return -EPROTO; 1314 } 1315 if (ret) 1316 return ret; 1317 1318 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE; 1319 1320 *status = hidpp20_battery_map_status_voltage(params, voltage, 1321 level, charge_type); 1322 1323 return 0; 1324 } 1325 1326 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp) 1327 { 1328 u8 feature_type; 1329 int ret; 1330 int status, voltage, level, charge_type; 1331 1332 if (hidpp->battery.voltage_feature_index == 0xff) { 1333 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE, 1334 &hidpp->battery.voltage_feature_index, 1335 &feature_type); 1336 if (ret) 1337 return ret; 1338 } 1339 1340 ret = hidpp20_battery_get_battery_voltage(hidpp, 1341 hidpp->battery.voltage_feature_index, 1342 &status, &voltage, &level, &charge_type); 1343 1344 if (ret) 1345 return ret; 1346 1347 hidpp->battery.status = status; 1348 hidpp->battery.voltage = voltage; 1349 hidpp->battery.level = level; 1350 hidpp->battery.charge_type = charge_type; 1351 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1352 1353 return 0; 1354 } 1355 1356 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp, 1357 u8 *data, int size) 1358 { 1359 struct hidpp_report *report = (struct hidpp_report *)data; 1360 int status, voltage, level, charge_type; 1361 1362 if (report->fap.feature_index != hidpp->battery.voltage_feature_index || 1363 report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST) 1364 return 0; 1365 1366 status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage, 1367 &level, &charge_type); 1368 1369 hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING; 1370 1371 if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) { 1372 hidpp->battery.voltage = voltage; 1373 hidpp->battery.status = status; 1374 hidpp->battery.level = level; 1375 hidpp->battery.charge_type = charge_type; 1376 if (hidpp->battery.ps) 1377 power_supply_changed(hidpp->battery.ps); 1378 } 1379 return 0; 1380 } 1381 1382 static enum power_supply_property hidpp_battery_props[] = { 1383 POWER_SUPPLY_PROP_ONLINE, 1384 POWER_SUPPLY_PROP_STATUS, 1385 POWER_SUPPLY_PROP_SCOPE, 1386 POWER_SUPPLY_PROP_MODEL_NAME, 1387 POWER_SUPPLY_PROP_MANUFACTURER, 1388 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1389 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1390 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1391 0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */ 1392 }; 1393 1394 static int hidpp_battery_get_property(struct power_supply *psy, 1395 enum power_supply_property psp, 1396 union power_supply_propval *val) 1397 { 1398 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1399 int ret = 0; 1400 1401 switch(psp) { 1402 case POWER_SUPPLY_PROP_STATUS: 1403 val->intval = hidpp->battery.status; 1404 break; 1405 case POWER_SUPPLY_PROP_CAPACITY: 1406 val->intval = hidpp->battery.capacity; 1407 break; 1408 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1409 val->intval = hidpp->battery.level; 1410 break; 1411 case POWER_SUPPLY_PROP_SCOPE: 1412 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1413 break; 1414 case POWER_SUPPLY_PROP_ONLINE: 1415 val->intval = hidpp->battery.online; 1416 break; 1417 case POWER_SUPPLY_PROP_MODEL_NAME: 1418 if (!strncmp(hidpp->name, "Logitech ", 9)) 1419 val->strval = hidpp->name + 9; 1420 else 1421 val->strval = hidpp->name; 1422 break; 1423 case POWER_SUPPLY_PROP_MANUFACTURER: 1424 val->strval = "Logitech"; 1425 break; 1426 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1427 val->strval = hidpp->hid_dev->uniq; 1428 break; 1429 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 1430 /* hardware reports voltage in in mV. sysfs expects uV */ 1431 val->intval = hidpp->battery.voltage * 1000; 1432 break; 1433 case POWER_SUPPLY_PROP_CHARGE_TYPE: 1434 val->intval = hidpp->battery.charge_type; 1435 break; 1436 default: 1437 ret = -EINVAL; 1438 break; 1439 } 1440 1441 return ret; 1442 } 1443 1444 /* -------------------------------------------------------------------------- */ 1445 /* 0x1d4b: Wireless device status */ 1446 /* -------------------------------------------------------------------------- */ 1447 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS 0x1d4b 1448 1449 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp) 1450 { 1451 u8 feature_type; 1452 int ret; 1453 1454 ret = hidpp_root_get_feature(hidpp, 1455 HIDPP_PAGE_WIRELESS_DEVICE_STATUS, 1456 &hidpp->wireless_feature_index, 1457 &feature_type); 1458 1459 return ret; 1460 } 1461 1462 /* -------------------------------------------------------------------------- */ 1463 /* 0x2120: Hi-resolution scrolling */ 1464 /* -------------------------------------------------------------------------- */ 1465 1466 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1467 1468 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1469 1470 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1471 bool enabled, u8 *multiplier) 1472 { 1473 u8 feature_index; 1474 u8 feature_type; 1475 int ret; 1476 u8 params[1]; 1477 struct hidpp_report response; 1478 1479 ret = hidpp_root_get_feature(hidpp, 1480 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1481 &feature_index, 1482 &feature_type); 1483 if (ret) 1484 return ret; 1485 1486 params[0] = enabled ? BIT(0) : 0; 1487 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1488 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1489 params, sizeof(params), &response); 1490 if (ret) 1491 return ret; 1492 *multiplier = response.fap.params[1]; 1493 return 0; 1494 } 1495 1496 /* -------------------------------------------------------------------------- */ 1497 /* 0x2121: HiRes Wheel */ 1498 /* -------------------------------------------------------------------------- */ 1499 1500 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1501 1502 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1503 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1504 1505 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1506 u8 *multiplier) 1507 { 1508 u8 feature_index; 1509 u8 feature_type; 1510 int ret; 1511 struct hidpp_report response; 1512 1513 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1514 &feature_index, &feature_type); 1515 if (ret) 1516 goto return_default; 1517 1518 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1519 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1520 NULL, 0, &response); 1521 if (ret) 1522 goto return_default; 1523 1524 *multiplier = response.fap.params[0]; 1525 return 0; 1526 return_default: 1527 hid_warn(hidpp->hid_dev, 1528 "Couldn't get wheel multiplier (error %d)\n", ret); 1529 return ret; 1530 } 1531 1532 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1533 bool high_resolution, bool use_hidpp) 1534 { 1535 u8 feature_index; 1536 u8 feature_type; 1537 int ret; 1538 u8 params[1]; 1539 struct hidpp_report response; 1540 1541 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1542 &feature_index, &feature_type); 1543 if (ret) 1544 return ret; 1545 1546 params[0] = (invert ? BIT(2) : 0) | 1547 (high_resolution ? BIT(1) : 0) | 1548 (use_hidpp ? BIT(0) : 0); 1549 1550 return hidpp_send_fap_command_sync(hidpp, feature_index, 1551 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1552 params, sizeof(params), &response); 1553 } 1554 1555 /* -------------------------------------------------------------------------- */ 1556 /* 0x4301: Solar Keyboard */ 1557 /* -------------------------------------------------------------------------- */ 1558 1559 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1560 1561 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1562 1563 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1564 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1565 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1566 1567 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1568 { 1569 struct hidpp_report response; 1570 u8 params[2] = { 1, 1 }; 1571 u8 feature_type; 1572 int ret; 1573 1574 if (hidpp->battery.feature_index == 0xff) { 1575 ret = hidpp_root_get_feature(hidpp, 1576 HIDPP_PAGE_SOLAR_KEYBOARD, 1577 &hidpp->battery.solar_feature_index, 1578 &feature_type); 1579 if (ret) 1580 return ret; 1581 } 1582 1583 ret = hidpp_send_fap_command_sync(hidpp, 1584 hidpp->battery.solar_feature_index, 1585 CMD_SOLAR_SET_LIGHT_MEASURE, 1586 params, 2, &response); 1587 if (ret > 0) { 1588 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1589 __func__, ret); 1590 return -EPROTO; 1591 } 1592 if (ret) 1593 return ret; 1594 1595 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1596 1597 return 0; 1598 } 1599 1600 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1601 u8 *data, int size) 1602 { 1603 struct hidpp_report *report = (struct hidpp_report *)data; 1604 int capacity, lux, status; 1605 u8 function; 1606 1607 function = report->fap.funcindex_clientid; 1608 1609 1610 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1611 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1612 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1613 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1614 return 0; 1615 1616 capacity = report->fap.params[0]; 1617 1618 switch (function) { 1619 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1620 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1621 if (lux > 200) 1622 status = POWER_SUPPLY_STATUS_CHARGING; 1623 else 1624 status = POWER_SUPPLY_STATUS_DISCHARGING; 1625 break; 1626 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1627 default: 1628 if (capacity < hidpp->battery.capacity) 1629 status = POWER_SUPPLY_STATUS_DISCHARGING; 1630 else 1631 status = POWER_SUPPLY_STATUS_CHARGING; 1632 1633 } 1634 1635 if (capacity == 100) 1636 status = POWER_SUPPLY_STATUS_FULL; 1637 1638 hidpp->battery.online = true; 1639 if (capacity != hidpp->battery.capacity || 1640 status != hidpp->battery.status) { 1641 hidpp->battery.capacity = capacity; 1642 hidpp->battery.status = status; 1643 if (hidpp->battery.ps) 1644 power_supply_changed(hidpp->battery.ps); 1645 } 1646 1647 return 0; 1648 } 1649 1650 /* -------------------------------------------------------------------------- */ 1651 /* 0x6010: Touchpad FW items */ 1652 /* -------------------------------------------------------------------------- */ 1653 1654 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1655 1656 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1657 1658 struct hidpp_touchpad_fw_items { 1659 uint8_t presence; 1660 uint8_t desired_state; 1661 uint8_t state; 1662 uint8_t persistent; 1663 }; 1664 1665 /** 1666 * send a set state command to the device by reading the current items->state 1667 * field. items is then filled with the current state. 1668 */ 1669 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1670 u8 feature_index, 1671 struct hidpp_touchpad_fw_items *items) 1672 { 1673 struct hidpp_report response; 1674 int ret; 1675 u8 *params = (u8 *)response.fap.params; 1676 1677 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1678 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1679 1680 if (ret > 0) { 1681 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1682 __func__, ret); 1683 return -EPROTO; 1684 } 1685 if (ret) 1686 return ret; 1687 1688 items->presence = params[0]; 1689 items->desired_state = params[1]; 1690 items->state = params[2]; 1691 items->persistent = params[3]; 1692 1693 return 0; 1694 } 1695 1696 /* -------------------------------------------------------------------------- */ 1697 /* 0x6100: TouchPadRawXY */ 1698 /* -------------------------------------------------------------------------- */ 1699 1700 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1701 1702 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1703 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1704 1705 #define EVENT_TOUCHPAD_RAW_XY 0x00 1706 1707 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1708 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1709 1710 struct hidpp_touchpad_raw_info { 1711 u16 x_size; 1712 u16 y_size; 1713 u8 z_range; 1714 u8 area_range; 1715 u8 timestamp_unit; 1716 u8 maxcontacts; 1717 u8 origin; 1718 u16 res; 1719 }; 1720 1721 struct hidpp_touchpad_raw_xy_finger { 1722 u8 contact_type; 1723 u8 contact_status; 1724 u16 x; 1725 u16 y; 1726 u8 z; 1727 u8 area; 1728 u8 finger_id; 1729 }; 1730 1731 struct hidpp_touchpad_raw_xy { 1732 u16 timestamp; 1733 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1734 u8 spurious_flag; 1735 u8 end_of_frame; 1736 u8 finger_count; 1737 u8 button; 1738 }; 1739 1740 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1741 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1742 { 1743 struct hidpp_report response; 1744 int ret; 1745 u8 *params = (u8 *)response.fap.params; 1746 1747 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1748 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1749 1750 if (ret > 0) { 1751 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1752 __func__, ret); 1753 return -EPROTO; 1754 } 1755 if (ret) 1756 return ret; 1757 1758 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1759 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1760 raw_info->z_range = params[4]; 1761 raw_info->area_range = params[5]; 1762 raw_info->maxcontacts = params[7]; 1763 raw_info->origin = params[8]; 1764 /* res is given in unit per inch */ 1765 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1766 1767 return ret; 1768 } 1769 1770 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1771 u8 feature_index, bool send_raw_reports, 1772 bool sensor_enhanced_settings) 1773 { 1774 struct hidpp_report response; 1775 1776 /* 1777 * Params: 1778 * bit 0 - enable raw 1779 * bit 1 - 16bit Z, no area 1780 * bit 2 - enhanced sensitivity 1781 * bit 3 - width, height (4 bits each) instead of area 1782 * bit 4 - send raw + gestures (degrades smoothness) 1783 * remaining bits - reserved 1784 */ 1785 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 1786 1787 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 1788 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 1789 } 1790 1791 static void hidpp_touchpad_touch_event(u8 *data, 1792 struct hidpp_touchpad_raw_xy_finger *finger) 1793 { 1794 u8 x_m = data[0] << 2; 1795 u8 y_m = data[2] << 2; 1796 1797 finger->x = x_m << 6 | data[1]; 1798 finger->y = y_m << 6 | data[3]; 1799 1800 finger->contact_type = data[0] >> 6; 1801 finger->contact_status = data[2] >> 6; 1802 1803 finger->z = data[4]; 1804 finger->area = data[5]; 1805 finger->finger_id = data[6] >> 4; 1806 } 1807 1808 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 1809 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 1810 { 1811 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 1812 raw_xy->end_of_frame = data[8] & 0x01; 1813 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 1814 raw_xy->finger_count = data[15] & 0x0f; 1815 raw_xy->button = (data[8] >> 2) & 0x01; 1816 1817 if (raw_xy->finger_count) { 1818 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 1819 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 1820 } 1821 } 1822 1823 /* -------------------------------------------------------------------------- */ 1824 /* 0x8123: Force feedback support */ 1825 /* -------------------------------------------------------------------------- */ 1826 1827 #define HIDPP_FF_GET_INFO 0x01 1828 #define HIDPP_FF_RESET_ALL 0x11 1829 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 1830 #define HIDPP_FF_SET_EFFECT_STATE 0x31 1831 #define HIDPP_FF_DESTROY_EFFECT 0x41 1832 #define HIDPP_FF_GET_APERTURE 0x51 1833 #define HIDPP_FF_SET_APERTURE 0x61 1834 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 1835 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 1836 1837 #define HIDPP_FF_EFFECT_STATE_GET 0x00 1838 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 1839 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 1840 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 1841 1842 #define HIDPP_FF_EFFECT_CONSTANT 0x00 1843 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 1844 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 1845 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 1846 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 1847 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 1848 #define HIDPP_FF_EFFECT_SPRING 0x06 1849 #define HIDPP_FF_EFFECT_DAMPER 0x07 1850 #define HIDPP_FF_EFFECT_FRICTION 0x08 1851 #define HIDPP_FF_EFFECT_INERTIA 0x09 1852 #define HIDPP_FF_EFFECT_RAMP 0x0A 1853 1854 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 1855 1856 #define HIDPP_FF_EFFECTID_NONE -1 1857 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 1858 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 1859 1860 #define HIDPP_FF_MAX_PARAMS 20 1861 #define HIDPP_FF_RESERVED_SLOTS 1 1862 1863 struct hidpp_ff_private_data { 1864 struct hidpp_device *hidpp; 1865 u8 feature_index; 1866 u8 version; 1867 u16 gain; 1868 s16 range; 1869 u8 slot_autocenter; 1870 u8 num_effects; 1871 int *effect_ids; 1872 struct workqueue_struct *wq; 1873 atomic_t workqueue_size; 1874 }; 1875 1876 struct hidpp_ff_work_data { 1877 struct work_struct work; 1878 struct hidpp_ff_private_data *data; 1879 int effect_id; 1880 u8 command; 1881 u8 params[HIDPP_FF_MAX_PARAMS]; 1882 u8 size; 1883 }; 1884 1885 static const signed short hidpp_ff_effects[] = { 1886 FF_CONSTANT, 1887 FF_PERIODIC, 1888 FF_SINE, 1889 FF_SQUARE, 1890 FF_SAW_UP, 1891 FF_SAW_DOWN, 1892 FF_TRIANGLE, 1893 FF_SPRING, 1894 FF_DAMPER, 1895 FF_AUTOCENTER, 1896 FF_GAIN, 1897 -1 1898 }; 1899 1900 static const signed short hidpp_ff_effects_v2[] = { 1901 FF_RAMP, 1902 FF_FRICTION, 1903 FF_INERTIA, 1904 -1 1905 }; 1906 1907 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 1908 HIDPP_FF_EFFECT_SPRING, 1909 HIDPP_FF_EFFECT_FRICTION, 1910 HIDPP_FF_EFFECT_DAMPER, 1911 HIDPP_FF_EFFECT_INERTIA 1912 }; 1913 1914 static const char *HIDPP_FF_CONDITION_NAMES[] = { 1915 "spring", 1916 "friction", 1917 "damper", 1918 "inertia" 1919 }; 1920 1921 1922 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 1923 { 1924 int i; 1925 1926 for (i = 0; i < data->num_effects; i++) 1927 if (data->effect_ids[i] == effect_id) 1928 return i+1; 1929 1930 return 0; 1931 } 1932 1933 static void hidpp_ff_work_handler(struct work_struct *w) 1934 { 1935 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 1936 struct hidpp_ff_private_data *data = wd->data; 1937 struct hidpp_report response; 1938 u8 slot; 1939 int ret; 1940 1941 /* add slot number if needed */ 1942 switch (wd->effect_id) { 1943 case HIDPP_FF_EFFECTID_AUTOCENTER: 1944 wd->params[0] = data->slot_autocenter; 1945 break; 1946 case HIDPP_FF_EFFECTID_NONE: 1947 /* leave slot as zero */ 1948 break; 1949 default: 1950 /* find current slot for effect */ 1951 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 1952 break; 1953 } 1954 1955 /* send command and wait for reply */ 1956 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 1957 wd->command, wd->params, wd->size, &response); 1958 1959 if (ret) { 1960 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 1961 goto out; 1962 } 1963 1964 /* parse return data */ 1965 switch (wd->command) { 1966 case HIDPP_FF_DOWNLOAD_EFFECT: 1967 slot = response.fap.params[0]; 1968 if (slot > 0 && slot <= data->num_effects) { 1969 if (wd->effect_id >= 0) 1970 /* regular effect uploaded */ 1971 data->effect_ids[slot-1] = wd->effect_id; 1972 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1973 /* autocenter spring uploaded */ 1974 data->slot_autocenter = slot; 1975 } 1976 break; 1977 case HIDPP_FF_DESTROY_EFFECT: 1978 if (wd->effect_id >= 0) 1979 /* regular effect destroyed */ 1980 data->effect_ids[wd->params[0]-1] = -1; 1981 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1982 /* autocenter spring destoyed */ 1983 data->slot_autocenter = 0; 1984 break; 1985 case HIDPP_FF_SET_GLOBAL_GAINS: 1986 data->gain = (wd->params[0] << 8) + wd->params[1]; 1987 break; 1988 case HIDPP_FF_SET_APERTURE: 1989 data->range = (wd->params[0] << 8) + wd->params[1]; 1990 break; 1991 default: 1992 /* no action needed */ 1993 break; 1994 } 1995 1996 out: 1997 atomic_dec(&data->workqueue_size); 1998 kfree(wd); 1999 } 2000 2001 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 2002 { 2003 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 2004 int s; 2005 2006 if (!wd) 2007 return -ENOMEM; 2008 2009 INIT_WORK(&wd->work, hidpp_ff_work_handler); 2010 2011 wd->data = data; 2012 wd->effect_id = effect_id; 2013 wd->command = command; 2014 wd->size = size; 2015 memcpy(wd->params, params, size); 2016 2017 atomic_inc(&data->workqueue_size); 2018 queue_work(data->wq, &wd->work); 2019 2020 /* warn about excessive queue size */ 2021 s = atomic_read(&data->workqueue_size); 2022 if (s >= 20 && s % 20 == 0) 2023 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 2024 2025 return 0; 2026 } 2027 2028 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 2029 { 2030 struct hidpp_ff_private_data *data = dev->ff->private; 2031 u8 params[20]; 2032 u8 size; 2033 int force; 2034 2035 /* set common parameters */ 2036 params[2] = effect->replay.length >> 8; 2037 params[3] = effect->replay.length & 255; 2038 params[4] = effect->replay.delay >> 8; 2039 params[5] = effect->replay.delay & 255; 2040 2041 switch (effect->type) { 2042 case FF_CONSTANT: 2043 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2044 params[1] = HIDPP_FF_EFFECT_CONSTANT; 2045 params[6] = force >> 8; 2046 params[7] = force & 255; 2047 params[8] = effect->u.constant.envelope.attack_level >> 7; 2048 params[9] = effect->u.constant.envelope.attack_length >> 8; 2049 params[10] = effect->u.constant.envelope.attack_length & 255; 2050 params[11] = effect->u.constant.envelope.fade_level >> 7; 2051 params[12] = effect->u.constant.envelope.fade_length >> 8; 2052 params[13] = effect->u.constant.envelope.fade_length & 255; 2053 size = 14; 2054 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 2055 effect->u.constant.level, 2056 effect->direction, force); 2057 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2058 effect->u.constant.envelope.attack_level, 2059 effect->u.constant.envelope.attack_length, 2060 effect->u.constant.envelope.fade_level, 2061 effect->u.constant.envelope.fade_length); 2062 break; 2063 case FF_PERIODIC: 2064 { 2065 switch (effect->u.periodic.waveform) { 2066 case FF_SINE: 2067 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 2068 break; 2069 case FF_SQUARE: 2070 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 2071 break; 2072 case FF_SAW_UP: 2073 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 2074 break; 2075 case FF_SAW_DOWN: 2076 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 2077 break; 2078 case FF_TRIANGLE: 2079 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 2080 break; 2081 default: 2082 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 2083 return -EINVAL; 2084 } 2085 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2086 params[6] = effect->u.periodic.magnitude >> 8; 2087 params[7] = effect->u.periodic.magnitude & 255; 2088 params[8] = effect->u.periodic.offset >> 8; 2089 params[9] = effect->u.periodic.offset & 255; 2090 params[10] = effect->u.periodic.period >> 8; 2091 params[11] = effect->u.periodic.period & 255; 2092 params[12] = effect->u.periodic.phase >> 8; 2093 params[13] = effect->u.periodic.phase & 255; 2094 params[14] = effect->u.periodic.envelope.attack_level >> 7; 2095 params[15] = effect->u.periodic.envelope.attack_length >> 8; 2096 params[16] = effect->u.periodic.envelope.attack_length & 255; 2097 params[17] = effect->u.periodic.envelope.fade_level >> 7; 2098 params[18] = effect->u.periodic.envelope.fade_length >> 8; 2099 params[19] = effect->u.periodic.envelope.fade_length & 255; 2100 size = 20; 2101 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 2102 effect->u.periodic.magnitude, effect->direction, 2103 effect->u.periodic.offset, 2104 effect->u.periodic.period, 2105 effect->u.periodic.phase); 2106 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2107 effect->u.periodic.envelope.attack_level, 2108 effect->u.periodic.envelope.attack_length, 2109 effect->u.periodic.envelope.fade_level, 2110 effect->u.periodic.envelope.fade_length); 2111 break; 2112 } 2113 case FF_RAMP: 2114 params[1] = HIDPP_FF_EFFECT_RAMP; 2115 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2116 params[6] = force >> 8; 2117 params[7] = force & 255; 2118 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 2119 params[8] = force >> 8; 2120 params[9] = force & 255; 2121 params[10] = effect->u.ramp.envelope.attack_level >> 7; 2122 params[11] = effect->u.ramp.envelope.attack_length >> 8; 2123 params[12] = effect->u.ramp.envelope.attack_length & 255; 2124 params[13] = effect->u.ramp.envelope.fade_level >> 7; 2125 params[14] = effect->u.ramp.envelope.fade_length >> 8; 2126 params[15] = effect->u.ramp.envelope.fade_length & 255; 2127 size = 16; 2128 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 2129 effect->u.ramp.start_level, 2130 effect->u.ramp.end_level, 2131 effect->direction, force); 2132 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 2133 effect->u.ramp.envelope.attack_level, 2134 effect->u.ramp.envelope.attack_length, 2135 effect->u.ramp.envelope.fade_level, 2136 effect->u.ramp.envelope.fade_length); 2137 break; 2138 case FF_FRICTION: 2139 case FF_INERTIA: 2140 case FF_SPRING: 2141 case FF_DAMPER: 2142 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 2143 params[6] = effect->u.condition[0].left_saturation >> 9; 2144 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 2145 params[8] = effect->u.condition[0].left_coeff >> 8; 2146 params[9] = effect->u.condition[0].left_coeff & 255; 2147 params[10] = effect->u.condition[0].deadband >> 9; 2148 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 2149 params[12] = effect->u.condition[0].center >> 8; 2150 params[13] = effect->u.condition[0].center & 255; 2151 params[14] = effect->u.condition[0].right_coeff >> 8; 2152 params[15] = effect->u.condition[0].right_coeff & 255; 2153 params[16] = effect->u.condition[0].right_saturation >> 9; 2154 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 2155 size = 18; 2156 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 2157 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 2158 effect->u.condition[0].left_coeff, 2159 effect->u.condition[0].left_saturation, 2160 effect->u.condition[0].right_coeff, 2161 effect->u.condition[0].right_saturation); 2162 dbg_hid(" deadband=%d, center=%d\n", 2163 effect->u.condition[0].deadband, 2164 effect->u.condition[0].center); 2165 break; 2166 default: 2167 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 2168 return -EINVAL; 2169 } 2170 2171 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 2172 } 2173 2174 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 2175 { 2176 struct hidpp_ff_private_data *data = dev->ff->private; 2177 u8 params[2]; 2178 2179 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 2180 2181 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 2182 2183 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 2184 } 2185 2186 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2187 { 2188 struct hidpp_ff_private_data *data = dev->ff->private; 2189 u8 slot = 0; 2190 2191 dbg_hid("Erasing effect %d.\n", effect_id); 2192 2193 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2194 } 2195 2196 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2197 { 2198 struct hidpp_ff_private_data *data = dev->ff->private; 2199 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2200 2201 dbg_hid("Setting autocenter to %d.\n", magnitude); 2202 2203 /* start a standard spring effect */ 2204 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2205 /* zero delay and duration */ 2206 params[2] = params[3] = params[4] = params[5] = 0; 2207 /* set coeff to 25% of saturation */ 2208 params[8] = params[14] = magnitude >> 11; 2209 params[9] = params[15] = (magnitude >> 3) & 255; 2210 params[6] = params[16] = magnitude >> 9; 2211 params[7] = params[17] = (magnitude >> 1) & 255; 2212 /* zero deadband and center */ 2213 params[10] = params[11] = params[12] = params[13] = 0; 2214 2215 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2216 } 2217 2218 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2219 { 2220 struct hidpp_ff_private_data *data = dev->ff->private; 2221 u8 params[4]; 2222 2223 dbg_hid("Setting gain to %d.\n", gain); 2224 2225 params[0] = gain >> 8; 2226 params[1] = gain & 255; 2227 params[2] = 0; /* no boost */ 2228 params[3] = 0; 2229 2230 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2231 } 2232 2233 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2234 { 2235 struct hid_device *hid = to_hid_device(dev); 2236 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2237 struct input_dev *idev = hidinput->input; 2238 struct hidpp_ff_private_data *data = idev->ff->private; 2239 2240 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2241 } 2242 2243 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2244 { 2245 struct hid_device *hid = to_hid_device(dev); 2246 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2247 struct input_dev *idev = hidinput->input; 2248 struct hidpp_ff_private_data *data = idev->ff->private; 2249 u8 params[2]; 2250 int range = simple_strtoul(buf, NULL, 10); 2251 2252 range = clamp(range, 180, 900); 2253 2254 params[0] = range >> 8; 2255 params[1] = range & 0x00FF; 2256 2257 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2258 2259 return count; 2260 } 2261 2262 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2263 2264 static void hidpp_ff_destroy(struct ff_device *ff) 2265 { 2266 struct hidpp_ff_private_data *data = ff->private; 2267 struct hid_device *hid = data->hidpp->hid_dev; 2268 2269 hid_info(hid, "Unloading HID++ force feedback.\n"); 2270 2271 device_remove_file(&hid->dev, &dev_attr_range); 2272 destroy_workqueue(data->wq); 2273 kfree(data->effect_ids); 2274 } 2275 2276 static int hidpp_ff_init(struct hidpp_device *hidpp, 2277 struct hidpp_ff_private_data *data) 2278 { 2279 struct hid_device *hid = hidpp->hid_dev; 2280 struct hid_input *hidinput; 2281 struct input_dev *dev; 2282 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2283 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2284 struct ff_device *ff; 2285 int error, j, num_slots = data->num_effects; 2286 u8 version; 2287 2288 if (list_empty(&hid->inputs)) { 2289 hid_err(hid, "no inputs found\n"); 2290 return -ENODEV; 2291 } 2292 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2293 dev = hidinput->input; 2294 2295 if (!dev) { 2296 hid_err(hid, "Struct input_dev not set!\n"); 2297 return -EINVAL; 2298 } 2299 2300 /* Get firmware release */ 2301 version = bcdDevice & 255; 2302 2303 /* Set supported force feedback capabilities */ 2304 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2305 set_bit(hidpp_ff_effects[j], dev->ffbit); 2306 if (version > 1) 2307 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2308 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2309 2310 error = input_ff_create(dev, num_slots); 2311 2312 if (error) { 2313 hid_err(dev, "Failed to create FF device!\n"); 2314 return error; 2315 } 2316 /* 2317 * Create a copy of passed data, so we can transfer memory 2318 * ownership to FF core 2319 */ 2320 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2321 if (!data) 2322 return -ENOMEM; 2323 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2324 if (!data->effect_ids) { 2325 kfree(data); 2326 return -ENOMEM; 2327 } 2328 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2329 if (!data->wq) { 2330 kfree(data->effect_ids); 2331 kfree(data); 2332 return -ENOMEM; 2333 } 2334 2335 data->hidpp = hidpp; 2336 data->version = version; 2337 for (j = 0; j < num_slots; j++) 2338 data->effect_ids[j] = -1; 2339 2340 ff = dev->ff; 2341 ff->private = data; 2342 2343 ff->upload = hidpp_ff_upload_effect; 2344 ff->erase = hidpp_ff_erase_effect; 2345 ff->playback = hidpp_ff_playback; 2346 ff->set_gain = hidpp_ff_set_gain; 2347 ff->set_autocenter = hidpp_ff_set_autocenter; 2348 ff->destroy = hidpp_ff_destroy; 2349 2350 /* Create sysfs interface */ 2351 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2352 if (error) 2353 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2354 2355 /* init the hardware command queue */ 2356 atomic_set(&data->workqueue_size, 0); 2357 2358 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2359 version); 2360 2361 return 0; 2362 } 2363 2364 /* ************************************************************************** */ 2365 /* */ 2366 /* Device Support */ 2367 /* */ 2368 /* ************************************************************************** */ 2369 2370 /* -------------------------------------------------------------------------- */ 2371 /* Touchpad HID++ devices */ 2372 /* -------------------------------------------------------------------------- */ 2373 2374 #define WTP_MANUAL_RESOLUTION 39 2375 2376 struct wtp_data { 2377 u16 x_size, y_size; 2378 u8 finger_count; 2379 u8 mt_feature_index; 2380 u8 button_feature_index; 2381 u8 maxcontacts; 2382 bool flip_y; 2383 unsigned int resolution; 2384 }; 2385 2386 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2387 struct hid_field *field, struct hid_usage *usage, 2388 unsigned long **bit, int *max) 2389 { 2390 return -1; 2391 } 2392 2393 static void wtp_populate_input(struct hidpp_device *hidpp, 2394 struct input_dev *input_dev) 2395 { 2396 struct wtp_data *wd = hidpp->private_data; 2397 2398 __set_bit(EV_ABS, input_dev->evbit); 2399 __set_bit(EV_KEY, input_dev->evbit); 2400 __clear_bit(EV_REL, input_dev->evbit); 2401 __clear_bit(EV_LED, input_dev->evbit); 2402 2403 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2404 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2405 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2406 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2407 2408 /* Max pressure is not given by the devices, pick one */ 2409 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2410 2411 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2412 2413 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2414 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2415 else 2416 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2417 2418 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2419 INPUT_MT_DROP_UNUSED); 2420 } 2421 2422 static void wtp_touch_event(struct hidpp_device *hidpp, 2423 struct hidpp_touchpad_raw_xy_finger *touch_report) 2424 { 2425 struct wtp_data *wd = hidpp->private_data; 2426 int slot; 2427 2428 if (!touch_report->finger_id || touch_report->contact_type) 2429 /* no actual data */ 2430 return; 2431 2432 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2433 2434 input_mt_slot(hidpp->input, slot); 2435 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2436 touch_report->contact_status); 2437 if (touch_report->contact_status) { 2438 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2439 touch_report->x); 2440 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2441 wd->flip_y ? wd->y_size - touch_report->y : 2442 touch_report->y); 2443 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2444 touch_report->area); 2445 } 2446 } 2447 2448 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2449 struct hidpp_touchpad_raw_xy *raw) 2450 { 2451 int i; 2452 2453 for (i = 0; i < 2; i++) 2454 wtp_touch_event(hidpp, &(raw->fingers[i])); 2455 2456 if (raw->end_of_frame && 2457 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2458 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2459 2460 if (raw->end_of_frame || raw->finger_count <= 2) { 2461 input_mt_sync_frame(hidpp->input); 2462 input_sync(hidpp->input); 2463 } 2464 } 2465 2466 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2467 { 2468 struct wtp_data *wd = hidpp->private_data; 2469 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2470 (data[7] >> 4) * (data[7] >> 4)) / 2; 2471 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2472 (data[13] >> 4) * (data[13] >> 4)) / 2; 2473 struct hidpp_touchpad_raw_xy raw = { 2474 .timestamp = data[1], 2475 .fingers = { 2476 { 2477 .contact_type = 0, 2478 .contact_status = !!data[7], 2479 .x = get_unaligned_le16(&data[3]), 2480 .y = get_unaligned_le16(&data[5]), 2481 .z = c1_area, 2482 .area = c1_area, 2483 .finger_id = data[2], 2484 }, { 2485 .contact_type = 0, 2486 .contact_status = !!data[13], 2487 .x = get_unaligned_le16(&data[9]), 2488 .y = get_unaligned_le16(&data[11]), 2489 .z = c2_area, 2490 .area = c2_area, 2491 .finger_id = data[8], 2492 } 2493 }, 2494 .finger_count = wd->maxcontacts, 2495 .spurious_flag = 0, 2496 .end_of_frame = (data[0] >> 7) == 0, 2497 .button = data[0] & 0x01, 2498 }; 2499 2500 wtp_send_raw_xy_event(hidpp, &raw); 2501 2502 return 1; 2503 } 2504 2505 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2506 { 2507 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2508 struct wtp_data *wd = hidpp->private_data; 2509 struct hidpp_report *report = (struct hidpp_report *)data; 2510 struct hidpp_touchpad_raw_xy raw; 2511 2512 if (!wd || !hidpp->input) 2513 return 1; 2514 2515 switch (data[0]) { 2516 case 0x02: 2517 if (size < 2) { 2518 hid_err(hdev, "Received HID report of bad size (%d)", 2519 size); 2520 return 1; 2521 } 2522 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2523 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2524 !!(data[1] & 0x01)); 2525 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2526 !!(data[1] & 0x02)); 2527 input_sync(hidpp->input); 2528 return 0; 2529 } else { 2530 if (size < 21) 2531 return 1; 2532 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2533 } 2534 case REPORT_ID_HIDPP_LONG: 2535 /* size is already checked in hidpp_raw_event. */ 2536 if ((report->fap.feature_index != wd->mt_feature_index) || 2537 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2538 return 1; 2539 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2540 2541 wtp_send_raw_xy_event(hidpp, &raw); 2542 return 0; 2543 } 2544 2545 return 0; 2546 } 2547 2548 static int wtp_get_config(struct hidpp_device *hidpp) 2549 { 2550 struct wtp_data *wd = hidpp->private_data; 2551 struct hidpp_touchpad_raw_info raw_info = {0}; 2552 u8 feature_type; 2553 int ret; 2554 2555 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2556 &wd->mt_feature_index, &feature_type); 2557 if (ret) 2558 /* means that the device is not powered up */ 2559 return ret; 2560 2561 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2562 &raw_info); 2563 if (ret) 2564 return ret; 2565 2566 wd->x_size = raw_info.x_size; 2567 wd->y_size = raw_info.y_size; 2568 wd->maxcontacts = raw_info.maxcontacts; 2569 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2570 wd->resolution = raw_info.res; 2571 if (!wd->resolution) 2572 wd->resolution = WTP_MANUAL_RESOLUTION; 2573 2574 return 0; 2575 } 2576 2577 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2578 { 2579 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2580 struct wtp_data *wd; 2581 2582 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2583 GFP_KERNEL); 2584 if (!wd) 2585 return -ENOMEM; 2586 2587 hidpp->private_data = wd; 2588 2589 return 0; 2590 }; 2591 2592 static int wtp_connect(struct hid_device *hdev, bool connected) 2593 { 2594 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2595 struct wtp_data *wd = hidpp->private_data; 2596 int ret; 2597 2598 if (!wd->x_size) { 2599 ret = wtp_get_config(hidpp); 2600 if (ret) { 2601 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2602 return ret; 2603 } 2604 } 2605 2606 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2607 true, true); 2608 } 2609 2610 /* ------------------------------------------------------------------------- */ 2611 /* Logitech M560 devices */ 2612 /* ------------------------------------------------------------------------- */ 2613 2614 /* 2615 * Logitech M560 protocol overview 2616 * 2617 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2618 * the sides buttons are pressed, it sends some keyboard keys events 2619 * instead of buttons ones. 2620 * To complicate things further, the middle button keys sequence 2621 * is different from the odd press and the even press. 2622 * 2623 * forward button -> Super_R 2624 * backward button -> Super_L+'d' (press only) 2625 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2626 * 2nd time: left-click (press only) 2627 * NB: press-only means that when the button is pressed, the 2628 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2629 * together sequentially; instead when the button is released, no event is 2630 * generated ! 2631 * 2632 * With the command 2633 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2634 * the mouse reacts differently: 2635 * - it never sends a keyboard key event 2636 * - for the three mouse button it sends: 2637 * middle button press 11<xx>0a 3500af00... 2638 * side 1 button (forward) press 11<xx>0a 3500b000... 2639 * side 2 button (backward) press 11<xx>0a 3500ae00... 2640 * middle/side1/side2 button release 11<xx>0a 35000000... 2641 */ 2642 2643 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2644 2645 /* how buttons are mapped in the report */ 2646 #define M560_MOUSE_BTN_LEFT 0x01 2647 #define M560_MOUSE_BTN_RIGHT 0x02 2648 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2649 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2650 2651 #define M560_SUB_ID 0x0a 2652 #define M560_BUTTON_MODE_REGISTER 0x35 2653 2654 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2655 { 2656 struct hidpp_report response; 2657 struct hidpp_device *hidpp_dev; 2658 2659 hidpp_dev = hid_get_drvdata(hdev); 2660 2661 return hidpp_send_rap_command_sync( 2662 hidpp_dev, 2663 REPORT_ID_HIDPP_SHORT, 2664 M560_SUB_ID, 2665 M560_BUTTON_MODE_REGISTER, 2666 (u8 *)m560_config_parameter, 2667 sizeof(m560_config_parameter), 2668 &response 2669 ); 2670 } 2671 2672 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2673 { 2674 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2675 2676 /* sanity check */ 2677 if (!hidpp->input) { 2678 hid_err(hdev, "error in parameter\n"); 2679 return -EINVAL; 2680 } 2681 2682 if (size < 7) { 2683 hid_err(hdev, "error in report\n"); 2684 return 0; 2685 } 2686 2687 if (data[0] == REPORT_ID_HIDPP_LONG && 2688 data[2] == M560_SUB_ID && data[6] == 0x00) { 2689 /* 2690 * m560 mouse report for middle, forward and backward button 2691 * 2692 * data[0] = 0x11 2693 * data[1] = device-id 2694 * data[2] = 0x0a 2695 * data[5] = 0xaf -> middle 2696 * 0xb0 -> forward 2697 * 0xae -> backward 2698 * 0x00 -> release all 2699 * data[6] = 0x00 2700 */ 2701 2702 switch (data[5]) { 2703 case 0xaf: 2704 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2705 break; 2706 case 0xb0: 2707 input_report_key(hidpp->input, BTN_FORWARD, 1); 2708 break; 2709 case 0xae: 2710 input_report_key(hidpp->input, BTN_BACK, 1); 2711 break; 2712 case 0x00: 2713 input_report_key(hidpp->input, BTN_BACK, 0); 2714 input_report_key(hidpp->input, BTN_FORWARD, 0); 2715 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2716 break; 2717 default: 2718 hid_err(hdev, "error in report\n"); 2719 return 0; 2720 } 2721 input_sync(hidpp->input); 2722 2723 } else if (data[0] == 0x02) { 2724 /* 2725 * Logitech M560 mouse report 2726 * 2727 * data[0] = type (0x02) 2728 * data[1..2] = buttons 2729 * data[3..5] = xy 2730 * data[6] = wheel 2731 */ 2732 2733 int v; 2734 2735 input_report_key(hidpp->input, BTN_LEFT, 2736 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2737 input_report_key(hidpp->input, BTN_RIGHT, 2738 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2739 2740 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2741 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2742 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2743 -120); 2744 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2745 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2746 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2747 120); 2748 } 2749 2750 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2751 input_report_rel(hidpp->input, REL_X, v); 2752 2753 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2754 input_report_rel(hidpp->input, REL_Y, v); 2755 2756 v = hid_snto32(data[6], 8); 2757 if (v != 0) 2758 hidpp_scroll_counter_handle_scroll(hidpp->input, 2759 &hidpp->vertical_wheel_counter, v); 2760 2761 input_sync(hidpp->input); 2762 } 2763 2764 return 1; 2765 } 2766 2767 static void m560_populate_input(struct hidpp_device *hidpp, 2768 struct input_dev *input_dev) 2769 { 2770 __set_bit(EV_KEY, input_dev->evbit); 2771 __set_bit(BTN_MIDDLE, input_dev->keybit); 2772 __set_bit(BTN_RIGHT, input_dev->keybit); 2773 __set_bit(BTN_LEFT, input_dev->keybit); 2774 __set_bit(BTN_BACK, input_dev->keybit); 2775 __set_bit(BTN_FORWARD, input_dev->keybit); 2776 2777 __set_bit(EV_REL, input_dev->evbit); 2778 __set_bit(REL_X, input_dev->relbit); 2779 __set_bit(REL_Y, input_dev->relbit); 2780 __set_bit(REL_WHEEL, input_dev->relbit); 2781 __set_bit(REL_HWHEEL, input_dev->relbit); 2782 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2783 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2784 } 2785 2786 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2787 struct hid_field *field, struct hid_usage *usage, 2788 unsigned long **bit, int *max) 2789 { 2790 return -1; 2791 } 2792 2793 /* ------------------------------------------------------------------------- */ 2794 /* Logitech K400 devices */ 2795 /* ------------------------------------------------------------------------- */ 2796 2797 /* 2798 * The Logitech K400 keyboard has an embedded touchpad which is seen 2799 * as a mouse from the OS point of view. There is a hardware shortcut to disable 2800 * tap-to-click but the setting is not remembered accross reset, annoying some 2801 * users. 2802 * 2803 * We can toggle this feature from the host by using the feature 0x6010: 2804 * Touchpad FW items 2805 */ 2806 2807 struct k400_private_data { 2808 u8 feature_index; 2809 }; 2810 2811 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 2812 { 2813 struct k400_private_data *k400 = hidpp->private_data; 2814 struct hidpp_touchpad_fw_items items = {}; 2815 int ret; 2816 u8 feature_type; 2817 2818 if (!k400->feature_index) { 2819 ret = hidpp_root_get_feature(hidpp, 2820 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 2821 &k400->feature_index, &feature_type); 2822 if (ret) 2823 /* means that the device is not powered up */ 2824 return ret; 2825 } 2826 2827 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 2828 if (ret) 2829 return ret; 2830 2831 return 0; 2832 } 2833 2834 static int k400_allocate(struct hid_device *hdev) 2835 { 2836 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2837 struct k400_private_data *k400; 2838 2839 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 2840 GFP_KERNEL); 2841 if (!k400) 2842 return -ENOMEM; 2843 2844 hidpp->private_data = k400; 2845 2846 return 0; 2847 }; 2848 2849 static int k400_connect(struct hid_device *hdev, bool connected) 2850 { 2851 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2852 2853 if (!disable_tap_to_click) 2854 return 0; 2855 2856 return k400_disable_tap_to_click(hidpp); 2857 } 2858 2859 /* ------------------------------------------------------------------------- */ 2860 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 2861 /* ------------------------------------------------------------------------- */ 2862 2863 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 2864 2865 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 2866 struct hidpp_ff_private_data *data) 2867 { 2868 struct hidpp_report response; 2869 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 2870 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 2871 }; 2872 int ret; 2873 2874 /* initialize with zero autocenter to get wheel in usable state */ 2875 2876 dbg_hid("Setting autocenter to 0.\n"); 2877 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2878 HIDPP_FF_DOWNLOAD_EFFECT, 2879 params, ARRAY_SIZE(params), 2880 &response); 2881 if (ret) 2882 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 2883 else 2884 data->slot_autocenter = response.fap.params[0]; 2885 2886 return ret; 2887 } 2888 2889 static int g920_get_config(struct hidpp_device *hidpp, 2890 struct hidpp_ff_private_data *data) 2891 { 2892 struct hidpp_report response; 2893 u8 feature_type; 2894 int ret; 2895 2896 memset(data, 0, sizeof(*data)); 2897 2898 /* Find feature and store for later use */ 2899 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 2900 &data->feature_index, &feature_type); 2901 if (ret) 2902 return ret; 2903 2904 /* Read number of slots available in device */ 2905 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2906 HIDPP_FF_GET_INFO, 2907 NULL, 0, 2908 &response); 2909 if (ret) { 2910 if (ret < 0) 2911 return ret; 2912 hid_err(hidpp->hid_dev, 2913 "%s: received protocol error 0x%02x\n", __func__, ret); 2914 return -EPROTO; 2915 } 2916 2917 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 2918 2919 /* reset all forces */ 2920 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2921 HIDPP_FF_RESET_ALL, 2922 NULL, 0, 2923 &response); 2924 if (ret) 2925 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 2926 2927 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2928 HIDPP_FF_GET_APERTURE, 2929 NULL, 0, 2930 &response); 2931 if (ret) { 2932 hid_warn(hidpp->hid_dev, 2933 "Failed to read range from device!\n"); 2934 } 2935 data->range = ret ? 2936 900 : get_unaligned_be16(&response.fap.params[0]); 2937 2938 /* Read the current gain values */ 2939 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2940 HIDPP_FF_GET_GLOBAL_GAINS, 2941 NULL, 0, 2942 &response); 2943 if (ret) 2944 hid_warn(hidpp->hid_dev, 2945 "Failed to read gain values from device!\n"); 2946 data->gain = ret ? 2947 0xffff : get_unaligned_be16(&response.fap.params[0]); 2948 2949 /* ignore boost value at response.fap.params[2] */ 2950 2951 return g920_ff_set_autocenter(hidpp, data); 2952 } 2953 2954 /* -------------------------------------------------------------------------- */ 2955 /* HID++1.0 devices which use HID++ reports for their wheels */ 2956 /* -------------------------------------------------------------------------- */ 2957 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 2958 { 2959 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2960 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 2961 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 2962 } 2963 2964 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 2965 u8 *data, int size) 2966 { 2967 s8 value, hvalue; 2968 2969 if (!hidpp->input) 2970 return -EINVAL; 2971 2972 if (size < 7) 2973 return 0; 2974 2975 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 2976 return 0; 2977 2978 value = data[3]; 2979 hvalue = data[4]; 2980 2981 input_report_rel(hidpp->input, REL_WHEEL, value); 2982 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 2983 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 2984 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 2985 input_sync(hidpp->input); 2986 2987 return 1; 2988 } 2989 2990 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 2991 struct input_dev *input_dev) 2992 { 2993 __set_bit(EV_REL, input_dev->evbit); 2994 __set_bit(REL_WHEEL, input_dev->relbit); 2995 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2996 __set_bit(REL_HWHEEL, input_dev->relbit); 2997 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2998 } 2999 3000 /* -------------------------------------------------------------------------- */ 3001 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 3002 /* -------------------------------------------------------------------------- */ 3003 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 3004 { 3005 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3006 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 3007 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 3008 } 3009 3010 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 3011 u8 *data, int size) 3012 { 3013 int i; 3014 3015 if (!hidpp->input) 3016 return -EINVAL; 3017 3018 if (size < 7) 3019 return 0; 3020 3021 if (data[0] != REPORT_ID_HIDPP_SHORT || 3022 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 3023 return 0; 3024 3025 /* 3026 * Buttons are either delivered through the regular mouse report *or* 3027 * through the extra buttons report. At least for button 6 how it is 3028 * delivered differs per receiver firmware version. Even receivers with 3029 * the same usb-id show different behavior, so we handle both cases. 3030 */ 3031 for (i = 0; i < 8; i++) 3032 input_report_key(hidpp->input, BTN_MOUSE + i, 3033 (data[3] & (1 << i))); 3034 3035 /* Some mice report events on button 9+, use BTN_MISC */ 3036 for (i = 0; i < 8; i++) 3037 input_report_key(hidpp->input, BTN_MISC + i, 3038 (data[4] & (1 << i))); 3039 3040 input_sync(hidpp->input); 3041 return 1; 3042 } 3043 3044 static void hidpp10_extra_mouse_buttons_populate_input( 3045 struct hidpp_device *hidpp, struct input_dev *input_dev) 3046 { 3047 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 3048 __set_bit(BTN_0, input_dev->keybit); 3049 __set_bit(BTN_1, input_dev->keybit); 3050 __set_bit(BTN_2, input_dev->keybit); 3051 __set_bit(BTN_3, input_dev->keybit); 3052 __set_bit(BTN_4, input_dev->keybit); 3053 __set_bit(BTN_5, input_dev->keybit); 3054 __set_bit(BTN_6, input_dev->keybit); 3055 __set_bit(BTN_7, input_dev->keybit); 3056 } 3057 3058 /* -------------------------------------------------------------------------- */ 3059 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 3060 /* -------------------------------------------------------------------------- */ 3061 3062 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 3063 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 3064 u8 *_rdesc, unsigned int *rsize) 3065 { 3066 /* Note 0 terminated so we can use strnstr to search for this. */ 3067 static const char consumer_rdesc_start[] = { 3068 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 3069 0x09, 0x01, /* USAGE (Consumer Control) */ 3070 0xA1, 0x01, /* COLLECTION (Application) */ 3071 0x85, 0x03, /* REPORT_ID = 3 */ 3072 0x75, 0x10, /* REPORT_SIZE (16) */ 3073 0x95, 0x02, /* REPORT_COUNT (2) */ 3074 0x15, 0x01, /* LOGICAL_MIN (1) */ 3075 0x26, 0x00 /* LOGICAL_MAX (... */ 3076 }; 3077 char *consumer_rdesc, *rdesc = (char *)_rdesc; 3078 unsigned int size; 3079 3080 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 3081 size = *rsize - (consumer_rdesc - rdesc); 3082 if (consumer_rdesc && size >= 25) { 3083 consumer_rdesc[15] = 0x7f; 3084 consumer_rdesc[16] = 0x10; 3085 consumer_rdesc[20] = 0x7f; 3086 consumer_rdesc[21] = 0x10; 3087 } 3088 return _rdesc; 3089 } 3090 3091 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 3092 { 3093 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 3094 HIDPP_ENABLE_CONSUMER_REPORT, 3095 HIDPP_ENABLE_CONSUMER_REPORT); 3096 } 3097 3098 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 3099 u8 *data, int size) 3100 { 3101 u8 consumer_report[5]; 3102 3103 if (size < 7) 3104 return 0; 3105 3106 if (data[0] != REPORT_ID_HIDPP_SHORT || 3107 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 3108 return 0; 3109 3110 /* 3111 * Build a normal consumer report (3) out of the data, this detour 3112 * is necessary to get some keyboards to report their 0x10xx usages. 3113 */ 3114 consumer_report[0] = 0x03; 3115 memcpy(&consumer_report[1], &data[3], 4); 3116 /* We are called from atomic context */ 3117 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 3118 consumer_report, 5, 1); 3119 3120 return 1; 3121 } 3122 3123 /* -------------------------------------------------------------------------- */ 3124 /* High-resolution scroll wheels */ 3125 /* -------------------------------------------------------------------------- */ 3126 3127 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 3128 { 3129 int ret; 3130 u8 multiplier = 1; 3131 3132 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 3133 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 3134 if (ret == 0) 3135 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 3136 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 3137 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 3138 &multiplier); 3139 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 3140 ret = hidpp10_enable_scrolling_acceleration(hidpp); 3141 multiplier = 8; 3142 } 3143 if (ret) 3144 return ret; 3145 3146 if (multiplier == 0) 3147 multiplier = 1; 3148 3149 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 3150 hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier); 3151 return 0; 3152 } 3153 3154 /* -------------------------------------------------------------------------- */ 3155 /* Generic HID++ devices */ 3156 /* -------------------------------------------------------------------------- */ 3157 3158 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 3159 unsigned int *rsize) 3160 { 3161 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3162 3163 if (!hidpp) 3164 return rdesc; 3165 3166 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 3167 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 3168 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 3169 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 3170 3171 return rdesc; 3172 } 3173 3174 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 3175 struct hid_field *field, struct hid_usage *usage, 3176 unsigned long **bit, int *max) 3177 { 3178 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3179 3180 if (!hidpp) 3181 return 0; 3182 3183 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3184 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 3185 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3186 field->application != HID_GD_MOUSE) 3187 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3188 3189 return 0; 3190 } 3191 3192 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3193 struct hid_field *field, struct hid_usage *usage, 3194 unsigned long **bit, int *max) 3195 { 3196 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3197 3198 if (!hidpp) 3199 return 0; 3200 3201 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3202 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3203 if (usage->type == EV_ABS && (usage->code == ABS_X || 3204 usage->code == ABS_Y || usage->code == ABS_Z || 3205 usage->code == ABS_RZ)) { 3206 field->application = HID_GD_MULTIAXIS; 3207 } 3208 } 3209 3210 return 0; 3211 } 3212 3213 3214 static void hidpp_populate_input(struct hidpp_device *hidpp, 3215 struct input_dev *input) 3216 { 3217 hidpp->input = input; 3218 3219 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3220 wtp_populate_input(hidpp, input); 3221 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3222 m560_populate_input(hidpp, input); 3223 3224 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3225 hidpp10_wheel_populate_input(hidpp, input); 3226 3227 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3228 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3229 } 3230 3231 static int hidpp_input_configured(struct hid_device *hdev, 3232 struct hid_input *hidinput) 3233 { 3234 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3235 struct input_dev *input = hidinput->input; 3236 3237 if (!hidpp) 3238 return 0; 3239 3240 hidpp_populate_input(hidpp, input); 3241 3242 return 0; 3243 } 3244 3245 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3246 int size) 3247 { 3248 struct hidpp_report *question = hidpp->send_receive_buf; 3249 struct hidpp_report *answer = hidpp->send_receive_buf; 3250 struct hidpp_report *report = (struct hidpp_report *)data; 3251 int ret; 3252 3253 /* 3254 * If the mutex is locked then we have a pending answer from a 3255 * previously sent command. 3256 */ 3257 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3258 /* 3259 * Check for a correct hidpp20 answer or the corresponding 3260 * error 3261 */ 3262 if (hidpp_match_answer(question, report) || 3263 hidpp_match_error(question, report)) { 3264 *answer = *report; 3265 hidpp->answer_available = true; 3266 wake_up(&hidpp->wait); 3267 /* 3268 * This was an answer to a command that this driver sent 3269 * We return 1 to hid-core to avoid forwarding the 3270 * command upstream as it has been treated by the driver 3271 */ 3272 3273 return 1; 3274 } 3275 } 3276 3277 if (unlikely(hidpp_report_is_connect_event(hidpp, report))) { 3278 atomic_set(&hidpp->connected, 3279 !(report->rap.params[0] & (1 << 6))); 3280 if (schedule_work(&hidpp->work) == 0) 3281 dbg_hid("%s: connect event already queued\n", __func__); 3282 return 1; 3283 } 3284 3285 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3286 ret = hidpp20_battery_event(hidpp, data, size); 3287 if (ret != 0) 3288 return ret; 3289 ret = hidpp_solar_battery_event(hidpp, data, size); 3290 if (ret != 0) 3291 return ret; 3292 ret = hidpp20_battery_voltage_event(hidpp, data, size); 3293 if (ret != 0) 3294 return ret; 3295 } 3296 3297 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3298 ret = hidpp10_battery_event(hidpp, data, size); 3299 if (ret != 0) 3300 return ret; 3301 } 3302 3303 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3304 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3305 if (ret != 0) 3306 return ret; 3307 } 3308 3309 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3310 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3311 if (ret != 0) 3312 return ret; 3313 } 3314 3315 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3316 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3317 if (ret != 0) 3318 return ret; 3319 } 3320 3321 return 0; 3322 } 3323 3324 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3325 u8 *data, int size) 3326 { 3327 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3328 int ret = 0; 3329 3330 if (!hidpp) 3331 return 0; 3332 3333 /* Generic HID++ processing. */ 3334 switch (data[0]) { 3335 case REPORT_ID_HIDPP_VERY_LONG: 3336 if (size != hidpp->very_long_report_length) { 3337 hid_err(hdev, "received hid++ report of bad size (%d)", 3338 size); 3339 return 1; 3340 } 3341 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3342 break; 3343 case REPORT_ID_HIDPP_LONG: 3344 if (size != HIDPP_REPORT_LONG_LENGTH) { 3345 hid_err(hdev, "received hid++ report of bad size (%d)", 3346 size); 3347 return 1; 3348 } 3349 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3350 break; 3351 case REPORT_ID_HIDPP_SHORT: 3352 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3353 hid_err(hdev, "received hid++ report of bad size (%d)", 3354 size); 3355 return 1; 3356 } 3357 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3358 break; 3359 } 3360 3361 /* If no report is available for further processing, skip calling 3362 * raw_event of subclasses. */ 3363 if (ret != 0) 3364 return ret; 3365 3366 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3367 return wtp_raw_event(hdev, data, size); 3368 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3369 return m560_raw_event(hdev, data, size); 3370 3371 return 0; 3372 } 3373 3374 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3375 struct hid_usage *usage, __s32 value) 3376 { 3377 /* This function will only be called for scroll events, due to the 3378 * restriction imposed in hidpp_usages. 3379 */ 3380 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3381 struct hidpp_scroll_counter *counter; 3382 3383 if (!hidpp) 3384 return 0; 3385 3386 counter = &hidpp->vertical_wheel_counter; 3387 /* A scroll event may occur before the multiplier has been retrieved or 3388 * the input device set, or high-res scroll enabling may fail. In such 3389 * cases we must return early (falling back to default behaviour) to 3390 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3391 */ 3392 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3393 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3394 return 0; 3395 3396 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3397 return 1; 3398 } 3399 3400 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3401 { 3402 static atomic_t battery_no = ATOMIC_INIT(0); 3403 struct power_supply_config cfg = { .drv_data = hidpp }; 3404 struct power_supply_desc *desc = &hidpp->battery.desc; 3405 enum power_supply_property *battery_props; 3406 struct hidpp_battery *battery; 3407 unsigned int num_battery_props; 3408 unsigned long n; 3409 int ret; 3410 3411 if (hidpp->battery.ps) 3412 return 0; 3413 3414 hidpp->battery.feature_index = 0xff; 3415 hidpp->battery.solar_feature_index = 0xff; 3416 hidpp->battery.voltage_feature_index = 0xff; 3417 3418 if (hidpp->protocol_major >= 2) { 3419 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3420 ret = hidpp_solar_request_battery_event(hidpp); 3421 else { 3422 ret = hidpp20_query_battery_voltage_info(hidpp); 3423 if (ret) 3424 ret = hidpp20_query_battery_info(hidpp); 3425 } 3426 3427 if (ret) 3428 return ret; 3429 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3430 } else { 3431 ret = hidpp10_query_battery_status(hidpp); 3432 if (ret) { 3433 ret = hidpp10_query_battery_mileage(hidpp); 3434 if (ret) 3435 return -ENOENT; 3436 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3437 } else { 3438 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3439 } 3440 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3441 } 3442 3443 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3444 hidpp_battery_props, 3445 sizeof(hidpp_battery_props), 3446 GFP_KERNEL); 3447 if (!battery_props) 3448 return -ENOMEM; 3449 3450 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3; 3451 3452 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3453 battery_props[num_battery_props++] = 3454 POWER_SUPPLY_PROP_CAPACITY; 3455 3456 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3457 battery_props[num_battery_props++] = 3458 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3459 3460 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3461 battery_props[num_battery_props++] = 3462 POWER_SUPPLY_PROP_VOLTAGE_NOW; 3463 3464 battery = &hidpp->battery; 3465 3466 n = atomic_inc_return(&battery_no) - 1; 3467 desc->properties = battery_props; 3468 desc->num_properties = num_battery_props; 3469 desc->get_property = hidpp_battery_get_property; 3470 sprintf(battery->name, "hidpp_battery_%ld", n); 3471 desc->name = battery->name; 3472 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3473 desc->use_for_apm = 0; 3474 3475 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3476 &battery->desc, 3477 &cfg); 3478 if (IS_ERR(battery->ps)) 3479 return PTR_ERR(battery->ps); 3480 3481 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3482 3483 return ret; 3484 } 3485 3486 static void hidpp_overwrite_name(struct hid_device *hdev) 3487 { 3488 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3489 char *name; 3490 3491 if (hidpp->protocol_major < 2) 3492 return; 3493 3494 name = hidpp_get_device_name(hidpp); 3495 3496 if (!name) { 3497 hid_err(hdev, "unable to retrieve the name of the device"); 3498 } else { 3499 dbg_hid("HID++: Got name: %s\n", name); 3500 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3501 } 3502 3503 kfree(name); 3504 } 3505 3506 static int hidpp_input_open(struct input_dev *dev) 3507 { 3508 struct hid_device *hid = input_get_drvdata(dev); 3509 3510 return hid_hw_open(hid); 3511 } 3512 3513 static void hidpp_input_close(struct input_dev *dev) 3514 { 3515 struct hid_device *hid = input_get_drvdata(dev); 3516 3517 hid_hw_close(hid); 3518 } 3519 3520 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3521 { 3522 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3523 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3524 3525 if (!input_dev) 3526 return NULL; 3527 3528 input_set_drvdata(input_dev, hdev); 3529 input_dev->open = hidpp_input_open; 3530 input_dev->close = hidpp_input_close; 3531 3532 input_dev->name = hidpp->name; 3533 input_dev->phys = hdev->phys; 3534 input_dev->uniq = hdev->uniq; 3535 input_dev->id.bustype = hdev->bus; 3536 input_dev->id.vendor = hdev->vendor; 3537 input_dev->id.product = hdev->product; 3538 input_dev->id.version = hdev->version; 3539 input_dev->dev.parent = &hdev->dev; 3540 3541 return input_dev; 3542 } 3543 3544 static void hidpp_connect_event(struct hidpp_device *hidpp) 3545 { 3546 struct hid_device *hdev = hidpp->hid_dev; 3547 int ret = 0; 3548 bool connected = atomic_read(&hidpp->connected); 3549 struct input_dev *input; 3550 char *name, *devm_name; 3551 3552 if (!connected) { 3553 if (hidpp->battery.ps) { 3554 hidpp->battery.online = false; 3555 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3556 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3557 power_supply_changed(hidpp->battery.ps); 3558 } 3559 return; 3560 } 3561 3562 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3563 ret = wtp_connect(hdev, connected); 3564 if (ret) 3565 return; 3566 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3567 ret = m560_send_config_command(hdev, connected); 3568 if (ret) 3569 return; 3570 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3571 ret = k400_connect(hdev, connected); 3572 if (ret) 3573 return; 3574 } 3575 3576 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3577 ret = hidpp10_wheel_connect(hidpp); 3578 if (ret) 3579 return; 3580 } 3581 3582 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3583 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3584 if (ret) 3585 return; 3586 } 3587 3588 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3589 ret = hidpp10_consumer_keys_connect(hidpp); 3590 if (ret) 3591 return; 3592 } 3593 3594 /* the device is already connected, we can ask for its name and 3595 * protocol */ 3596 if (!hidpp->protocol_major) { 3597 ret = hidpp_root_get_protocol_version(hidpp); 3598 if (ret) { 3599 hid_err(hdev, "Can not get the protocol version.\n"); 3600 return; 3601 } 3602 } 3603 3604 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3605 name = hidpp_get_device_name(hidpp); 3606 if (name) { 3607 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3608 "%s", name); 3609 kfree(name); 3610 if (!devm_name) 3611 return; 3612 3613 hidpp->name = devm_name; 3614 } 3615 } 3616 3617 hidpp_initialize_battery(hidpp); 3618 3619 /* forward current battery state */ 3620 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3621 hidpp10_enable_battery_reporting(hidpp); 3622 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3623 hidpp10_query_battery_mileage(hidpp); 3624 else 3625 hidpp10_query_battery_status(hidpp); 3626 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3627 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE) 3628 hidpp20_query_battery_voltage_info(hidpp); 3629 else 3630 hidpp20_query_battery_info(hidpp); 3631 } 3632 if (hidpp->battery.ps) 3633 power_supply_changed(hidpp->battery.ps); 3634 3635 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3636 hi_res_scroll_enable(hidpp); 3637 3638 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3639 /* if the input nodes are already created, we can stop now */ 3640 return; 3641 3642 input = hidpp_allocate_input(hdev); 3643 if (!input) { 3644 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3645 return; 3646 } 3647 3648 hidpp_populate_input(hidpp, input); 3649 3650 ret = input_register_device(input); 3651 if (ret) 3652 input_free_device(input); 3653 3654 hidpp->delayed_input = input; 3655 } 3656 3657 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3658 3659 static struct attribute *sysfs_attrs[] = { 3660 &dev_attr_builtin_power_supply.attr, 3661 NULL 3662 }; 3663 3664 static const struct attribute_group ps_attribute_group = { 3665 .attrs = sysfs_attrs 3666 }; 3667 3668 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3669 { 3670 struct hid_report_enum *re; 3671 struct hid_report *report; 3672 3673 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3674 report = re->report_id_hash[id]; 3675 if (!report) 3676 return 0; 3677 3678 return report->field[0]->report_count + 1; 3679 } 3680 3681 static u8 hidpp_validate_device(struct hid_device *hdev) 3682 { 3683 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3684 int id, report_length; 3685 u8 supported_reports = 0; 3686 3687 id = REPORT_ID_HIDPP_SHORT; 3688 report_length = hidpp_get_report_length(hdev, id); 3689 if (report_length) { 3690 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3691 goto bad_device; 3692 3693 supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED; 3694 } 3695 3696 id = REPORT_ID_HIDPP_LONG; 3697 report_length = hidpp_get_report_length(hdev, id); 3698 if (report_length) { 3699 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3700 goto bad_device; 3701 3702 supported_reports |= HIDPP_REPORT_LONG_SUPPORTED; 3703 } 3704 3705 id = REPORT_ID_HIDPP_VERY_LONG; 3706 report_length = hidpp_get_report_length(hdev, id); 3707 if (report_length) { 3708 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3709 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3710 goto bad_device; 3711 3712 supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED; 3713 hidpp->very_long_report_length = report_length; 3714 } 3715 3716 return supported_reports; 3717 3718 bad_device: 3719 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3720 return false; 3721 } 3722 3723 static bool hidpp_application_equals(struct hid_device *hdev, 3724 unsigned int application) 3725 { 3726 struct list_head *report_list; 3727 struct hid_report *report; 3728 3729 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 3730 report = list_first_entry_or_null(report_list, struct hid_report, list); 3731 return report && report->application == application; 3732 } 3733 3734 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3735 { 3736 struct hidpp_device *hidpp; 3737 int ret; 3738 bool connected; 3739 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3740 struct hidpp_ff_private_data data; 3741 3742 /* report_fixup needs drvdata to be set before we call hid_parse */ 3743 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 3744 if (!hidpp) 3745 return -ENOMEM; 3746 3747 hidpp->hid_dev = hdev; 3748 hidpp->name = hdev->name; 3749 hidpp->quirks = id->driver_data; 3750 hid_set_drvdata(hdev, hidpp); 3751 3752 ret = hid_parse(hdev); 3753 if (ret) { 3754 hid_err(hdev, "%s:parse failed\n", __func__); 3755 return ret; 3756 } 3757 3758 /* 3759 * Make sure the device is HID++ capable, otherwise treat as generic HID 3760 */ 3761 hidpp->supported_reports = hidpp_validate_device(hdev); 3762 3763 if (!hidpp->supported_reports) { 3764 hid_set_drvdata(hdev, NULL); 3765 devm_kfree(&hdev->dev, hidpp); 3766 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 3767 } 3768 3769 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 3770 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 3771 3772 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3773 hidpp_application_equals(hdev, HID_GD_MOUSE)) 3774 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 3775 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 3776 3777 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3778 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 3779 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 3780 3781 if (disable_raw_mode) { 3782 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 3783 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 3784 } 3785 3786 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3787 ret = wtp_allocate(hdev, id); 3788 if (ret) 3789 return ret; 3790 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3791 ret = k400_allocate(hdev); 3792 if (ret) 3793 return ret; 3794 } 3795 3796 INIT_WORK(&hidpp->work, delayed_work_cb); 3797 mutex_init(&hidpp->send_mutex); 3798 init_waitqueue_head(&hidpp->wait); 3799 3800 /* indicates we are handling the battery properties in the kernel */ 3801 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 3802 if (ret) 3803 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 3804 hdev->name); 3805 3806 /* 3807 * Plain USB connections need to actually call start and open 3808 * on the transport driver to allow incoming data. 3809 */ 3810 ret = hid_hw_start(hdev, 0); 3811 if (ret) { 3812 hid_err(hdev, "hw start failed\n"); 3813 goto hid_hw_start_fail; 3814 } 3815 3816 ret = hid_hw_open(hdev); 3817 if (ret < 0) { 3818 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 3819 __func__, ret); 3820 goto hid_hw_open_fail; 3821 } 3822 3823 /* Allow incoming packets */ 3824 hid_device_io_start(hdev); 3825 3826 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 3827 hidpp_unifying_init(hidpp); 3828 3829 connected = hidpp_root_get_protocol_version(hidpp) == 0; 3830 atomic_set(&hidpp->connected, connected); 3831 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 3832 if (!connected) { 3833 ret = -ENODEV; 3834 hid_err(hdev, "Device not connected"); 3835 goto hid_hw_init_fail; 3836 } 3837 3838 hidpp_overwrite_name(hdev); 3839 } 3840 3841 if (connected && hidpp->protocol_major >= 2) { 3842 ret = hidpp_set_wireless_feature_index(hidpp); 3843 if (ret == -ENOENT) 3844 hidpp->wireless_feature_index = 0; 3845 else if (ret) 3846 goto hid_hw_init_fail; 3847 } 3848 3849 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 3850 ret = wtp_get_config(hidpp); 3851 if (ret) 3852 goto hid_hw_init_fail; 3853 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3854 ret = g920_get_config(hidpp, &data); 3855 if (ret) 3856 goto hid_hw_init_fail; 3857 } 3858 3859 hidpp_connect_event(hidpp); 3860 3861 /* Reset the HID node state */ 3862 hid_device_io_stop(hdev); 3863 hid_hw_close(hdev); 3864 hid_hw_stop(hdev); 3865 3866 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 3867 connect_mask &= ~HID_CONNECT_HIDINPUT; 3868 3869 /* Now export the actual inputs and hidraw nodes to the world */ 3870 ret = hid_hw_start(hdev, connect_mask); 3871 if (ret) { 3872 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 3873 goto hid_hw_start_fail; 3874 } 3875 3876 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3877 ret = hidpp_ff_init(hidpp, &data); 3878 if (ret) 3879 hid_warn(hidpp->hid_dev, 3880 "Unable to initialize force feedback support, errno %d\n", 3881 ret); 3882 } 3883 3884 return ret; 3885 3886 hid_hw_init_fail: 3887 hid_hw_close(hdev); 3888 hid_hw_open_fail: 3889 hid_hw_stop(hdev); 3890 hid_hw_start_fail: 3891 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3892 cancel_work_sync(&hidpp->work); 3893 mutex_destroy(&hidpp->send_mutex); 3894 return ret; 3895 } 3896 3897 static void hidpp_remove(struct hid_device *hdev) 3898 { 3899 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3900 3901 if (!hidpp) 3902 return hid_hw_stop(hdev); 3903 3904 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3905 3906 hid_hw_stop(hdev); 3907 cancel_work_sync(&hidpp->work); 3908 mutex_destroy(&hidpp->send_mutex); 3909 } 3910 3911 #define LDJ_DEVICE(product) \ 3912 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 3913 USB_VENDOR_ID_LOGITECH, (product)) 3914 3915 #define L27MHZ_DEVICE(product) \ 3916 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 3917 USB_VENDOR_ID_LOGITECH, (product)) 3918 3919 static const struct hid_device_id hidpp_devices[] = { 3920 { /* wireless touchpad */ 3921 LDJ_DEVICE(0x4011), 3922 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 3923 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 3924 { /* wireless touchpad T650 */ 3925 LDJ_DEVICE(0x4101), 3926 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 3927 { /* wireless touchpad T651 */ 3928 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 3929 USB_DEVICE_ID_LOGITECH_T651), 3930 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 3931 { /* Mouse Logitech Anywhere MX */ 3932 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3933 { /* Mouse Logitech Cube */ 3934 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3935 { /* Mouse Logitech M335 */ 3936 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3937 { /* Mouse Logitech M515 */ 3938 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3939 { /* Mouse logitech M560 */ 3940 LDJ_DEVICE(0x402d), 3941 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 3942 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3943 { /* Mouse Logitech M705 (firmware RQM17) */ 3944 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3945 { /* Mouse Logitech M705 (firmware RQM67) */ 3946 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3947 { /* Mouse Logitech M720 */ 3948 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3949 { /* Mouse Logitech MX Anywhere 2 */ 3950 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3951 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3952 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3953 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3954 { /* Mouse Logitech MX Anywhere 2S */ 3955 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3956 { /* Mouse Logitech MX Master */ 3957 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3958 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3959 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3960 { /* Mouse Logitech MX Master 2S */ 3961 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3962 { /* Mouse Logitech MX Master 3 */ 3963 LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3964 { /* Mouse Logitech Performance MX */ 3965 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3966 { /* Keyboard logitech K400 */ 3967 LDJ_DEVICE(0x4024), 3968 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 3969 { /* Solar Keyboard Logitech K750 */ 3970 LDJ_DEVICE(0x4002), 3971 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 3972 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 3973 LDJ_DEVICE(0xb305), 3974 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3975 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 3976 LDJ_DEVICE(0xb30b), 3977 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3978 3979 { LDJ_DEVICE(HID_ANY_ID) }, 3980 3981 { /* Keyboard LX501 (Y-RR53) */ 3982 L27MHZ_DEVICE(0x0049), 3983 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 3984 { /* Keyboard MX3000 (Y-RAM74) */ 3985 L27MHZ_DEVICE(0x0057), 3986 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 3987 { /* Keyboard MX3200 (Y-RAV80) */ 3988 L27MHZ_DEVICE(0x005c), 3989 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 3990 { /* S510 Media Remote */ 3991 L27MHZ_DEVICE(0x00fe), 3992 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 3993 3994 { L27MHZ_DEVICE(HID_ANY_ID) }, 3995 3996 { /* Logitech G403 Wireless Gaming Mouse over USB */ 3997 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 3998 { /* Logitech G703 Gaming Mouse over USB */ 3999 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 4000 { /* Logitech G703 Hero Gaming Mouse over USB */ 4001 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 4002 { /* Logitech G900 Gaming Mouse over USB */ 4003 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 4004 { /* Logitech G903 Gaming Mouse over USB */ 4005 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 4006 { /* Logitech G903 Hero Gaming Mouse over USB */ 4007 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 4008 { /* Logitech G920 Wheel over USB */ 4009 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 4010 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 4011 { /* Logitech G Pro Gaming Mouse over USB */ 4012 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 4013 4014 { /* MX5000 keyboard over Bluetooth */ 4015 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 4016 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4017 { /* MX5500 keyboard over Bluetooth */ 4018 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 4019 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 4020 { /* MX Master mouse over Bluetooth */ 4021 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012), 4022 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4023 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e), 4024 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4025 { /* MX Master 3 mouse over Bluetooth */ 4026 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023), 4027 .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 4028 {} 4029 }; 4030 4031 MODULE_DEVICE_TABLE(hid, hidpp_devices); 4032 4033 static const struct hid_usage_id hidpp_usages[] = { 4034 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 4035 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 4036 }; 4037 4038 static struct hid_driver hidpp_driver = { 4039 .name = "logitech-hidpp-device", 4040 .id_table = hidpp_devices, 4041 .report_fixup = hidpp_report_fixup, 4042 .probe = hidpp_probe, 4043 .remove = hidpp_remove, 4044 .raw_event = hidpp_raw_event, 4045 .usage_table = hidpp_usages, 4046 .event = hidpp_event, 4047 .input_configured = hidpp_input_configured, 4048 .input_mapping = hidpp_input_mapping, 4049 .input_mapped = hidpp_input_mapped, 4050 }; 4051 4052 module_hid_driver(hidpp_driver); 4053