xref: /linux/drivers/hid/hid-logitech-hidpp.c (revision e0ad4d68548005adb54cc7c35fd9abf760a2a050)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  HIDPP protocol for Logitech Unifying receivers
4  *
5  *  Copyright (c) 2011 Logitech (c)
6  *  Copyright (c) 2012-2013 Google (c)
7  *  Copyright (c) 2013-2014 Red Hat Inc.
8  */
9 
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/device.h>
14 #include <linux/input.h>
15 #include <linux/usb.h>
16 #include <linux/hid.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/clock.h>
21 #include <linux/kfifo.h>
22 #include <linux/input/mt.h>
23 #include <linux/workqueue.h>
24 #include <linux/atomic.h>
25 #include <linux/fixp-arith.h>
26 #include <asm/unaligned.h>
27 #include "usbhid/usbhid.h"
28 #include "hid-ids.h"
29 
30 MODULE_LICENSE("GPL");
31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
33 
34 static bool disable_raw_mode;
35 module_param(disable_raw_mode, bool, 0644);
36 MODULE_PARM_DESC(disable_raw_mode,
37 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
38 
39 static bool disable_tap_to_click;
40 module_param(disable_tap_to_click, bool, 0644);
41 MODULE_PARM_DESC(disable_tap_to_click,
42 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
43 
44 #define REPORT_ID_HIDPP_SHORT			0x10
45 #define REPORT_ID_HIDPP_LONG			0x11
46 #define REPORT_ID_HIDPP_VERY_LONG		0x12
47 
48 #define HIDPP_REPORT_SHORT_LENGTH		7
49 #define HIDPP_REPORT_LONG_LENGTH		20
50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH	64
51 
52 #define HIDPP_REPORT_SHORT_SUPPORTED		BIT(0)
53 #define HIDPP_REPORT_LONG_SUPPORTED		BIT(1)
54 #define HIDPP_REPORT_VERY_LONG_SUPPORTED	BIT(2)
55 
56 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS	0x03
57 #define HIDPP_SUB_ID_ROLLER			0x05
58 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS		0x06
59 
60 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
61 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
62 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
63 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
64 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
65 
66 /* bits 2..20 are reserved for classes */
67 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
68 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
69 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
70 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
71 #define HIDPP_QUIRK_UNIFYING			BIT(25)
72 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
73 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
74 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
75 #define HIDPP_QUIRK_HIDPP_WHEELS		BIT(29)
76 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS	BIT(30)
77 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS	BIT(31)
78 
79 /* These are just aliases for now */
80 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS
81 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL   HIDPP_QUIRK_HIDPP_WHEELS
82 
83 /* Convenience constant to check for any high-res support. */
84 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
85 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
86 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
87 
88 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
89 
90 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
91 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
92 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
93 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
94 #define HIDPP_CAPABILITY_BATTERY_VOLTAGE	BIT(4)
95 
96 /*
97  * There are two hidpp protocols in use, the first version hidpp10 is known
98  * as register access protocol or RAP, the second version hidpp20 is known as
99  * feature access protocol or FAP
100  *
101  * Most older devices (including the Unifying usb receiver) use the RAP protocol
102  * where as most newer devices use the FAP protocol. Both protocols are
103  * compatible with the underlying transport, which could be usb, Unifiying, or
104  * bluetooth. The message lengths are defined by the hid vendor specific report
105  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
106  * the HIDPP_LONG report type (total message length 20 bytes)
107  *
108  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
109  * messages. The Unifying receiver itself responds to RAP messages (device index
110  * is 0xFF for the receiver), and all messages (short or long) with a device
111  * index between 1 and 6 are passed untouched to the corresponding paired
112  * Unifying device.
113  *
114  * The paired device can be RAP or FAP, it will receive the message untouched
115  * from the Unifiying receiver.
116  */
117 
118 struct fap {
119 	u8 feature_index;
120 	u8 funcindex_clientid;
121 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
122 };
123 
124 struct rap {
125 	u8 sub_id;
126 	u8 reg_address;
127 	u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U];
128 };
129 
130 struct hidpp_report {
131 	u8 report_id;
132 	u8 device_index;
133 	union {
134 		struct fap fap;
135 		struct rap rap;
136 		u8 rawbytes[sizeof(struct fap)];
137 	};
138 } __packed;
139 
140 struct hidpp_battery {
141 	u8 feature_index;
142 	u8 solar_feature_index;
143 	u8 voltage_feature_index;
144 	struct power_supply_desc desc;
145 	struct power_supply *ps;
146 	char name[64];
147 	int status;
148 	int capacity;
149 	int level;
150 	int voltage;
151 	int charge_type;
152 	bool online;
153 };
154 
155 /**
156  * struct hidpp_scroll_counter - Utility class for processing high-resolution
157  *                             scroll events.
158  * @dev: the input device for which events should be reported.
159  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
160  * @remainder: counts the number of high-resolution units moved since the last
161  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
162  *             only be used by class methods.
163  * @direction: direction of last movement (1 or -1)
164  * @last_time: last event time, used to reset remainder after inactivity
165  */
166 struct hidpp_scroll_counter {
167 	int wheel_multiplier;
168 	int remainder;
169 	int direction;
170 	unsigned long long last_time;
171 };
172 
173 struct hidpp_device {
174 	struct hid_device *hid_dev;
175 	struct input_dev *input;
176 	struct mutex send_mutex;
177 	void *send_receive_buf;
178 	char *name;		/* will never be NULL and should not be freed */
179 	wait_queue_head_t wait;
180 	int very_long_report_length;
181 	bool answer_available;
182 	u8 protocol_major;
183 	u8 protocol_minor;
184 
185 	void *private_data;
186 
187 	struct work_struct work;
188 	struct kfifo delayed_work_fifo;
189 	atomic_t connected;
190 	struct input_dev *delayed_input;
191 
192 	unsigned long quirks;
193 	unsigned long capabilities;
194 	u8 supported_reports;
195 
196 	struct hidpp_battery battery;
197 	struct hidpp_scroll_counter vertical_wheel_counter;
198 
199 	u8 wireless_feature_index;
200 };
201 
202 /* HID++ 1.0 error codes */
203 #define HIDPP_ERROR				0x8f
204 #define HIDPP_ERROR_SUCCESS			0x00
205 #define HIDPP_ERROR_INVALID_SUBID		0x01
206 #define HIDPP_ERROR_INVALID_ADRESS		0x02
207 #define HIDPP_ERROR_INVALID_VALUE		0x03
208 #define HIDPP_ERROR_CONNECT_FAIL		0x04
209 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
210 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
211 #define HIDPP_ERROR_BUSY			0x07
212 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
213 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
214 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
215 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
216 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
217 /* HID++ 2.0 error codes */
218 #define HIDPP20_ERROR				0xff
219 
220 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
221 
222 static int __hidpp_send_report(struct hid_device *hdev,
223 				struct hidpp_report *hidpp_report)
224 {
225 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
226 	int fields_count, ret;
227 
228 	switch (hidpp_report->report_id) {
229 	case REPORT_ID_HIDPP_SHORT:
230 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
231 		break;
232 	case REPORT_ID_HIDPP_LONG:
233 		fields_count = HIDPP_REPORT_LONG_LENGTH;
234 		break;
235 	case REPORT_ID_HIDPP_VERY_LONG:
236 		fields_count = hidpp->very_long_report_length;
237 		break;
238 	default:
239 		return -ENODEV;
240 	}
241 
242 	/*
243 	 * set the device_index as the receiver, it will be overwritten by
244 	 * hid_hw_request if needed
245 	 */
246 	hidpp_report->device_index = 0xff;
247 
248 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
249 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
250 	} else {
251 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
252 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
253 			HID_REQ_SET_REPORT);
254 	}
255 
256 	return ret == fields_count ? 0 : -1;
257 }
258 
259 /**
260  * hidpp_send_message_sync() returns 0 in case of success, and something else
261  * in case of a failure.
262  * - If ' something else' is positive, that means that an error has been raised
263  *   by the protocol itself.
264  * - If ' something else' is negative, that means that we had a classic error
265  *   (-ENOMEM, -EPIPE, etc...)
266  */
267 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
268 	struct hidpp_report *message,
269 	struct hidpp_report *response)
270 {
271 	int ret;
272 
273 	mutex_lock(&hidpp->send_mutex);
274 
275 	hidpp->send_receive_buf = response;
276 	hidpp->answer_available = false;
277 
278 	/*
279 	 * So that we can later validate the answer when it arrives
280 	 * in hidpp_raw_event
281 	 */
282 	*response = *message;
283 
284 	ret = __hidpp_send_report(hidpp->hid_dev, message);
285 
286 	if (ret) {
287 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
288 		memset(response, 0, sizeof(struct hidpp_report));
289 		goto exit;
290 	}
291 
292 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
293 				5*HZ)) {
294 		dbg_hid("%s:timeout waiting for response\n", __func__);
295 		memset(response, 0, sizeof(struct hidpp_report));
296 		ret = -ETIMEDOUT;
297 	}
298 
299 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
300 	    response->rap.sub_id == HIDPP_ERROR) {
301 		ret = response->rap.params[1];
302 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
303 		goto exit;
304 	}
305 
306 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
307 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
308 			response->fap.feature_index == HIDPP20_ERROR) {
309 		ret = response->fap.params[1];
310 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
311 		goto exit;
312 	}
313 
314 exit:
315 	mutex_unlock(&hidpp->send_mutex);
316 	return ret;
317 
318 }
319 
320 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
321 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
322 	struct hidpp_report *response)
323 {
324 	struct hidpp_report *message;
325 	int ret;
326 
327 	if (param_count > sizeof(message->fap.params))
328 		return -EINVAL;
329 
330 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
331 	if (!message)
332 		return -ENOMEM;
333 
334 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
335 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
336 	else
337 		message->report_id = REPORT_ID_HIDPP_LONG;
338 	message->fap.feature_index = feat_index;
339 	message->fap.funcindex_clientid = funcindex_clientid;
340 	memcpy(&message->fap.params, params, param_count);
341 
342 	ret = hidpp_send_message_sync(hidpp, message, response);
343 	kfree(message);
344 	return ret;
345 }
346 
347 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
348 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
349 	struct hidpp_report *response)
350 {
351 	struct hidpp_report *message;
352 	int ret, max_count;
353 
354 	/* Send as long report if short reports are not supported. */
355 	if (report_id == REPORT_ID_HIDPP_SHORT &&
356 	    !(hidpp_dev->supported_reports & HIDPP_REPORT_SHORT_SUPPORTED))
357 		report_id = REPORT_ID_HIDPP_LONG;
358 
359 	switch (report_id) {
360 	case REPORT_ID_HIDPP_SHORT:
361 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
362 		break;
363 	case REPORT_ID_HIDPP_LONG:
364 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
365 		break;
366 	case REPORT_ID_HIDPP_VERY_LONG:
367 		max_count = hidpp_dev->very_long_report_length - 4;
368 		break;
369 	default:
370 		return -EINVAL;
371 	}
372 
373 	if (param_count > max_count)
374 		return -EINVAL;
375 
376 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
377 	if (!message)
378 		return -ENOMEM;
379 	message->report_id = report_id;
380 	message->rap.sub_id = sub_id;
381 	message->rap.reg_address = reg_address;
382 	memcpy(&message->rap.params, params, param_count);
383 
384 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
385 	kfree(message);
386 	return ret;
387 }
388 
389 static void delayed_work_cb(struct work_struct *work)
390 {
391 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
392 							work);
393 	hidpp_connect_event(hidpp);
394 }
395 
396 static inline bool hidpp_match_answer(struct hidpp_report *question,
397 		struct hidpp_report *answer)
398 {
399 	return (answer->fap.feature_index == question->fap.feature_index) &&
400 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
401 }
402 
403 static inline bool hidpp_match_error(struct hidpp_report *question,
404 		struct hidpp_report *answer)
405 {
406 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
407 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
408 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
409 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
410 }
411 
412 static inline bool hidpp_report_is_connect_event(struct hidpp_device *hidpp,
413 		struct hidpp_report *report)
414 {
415 	return (hidpp->wireless_feature_index &&
416 		(report->fap.feature_index == hidpp->wireless_feature_index)) ||
417 		((report->report_id == REPORT_ID_HIDPP_SHORT) &&
418 		(report->rap.sub_id == 0x41));
419 }
420 
421 /**
422  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
423  */
424 static void hidpp_prefix_name(char **name, int name_length)
425 {
426 #define PREFIX_LENGTH 9 /* "Logitech " */
427 
428 	int new_length;
429 	char *new_name;
430 
431 	if (name_length > PREFIX_LENGTH &&
432 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
433 		/* The prefix has is already in the name */
434 		return;
435 
436 	new_length = PREFIX_LENGTH + name_length;
437 	new_name = kzalloc(new_length, GFP_KERNEL);
438 	if (!new_name)
439 		return;
440 
441 	snprintf(new_name, new_length, "Logitech %s", *name);
442 
443 	kfree(*name);
444 
445 	*name = new_name;
446 }
447 
448 /**
449  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
450  *                                        events given a high-resolution wheel
451  *                                        movement.
452  * @counter: a hid_scroll_counter struct describing the wheel.
453  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
454  *                units.
455  *
456  * Given a high-resolution movement, this function converts the movement into
457  * fractions of 120 and emits high-resolution scroll events for the input
458  * device. It also uses the multiplier from &struct hid_scroll_counter to
459  * emit low-resolution scroll events when appropriate for
460  * backwards-compatibility with userspace input libraries.
461  */
462 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev,
463 					       struct hidpp_scroll_counter *counter,
464 					       int hi_res_value)
465 {
466 	int low_res_value, remainder, direction;
467 	unsigned long long now, previous;
468 
469 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
470 	input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value);
471 
472 	remainder = counter->remainder;
473 	direction = hi_res_value > 0 ? 1 : -1;
474 
475 	now = sched_clock();
476 	previous = counter->last_time;
477 	counter->last_time = now;
478 	/*
479 	 * Reset the remainder after a period of inactivity or when the
480 	 * direction changes. This prevents the REL_WHEEL emulation point
481 	 * from sliding for devices that don't always provide the same
482 	 * number of movements per detent.
483 	 */
484 	if (now - previous > 1000000000 || direction != counter->direction)
485 		remainder = 0;
486 
487 	counter->direction = direction;
488 	remainder += hi_res_value;
489 
490 	/* Some wheels will rest 7/8ths of a detent from the previous detent
491 	 * after slow movement, so we want the threshold for low-res events to
492 	 * be in the middle between two detents (e.g. after 4/8ths) as
493 	 * opposed to on the detents themselves (8/8ths).
494 	 */
495 	if (abs(remainder) >= 60) {
496 		/* Add (or subtract) 1 because we want to trigger when the wheel
497 		 * is half-way to the next detent (i.e. scroll 1 detent after a
498 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
499 		 * etc.).
500 		 */
501 		low_res_value = remainder / 120;
502 		if (low_res_value == 0)
503 			low_res_value = (hi_res_value > 0 ? 1 : -1);
504 		input_report_rel(input_dev, REL_WHEEL, low_res_value);
505 		remainder -= low_res_value * 120;
506 	}
507 	counter->remainder = remainder;
508 }
509 
510 /* -------------------------------------------------------------------------- */
511 /* HIDP++ 1.0 commands                                                        */
512 /* -------------------------------------------------------------------------- */
513 
514 #define HIDPP_SET_REGISTER				0x80
515 #define HIDPP_GET_REGISTER				0x81
516 #define HIDPP_SET_LONG_REGISTER				0x82
517 #define HIDPP_GET_LONG_REGISTER				0x83
518 
519 /**
520  * hidpp10_set_register - Modify a HID++ 1.0 register.
521  * @hidpp_dev: the device to set the register on.
522  * @register_address: the address of the register to modify.
523  * @byte: the byte of the register to modify. Should be less than 3.
524  * @mask: mask of the bits to modify
525  * @value: new values for the bits in mask
526  * Return: 0 if successful, otherwise a negative error code.
527  */
528 static int hidpp10_set_register(struct hidpp_device *hidpp_dev,
529 	u8 register_address, u8 byte, u8 mask, u8 value)
530 {
531 	struct hidpp_report response;
532 	int ret;
533 	u8 params[3] = { 0 };
534 
535 	ret = hidpp_send_rap_command_sync(hidpp_dev,
536 					  REPORT_ID_HIDPP_SHORT,
537 					  HIDPP_GET_REGISTER,
538 					  register_address,
539 					  NULL, 0, &response);
540 	if (ret)
541 		return ret;
542 
543 	memcpy(params, response.rap.params, 3);
544 
545 	params[byte] &= ~mask;
546 	params[byte] |= value & mask;
547 
548 	return hidpp_send_rap_command_sync(hidpp_dev,
549 					   REPORT_ID_HIDPP_SHORT,
550 					   HIDPP_SET_REGISTER,
551 					   register_address,
552 					   params, 3, &response);
553 }
554 
555 #define HIDPP_REG_ENABLE_REPORTS			0x00
556 #define HIDPP_ENABLE_CONSUMER_REPORT			BIT(0)
557 #define HIDPP_ENABLE_WHEEL_REPORT			BIT(2)
558 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT		BIT(3)
559 #define HIDPP_ENABLE_BAT_REPORT				BIT(4)
560 #define HIDPP_ENABLE_HWHEEL_REPORT			BIT(5)
561 
562 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
563 {
564 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0,
565 			  HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT);
566 }
567 
568 #define HIDPP_REG_FEATURES				0x01
569 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC		BIT(1)
570 #define HIDPP_ENABLE_FAST_SCROLL			BIT(6)
571 
572 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
573 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
574 {
575 	return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0,
576 			  HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL);
577 }
578 
579 #define HIDPP_REG_BATTERY_STATUS			0x07
580 
581 static int hidpp10_battery_status_map_level(u8 param)
582 {
583 	int level;
584 
585 	switch (param) {
586 	case 1 ... 2:
587 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
588 		break;
589 	case 3 ... 4:
590 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
591 		break;
592 	case 5 ... 6:
593 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
594 		break;
595 	case 7:
596 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
597 		break;
598 	default:
599 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
600 	}
601 
602 	return level;
603 }
604 
605 static int hidpp10_battery_status_map_status(u8 param)
606 {
607 	int status;
608 
609 	switch (param) {
610 	case 0x00:
611 		/* discharging (in use) */
612 		status = POWER_SUPPLY_STATUS_DISCHARGING;
613 		break;
614 	case 0x21: /* (standard) charging */
615 	case 0x24: /* fast charging */
616 	case 0x25: /* slow charging */
617 		status = POWER_SUPPLY_STATUS_CHARGING;
618 		break;
619 	case 0x26: /* topping charge */
620 	case 0x22: /* charge complete */
621 		status = POWER_SUPPLY_STATUS_FULL;
622 		break;
623 	case 0x20: /* unknown */
624 		status = POWER_SUPPLY_STATUS_UNKNOWN;
625 		break;
626 	/*
627 	 * 0x01...0x1F = reserved (not charging)
628 	 * 0x23 = charging error
629 	 * 0x27..0xff = reserved
630 	 */
631 	default:
632 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
633 		break;
634 	}
635 
636 	return status;
637 }
638 
639 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
640 {
641 	struct hidpp_report response;
642 	int ret, status;
643 
644 	ret = hidpp_send_rap_command_sync(hidpp,
645 					REPORT_ID_HIDPP_SHORT,
646 					HIDPP_GET_REGISTER,
647 					HIDPP_REG_BATTERY_STATUS,
648 					NULL, 0, &response);
649 	if (ret)
650 		return ret;
651 
652 	hidpp->battery.level =
653 		hidpp10_battery_status_map_level(response.rap.params[0]);
654 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
655 	hidpp->battery.status = status;
656 	/* the capacity is only available when discharging or full */
657 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
658 				status == POWER_SUPPLY_STATUS_FULL;
659 
660 	return 0;
661 }
662 
663 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
664 
665 static int hidpp10_battery_mileage_map_status(u8 param)
666 {
667 	int status;
668 
669 	switch (param >> 6) {
670 	case 0x00:
671 		/* discharging (in use) */
672 		status = POWER_SUPPLY_STATUS_DISCHARGING;
673 		break;
674 	case 0x01: /* charging */
675 		status = POWER_SUPPLY_STATUS_CHARGING;
676 		break;
677 	case 0x02: /* charge complete */
678 		status = POWER_SUPPLY_STATUS_FULL;
679 		break;
680 	/*
681 	 * 0x03 = charging error
682 	 */
683 	default:
684 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
685 		break;
686 	}
687 
688 	return status;
689 }
690 
691 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
692 {
693 	struct hidpp_report response;
694 	int ret, status;
695 
696 	ret = hidpp_send_rap_command_sync(hidpp,
697 					REPORT_ID_HIDPP_SHORT,
698 					HIDPP_GET_REGISTER,
699 					HIDPP_REG_BATTERY_MILEAGE,
700 					NULL, 0, &response);
701 	if (ret)
702 		return ret;
703 
704 	hidpp->battery.capacity = response.rap.params[0];
705 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
706 	hidpp->battery.status = status;
707 	/* the capacity is only available when discharging or full */
708 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
709 				status == POWER_SUPPLY_STATUS_FULL;
710 
711 	return 0;
712 }
713 
714 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
715 {
716 	struct hidpp_report *report = (struct hidpp_report *)data;
717 	int status, capacity, level;
718 	bool changed;
719 
720 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
721 		return 0;
722 
723 	switch (report->rap.sub_id) {
724 	case HIDPP_REG_BATTERY_STATUS:
725 		capacity = hidpp->battery.capacity;
726 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
727 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
728 		break;
729 	case HIDPP_REG_BATTERY_MILEAGE:
730 		capacity = report->rap.params[0];
731 		level = hidpp->battery.level;
732 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
733 		break;
734 	default:
735 		return 0;
736 	}
737 
738 	changed = capacity != hidpp->battery.capacity ||
739 		  level != hidpp->battery.level ||
740 		  status != hidpp->battery.status;
741 
742 	/* the capacity is only available when discharging or full */
743 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
744 				status == POWER_SUPPLY_STATUS_FULL;
745 
746 	if (changed) {
747 		hidpp->battery.level = level;
748 		hidpp->battery.status = status;
749 		if (hidpp->battery.ps)
750 			power_supply_changed(hidpp->battery.ps);
751 	}
752 
753 	return 0;
754 }
755 
756 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
757 #define HIDPP_EXTENDED_PAIRING				0x30
758 #define HIDPP_DEVICE_NAME				0x40
759 
760 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
761 {
762 	struct hidpp_report response;
763 	int ret;
764 	u8 params[1] = { HIDPP_DEVICE_NAME };
765 	char *name;
766 	int len;
767 
768 	ret = hidpp_send_rap_command_sync(hidpp_dev,
769 					REPORT_ID_HIDPP_SHORT,
770 					HIDPP_GET_LONG_REGISTER,
771 					HIDPP_REG_PAIRING_INFORMATION,
772 					params, 1, &response);
773 	if (ret)
774 		return NULL;
775 
776 	len = response.rap.params[1];
777 
778 	if (2 + len > sizeof(response.rap.params))
779 		return NULL;
780 
781 	if (len < 4) /* logitech devices are usually at least Xddd */
782 		return NULL;
783 
784 	name = kzalloc(len + 1, GFP_KERNEL);
785 	if (!name)
786 		return NULL;
787 
788 	memcpy(name, &response.rap.params[2], len);
789 
790 	/* include the terminating '\0' */
791 	hidpp_prefix_name(&name, len + 1);
792 
793 	return name;
794 }
795 
796 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
797 {
798 	struct hidpp_report response;
799 	int ret;
800 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
801 
802 	ret = hidpp_send_rap_command_sync(hidpp,
803 					REPORT_ID_HIDPP_SHORT,
804 					HIDPP_GET_LONG_REGISTER,
805 					HIDPP_REG_PAIRING_INFORMATION,
806 					params, 1, &response);
807 	if (ret)
808 		return ret;
809 
810 	/*
811 	 * We don't care about LE or BE, we will output it as a string
812 	 * with %4phD, so we need to keep the order.
813 	 */
814 	*serial = *((u32 *)&response.rap.params[1]);
815 	return 0;
816 }
817 
818 static int hidpp_unifying_init(struct hidpp_device *hidpp)
819 {
820 	struct hid_device *hdev = hidpp->hid_dev;
821 	const char *name;
822 	u32 serial;
823 	int ret;
824 
825 	ret = hidpp_unifying_get_serial(hidpp, &serial);
826 	if (ret)
827 		return ret;
828 
829 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
830 		 hdev->product, &serial);
831 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
832 
833 	name = hidpp_unifying_get_name(hidpp);
834 	if (!name)
835 		return -EIO;
836 
837 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
838 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
839 
840 	kfree(name);
841 	return 0;
842 }
843 
844 /* -------------------------------------------------------------------------- */
845 /* 0x0000: Root                                                               */
846 /* -------------------------------------------------------------------------- */
847 
848 #define HIDPP_PAGE_ROOT					0x0000
849 #define HIDPP_PAGE_ROOT_IDX				0x00
850 
851 #define CMD_ROOT_GET_FEATURE				0x01
852 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
853 
854 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
855 	u8 *feature_index, u8 *feature_type)
856 {
857 	struct hidpp_report response;
858 	int ret;
859 	u8 params[2] = { feature >> 8, feature & 0x00FF };
860 
861 	ret = hidpp_send_fap_command_sync(hidpp,
862 			HIDPP_PAGE_ROOT_IDX,
863 			CMD_ROOT_GET_FEATURE,
864 			params, 2, &response);
865 	if (ret)
866 		return ret;
867 
868 	if (response.fap.params[0] == 0)
869 		return -ENOENT;
870 
871 	*feature_index = response.fap.params[0];
872 	*feature_type = response.fap.params[1];
873 
874 	return ret;
875 }
876 
877 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
878 {
879 	const u8 ping_byte = 0x5a;
880 	u8 ping_data[3] = { 0, 0, ping_byte };
881 	struct hidpp_report response;
882 	int ret;
883 
884 	ret = hidpp_send_rap_command_sync(hidpp,
885 			REPORT_ID_HIDPP_SHORT,
886 			HIDPP_PAGE_ROOT_IDX,
887 			CMD_ROOT_GET_PROTOCOL_VERSION,
888 			ping_data, sizeof(ping_data), &response);
889 
890 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
891 		hidpp->protocol_major = 1;
892 		hidpp->protocol_minor = 0;
893 		goto print_version;
894 	}
895 
896 	/* the device might not be connected */
897 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
898 		return -EIO;
899 
900 	if (ret > 0) {
901 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
902 			__func__, ret);
903 		return -EPROTO;
904 	}
905 	if (ret)
906 		return ret;
907 
908 	if (response.rap.params[2] != ping_byte) {
909 		hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n",
910 			__func__, response.rap.params[2], ping_byte);
911 		return -EPROTO;
912 	}
913 
914 	hidpp->protocol_major = response.rap.params[0];
915 	hidpp->protocol_minor = response.rap.params[1];
916 
917 print_version:
918 	hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
919 		 hidpp->protocol_major, hidpp->protocol_minor);
920 	return 0;
921 }
922 
923 /* -------------------------------------------------------------------------- */
924 /* 0x0005: GetDeviceNameType                                                  */
925 /* -------------------------------------------------------------------------- */
926 
927 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
928 
929 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
930 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
931 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
932 
933 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
934 	u8 feature_index, u8 *nameLength)
935 {
936 	struct hidpp_report response;
937 	int ret;
938 
939 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
940 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
941 
942 	if (ret > 0) {
943 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
944 			__func__, ret);
945 		return -EPROTO;
946 	}
947 	if (ret)
948 		return ret;
949 
950 	*nameLength = response.fap.params[0];
951 
952 	return ret;
953 }
954 
955 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
956 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
957 {
958 	struct hidpp_report response;
959 	int ret, i;
960 	int count;
961 
962 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
963 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
964 		&response);
965 
966 	if (ret > 0) {
967 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
968 			__func__, ret);
969 		return -EPROTO;
970 	}
971 	if (ret)
972 		return ret;
973 
974 	switch (response.report_id) {
975 	case REPORT_ID_HIDPP_VERY_LONG:
976 		count = hidpp->very_long_report_length - 4;
977 		break;
978 	case REPORT_ID_HIDPP_LONG:
979 		count = HIDPP_REPORT_LONG_LENGTH - 4;
980 		break;
981 	case REPORT_ID_HIDPP_SHORT:
982 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
983 		break;
984 	default:
985 		return -EPROTO;
986 	}
987 
988 	if (len_buf < count)
989 		count = len_buf;
990 
991 	for (i = 0; i < count; i++)
992 		device_name[i] = response.fap.params[i];
993 
994 	return count;
995 }
996 
997 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
998 {
999 	u8 feature_type;
1000 	u8 feature_index;
1001 	u8 __name_length;
1002 	char *name;
1003 	unsigned index = 0;
1004 	int ret;
1005 
1006 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
1007 		&feature_index, &feature_type);
1008 	if (ret)
1009 		return NULL;
1010 
1011 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
1012 		&__name_length);
1013 	if (ret)
1014 		return NULL;
1015 
1016 	name = kzalloc(__name_length + 1, GFP_KERNEL);
1017 	if (!name)
1018 		return NULL;
1019 
1020 	while (index < __name_length) {
1021 		ret = hidpp_devicenametype_get_device_name(hidpp,
1022 			feature_index, index, name + index,
1023 			__name_length - index);
1024 		if (ret <= 0) {
1025 			kfree(name);
1026 			return NULL;
1027 		}
1028 		index += ret;
1029 	}
1030 
1031 	/* include the terminating '\0' */
1032 	hidpp_prefix_name(&name, __name_length + 1);
1033 
1034 	return name;
1035 }
1036 
1037 /* -------------------------------------------------------------------------- */
1038 /* 0x1000: Battery level status                                               */
1039 /* -------------------------------------------------------------------------- */
1040 
1041 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1042 
1043 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1044 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1045 
1046 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1047 
1048 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1049 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1050 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1051 
1052 static int hidpp_map_battery_level(int capacity)
1053 {
1054 	if (capacity < 11)
1055 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1056 	/*
1057 	 * The spec says this should be < 31 but some devices report 30
1058 	 * with brand new batteries and Windows reports 30 as "Good".
1059 	 */
1060 	else if (capacity < 30)
1061 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1062 	else if (capacity < 81)
1063 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1064 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1065 }
1066 
1067 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1068 						    int *next_capacity,
1069 						    int *level)
1070 {
1071 	int status;
1072 
1073 	*capacity = data[0];
1074 	*next_capacity = data[1];
1075 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1076 
1077 	/* When discharging, we can rely on the device reported capacity.
1078 	 * For all other states the device reports 0 (unknown).
1079 	 */
1080 	switch (data[2]) {
1081 		case 0: /* discharging (in use) */
1082 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1083 			*level = hidpp_map_battery_level(*capacity);
1084 			break;
1085 		case 1: /* recharging */
1086 			status = POWER_SUPPLY_STATUS_CHARGING;
1087 			break;
1088 		case 2: /* charge in final stage */
1089 			status = POWER_SUPPLY_STATUS_CHARGING;
1090 			break;
1091 		case 3: /* charge complete */
1092 			status = POWER_SUPPLY_STATUS_FULL;
1093 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1094 			*capacity = 100;
1095 			break;
1096 		case 4: /* recharging below optimal speed */
1097 			status = POWER_SUPPLY_STATUS_CHARGING;
1098 			break;
1099 		/* 5 = invalid battery type
1100 		   6 = thermal error
1101 		   7 = other charging error */
1102 		default:
1103 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1104 			break;
1105 	}
1106 
1107 	return status;
1108 }
1109 
1110 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1111 						     u8 feature_index,
1112 						     int *status,
1113 						     int *capacity,
1114 						     int *next_capacity,
1115 						     int *level)
1116 {
1117 	struct hidpp_report response;
1118 	int ret;
1119 	u8 *params = (u8 *)response.fap.params;
1120 
1121 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1122 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1123 					  NULL, 0, &response);
1124 	/* Ignore these intermittent errors */
1125 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
1126 		return -EIO;
1127 	if (ret > 0) {
1128 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1129 			__func__, ret);
1130 		return -EPROTO;
1131 	}
1132 	if (ret)
1133 		return ret;
1134 
1135 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1136 							   next_capacity,
1137 							   level);
1138 
1139 	return 0;
1140 }
1141 
1142 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1143 						  u8 feature_index)
1144 {
1145 	struct hidpp_report response;
1146 	int ret;
1147 	u8 *params = (u8 *)response.fap.params;
1148 	unsigned int level_count, flags;
1149 
1150 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1151 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1152 					  NULL, 0, &response);
1153 	if (ret > 0) {
1154 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1155 			__func__, ret);
1156 		return -EPROTO;
1157 	}
1158 	if (ret)
1159 		return ret;
1160 
1161 	level_count = params[0];
1162 	flags = params[1];
1163 
1164 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1165 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1166 	else
1167 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1168 
1169 	return 0;
1170 }
1171 
1172 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1173 {
1174 	u8 feature_type;
1175 	int ret;
1176 	int status, capacity, next_capacity, level;
1177 
1178 	if (hidpp->battery.feature_index == 0xff) {
1179 		ret = hidpp_root_get_feature(hidpp,
1180 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1181 					     &hidpp->battery.feature_index,
1182 					     &feature_type);
1183 		if (ret)
1184 			return ret;
1185 	}
1186 
1187 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1188 						hidpp->battery.feature_index,
1189 						&status, &capacity,
1190 						&next_capacity, &level);
1191 	if (ret)
1192 		return ret;
1193 
1194 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1195 						hidpp->battery.feature_index);
1196 	if (ret)
1197 		return ret;
1198 
1199 	hidpp->battery.status = status;
1200 	hidpp->battery.capacity = capacity;
1201 	hidpp->battery.level = level;
1202 	/* the capacity is only available when discharging or full */
1203 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1204 				status == POWER_SUPPLY_STATUS_FULL;
1205 
1206 	return 0;
1207 }
1208 
1209 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1210 				 u8 *data, int size)
1211 {
1212 	struct hidpp_report *report = (struct hidpp_report *)data;
1213 	int status, capacity, next_capacity, level;
1214 	bool changed;
1215 
1216 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1217 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1218 		return 0;
1219 
1220 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1221 							  &capacity,
1222 							  &next_capacity,
1223 							  &level);
1224 
1225 	/* the capacity is only available when discharging or full */
1226 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1227 				status == POWER_SUPPLY_STATUS_FULL;
1228 
1229 	changed = capacity != hidpp->battery.capacity ||
1230 		  level != hidpp->battery.level ||
1231 		  status != hidpp->battery.status;
1232 
1233 	if (changed) {
1234 		hidpp->battery.level = level;
1235 		hidpp->battery.capacity = capacity;
1236 		hidpp->battery.status = status;
1237 		if (hidpp->battery.ps)
1238 			power_supply_changed(hidpp->battery.ps);
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /* -------------------------------------------------------------------------- */
1245 /* 0x1001: Battery voltage                                                    */
1246 /* -------------------------------------------------------------------------- */
1247 
1248 #define HIDPP_PAGE_BATTERY_VOLTAGE 0x1001
1249 
1250 #define CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE 0x00
1251 
1252 #define EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST 0x00
1253 
1254 static int hidpp20_battery_map_status_voltage(u8 data[3], int *voltage,
1255 						int *level, int *charge_type)
1256 {
1257 	int status;
1258 
1259 	long charge_sts = (long)data[2];
1260 
1261 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1262 	switch (data[2] & 0xe0) {
1263 	case 0x00:
1264 		status = POWER_SUPPLY_STATUS_CHARGING;
1265 		break;
1266 	case 0x20:
1267 		status = POWER_SUPPLY_STATUS_FULL;
1268 		*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1269 		break;
1270 	case 0x40:
1271 		status = POWER_SUPPLY_STATUS_DISCHARGING;
1272 		break;
1273 	case 0xe0:
1274 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1275 		break;
1276 	default:
1277 		status = POWER_SUPPLY_STATUS_UNKNOWN;
1278 	}
1279 
1280 	*charge_type = POWER_SUPPLY_CHARGE_TYPE_STANDARD;
1281 	if (test_bit(3, &charge_sts)) {
1282 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_FAST;
1283 	}
1284 	if (test_bit(4, &charge_sts)) {
1285 		*charge_type = POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
1286 	}
1287 
1288 	if (test_bit(5, &charge_sts)) {
1289 		*level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1290 	}
1291 
1292 	*voltage = get_unaligned_be16(data);
1293 
1294 	return status;
1295 }
1296 
1297 static int hidpp20_battery_get_battery_voltage(struct hidpp_device *hidpp,
1298 						 u8 feature_index,
1299 						 int *status, int *voltage,
1300 						 int *level, int *charge_type)
1301 {
1302 	struct hidpp_report response;
1303 	int ret;
1304 	u8 *params = (u8 *)response.fap.params;
1305 
1306 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1307 					  CMD_BATTERY_VOLTAGE_GET_BATTERY_VOLTAGE,
1308 					  NULL, 0, &response);
1309 
1310 	if (ret > 0) {
1311 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1312 			__func__, ret);
1313 		return -EPROTO;
1314 	}
1315 	if (ret)
1316 		return ret;
1317 
1318 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_VOLTAGE;
1319 
1320 	*status = hidpp20_battery_map_status_voltage(params, voltage,
1321 						     level, charge_type);
1322 
1323 	return 0;
1324 }
1325 
1326 static int hidpp20_query_battery_voltage_info(struct hidpp_device *hidpp)
1327 {
1328 	u8 feature_type;
1329 	int ret;
1330 	int status, voltage, level, charge_type;
1331 
1332 	if (hidpp->battery.voltage_feature_index == 0xff) {
1333 		ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_BATTERY_VOLTAGE,
1334 					     &hidpp->battery.voltage_feature_index,
1335 					     &feature_type);
1336 		if (ret)
1337 			return ret;
1338 	}
1339 
1340 	ret = hidpp20_battery_get_battery_voltage(hidpp,
1341 						  hidpp->battery.voltage_feature_index,
1342 						  &status, &voltage, &level, &charge_type);
1343 
1344 	if (ret)
1345 		return ret;
1346 
1347 	hidpp->battery.status = status;
1348 	hidpp->battery.voltage = voltage;
1349 	hidpp->battery.level = level;
1350 	hidpp->battery.charge_type = charge_type;
1351 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1352 
1353 	return 0;
1354 }
1355 
1356 static int hidpp20_battery_voltage_event(struct hidpp_device *hidpp,
1357 					    u8 *data, int size)
1358 {
1359 	struct hidpp_report *report = (struct hidpp_report *)data;
1360 	int status, voltage, level, charge_type;
1361 
1362 	if (report->fap.feature_index != hidpp->battery.voltage_feature_index ||
1363 		report->fap.funcindex_clientid != EVENT_BATTERY_VOLTAGE_STATUS_BROADCAST)
1364 		return 0;
1365 
1366 	status = hidpp20_battery_map_status_voltage(report->fap.params, &voltage,
1367 						    &level, &charge_type);
1368 
1369 	hidpp->battery.online = status != POWER_SUPPLY_STATUS_NOT_CHARGING;
1370 
1371 	if (voltage != hidpp->battery.voltage || status != hidpp->battery.status) {
1372 		hidpp->battery.voltage = voltage;
1373 		hidpp->battery.status = status;
1374 		hidpp->battery.level = level;
1375 		hidpp->battery.charge_type = charge_type;
1376 		if (hidpp->battery.ps)
1377 			power_supply_changed(hidpp->battery.ps);
1378 	}
1379 	return 0;
1380 }
1381 
1382 static enum power_supply_property hidpp_battery_props[] = {
1383 	POWER_SUPPLY_PROP_ONLINE,
1384 	POWER_SUPPLY_PROP_STATUS,
1385 	POWER_SUPPLY_PROP_SCOPE,
1386 	POWER_SUPPLY_PROP_MODEL_NAME,
1387 	POWER_SUPPLY_PROP_MANUFACTURER,
1388 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1389 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1390 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1391 	0, /* placeholder for POWER_SUPPLY_PROP_VOLTAGE_NOW, */
1392 };
1393 
1394 static int hidpp_battery_get_property(struct power_supply *psy,
1395 				      enum power_supply_property psp,
1396 				      union power_supply_propval *val)
1397 {
1398 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1399 	int ret = 0;
1400 
1401 	switch(psp) {
1402 		case POWER_SUPPLY_PROP_STATUS:
1403 			val->intval = hidpp->battery.status;
1404 			break;
1405 		case POWER_SUPPLY_PROP_CAPACITY:
1406 			val->intval = hidpp->battery.capacity;
1407 			break;
1408 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1409 			val->intval = hidpp->battery.level;
1410 			break;
1411 		case POWER_SUPPLY_PROP_SCOPE:
1412 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1413 			break;
1414 		case POWER_SUPPLY_PROP_ONLINE:
1415 			val->intval = hidpp->battery.online;
1416 			break;
1417 		case POWER_SUPPLY_PROP_MODEL_NAME:
1418 			if (!strncmp(hidpp->name, "Logitech ", 9))
1419 				val->strval = hidpp->name + 9;
1420 			else
1421 				val->strval = hidpp->name;
1422 			break;
1423 		case POWER_SUPPLY_PROP_MANUFACTURER:
1424 			val->strval = "Logitech";
1425 			break;
1426 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1427 			val->strval = hidpp->hid_dev->uniq;
1428 			break;
1429 		case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1430 			/* hardware reports voltage in in mV. sysfs expects uV */
1431 			val->intval = hidpp->battery.voltage * 1000;
1432 			break;
1433 		case POWER_SUPPLY_PROP_CHARGE_TYPE:
1434 			val->intval = hidpp->battery.charge_type;
1435 			break;
1436 		default:
1437 			ret = -EINVAL;
1438 			break;
1439 	}
1440 
1441 	return ret;
1442 }
1443 
1444 /* -------------------------------------------------------------------------- */
1445 /* 0x1d4b: Wireless device status                                             */
1446 /* -------------------------------------------------------------------------- */
1447 #define HIDPP_PAGE_WIRELESS_DEVICE_STATUS			0x1d4b
1448 
1449 static int hidpp_set_wireless_feature_index(struct hidpp_device *hidpp)
1450 {
1451 	u8 feature_type;
1452 	int ret;
1453 
1454 	ret = hidpp_root_get_feature(hidpp,
1455 				     HIDPP_PAGE_WIRELESS_DEVICE_STATUS,
1456 				     &hidpp->wireless_feature_index,
1457 				     &feature_type);
1458 
1459 	return ret;
1460 }
1461 
1462 /* -------------------------------------------------------------------------- */
1463 /* 0x2120: Hi-resolution scrolling                                            */
1464 /* -------------------------------------------------------------------------- */
1465 
1466 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1467 
1468 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1469 
1470 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1471 	bool enabled, u8 *multiplier)
1472 {
1473 	u8 feature_index;
1474 	u8 feature_type;
1475 	int ret;
1476 	u8 params[1];
1477 	struct hidpp_report response;
1478 
1479 	ret = hidpp_root_get_feature(hidpp,
1480 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1481 				     &feature_index,
1482 				     &feature_type);
1483 	if (ret)
1484 		return ret;
1485 
1486 	params[0] = enabled ? BIT(0) : 0;
1487 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1488 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1489 					  params, sizeof(params), &response);
1490 	if (ret)
1491 		return ret;
1492 	*multiplier = response.fap.params[1];
1493 	return 0;
1494 }
1495 
1496 /* -------------------------------------------------------------------------- */
1497 /* 0x2121: HiRes Wheel                                                        */
1498 /* -------------------------------------------------------------------------- */
1499 
1500 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1501 
1502 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1503 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1504 
1505 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1506 	u8 *multiplier)
1507 {
1508 	u8 feature_index;
1509 	u8 feature_type;
1510 	int ret;
1511 	struct hidpp_report response;
1512 
1513 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1514 				     &feature_index, &feature_type);
1515 	if (ret)
1516 		goto return_default;
1517 
1518 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1519 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1520 					  NULL, 0, &response);
1521 	if (ret)
1522 		goto return_default;
1523 
1524 	*multiplier = response.fap.params[0];
1525 	return 0;
1526 return_default:
1527 	hid_warn(hidpp->hid_dev,
1528 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1529 	return ret;
1530 }
1531 
1532 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1533 	bool high_resolution, bool use_hidpp)
1534 {
1535 	u8 feature_index;
1536 	u8 feature_type;
1537 	int ret;
1538 	u8 params[1];
1539 	struct hidpp_report response;
1540 
1541 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1542 				     &feature_index, &feature_type);
1543 	if (ret)
1544 		return ret;
1545 
1546 	params[0] = (invert          ? BIT(2) : 0) |
1547 		    (high_resolution ? BIT(1) : 0) |
1548 		    (use_hidpp       ? BIT(0) : 0);
1549 
1550 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1551 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1552 					   params, sizeof(params), &response);
1553 }
1554 
1555 /* -------------------------------------------------------------------------- */
1556 /* 0x4301: Solar Keyboard                                                     */
1557 /* -------------------------------------------------------------------------- */
1558 
1559 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1560 
1561 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1562 
1563 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1564 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1565 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1566 
1567 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1568 {
1569 	struct hidpp_report response;
1570 	u8 params[2] = { 1, 1 };
1571 	u8 feature_type;
1572 	int ret;
1573 
1574 	if (hidpp->battery.feature_index == 0xff) {
1575 		ret = hidpp_root_get_feature(hidpp,
1576 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1577 					     &hidpp->battery.solar_feature_index,
1578 					     &feature_type);
1579 		if (ret)
1580 			return ret;
1581 	}
1582 
1583 	ret = hidpp_send_fap_command_sync(hidpp,
1584 					  hidpp->battery.solar_feature_index,
1585 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1586 					  params, 2, &response);
1587 	if (ret > 0) {
1588 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1589 			__func__, ret);
1590 		return -EPROTO;
1591 	}
1592 	if (ret)
1593 		return ret;
1594 
1595 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1596 
1597 	return 0;
1598 }
1599 
1600 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1601 				     u8 *data, int size)
1602 {
1603 	struct hidpp_report *report = (struct hidpp_report *)data;
1604 	int capacity, lux, status;
1605 	u8 function;
1606 
1607 	function = report->fap.funcindex_clientid;
1608 
1609 
1610 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1611 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1612 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1613 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1614 		return 0;
1615 
1616 	capacity = report->fap.params[0];
1617 
1618 	switch (function) {
1619 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1620 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1621 		if (lux > 200)
1622 			status = POWER_SUPPLY_STATUS_CHARGING;
1623 		else
1624 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1625 		break;
1626 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1627 	default:
1628 		if (capacity < hidpp->battery.capacity)
1629 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1630 		else
1631 			status = POWER_SUPPLY_STATUS_CHARGING;
1632 
1633 	}
1634 
1635 	if (capacity == 100)
1636 		status = POWER_SUPPLY_STATUS_FULL;
1637 
1638 	hidpp->battery.online = true;
1639 	if (capacity != hidpp->battery.capacity ||
1640 	    status != hidpp->battery.status) {
1641 		hidpp->battery.capacity = capacity;
1642 		hidpp->battery.status = status;
1643 		if (hidpp->battery.ps)
1644 			power_supply_changed(hidpp->battery.ps);
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 /* -------------------------------------------------------------------------- */
1651 /* 0x6010: Touchpad FW items                                                  */
1652 /* -------------------------------------------------------------------------- */
1653 
1654 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1655 
1656 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1657 
1658 struct hidpp_touchpad_fw_items {
1659 	uint8_t presence;
1660 	uint8_t desired_state;
1661 	uint8_t state;
1662 	uint8_t persistent;
1663 };
1664 
1665 /**
1666  * send a set state command to the device by reading the current items->state
1667  * field. items is then filled with the current state.
1668  */
1669 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1670 				       u8 feature_index,
1671 				       struct hidpp_touchpad_fw_items *items)
1672 {
1673 	struct hidpp_report response;
1674 	int ret;
1675 	u8 *params = (u8 *)response.fap.params;
1676 
1677 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1678 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1679 
1680 	if (ret > 0) {
1681 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1682 			__func__, ret);
1683 		return -EPROTO;
1684 	}
1685 	if (ret)
1686 		return ret;
1687 
1688 	items->presence = params[0];
1689 	items->desired_state = params[1];
1690 	items->state = params[2];
1691 	items->persistent = params[3];
1692 
1693 	return 0;
1694 }
1695 
1696 /* -------------------------------------------------------------------------- */
1697 /* 0x6100: TouchPadRawXY                                                      */
1698 /* -------------------------------------------------------------------------- */
1699 
1700 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1701 
1702 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1703 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1704 
1705 #define EVENT_TOUCHPAD_RAW_XY				0x00
1706 
1707 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1708 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1709 
1710 struct hidpp_touchpad_raw_info {
1711 	u16 x_size;
1712 	u16 y_size;
1713 	u8 z_range;
1714 	u8 area_range;
1715 	u8 timestamp_unit;
1716 	u8 maxcontacts;
1717 	u8 origin;
1718 	u16 res;
1719 };
1720 
1721 struct hidpp_touchpad_raw_xy_finger {
1722 	u8 contact_type;
1723 	u8 contact_status;
1724 	u16 x;
1725 	u16 y;
1726 	u8 z;
1727 	u8 area;
1728 	u8 finger_id;
1729 };
1730 
1731 struct hidpp_touchpad_raw_xy {
1732 	u16 timestamp;
1733 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1734 	u8 spurious_flag;
1735 	u8 end_of_frame;
1736 	u8 finger_count;
1737 	u8 button;
1738 };
1739 
1740 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1741 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1742 {
1743 	struct hidpp_report response;
1744 	int ret;
1745 	u8 *params = (u8 *)response.fap.params;
1746 
1747 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1748 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1749 
1750 	if (ret > 0) {
1751 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1752 			__func__, ret);
1753 		return -EPROTO;
1754 	}
1755 	if (ret)
1756 		return ret;
1757 
1758 	raw_info->x_size = get_unaligned_be16(&params[0]);
1759 	raw_info->y_size = get_unaligned_be16(&params[2]);
1760 	raw_info->z_range = params[4];
1761 	raw_info->area_range = params[5];
1762 	raw_info->maxcontacts = params[7];
1763 	raw_info->origin = params[8];
1764 	/* res is given in unit per inch */
1765 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1766 
1767 	return ret;
1768 }
1769 
1770 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1771 		u8 feature_index, bool send_raw_reports,
1772 		bool sensor_enhanced_settings)
1773 {
1774 	struct hidpp_report response;
1775 
1776 	/*
1777 	 * Params:
1778 	 *   bit 0 - enable raw
1779 	 *   bit 1 - 16bit Z, no area
1780 	 *   bit 2 - enhanced sensitivity
1781 	 *   bit 3 - width, height (4 bits each) instead of area
1782 	 *   bit 4 - send raw + gestures (degrades smoothness)
1783 	 *   remaining bits - reserved
1784 	 */
1785 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1786 
1787 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1788 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1789 }
1790 
1791 static void hidpp_touchpad_touch_event(u8 *data,
1792 	struct hidpp_touchpad_raw_xy_finger *finger)
1793 {
1794 	u8 x_m = data[0] << 2;
1795 	u8 y_m = data[2] << 2;
1796 
1797 	finger->x = x_m << 6 | data[1];
1798 	finger->y = y_m << 6 | data[3];
1799 
1800 	finger->contact_type = data[0] >> 6;
1801 	finger->contact_status = data[2] >> 6;
1802 
1803 	finger->z = data[4];
1804 	finger->area = data[5];
1805 	finger->finger_id = data[6] >> 4;
1806 }
1807 
1808 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1809 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1810 {
1811 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1812 	raw_xy->end_of_frame = data[8] & 0x01;
1813 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1814 	raw_xy->finger_count = data[15] & 0x0f;
1815 	raw_xy->button = (data[8] >> 2) & 0x01;
1816 
1817 	if (raw_xy->finger_count) {
1818 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1819 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1820 	}
1821 }
1822 
1823 /* -------------------------------------------------------------------------- */
1824 /* 0x8123: Force feedback support                                             */
1825 /* -------------------------------------------------------------------------- */
1826 
1827 #define HIDPP_FF_GET_INFO		0x01
1828 #define HIDPP_FF_RESET_ALL		0x11
1829 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
1830 #define HIDPP_FF_SET_EFFECT_STATE	0x31
1831 #define HIDPP_FF_DESTROY_EFFECT		0x41
1832 #define HIDPP_FF_GET_APERTURE		0x51
1833 #define HIDPP_FF_SET_APERTURE		0x61
1834 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
1835 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
1836 
1837 #define HIDPP_FF_EFFECT_STATE_GET	0x00
1838 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
1839 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
1840 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
1841 
1842 #define HIDPP_FF_EFFECT_CONSTANT	0x00
1843 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
1844 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
1845 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
1846 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
1847 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
1848 #define HIDPP_FF_EFFECT_SPRING		0x06
1849 #define HIDPP_FF_EFFECT_DAMPER		0x07
1850 #define HIDPP_FF_EFFECT_FRICTION	0x08
1851 #define HIDPP_FF_EFFECT_INERTIA		0x09
1852 #define HIDPP_FF_EFFECT_RAMP		0x0A
1853 
1854 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
1855 
1856 #define HIDPP_FF_EFFECTID_NONE		-1
1857 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
1858 #define HIDPP_AUTOCENTER_PARAMS_LENGTH	18
1859 
1860 #define HIDPP_FF_MAX_PARAMS	20
1861 #define HIDPP_FF_RESERVED_SLOTS	1
1862 
1863 struct hidpp_ff_private_data {
1864 	struct hidpp_device *hidpp;
1865 	u8 feature_index;
1866 	u8 version;
1867 	u16 gain;
1868 	s16 range;
1869 	u8 slot_autocenter;
1870 	u8 num_effects;
1871 	int *effect_ids;
1872 	struct workqueue_struct *wq;
1873 	atomic_t workqueue_size;
1874 };
1875 
1876 struct hidpp_ff_work_data {
1877 	struct work_struct work;
1878 	struct hidpp_ff_private_data *data;
1879 	int effect_id;
1880 	u8 command;
1881 	u8 params[HIDPP_FF_MAX_PARAMS];
1882 	u8 size;
1883 };
1884 
1885 static const signed short hidpp_ff_effects[] = {
1886 	FF_CONSTANT,
1887 	FF_PERIODIC,
1888 	FF_SINE,
1889 	FF_SQUARE,
1890 	FF_SAW_UP,
1891 	FF_SAW_DOWN,
1892 	FF_TRIANGLE,
1893 	FF_SPRING,
1894 	FF_DAMPER,
1895 	FF_AUTOCENTER,
1896 	FF_GAIN,
1897 	-1
1898 };
1899 
1900 static const signed short hidpp_ff_effects_v2[] = {
1901 	FF_RAMP,
1902 	FF_FRICTION,
1903 	FF_INERTIA,
1904 	-1
1905 };
1906 
1907 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1908 	HIDPP_FF_EFFECT_SPRING,
1909 	HIDPP_FF_EFFECT_FRICTION,
1910 	HIDPP_FF_EFFECT_DAMPER,
1911 	HIDPP_FF_EFFECT_INERTIA
1912 };
1913 
1914 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1915 	"spring",
1916 	"friction",
1917 	"damper",
1918 	"inertia"
1919 };
1920 
1921 
1922 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1923 {
1924 	int i;
1925 
1926 	for (i = 0; i < data->num_effects; i++)
1927 		if (data->effect_ids[i] == effect_id)
1928 			return i+1;
1929 
1930 	return 0;
1931 }
1932 
1933 static void hidpp_ff_work_handler(struct work_struct *w)
1934 {
1935 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1936 	struct hidpp_ff_private_data *data = wd->data;
1937 	struct hidpp_report response;
1938 	u8 slot;
1939 	int ret;
1940 
1941 	/* add slot number if needed */
1942 	switch (wd->effect_id) {
1943 	case HIDPP_FF_EFFECTID_AUTOCENTER:
1944 		wd->params[0] = data->slot_autocenter;
1945 		break;
1946 	case HIDPP_FF_EFFECTID_NONE:
1947 		/* leave slot as zero */
1948 		break;
1949 	default:
1950 		/* find current slot for effect */
1951 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1952 		break;
1953 	}
1954 
1955 	/* send command and wait for reply */
1956 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1957 		wd->command, wd->params, wd->size, &response);
1958 
1959 	if (ret) {
1960 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1961 		goto out;
1962 	}
1963 
1964 	/* parse return data */
1965 	switch (wd->command) {
1966 	case HIDPP_FF_DOWNLOAD_EFFECT:
1967 		slot = response.fap.params[0];
1968 		if (slot > 0 && slot <= data->num_effects) {
1969 			if (wd->effect_id >= 0)
1970 				/* regular effect uploaded */
1971 				data->effect_ids[slot-1] = wd->effect_id;
1972 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1973 				/* autocenter spring uploaded */
1974 				data->slot_autocenter = slot;
1975 		}
1976 		break;
1977 	case HIDPP_FF_DESTROY_EFFECT:
1978 		if (wd->effect_id >= 0)
1979 			/* regular effect destroyed */
1980 			data->effect_ids[wd->params[0]-1] = -1;
1981 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1982 			/* autocenter spring destoyed */
1983 			data->slot_autocenter = 0;
1984 		break;
1985 	case HIDPP_FF_SET_GLOBAL_GAINS:
1986 		data->gain = (wd->params[0] << 8) + wd->params[1];
1987 		break;
1988 	case HIDPP_FF_SET_APERTURE:
1989 		data->range = (wd->params[0] << 8) + wd->params[1];
1990 		break;
1991 	default:
1992 		/* no action needed */
1993 		break;
1994 	}
1995 
1996 out:
1997 	atomic_dec(&data->workqueue_size);
1998 	kfree(wd);
1999 }
2000 
2001 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
2002 {
2003 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
2004 	int s;
2005 
2006 	if (!wd)
2007 		return -ENOMEM;
2008 
2009 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
2010 
2011 	wd->data = data;
2012 	wd->effect_id = effect_id;
2013 	wd->command = command;
2014 	wd->size = size;
2015 	memcpy(wd->params, params, size);
2016 
2017 	atomic_inc(&data->workqueue_size);
2018 	queue_work(data->wq, &wd->work);
2019 
2020 	/* warn about excessive queue size */
2021 	s = atomic_read(&data->workqueue_size);
2022 	if (s >= 20 && s % 20 == 0)
2023 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
2024 
2025 	return 0;
2026 }
2027 
2028 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
2029 {
2030 	struct hidpp_ff_private_data *data = dev->ff->private;
2031 	u8 params[20];
2032 	u8 size;
2033 	int force;
2034 
2035 	/* set common parameters */
2036 	params[2] = effect->replay.length >> 8;
2037 	params[3] = effect->replay.length & 255;
2038 	params[4] = effect->replay.delay >> 8;
2039 	params[5] = effect->replay.delay & 255;
2040 
2041 	switch (effect->type) {
2042 	case FF_CONSTANT:
2043 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2044 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
2045 		params[6] = force >> 8;
2046 		params[7] = force & 255;
2047 		params[8] = effect->u.constant.envelope.attack_level >> 7;
2048 		params[9] = effect->u.constant.envelope.attack_length >> 8;
2049 		params[10] = effect->u.constant.envelope.attack_length & 255;
2050 		params[11] = effect->u.constant.envelope.fade_level >> 7;
2051 		params[12] = effect->u.constant.envelope.fade_length >> 8;
2052 		params[13] = effect->u.constant.envelope.fade_length & 255;
2053 		size = 14;
2054 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
2055 				effect->u.constant.level,
2056 				effect->direction, force);
2057 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2058 				effect->u.constant.envelope.attack_level,
2059 				effect->u.constant.envelope.attack_length,
2060 				effect->u.constant.envelope.fade_level,
2061 				effect->u.constant.envelope.fade_length);
2062 		break;
2063 	case FF_PERIODIC:
2064 	{
2065 		switch (effect->u.periodic.waveform) {
2066 		case FF_SINE:
2067 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
2068 			break;
2069 		case FF_SQUARE:
2070 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
2071 			break;
2072 		case FF_SAW_UP:
2073 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
2074 			break;
2075 		case FF_SAW_DOWN:
2076 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
2077 			break;
2078 		case FF_TRIANGLE:
2079 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
2080 			break;
2081 		default:
2082 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
2083 			return -EINVAL;
2084 		}
2085 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2086 		params[6] = effect->u.periodic.magnitude >> 8;
2087 		params[7] = effect->u.periodic.magnitude & 255;
2088 		params[8] = effect->u.periodic.offset >> 8;
2089 		params[9] = effect->u.periodic.offset & 255;
2090 		params[10] = effect->u.periodic.period >> 8;
2091 		params[11] = effect->u.periodic.period & 255;
2092 		params[12] = effect->u.periodic.phase >> 8;
2093 		params[13] = effect->u.periodic.phase & 255;
2094 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
2095 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
2096 		params[16] = effect->u.periodic.envelope.attack_length & 255;
2097 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
2098 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
2099 		params[19] = effect->u.periodic.envelope.fade_length & 255;
2100 		size = 20;
2101 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
2102 				effect->u.periodic.magnitude, effect->direction,
2103 				effect->u.periodic.offset,
2104 				effect->u.periodic.period,
2105 				effect->u.periodic.phase);
2106 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2107 				effect->u.periodic.envelope.attack_level,
2108 				effect->u.periodic.envelope.attack_length,
2109 				effect->u.periodic.envelope.fade_level,
2110 				effect->u.periodic.envelope.fade_length);
2111 		break;
2112 	}
2113 	case FF_RAMP:
2114 		params[1] = HIDPP_FF_EFFECT_RAMP;
2115 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2116 		params[6] = force >> 8;
2117 		params[7] = force & 255;
2118 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
2119 		params[8] = force >> 8;
2120 		params[9] = force & 255;
2121 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
2122 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
2123 		params[12] = effect->u.ramp.envelope.attack_length & 255;
2124 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
2125 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
2126 		params[15] = effect->u.ramp.envelope.fade_length & 255;
2127 		size = 16;
2128 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
2129 				effect->u.ramp.start_level,
2130 				effect->u.ramp.end_level,
2131 				effect->direction, force);
2132 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
2133 				effect->u.ramp.envelope.attack_level,
2134 				effect->u.ramp.envelope.attack_length,
2135 				effect->u.ramp.envelope.fade_level,
2136 				effect->u.ramp.envelope.fade_length);
2137 		break;
2138 	case FF_FRICTION:
2139 	case FF_INERTIA:
2140 	case FF_SPRING:
2141 	case FF_DAMPER:
2142 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
2143 		params[6] = effect->u.condition[0].left_saturation >> 9;
2144 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
2145 		params[8] = effect->u.condition[0].left_coeff >> 8;
2146 		params[9] = effect->u.condition[0].left_coeff & 255;
2147 		params[10] = effect->u.condition[0].deadband >> 9;
2148 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
2149 		params[12] = effect->u.condition[0].center >> 8;
2150 		params[13] = effect->u.condition[0].center & 255;
2151 		params[14] = effect->u.condition[0].right_coeff >> 8;
2152 		params[15] = effect->u.condition[0].right_coeff & 255;
2153 		params[16] = effect->u.condition[0].right_saturation >> 9;
2154 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
2155 		size = 18;
2156 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
2157 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
2158 				effect->u.condition[0].left_coeff,
2159 				effect->u.condition[0].left_saturation,
2160 				effect->u.condition[0].right_coeff,
2161 				effect->u.condition[0].right_saturation);
2162 		dbg_hid("          deadband=%d, center=%d\n",
2163 				effect->u.condition[0].deadband,
2164 				effect->u.condition[0].center);
2165 		break;
2166 	default:
2167 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
2168 		return -EINVAL;
2169 	}
2170 
2171 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
2172 }
2173 
2174 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
2175 {
2176 	struct hidpp_ff_private_data *data = dev->ff->private;
2177 	u8 params[2];
2178 
2179 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
2180 
2181 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
2182 
2183 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
2184 }
2185 
2186 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
2187 {
2188 	struct hidpp_ff_private_data *data = dev->ff->private;
2189 	u8 slot = 0;
2190 
2191 	dbg_hid("Erasing effect %d.\n", effect_id);
2192 
2193 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
2194 }
2195 
2196 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
2197 {
2198 	struct hidpp_ff_private_data *data = dev->ff->private;
2199 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH];
2200 
2201 	dbg_hid("Setting autocenter to %d.\n", magnitude);
2202 
2203 	/* start a standard spring effect */
2204 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
2205 	/* zero delay and duration */
2206 	params[2] = params[3] = params[4] = params[5] = 0;
2207 	/* set coeff to 25% of saturation */
2208 	params[8] = params[14] = magnitude >> 11;
2209 	params[9] = params[15] = (magnitude >> 3) & 255;
2210 	params[6] = params[16] = magnitude >> 9;
2211 	params[7] = params[17] = (magnitude >> 1) & 255;
2212 	/* zero deadband and center */
2213 	params[10] = params[11] = params[12] = params[13] = 0;
2214 
2215 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2216 }
2217 
2218 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2219 {
2220 	struct hidpp_ff_private_data *data = dev->ff->private;
2221 	u8 params[4];
2222 
2223 	dbg_hid("Setting gain to %d.\n", gain);
2224 
2225 	params[0] = gain >> 8;
2226 	params[1] = gain & 255;
2227 	params[2] = 0; /* no boost */
2228 	params[3] = 0;
2229 
2230 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2231 }
2232 
2233 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2234 {
2235 	struct hid_device *hid = to_hid_device(dev);
2236 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2237 	struct input_dev *idev = hidinput->input;
2238 	struct hidpp_ff_private_data *data = idev->ff->private;
2239 
2240 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2241 }
2242 
2243 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2244 {
2245 	struct hid_device *hid = to_hid_device(dev);
2246 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2247 	struct input_dev *idev = hidinput->input;
2248 	struct hidpp_ff_private_data *data = idev->ff->private;
2249 	u8 params[2];
2250 	int range = simple_strtoul(buf, NULL, 10);
2251 
2252 	range = clamp(range, 180, 900);
2253 
2254 	params[0] = range >> 8;
2255 	params[1] = range & 0x00FF;
2256 
2257 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2258 
2259 	return count;
2260 }
2261 
2262 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2263 
2264 static void hidpp_ff_destroy(struct ff_device *ff)
2265 {
2266 	struct hidpp_ff_private_data *data = ff->private;
2267 	struct hid_device *hid = data->hidpp->hid_dev;
2268 
2269 	hid_info(hid, "Unloading HID++ force feedback.\n");
2270 
2271 	device_remove_file(&hid->dev, &dev_attr_range);
2272 	destroy_workqueue(data->wq);
2273 	kfree(data->effect_ids);
2274 }
2275 
2276 static int hidpp_ff_init(struct hidpp_device *hidpp,
2277 			 struct hidpp_ff_private_data *data)
2278 {
2279 	struct hid_device *hid = hidpp->hid_dev;
2280 	struct hid_input *hidinput;
2281 	struct input_dev *dev;
2282 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2283 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2284 	struct ff_device *ff;
2285 	int error, j, num_slots = data->num_effects;
2286 	u8 version;
2287 
2288 	if (list_empty(&hid->inputs)) {
2289 		hid_err(hid, "no inputs found\n");
2290 		return -ENODEV;
2291 	}
2292 	hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2293 	dev = hidinput->input;
2294 
2295 	if (!dev) {
2296 		hid_err(hid, "Struct input_dev not set!\n");
2297 		return -EINVAL;
2298 	}
2299 
2300 	/* Get firmware release */
2301 	version = bcdDevice & 255;
2302 
2303 	/* Set supported force feedback capabilities */
2304 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2305 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2306 	if (version > 1)
2307 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2308 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2309 
2310 	error = input_ff_create(dev, num_slots);
2311 
2312 	if (error) {
2313 		hid_err(dev, "Failed to create FF device!\n");
2314 		return error;
2315 	}
2316 	/*
2317 	 * Create a copy of passed data, so we can transfer memory
2318 	 * ownership to FF core
2319 	 */
2320 	data = kmemdup(data, sizeof(*data), GFP_KERNEL);
2321 	if (!data)
2322 		return -ENOMEM;
2323 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2324 	if (!data->effect_ids) {
2325 		kfree(data);
2326 		return -ENOMEM;
2327 	}
2328 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2329 	if (!data->wq) {
2330 		kfree(data->effect_ids);
2331 		kfree(data);
2332 		return -ENOMEM;
2333 	}
2334 
2335 	data->hidpp = hidpp;
2336 	data->version = version;
2337 	for (j = 0; j < num_slots; j++)
2338 		data->effect_ids[j] = -1;
2339 
2340 	ff = dev->ff;
2341 	ff->private = data;
2342 
2343 	ff->upload = hidpp_ff_upload_effect;
2344 	ff->erase = hidpp_ff_erase_effect;
2345 	ff->playback = hidpp_ff_playback;
2346 	ff->set_gain = hidpp_ff_set_gain;
2347 	ff->set_autocenter = hidpp_ff_set_autocenter;
2348 	ff->destroy = hidpp_ff_destroy;
2349 
2350 	/* Create sysfs interface */
2351 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2352 	if (error)
2353 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2354 
2355 	/* init the hardware command queue */
2356 	atomic_set(&data->workqueue_size, 0);
2357 
2358 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2359 		 version);
2360 
2361 	return 0;
2362 }
2363 
2364 /* ************************************************************************** */
2365 /*                                                                            */
2366 /* Device Support                                                             */
2367 /*                                                                            */
2368 /* ************************************************************************** */
2369 
2370 /* -------------------------------------------------------------------------- */
2371 /* Touchpad HID++ devices                                                     */
2372 /* -------------------------------------------------------------------------- */
2373 
2374 #define WTP_MANUAL_RESOLUTION				39
2375 
2376 struct wtp_data {
2377 	u16 x_size, y_size;
2378 	u8 finger_count;
2379 	u8 mt_feature_index;
2380 	u8 button_feature_index;
2381 	u8 maxcontacts;
2382 	bool flip_y;
2383 	unsigned int resolution;
2384 };
2385 
2386 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2387 		struct hid_field *field, struct hid_usage *usage,
2388 		unsigned long **bit, int *max)
2389 {
2390 	return -1;
2391 }
2392 
2393 static void wtp_populate_input(struct hidpp_device *hidpp,
2394 			       struct input_dev *input_dev)
2395 {
2396 	struct wtp_data *wd = hidpp->private_data;
2397 
2398 	__set_bit(EV_ABS, input_dev->evbit);
2399 	__set_bit(EV_KEY, input_dev->evbit);
2400 	__clear_bit(EV_REL, input_dev->evbit);
2401 	__clear_bit(EV_LED, input_dev->evbit);
2402 
2403 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2404 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2405 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2406 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2407 
2408 	/* Max pressure is not given by the devices, pick one */
2409 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2410 
2411 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2412 
2413 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2414 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2415 	else
2416 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2417 
2418 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2419 		INPUT_MT_DROP_UNUSED);
2420 }
2421 
2422 static void wtp_touch_event(struct hidpp_device *hidpp,
2423 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2424 {
2425 	struct wtp_data *wd = hidpp->private_data;
2426 	int slot;
2427 
2428 	if (!touch_report->finger_id || touch_report->contact_type)
2429 		/* no actual data */
2430 		return;
2431 
2432 	slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id);
2433 
2434 	input_mt_slot(hidpp->input, slot);
2435 	input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER,
2436 					touch_report->contact_status);
2437 	if (touch_report->contact_status) {
2438 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X,
2439 				touch_report->x);
2440 		input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y,
2441 				wd->flip_y ? wd->y_size - touch_report->y :
2442 					     touch_report->y);
2443 		input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE,
2444 				touch_report->area);
2445 	}
2446 }
2447 
2448 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2449 		struct hidpp_touchpad_raw_xy *raw)
2450 {
2451 	int i;
2452 
2453 	for (i = 0; i < 2; i++)
2454 		wtp_touch_event(hidpp, &(raw->fingers[i]));
2455 
2456 	if (raw->end_of_frame &&
2457 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2458 		input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button);
2459 
2460 	if (raw->end_of_frame || raw->finger_count <= 2) {
2461 		input_mt_sync_frame(hidpp->input);
2462 		input_sync(hidpp->input);
2463 	}
2464 }
2465 
2466 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2467 {
2468 	struct wtp_data *wd = hidpp->private_data;
2469 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2470 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2471 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2472 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2473 	struct hidpp_touchpad_raw_xy raw = {
2474 		.timestamp = data[1],
2475 		.fingers = {
2476 			{
2477 				.contact_type = 0,
2478 				.contact_status = !!data[7],
2479 				.x = get_unaligned_le16(&data[3]),
2480 				.y = get_unaligned_le16(&data[5]),
2481 				.z = c1_area,
2482 				.area = c1_area,
2483 				.finger_id = data[2],
2484 			}, {
2485 				.contact_type = 0,
2486 				.contact_status = !!data[13],
2487 				.x = get_unaligned_le16(&data[9]),
2488 				.y = get_unaligned_le16(&data[11]),
2489 				.z = c2_area,
2490 				.area = c2_area,
2491 				.finger_id = data[8],
2492 			}
2493 		},
2494 		.finger_count = wd->maxcontacts,
2495 		.spurious_flag = 0,
2496 		.end_of_frame = (data[0] >> 7) == 0,
2497 		.button = data[0] & 0x01,
2498 	};
2499 
2500 	wtp_send_raw_xy_event(hidpp, &raw);
2501 
2502 	return 1;
2503 }
2504 
2505 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2506 {
2507 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2508 	struct wtp_data *wd = hidpp->private_data;
2509 	struct hidpp_report *report = (struct hidpp_report *)data;
2510 	struct hidpp_touchpad_raw_xy raw;
2511 
2512 	if (!wd || !hidpp->input)
2513 		return 1;
2514 
2515 	switch (data[0]) {
2516 	case 0x02:
2517 		if (size < 2) {
2518 			hid_err(hdev, "Received HID report of bad size (%d)",
2519 				size);
2520 			return 1;
2521 		}
2522 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2523 			input_event(hidpp->input, EV_KEY, BTN_LEFT,
2524 					!!(data[1] & 0x01));
2525 			input_event(hidpp->input, EV_KEY, BTN_RIGHT,
2526 					!!(data[1] & 0x02));
2527 			input_sync(hidpp->input);
2528 			return 0;
2529 		} else {
2530 			if (size < 21)
2531 				return 1;
2532 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2533 		}
2534 	case REPORT_ID_HIDPP_LONG:
2535 		/* size is already checked in hidpp_raw_event. */
2536 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2537 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2538 			return 1;
2539 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2540 
2541 		wtp_send_raw_xy_event(hidpp, &raw);
2542 		return 0;
2543 	}
2544 
2545 	return 0;
2546 }
2547 
2548 static int wtp_get_config(struct hidpp_device *hidpp)
2549 {
2550 	struct wtp_data *wd = hidpp->private_data;
2551 	struct hidpp_touchpad_raw_info raw_info = {0};
2552 	u8 feature_type;
2553 	int ret;
2554 
2555 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2556 		&wd->mt_feature_index, &feature_type);
2557 	if (ret)
2558 		/* means that the device is not powered up */
2559 		return ret;
2560 
2561 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2562 		&raw_info);
2563 	if (ret)
2564 		return ret;
2565 
2566 	wd->x_size = raw_info.x_size;
2567 	wd->y_size = raw_info.y_size;
2568 	wd->maxcontacts = raw_info.maxcontacts;
2569 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2570 	wd->resolution = raw_info.res;
2571 	if (!wd->resolution)
2572 		wd->resolution = WTP_MANUAL_RESOLUTION;
2573 
2574 	return 0;
2575 }
2576 
2577 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2578 {
2579 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2580 	struct wtp_data *wd;
2581 
2582 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2583 			GFP_KERNEL);
2584 	if (!wd)
2585 		return -ENOMEM;
2586 
2587 	hidpp->private_data = wd;
2588 
2589 	return 0;
2590 };
2591 
2592 static int wtp_connect(struct hid_device *hdev, bool connected)
2593 {
2594 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2595 	struct wtp_data *wd = hidpp->private_data;
2596 	int ret;
2597 
2598 	if (!wd->x_size) {
2599 		ret = wtp_get_config(hidpp);
2600 		if (ret) {
2601 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2602 			return ret;
2603 		}
2604 	}
2605 
2606 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2607 			true, true);
2608 }
2609 
2610 /* ------------------------------------------------------------------------- */
2611 /* Logitech M560 devices                                                     */
2612 /* ------------------------------------------------------------------------- */
2613 
2614 /*
2615  * Logitech M560 protocol overview
2616  *
2617  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2618  * the sides buttons are pressed, it sends some keyboard keys events
2619  * instead of buttons ones.
2620  * To complicate things further, the middle button keys sequence
2621  * is different from the odd press and the even press.
2622  *
2623  * forward button -> Super_R
2624  * backward button -> Super_L+'d' (press only)
2625  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2626  *                  2nd time: left-click (press only)
2627  * NB: press-only means that when the button is pressed, the
2628  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2629  * together sequentially; instead when the button is released, no event is
2630  * generated !
2631  *
2632  * With the command
2633  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2634  * the mouse reacts differently:
2635  * - it never sends a keyboard key event
2636  * - for the three mouse button it sends:
2637  *	middle button               press   11<xx>0a 3500af00...
2638  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2639  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2640  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2641  */
2642 
2643 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2644 
2645 /* how buttons are mapped in the report */
2646 #define M560_MOUSE_BTN_LEFT		0x01
2647 #define M560_MOUSE_BTN_RIGHT		0x02
2648 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2649 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2650 
2651 #define M560_SUB_ID			0x0a
2652 #define M560_BUTTON_MODE_REGISTER	0x35
2653 
2654 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2655 {
2656 	struct hidpp_report response;
2657 	struct hidpp_device *hidpp_dev;
2658 
2659 	hidpp_dev = hid_get_drvdata(hdev);
2660 
2661 	return hidpp_send_rap_command_sync(
2662 		hidpp_dev,
2663 		REPORT_ID_HIDPP_SHORT,
2664 		M560_SUB_ID,
2665 		M560_BUTTON_MODE_REGISTER,
2666 		(u8 *)m560_config_parameter,
2667 		sizeof(m560_config_parameter),
2668 		&response
2669 	);
2670 }
2671 
2672 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2673 {
2674 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2675 
2676 	/* sanity check */
2677 	if (!hidpp->input) {
2678 		hid_err(hdev, "error in parameter\n");
2679 		return -EINVAL;
2680 	}
2681 
2682 	if (size < 7) {
2683 		hid_err(hdev, "error in report\n");
2684 		return 0;
2685 	}
2686 
2687 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2688 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2689 		/*
2690 		 * m560 mouse report for middle, forward and backward button
2691 		 *
2692 		 * data[0] = 0x11
2693 		 * data[1] = device-id
2694 		 * data[2] = 0x0a
2695 		 * data[5] = 0xaf -> middle
2696 		 *	     0xb0 -> forward
2697 		 *	     0xae -> backward
2698 		 *	     0x00 -> release all
2699 		 * data[6] = 0x00
2700 		 */
2701 
2702 		switch (data[5]) {
2703 		case 0xaf:
2704 			input_report_key(hidpp->input, BTN_MIDDLE, 1);
2705 			break;
2706 		case 0xb0:
2707 			input_report_key(hidpp->input, BTN_FORWARD, 1);
2708 			break;
2709 		case 0xae:
2710 			input_report_key(hidpp->input, BTN_BACK, 1);
2711 			break;
2712 		case 0x00:
2713 			input_report_key(hidpp->input, BTN_BACK, 0);
2714 			input_report_key(hidpp->input, BTN_FORWARD, 0);
2715 			input_report_key(hidpp->input, BTN_MIDDLE, 0);
2716 			break;
2717 		default:
2718 			hid_err(hdev, "error in report\n");
2719 			return 0;
2720 		}
2721 		input_sync(hidpp->input);
2722 
2723 	} else if (data[0] == 0x02) {
2724 		/*
2725 		 * Logitech M560 mouse report
2726 		 *
2727 		 * data[0] = type (0x02)
2728 		 * data[1..2] = buttons
2729 		 * data[3..5] = xy
2730 		 * data[6] = wheel
2731 		 */
2732 
2733 		int v;
2734 
2735 		input_report_key(hidpp->input, BTN_LEFT,
2736 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2737 		input_report_key(hidpp->input, BTN_RIGHT,
2738 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2739 
2740 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2741 			input_report_rel(hidpp->input, REL_HWHEEL, -1);
2742 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2743 					 -120);
2744 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2745 			input_report_rel(hidpp->input, REL_HWHEEL, 1);
2746 			input_report_rel(hidpp->input, REL_HWHEEL_HI_RES,
2747 					 120);
2748 		}
2749 
2750 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2751 		input_report_rel(hidpp->input, REL_X, v);
2752 
2753 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2754 		input_report_rel(hidpp->input, REL_Y, v);
2755 
2756 		v = hid_snto32(data[6], 8);
2757 		if (v != 0)
2758 			hidpp_scroll_counter_handle_scroll(hidpp->input,
2759 					&hidpp->vertical_wheel_counter, v);
2760 
2761 		input_sync(hidpp->input);
2762 	}
2763 
2764 	return 1;
2765 }
2766 
2767 static void m560_populate_input(struct hidpp_device *hidpp,
2768 				struct input_dev *input_dev)
2769 {
2770 	__set_bit(EV_KEY, input_dev->evbit);
2771 	__set_bit(BTN_MIDDLE, input_dev->keybit);
2772 	__set_bit(BTN_RIGHT, input_dev->keybit);
2773 	__set_bit(BTN_LEFT, input_dev->keybit);
2774 	__set_bit(BTN_BACK, input_dev->keybit);
2775 	__set_bit(BTN_FORWARD, input_dev->keybit);
2776 
2777 	__set_bit(EV_REL, input_dev->evbit);
2778 	__set_bit(REL_X, input_dev->relbit);
2779 	__set_bit(REL_Y, input_dev->relbit);
2780 	__set_bit(REL_WHEEL, input_dev->relbit);
2781 	__set_bit(REL_HWHEEL, input_dev->relbit);
2782 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2783 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2784 }
2785 
2786 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2787 		struct hid_field *field, struct hid_usage *usage,
2788 		unsigned long **bit, int *max)
2789 {
2790 	return -1;
2791 }
2792 
2793 /* ------------------------------------------------------------------------- */
2794 /* Logitech K400 devices                                                     */
2795 /* ------------------------------------------------------------------------- */
2796 
2797 /*
2798  * The Logitech K400 keyboard has an embedded touchpad which is seen
2799  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2800  * tap-to-click but the setting is not remembered accross reset, annoying some
2801  * users.
2802  *
2803  * We can toggle this feature from the host by using the feature 0x6010:
2804  * Touchpad FW items
2805  */
2806 
2807 struct k400_private_data {
2808 	u8 feature_index;
2809 };
2810 
2811 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2812 {
2813 	struct k400_private_data *k400 = hidpp->private_data;
2814 	struct hidpp_touchpad_fw_items items = {};
2815 	int ret;
2816 	u8 feature_type;
2817 
2818 	if (!k400->feature_index) {
2819 		ret = hidpp_root_get_feature(hidpp,
2820 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2821 			&k400->feature_index, &feature_type);
2822 		if (ret)
2823 			/* means that the device is not powered up */
2824 			return ret;
2825 	}
2826 
2827 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2828 	if (ret)
2829 		return ret;
2830 
2831 	return 0;
2832 }
2833 
2834 static int k400_allocate(struct hid_device *hdev)
2835 {
2836 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2837 	struct k400_private_data *k400;
2838 
2839 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2840 			    GFP_KERNEL);
2841 	if (!k400)
2842 		return -ENOMEM;
2843 
2844 	hidpp->private_data = k400;
2845 
2846 	return 0;
2847 };
2848 
2849 static int k400_connect(struct hid_device *hdev, bool connected)
2850 {
2851 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2852 
2853 	if (!disable_tap_to_click)
2854 		return 0;
2855 
2856 	return k400_disable_tap_to_click(hidpp);
2857 }
2858 
2859 /* ------------------------------------------------------------------------- */
2860 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2861 /* ------------------------------------------------------------------------- */
2862 
2863 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
2864 
2865 static int g920_ff_set_autocenter(struct hidpp_device *hidpp,
2866 				  struct hidpp_ff_private_data *data)
2867 {
2868 	struct hidpp_report response;
2869 	u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = {
2870 		[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART,
2871 	};
2872 	int ret;
2873 
2874 	/* initialize with zero autocenter to get wheel in usable state */
2875 
2876 	dbg_hid("Setting autocenter to 0.\n");
2877 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2878 					  HIDPP_FF_DOWNLOAD_EFFECT,
2879 					  params, ARRAY_SIZE(params),
2880 					  &response);
2881 	if (ret)
2882 		hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n");
2883 	else
2884 		data->slot_autocenter = response.fap.params[0];
2885 
2886 	return ret;
2887 }
2888 
2889 static int g920_get_config(struct hidpp_device *hidpp,
2890 			   struct hidpp_ff_private_data *data)
2891 {
2892 	struct hidpp_report response;
2893 	u8 feature_type;
2894 	int ret;
2895 
2896 	memset(data, 0, sizeof(*data));
2897 
2898 	/* Find feature and store for later use */
2899 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2900 				     &data->feature_index, &feature_type);
2901 	if (ret)
2902 		return ret;
2903 
2904 	/* Read number of slots available in device */
2905 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2906 					  HIDPP_FF_GET_INFO,
2907 					  NULL, 0,
2908 					  &response);
2909 	if (ret) {
2910 		if (ret < 0)
2911 			return ret;
2912 		hid_err(hidpp->hid_dev,
2913 			"%s: received protocol error 0x%02x\n", __func__, ret);
2914 		return -EPROTO;
2915 	}
2916 
2917 	data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2918 
2919 	/* reset all forces */
2920 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2921 					  HIDPP_FF_RESET_ALL,
2922 					  NULL, 0,
2923 					  &response);
2924 	if (ret)
2925 		hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n");
2926 
2927 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2928 					  HIDPP_FF_GET_APERTURE,
2929 					  NULL, 0,
2930 					  &response);
2931 	if (ret) {
2932 		hid_warn(hidpp->hid_dev,
2933 			 "Failed to read range from device!\n");
2934 	}
2935 	data->range = ret ?
2936 		900 : get_unaligned_be16(&response.fap.params[0]);
2937 
2938 	/* Read the current gain values */
2939 	ret = hidpp_send_fap_command_sync(hidpp, data->feature_index,
2940 					  HIDPP_FF_GET_GLOBAL_GAINS,
2941 					  NULL, 0,
2942 					  &response);
2943 	if (ret)
2944 		hid_warn(hidpp->hid_dev,
2945 			 "Failed to read gain values from device!\n");
2946 	data->gain = ret ?
2947 		0xffff : get_unaligned_be16(&response.fap.params[0]);
2948 
2949 	/* ignore boost value at response.fap.params[2] */
2950 
2951 	return g920_ff_set_autocenter(hidpp, data);
2952 }
2953 
2954 /* -------------------------------------------------------------------------- */
2955 /* HID++1.0 devices which use HID++ reports for their wheels                  */
2956 /* -------------------------------------------------------------------------- */
2957 static int hidpp10_wheel_connect(struct hidpp_device *hidpp)
2958 {
2959 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
2960 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT,
2961 			HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT);
2962 }
2963 
2964 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp,
2965 				   u8 *data, int size)
2966 {
2967 	s8 value, hvalue;
2968 
2969 	if (!hidpp->input)
2970 		return -EINVAL;
2971 
2972 	if (size < 7)
2973 		return 0;
2974 
2975 	if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER)
2976 		return 0;
2977 
2978 	value = data[3];
2979 	hvalue = data[4];
2980 
2981 	input_report_rel(hidpp->input, REL_WHEEL, value);
2982 	input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120);
2983 	input_report_rel(hidpp->input, REL_HWHEEL, hvalue);
2984 	input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120);
2985 	input_sync(hidpp->input);
2986 
2987 	return 1;
2988 }
2989 
2990 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp,
2991 					 struct input_dev *input_dev)
2992 {
2993 	__set_bit(EV_REL, input_dev->evbit);
2994 	__set_bit(REL_WHEEL, input_dev->relbit);
2995 	__set_bit(REL_WHEEL_HI_RES, input_dev->relbit);
2996 	__set_bit(REL_HWHEEL, input_dev->relbit);
2997 	__set_bit(REL_HWHEEL_HI_RES, input_dev->relbit);
2998 }
2999 
3000 /* -------------------------------------------------------------------------- */
3001 /* HID++1.0 mice which use HID++ reports for extra mouse buttons              */
3002 /* -------------------------------------------------------------------------- */
3003 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp)
3004 {
3005 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3006 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT,
3007 				    HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT);
3008 }
3009 
3010 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp,
3011 				    u8 *data, int size)
3012 {
3013 	int i;
3014 
3015 	if (!hidpp->input)
3016 		return -EINVAL;
3017 
3018 	if (size < 7)
3019 		return 0;
3020 
3021 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3022 	    data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS)
3023 		return 0;
3024 
3025 	/*
3026 	 * Buttons are either delivered through the regular mouse report *or*
3027 	 * through the extra buttons report. At least for button 6 how it is
3028 	 * delivered differs per receiver firmware version. Even receivers with
3029 	 * the same usb-id show different behavior, so we handle both cases.
3030 	 */
3031 	for (i = 0; i < 8; i++)
3032 		input_report_key(hidpp->input, BTN_MOUSE + i,
3033 				 (data[3] & (1 << i)));
3034 
3035 	/* Some mice report events on button 9+, use BTN_MISC */
3036 	for (i = 0; i < 8; i++)
3037 		input_report_key(hidpp->input, BTN_MISC + i,
3038 				 (data[4] & (1 << i)));
3039 
3040 	input_sync(hidpp->input);
3041 	return 1;
3042 }
3043 
3044 static void hidpp10_extra_mouse_buttons_populate_input(
3045 			struct hidpp_device *hidpp, struct input_dev *input_dev)
3046 {
3047 	/* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */
3048 	__set_bit(BTN_0, input_dev->keybit);
3049 	__set_bit(BTN_1, input_dev->keybit);
3050 	__set_bit(BTN_2, input_dev->keybit);
3051 	__set_bit(BTN_3, input_dev->keybit);
3052 	__set_bit(BTN_4, input_dev->keybit);
3053 	__set_bit(BTN_5, input_dev->keybit);
3054 	__set_bit(BTN_6, input_dev->keybit);
3055 	__set_bit(BTN_7, input_dev->keybit);
3056 }
3057 
3058 /* -------------------------------------------------------------------------- */
3059 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */
3060 /* -------------------------------------------------------------------------- */
3061 
3062 /* Find the consumer-page input report desc and change Maximums to 0x107f */
3063 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp,
3064 					      u8 *_rdesc, unsigned int *rsize)
3065 {
3066 	/* Note 0 terminated so we can use strnstr to search for this. */
3067 	static const char consumer_rdesc_start[] = {
3068 		0x05, 0x0C,	/* USAGE_PAGE (Consumer Devices)       */
3069 		0x09, 0x01,	/* USAGE (Consumer Control)            */
3070 		0xA1, 0x01,	/* COLLECTION (Application)            */
3071 		0x85, 0x03,	/* REPORT_ID = 3                       */
3072 		0x75, 0x10,	/* REPORT_SIZE (16)                    */
3073 		0x95, 0x02,	/* REPORT_COUNT (2)                    */
3074 		0x15, 0x01,	/* LOGICAL_MIN (1)                     */
3075 		0x26, 0x00	/* LOGICAL_MAX (...                    */
3076 	};
3077 	char *consumer_rdesc, *rdesc = (char *)_rdesc;
3078 	unsigned int size;
3079 
3080 	consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize);
3081 	size = *rsize - (consumer_rdesc - rdesc);
3082 	if (consumer_rdesc && size >= 25) {
3083 		consumer_rdesc[15] = 0x7f;
3084 		consumer_rdesc[16] = 0x10;
3085 		consumer_rdesc[20] = 0x7f;
3086 		consumer_rdesc[21] = 0x10;
3087 	}
3088 	return _rdesc;
3089 }
3090 
3091 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp)
3092 {
3093 	return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0,
3094 				    HIDPP_ENABLE_CONSUMER_REPORT,
3095 				    HIDPP_ENABLE_CONSUMER_REPORT);
3096 }
3097 
3098 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp,
3099 					   u8 *data, int size)
3100 {
3101 	u8 consumer_report[5];
3102 
3103 	if (size < 7)
3104 		return 0;
3105 
3106 	if (data[0] != REPORT_ID_HIDPP_SHORT ||
3107 	    data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS)
3108 		return 0;
3109 
3110 	/*
3111 	 * Build a normal consumer report (3) out of the data, this detour
3112 	 * is necessary to get some keyboards to report their 0x10xx usages.
3113 	 */
3114 	consumer_report[0] = 0x03;
3115 	memcpy(&consumer_report[1], &data[3], 4);
3116 	/* We are called from atomic context */
3117 	hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT,
3118 			     consumer_report, 5, 1);
3119 
3120 	return 1;
3121 }
3122 
3123 /* -------------------------------------------------------------------------- */
3124 /* High-resolution scroll wheels                                              */
3125 /* -------------------------------------------------------------------------- */
3126 
3127 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
3128 {
3129 	int ret;
3130 	u8 multiplier = 1;
3131 
3132 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
3133 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
3134 		if (ret == 0)
3135 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
3136 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
3137 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
3138 							   &multiplier);
3139 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
3140 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
3141 		multiplier = 8;
3142 	}
3143 	if (ret)
3144 		return ret;
3145 
3146 	if (multiplier == 0)
3147 		multiplier = 1;
3148 
3149 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
3150 	hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
3151 	return 0;
3152 }
3153 
3154 /* -------------------------------------------------------------------------- */
3155 /* Generic HID++ devices                                                      */
3156 /* -------------------------------------------------------------------------- */
3157 
3158 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc,
3159 			      unsigned int *rsize)
3160 {
3161 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3162 
3163 	if (!hidpp)
3164 		return rdesc;
3165 
3166 	/* For 27 MHz keyboards the quirk gets set after hid_parse. */
3167 	if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE ||
3168 	    (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS))
3169 		rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize);
3170 
3171 	return rdesc;
3172 }
3173 
3174 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
3175 		struct hid_field *field, struct hid_usage *usage,
3176 		unsigned long **bit, int *max)
3177 {
3178 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3179 
3180 	if (!hidpp)
3181 		return 0;
3182 
3183 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3184 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
3185 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
3186 			field->application != HID_GD_MOUSE)
3187 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
3188 
3189 	return 0;
3190 }
3191 
3192 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
3193 		struct hid_field *field, struct hid_usage *usage,
3194 		unsigned long **bit, int *max)
3195 {
3196 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3197 
3198 	if (!hidpp)
3199 		return 0;
3200 
3201 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
3202 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3203 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
3204 				usage->code == ABS_Y || usage->code == ABS_Z ||
3205 				usage->code == ABS_RZ)) {
3206 			field->application = HID_GD_MULTIAXIS;
3207 		}
3208 	}
3209 
3210 	return 0;
3211 }
3212 
3213 
3214 static void hidpp_populate_input(struct hidpp_device *hidpp,
3215 				 struct input_dev *input)
3216 {
3217 	hidpp->input = input;
3218 
3219 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3220 		wtp_populate_input(hidpp, input);
3221 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3222 		m560_populate_input(hidpp, input);
3223 
3224 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS)
3225 		hidpp10_wheel_populate_input(hidpp, input);
3226 
3227 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS)
3228 		hidpp10_extra_mouse_buttons_populate_input(hidpp, input);
3229 }
3230 
3231 static int hidpp_input_configured(struct hid_device *hdev,
3232 				struct hid_input *hidinput)
3233 {
3234 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3235 	struct input_dev *input = hidinput->input;
3236 
3237 	if (!hidpp)
3238 		return 0;
3239 
3240 	hidpp_populate_input(hidpp, input);
3241 
3242 	return 0;
3243 }
3244 
3245 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
3246 		int size)
3247 {
3248 	struct hidpp_report *question = hidpp->send_receive_buf;
3249 	struct hidpp_report *answer = hidpp->send_receive_buf;
3250 	struct hidpp_report *report = (struct hidpp_report *)data;
3251 	int ret;
3252 
3253 	/*
3254 	 * If the mutex is locked then we have a pending answer from a
3255 	 * previously sent command.
3256 	 */
3257 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
3258 		/*
3259 		 * Check for a correct hidpp20 answer or the corresponding
3260 		 * error
3261 		 */
3262 		if (hidpp_match_answer(question, report) ||
3263 				hidpp_match_error(question, report)) {
3264 			*answer = *report;
3265 			hidpp->answer_available = true;
3266 			wake_up(&hidpp->wait);
3267 			/*
3268 			 * This was an answer to a command that this driver sent
3269 			 * We return 1 to hid-core to avoid forwarding the
3270 			 * command upstream as it has been treated by the driver
3271 			 */
3272 
3273 			return 1;
3274 		}
3275 	}
3276 
3277 	if (unlikely(hidpp_report_is_connect_event(hidpp, report))) {
3278 		atomic_set(&hidpp->connected,
3279 				!(report->rap.params[0] & (1 << 6)));
3280 		if (schedule_work(&hidpp->work) == 0)
3281 			dbg_hid("%s: connect event already queued\n", __func__);
3282 		return 1;
3283 	}
3284 
3285 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3286 		ret = hidpp20_battery_event(hidpp, data, size);
3287 		if (ret != 0)
3288 			return ret;
3289 		ret = hidpp_solar_battery_event(hidpp, data, size);
3290 		if (ret != 0)
3291 			return ret;
3292 		ret = hidpp20_battery_voltage_event(hidpp, data, size);
3293 		if (ret != 0)
3294 			return ret;
3295 	}
3296 
3297 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3298 		ret = hidpp10_battery_event(hidpp, data, size);
3299 		if (ret != 0)
3300 			return ret;
3301 	}
3302 
3303 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3304 		ret = hidpp10_wheel_raw_event(hidpp, data, size);
3305 		if (ret != 0)
3306 			return ret;
3307 	}
3308 
3309 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3310 		ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size);
3311 		if (ret != 0)
3312 			return ret;
3313 	}
3314 
3315 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3316 		ret = hidpp10_consumer_keys_raw_event(hidpp, data, size);
3317 		if (ret != 0)
3318 			return ret;
3319 	}
3320 
3321 	return 0;
3322 }
3323 
3324 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
3325 		u8 *data, int size)
3326 {
3327 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3328 	int ret = 0;
3329 
3330 	if (!hidpp)
3331 		return 0;
3332 
3333 	/* Generic HID++ processing. */
3334 	switch (data[0]) {
3335 	case REPORT_ID_HIDPP_VERY_LONG:
3336 		if (size != hidpp->very_long_report_length) {
3337 			hid_err(hdev, "received hid++ report of bad size (%d)",
3338 				size);
3339 			return 1;
3340 		}
3341 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3342 		break;
3343 	case REPORT_ID_HIDPP_LONG:
3344 		if (size != HIDPP_REPORT_LONG_LENGTH) {
3345 			hid_err(hdev, "received hid++ report of bad size (%d)",
3346 				size);
3347 			return 1;
3348 		}
3349 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3350 		break;
3351 	case REPORT_ID_HIDPP_SHORT:
3352 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
3353 			hid_err(hdev, "received hid++ report of bad size (%d)",
3354 				size);
3355 			return 1;
3356 		}
3357 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
3358 		break;
3359 	}
3360 
3361 	/* If no report is available for further processing, skip calling
3362 	 * raw_event of subclasses. */
3363 	if (ret != 0)
3364 		return ret;
3365 
3366 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
3367 		return wtp_raw_event(hdev, data, size);
3368 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
3369 		return m560_raw_event(hdev, data, size);
3370 
3371 	return 0;
3372 }
3373 
3374 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
3375 	struct hid_usage *usage, __s32 value)
3376 {
3377 	/* This function will only be called for scroll events, due to the
3378 	 * restriction imposed in hidpp_usages.
3379 	 */
3380 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3381 	struct hidpp_scroll_counter *counter;
3382 
3383 	if (!hidpp)
3384 		return 0;
3385 
3386 	counter = &hidpp->vertical_wheel_counter;
3387 	/* A scroll event may occur before the multiplier has been retrieved or
3388 	 * the input device set, or high-res scroll enabling may fail. In such
3389 	 * cases we must return early (falling back to default behaviour) to
3390 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
3391 	 */
3392 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
3393 	    || hidpp->input == NULL || counter->wheel_multiplier == 0)
3394 		return 0;
3395 
3396 	hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value);
3397 	return 1;
3398 }
3399 
3400 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
3401 {
3402 	static atomic_t battery_no = ATOMIC_INIT(0);
3403 	struct power_supply_config cfg = { .drv_data = hidpp };
3404 	struct power_supply_desc *desc = &hidpp->battery.desc;
3405 	enum power_supply_property *battery_props;
3406 	struct hidpp_battery *battery;
3407 	unsigned int num_battery_props;
3408 	unsigned long n;
3409 	int ret;
3410 
3411 	if (hidpp->battery.ps)
3412 		return 0;
3413 
3414 	hidpp->battery.feature_index = 0xff;
3415 	hidpp->battery.solar_feature_index = 0xff;
3416 	hidpp->battery.voltage_feature_index = 0xff;
3417 
3418 	if (hidpp->protocol_major >= 2) {
3419 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
3420 			ret = hidpp_solar_request_battery_event(hidpp);
3421 		else {
3422 			ret = hidpp20_query_battery_voltage_info(hidpp);
3423 			if (ret)
3424 				ret = hidpp20_query_battery_info(hidpp);
3425 		}
3426 
3427 		if (ret)
3428 			return ret;
3429 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
3430 	} else {
3431 		ret = hidpp10_query_battery_status(hidpp);
3432 		if (ret) {
3433 			ret = hidpp10_query_battery_mileage(hidpp);
3434 			if (ret)
3435 				return -ENOENT;
3436 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
3437 		} else {
3438 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
3439 		}
3440 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
3441 	}
3442 
3443 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3444 				     hidpp_battery_props,
3445 				     sizeof(hidpp_battery_props),
3446 				     GFP_KERNEL);
3447 	if (!battery_props)
3448 		return -ENOMEM;
3449 
3450 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 3;
3451 
3452 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3453 		battery_props[num_battery_props++] =
3454 				POWER_SUPPLY_PROP_CAPACITY;
3455 
3456 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3457 		battery_props[num_battery_props++] =
3458 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3459 
3460 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3461 		battery_props[num_battery_props++] =
3462 			POWER_SUPPLY_PROP_VOLTAGE_NOW;
3463 
3464 	battery = &hidpp->battery;
3465 
3466 	n = atomic_inc_return(&battery_no) - 1;
3467 	desc->properties = battery_props;
3468 	desc->num_properties = num_battery_props;
3469 	desc->get_property = hidpp_battery_get_property;
3470 	sprintf(battery->name, "hidpp_battery_%ld", n);
3471 	desc->name = battery->name;
3472 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3473 	desc->use_for_apm = 0;
3474 
3475 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3476 						 &battery->desc,
3477 						 &cfg);
3478 	if (IS_ERR(battery->ps))
3479 		return PTR_ERR(battery->ps);
3480 
3481 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3482 
3483 	return ret;
3484 }
3485 
3486 static void hidpp_overwrite_name(struct hid_device *hdev)
3487 {
3488 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3489 	char *name;
3490 
3491 	if (hidpp->protocol_major < 2)
3492 		return;
3493 
3494 	name = hidpp_get_device_name(hidpp);
3495 
3496 	if (!name) {
3497 		hid_err(hdev, "unable to retrieve the name of the device");
3498 	} else {
3499 		dbg_hid("HID++: Got name: %s\n", name);
3500 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3501 	}
3502 
3503 	kfree(name);
3504 }
3505 
3506 static int hidpp_input_open(struct input_dev *dev)
3507 {
3508 	struct hid_device *hid = input_get_drvdata(dev);
3509 
3510 	return hid_hw_open(hid);
3511 }
3512 
3513 static void hidpp_input_close(struct input_dev *dev)
3514 {
3515 	struct hid_device *hid = input_get_drvdata(dev);
3516 
3517 	hid_hw_close(hid);
3518 }
3519 
3520 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3521 {
3522 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3523 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3524 
3525 	if (!input_dev)
3526 		return NULL;
3527 
3528 	input_set_drvdata(input_dev, hdev);
3529 	input_dev->open = hidpp_input_open;
3530 	input_dev->close = hidpp_input_close;
3531 
3532 	input_dev->name = hidpp->name;
3533 	input_dev->phys = hdev->phys;
3534 	input_dev->uniq = hdev->uniq;
3535 	input_dev->id.bustype = hdev->bus;
3536 	input_dev->id.vendor  = hdev->vendor;
3537 	input_dev->id.product = hdev->product;
3538 	input_dev->id.version = hdev->version;
3539 	input_dev->dev.parent = &hdev->dev;
3540 
3541 	return input_dev;
3542 }
3543 
3544 static void hidpp_connect_event(struct hidpp_device *hidpp)
3545 {
3546 	struct hid_device *hdev = hidpp->hid_dev;
3547 	int ret = 0;
3548 	bool connected = atomic_read(&hidpp->connected);
3549 	struct input_dev *input;
3550 	char *name, *devm_name;
3551 
3552 	if (!connected) {
3553 		if (hidpp->battery.ps) {
3554 			hidpp->battery.online = false;
3555 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3556 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3557 			power_supply_changed(hidpp->battery.ps);
3558 		}
3559 		return;
3560 	}
3561 
3562 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3563 		ret = wtp_connect(hdev, connected);
3564 		if (ret)
3565 			return;
3566 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3567 		ret = m560_send_config_command(hdev, connected);
3568 		if (ret)
3569 			return;
3570 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3571 		ret = k400_connect(hdev, connected);
3572 		if (ret)
3573 			return;
3574 	}
3575 
3576 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) {
3577 		ret = hidpp10_wheel_connect(hidpp);
3578 		if (ret)
3579 			return;
3580 	}
3581 
3582 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) {
3583 		ret = hidpp10_extra_mouse_buttons_connect(hidpp);
3584 		if (ret)
3585 			return;
3586 	}
3587 
3588 	if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) {
3589 		ret = hidpp10_consumer_keys_connect(hidpp);
3590 		if (ret)
3591 			return;
3592 	}
3593 
3594 	/* the device is already connected, we can ask for its name and
3595 	 * protocol */
3596 	if (!hidpp->protocol_major) {
3597 		ret = hidpp_root_get_protocol_version(hidpp);
3598 		if (ret) {
3599 			hid_err(hdev, "Can not get the protocol version.\n");
3600 			return;
3601 		}
3602 	}
3603 
3604 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3605 		name = hidpp_get_device_name(hidpp);
3606 		if (name) {
3607 			devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL,
3608 						   "%s", name);
3609 			kfree(name);
3610 			if (!devm_name)
3611 				return;
3612 
3613 			hidpp->name = devm_name;
3614 		}
3615 	}
3616 
3617 	hidpp_initialize_battery(hidpp);
3618 
3619 	/* forward current battery state */
3620 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3621 		hidpp10_enable_battery_reporting(hidpp);
3622 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3623 			hidpp10_query_battery_mileage(hidpp);
3624 		else
3625 			hidpp10_query_battery_status(hidpp);
3626 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3627 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_VOLTAGE)
3628 			hidpp20_query_battery_voltage_info(hidpp);
3629 		else
3630 			hidpp20_query_battery_info(hidpp);
3631 	}
3632 	if (hidpp->battery.ps)
3633 		power_supply_changed(hidpp->battery.ps);
3634 
3635 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3636 		hi_res_scroll_enable(hidpp);
3637 
3638 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3639 		/* if the input nodes are already created, we can stop now */
3640 		return;
3641 
3642 	input = hidpp_allocate_input(hdev);
3643 	if (!input) {
3644 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3645 		return;
3646 	}
3647 
3648 	hidpp_populate_input(hidpp, input);
3649 
3650 	ret = input_register_device(input);
3651 	if (ret)
3652 		input_free_device(input);
3653 
3654 	hidpp->delayed_input = input;
3655 }
3656 
3657 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3658 
3659 static struct attribute *sysfs_attrs[] = {
3660 	&dev_attr_builtin_power_supply.attr,
3661 	NULL
3662 };
3663 
3664 static const struct attribute_group ps_attribute_group = {
3665 	.attrs = sysfs_attrs
3666 };
3667 
3668 static int hidpp_get_report_length(struct hid_device *hdev, int id)
3669 {
3670 	struct hid_report_enum *re;
3671 	struct hid_report *report;
3672 
3673 	re = &(hdev->report_enum[HID_OUTPUT_REPORT]);
3674 	report = re->report_id_hash[id];
3675 	if (!report)
3676 		return 0;
3677 
3678 	return report->field[0]->report_count + 1;
3679 }
3680 
3681 static u8 hidpp_validate_device(struct hid_device *hdev)
3682 {
3683 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3684 	int id, report_length;
3685 	u8 supported_reports = 0;
3686 
3687 	id = REPORT_ID_HIDPP_SHORT;
3688 	report_length = hidpp_get_report_length(hdev, id);
3689 	if (report_length) {
3690 		if (report_length < HIDPP_REPORT_SHORT_LENGTH)
3691 			goto bad_device;
3692 
3693 		supported_reports |= HIDPP_REPORT_SHORT_SUPPORTED;
3694 	}
3695 
3696 	id = REPORT_ID_HIDPP_LONG;
3697 	report_length = hidpp_get_report_length(hdev, id);
3698 	if (report_length) {
3699 		if (report_length < HIDPP_REPORT_LONG_LENGTH)
3700 			goto bad_device;
3701 
3702 		supported_reports |= HIDPP_REPORT_LONG_SUPPORTED;
3703 	}
3704 
3705 	id = REPORT_ID_HIDPP_VERY_LONG;
3706 	report_length = hidpp_get_report_length(hdev, id);
3707 	if (report_length) {
3708 		if (report_length < HIDPP_REPORT_LONG_LENGTH ||
3709 		    report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH)
3710 			goto bad_device;
3711 
3712 		supported_reports |= HIDPP_REPORT_VERY_LONG_SUPPORTED;
3713 		hidpp->very_long_report_length = report_length;
3714 	}
3715 
3716 	return supported_reports;
3717 
3718 bad_device:
3719 	hid_warn(hdev, "not enough values in hidpp report %d\n", id);
3720 	return false;
3721 }
3722 
3723 static bool hidpp_application_equals(struct hid_device *hdev,
3724 				     unsigned int application)
3725 {
3726 	struct list_head *report_list;
3727 	struct hid_report *report;
3728 
3729 	report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list;
3730 	report = list_first_entry_or_null(report_list, struct hid_report, list);
3731 	return report && report->application == application;
3732 }
3733 
3734 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3735 {
3736 	struct hidpp_device *hidpp;
3737 	int ret;
3738 	bool connected;
3739 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
3740 	struct hidpp_ff_private_data data;
3741 
3742 	/* report_fixup needs drvdata to be set before we call hid_parse */
3743 	hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL);
3744 	if (!hidpp)
3745 		return -ENOMEM;
3746 
3747 	hidpp->hid_dev = hdev;
3748 	hidpp->name = hdev->name;
3749 	hidpp->quirks = id->driver_data;
3750 	hid_set_drvdata(hdev, hidpp);
3751 
3752 	ret = hid_parse(hdev);
3753 	if (ret) {
3754 		hid_err(hdev, "%s:parse failed\n", __func__);
3755 		return ret;
3756 	}
3757 
3758 	/*
3759 	 * Make sure the device is HID++ capable, otherwise treat as generic HID
3760 	 */
3761 	hidpp->supported_reports = hidpp_validate_device(hdev);
3762 
3763 	if (!hidpp->supported_reports) {
3764 		hid_set_drvdata(hdev, NULL);
3765 		devm_kfree(&hdev->dev, hidpp);
3766 		return hid_hw_start(hdev, HID_CONNECT_DEFAULT);
3767 	}
3768 
3769 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3770 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3771 
3772 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3773 	    hidpp_application_equals(hdev, HID_GD_MOUSE))
3774 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS |
3775 				 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS;
3776 
3777 	if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE &&
3778 	    hidpp_application_equals(hdev, HID_GD_KEYBOARD))
3779 		hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS;
3780 
3781 	if (disable_raw_mode) {
3782 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3783 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3784 	}
3785 
3786 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3787 		ret = wtp_allocate(hdev, id);
3788 		if (ret)
3789 			return ret;
3790 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3791 		ret = k400_allocate(hdev);
3792 		if (ret)
3793 			return ret;
3794 	}
3795 
3796 	INIT_WORK(&hidpp->work, delayed_work_cb);
3797 	mutex_init(&hidpp->send_mutex);
3798 	init_waitqueue_head(&hidpp->wait);
3799 
3800 	/* indicates we are handling the battery properties in the kernel */
3801 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3802 	if (ret)
3803 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3804 			 hdev->name);
3805 
3806 	/*
3807 	 * Plain USB connections need to actually call start and open
3808 	 * on the transport driver to allow incoming data.
3809 	 */
3810 	ret = hid_hw_start(hdev, 0);
3811 	if (ret) {
3812 		hid_err(hdev, "hw start failed\n");
3813 		goto hid_hw_start_fail;
3814 	}
3815 
3816 	ret = hid_hw_open(hdev);
3817 	if (ret < 0) {
3818 		dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3819 			__func__, ret);
3820 		goto hid_hw_open_fail;
3821 	}
3822 
3823 	/* Allow incoming packets */
3824 	hid_device_io_start(hdev);
3825 
3826 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3827 		hidpp_unifying_init(hidpp);
3828 
3829 	connected = hidpp_root_get_protocol_version(hidpp) == 0;
3830 	atomic_set(&hidpp->connected, connected);
3831 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3832 		if (!connected) {
3833 			ret = -ENODEV;
3834 			hid_err(hdev, "Device not connected");
3835 			goto hid_hw_init_fail;
3836 		}
3837 
3838 		hidpp_overwrite_name(hdev);
3839 	}
3840 
3841 	if (connected && hidpp->protocol_major >= 2) {
3842 		ret = hidpp_set_wireless_feature_index(hidpp);
3843 		if (ret == -ENOENT)
3844 			hidpp->wireless_feature_index = 0;
3845 		else if (ret)
3846 			goto hid_hw_init_fail;
3847 	}
3848 
3849 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3850 		ret = wtp_get_config(hidpp);
3851 		if (ret)
3852 			goto hid_hw_init_fail;
3853 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3854 		ret = g920_get_config(hidpp, &data);
3855 		if (ret)
3856 			goto hid_hw_init_fail;
3857 	}
3858 
3859 	hidpp_connect_event(hidpp);
3860 
3861 	/* Reset the HID node state */
3862 	hid_device_io_stop(hdev);
3863 	hid_hw_close(hdev);
3864 	hid_hw_stop(hdev);
3865 
3866 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3867 		connect_mask &= ~HID_CONNECT_HIDINPUT;
3868 
3869 	/* Now export the actual inputs and hidraw nodes to the world */
3870 	ret = hid_hw_start(hdev, connect_mask);
3871 	if (ret) {
3872 		hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3873 		goto hid_hw_start_fail;
3874 	}
3875 
3876 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3877 		ret = hidpp_ff_init(hidpp, &data);
3878 		if (ret)
3879 			hid_warn(hidpp->hid_dev,
3880 		     "Unable to initialize force feedback support, errno %d\n",
3881 				 ret);
3882 	}
3883 
3884 	return ret;
3885 
3886 hid_hw_init_fail:
3887 	hid_hw_close(hdev);
3888 hid_hw_open_fail:
3889 	hid_hw_stop(hdev);
3890 hid_hw_start_fail:
3891 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3892 	cancel_work_sync(&hidpp->work);
3893 	mutex_destroy(&hidpp->send_mutex);
3894 	return ret;
3895 }
3896 
3897 static void hidpp_remove(struct hid_device *hdev)
3898 {
3899 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3900 
3901 	if (!hidpp)
3902 		return hid_hw_stop(hdev);
3903 
3904 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3905 
3906 	hid_hw_stop(hdev);
3907 	cancel_work_sync(&hidpp->work);
3908 	mutex_destroy(&hidpp->send_mutex);
3909 }
3910 
3911 #define LDJ_DEVICE(product) \
3912 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3913 		   USB_VENDOR_ID_LOGITECH, (product))
3914 
3915 #define L27MHZ_DEVICE(product) \
3916 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \
3917 		   USB_VENDOR_ID_LOGITECH, (product))
3918 
3919 static const struct hid_device_id hidpp_devices[] = {
3920 	{ /* wireless touchpad */
3921 	  LDJ_DEVICE(0x4011),
3922 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3923 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3924 	{ /* wireless touchpad T650 */
3925 	  LDJ_DEVICE(0x4101),
3926 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3927 	{ /* wireless touchpad T651 */
3928 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3929 		USB_DEVICE_ID_LOGITECH_T651),
3930 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
3931 	{ /* Mouse Logitech Anywhere MX */
3932 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3933 	{ /* Mouse Logitech Cube */
3934 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3935 	{ /* Mouse Logitech M335 */
3936 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3937 	{ /* Mouse Logitech M515 */
3938 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3939 	{ /* Mouse logitech M560 */
3940 	  LDJ_DEVICE(0x402d),
3941 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3942 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3943 	{ /* Mouse Logitech M705 (firmware RQM17) */
3944 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3945 	{ /* Mouse Logitech M705 (firmware RQM67) */
3946 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3947 	{ /* Mouse Logitech M720 */
3948 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3949 	{ /* Mouse Logitech MX Anywhere 2 */
3950 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3951 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3952 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3953 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3954 	{ /* Mouse Logitech MX Anywhere 2S */
3955 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3956 	{ /* Mouse Logitech MX Master */
3957 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3958 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3959 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3960 	{ /* Mouse Logitech MX Master 2S */
3961 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3962 	{ /* Mouse Logitech MX Master 3 */
3963 	  LDJ_DEVICE(0x4082), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3964 	{ /* Mouse Logitech Performance MX */
3965 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3966 	{ /* Keyboard logitech K400 */
3967 	  LDJ_DEVICE(0x4024),
3968 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
3969 	{ /* Solar Keyboard Logitech K750 */
3970 	  LDJ_DEVICE(0x4002),
3971 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
3972 	{ /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */
3973 	  LDJ_DEVICE(0xb305),
3974 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3975 	{ /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */
3976 	  LDJ_DEVICE(0xb30b),
3977 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
3978 
3979 	{ LDJ_DEVICE(HID_ANY_ID) },
3980 
3981 	{ /* Keyboard LX501 (Y-RR53) */
3982 	  L27MHZ_DEVICE(0x0049),
3983 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3984 	{ /* Keyboard MX3000 (Y-RAM74) */
3985 	  L27MHZ_DEVICE(0x0057),
3986 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3987 	{ /* Keyboard MX3200 (Y-RAV80) */
3988 	  L27MHZ_DEVICE(0x005c),
3989 	  .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL },
3990 	{ /* S510 Media Remote */
3991 	  L27MHZ_DEVICE(0x00fe),
3992 	  .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL },
3993 
3994 	{ L27MHZ_DEVICE(HID_ANY_ID) },
3995 
3996 	{ /* Logitech G403 Wireless Gaming Mouse over USB */
3997 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) },
3998 	{ /* Logitech G703 Gaming Mouse over USB */
3999 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) },
4000 	{ /* Logitech G703 Hero Gaming Mouse over USB */
4001 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) },
4002 	{ /* Logitech G900 Gaming Mouse over USB */
4003 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) },
4004 	{ /* Logitech G903 Gaming Mouse over USB */
4005 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) },
4006 	{ /* Logitech G903 Hero Gaming Mouse over USB */
4007 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) },
4008 	{ /* Logitech G920 Wheel over USB */
4009 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
4010 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
4011 	{ /* Logitech G Pro Gaming Mouse over USB */
4012 	  HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) },
4013 
4014 	{ /* MX5000 keyboard over Bluetooth */
4015 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305),
4016 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4017 	{ /* MX5500 keyboard over Bluetooth */
4018 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b),
4019 	  .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS },
4020 	{ /* MX Master mouse over Bluetooth */
4021 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb012),
4022 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4023 	{ HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb01e),
4024 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4025 	{ /* MX Master 3 mouse over Bluetooth */
4026 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb023),
4027 	  .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
4028 	{}
4029 };
4030 
4031 MODULE_DEVICE_TABLE(hid, hidpp_devices);
4032 
4033 static const struct hid_usage_id hidpp_usages[] = {
4034 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
4035 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
4036 };
4037 
4038 static struct hid_driver hidpp_driver = {
4039 	.name = "logitech-hidpp-device",
4040 	.id_table = hidpp_devices,
4041 	.report_fixup = hidpp_report_fixup,
4042 	.probe = hidpp_probe,
4043 	.remove = hidpp_remove,
4044 	.raw_event = hidpp_raw_event,
4045 	.usage_table = hidpp_usages,
4046 	.event = hidpp_event,
4047 	.input_configured = hidpp_input_configured,
4048 	.input_mapping = hidpp_input_mapping,
4049 	.input_mapped = hidpp_input_mapped,
4050 };
4051 
4052 module_hid_driver(hidpp_driver);
4053