1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * HIDPP protocol for Logitech Unifying receivers 4 * 5 * Copyright (c) 2011 Logitech (c) 6 * Copyright (c) 2012-2013 Google (c) 7 * Copyright (c) 2013-2014 Red Hat Inc. 8 */ 9 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/device.h> 14 #include <linux/input.h> 15 #include <linux/usb.h> 16 #include <linux/hid.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/sched.h> 20 #include <linux/sched/clock.h> 21 #include <linux/kfifo.h> 22 #include <linux/input/mt.h> 23 #include <linux/workqueue.h> 24 #include <linux/atomic.h> 25 #include <linux/fixp-arith.h> 26 #include <asm/unaligned.h> 27 #include "usbhid/usbhid.h" 28 #include "hid-ids.h" 29 30 MODULE_LICENSE("GPL"); 31 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>"); 32 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>"); 33 34 static bool disable_raw_mode; 35 module_param(disable_raw_mode, bool, 0644); 36 MODULE_PARM_DESC(disable_raw_mode, 37 "Disable Raw mode reporting for touchpads and keep firmware gestures."); 38 39 static bool disable_tap_to_click; 40 module_param(disable_tap_to_click, bool, 0644); 41 MODULE_PARM_DESC(disable_tap_to_click, 42 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently)."); 43 44 #define REPORT_ID_HIDPP_SHORT 0x10 45 #define REPORT_ID_HIDPP_LONG 0x11 46 #define REPORT_ID_HIDPP_VERY_LONG 0x12 47 48 #define HIDPP_REPORT_SHORT_LENGTH 7 49 #define HIDPP_REPORT_LONG_LENGTH 20 50 #define HIDPP_REPORT_VERY_LONG_MAX_LENGTH 64 51 52 #define HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS 0x03 53 #define HIDPP_SUB_ID_ROLLER 0x05 54 #define HIDPP_SUB_ID_MOUSE_EXTRA_BTNS 0x06 55 56 #define HIDPP_QUIRK_CLASS_WTP BIT(0) 57 #define HIDPP_QUIRK_CLASS_M560 BIT(1) 58 #define HIDPP_QUIRK_CLASS_K400 BIT(2) 59 #define HIDPP_QUIRK_CLASS_G920 BIT(3) 60 #define HIDPP_QUIRK_CLASS_K750 BIT(4) 61 62 /* bits 2..20 are reserved for classes */ 63 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */ 64 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22) 65 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23) 66 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24) 67 #define HIDPP_QUIRK_UNIFYING BIT(25) 68 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26) 69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27) 70 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28) 71 #define HIDPP_QUIRK_HIDPP_WHEELS BIT(29) 72 #define HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS BIT(30) 73 #define HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS BIT(31) 74 75 /* These are just aliases for now */ 76 #define HIDPP_QUIRK_KBD_SCROLL_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 77 #define HIDPP_QUIRK_KBD_ZOOM_WHEEL HIDPP_QUIRK_HIDPP_WHEELS 78 79 /* Convenience constant to check for any high-res support. */ 80 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \ 81 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \ 82 HIDPP_QUIRK_HI_RES_SCROLL_X2121) 83 84 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT 85 86 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0) 87 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1) 88 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2) 89 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3) 90 91 /* 92 * There are two hidpp protocols in use, the first version hidpp10 is known 93 * as register access protocol or RAP, the second version hidpp20 is known as 94 * feature access protocol or FAP 95 * 96 * Most older devices (including the Unifying usb receiver) use the RAP protocol 97 * where as most newer devices use the FAP protocol. Both protocols are 98 * compatible with the underlying transport, which could be usb, Unifiying, or 99 * bluetooth. The message lengths are defined by the hid vendor specific report 100 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and 101 * the HIDPP_LONG report type (total message length 20 bytes) 102 * 103 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG 104 * messages. The Unifying receiver itself responds to RAP messages (device index 105 * is 0xFF for the receiver), and all messages (short or long) with a device 106 * index between 1 and 6 are passed untouched to the corresponding paired 107 * Unifying device. 108 * 109 * The paired device can be RAP or FAP, it will receive the message untouched 110 * from the Unifiying receiver. 111 */ 112 113 struct fap { 114 u8 feature_index; 115 u8 funcindex_clientid; 116 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 117 }; 118 119 struct rap { 120 u8 sub_id; 121 u8 reg_address; 122 u8 params[HIDPP_REPORT_VERY_LONG_MAX_LENGTH - 4U]; 123 }; 124 125 struct hidpp_report { 126 u8 report_id; 127 u8 device_index; 128 union { 129 struct fap fap; 130 struct rap rap; 131 u8 rawbytes[sizeof(struct fap)]; 132 }; 133 } __packed; 134 135 struct hidpp_battery { 136 u8 feature_index; 137 u8 solar_feature_index; 138 struct power_supply_desc desc; 139 struct power_supply *ps; 140 char name[64]; 141 int status; 142 int capacity; 143 int level; 144 bool online; 145 }; 146 147 /** 148 * struct hidpp_scroll_counter - Utility class for processing high-resolution 149 * scroll events. 150 * @dev: the input device for which events should be reported. 151 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event 152 * @remainder: counts the number of high-resolution units moved since the last 153 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should 154 * only be used by class methods. 155 * @direction: direction of last movement (1 or -1) 156 * @last_time: last event time, used to reset remainder after inactivity 157 */ 158 struct hidpp_scroll_counter { 159 int wheel_multiplier; 160 int remainder; 161 int direction; 162 unsigned long long last_time; 163 }; 164 165 struct hidpp_device { 166 struct hid_device *hid_dev; 167 struct input_dev *input; 168 struct mutex send_mutex; 169 void *send_receive_buf; 170 char *name; /* will never be NULL and should not be freed */ 171 wait_queue_head_t wait; 172 int very_long_report_length; 173 bool answer_available; 174 u8 protocol_major; 175 u8 protocol_minor; 176 177 void *private_data; 178 179 struct work_struct work; 180 struct kfifo delayed_work_fifo; 181 atomic_t connected; 182 struct input_dev *delayed_input; 183 184 unsigned long quirks; 185 unsigned long capabilities; 186 187 struct hidpp_battery battery; 188 struct hidpp_scroll_counter vertical_wheel_counter; 189 }; 190 191 /* HID++ 1.0 error codes */ 192 #define HIDPP_ERROR 0x8f 193 #define HIDPP_ERROR_SUCCESS 0x00 194 #define HIDPP_ERROR_INVALID_SUBID 0x01 195 #define HIDPP_ERROR_INVALID_ADRESS 0x02 196 #define HIDPP_ERROR_INVALID_VALUE 0x03 197 #define HIDPP_ERROR_CONNECT_FAIL 0x04 198 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05 199 #define HIDPP_ERROR_ALREADY_EXISTS 0x06 200 #define HIDPP_ERROR_BUSY 0x07 201 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08 202 #define HIDPP_ERROR_RESOURCE_ERROR 0x09 203 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a 204 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b 205 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c 206 /* HID++ 2.0 error codes */ 207 #define HIDPP20_ERROR 0xff 208 209 static void hidpp_connect_event(struct hidpp_device *hidpp_dev); 210 211 static int __hidpp_send_report(struct hid_device *hdev, 212 struct hidpp_report *hidpp_report) 213 { 214 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 215 int fields_count, ret; 216 217 switch (hidpp_report->report_id) { 218 case REPORT_ID_HIDPP_SHORT: 219 fields_count = HIDPP_REPORT_SHORT_LENGTH; 220 break; 221 case REPORT_ID_HIDPP_LONG: 222 fields_count = HIDPP_REPORT_LONG_LENGTH; 223 break; 224 case REPORT_ID_HIDPP_VERY_LONG: 225 fields_count = hidpp->very_long_report_length; 226 break; 227 default: 228 return -ENODEV; 229 } 230 231 /* 232 * set the device_index as the receiver, it will be overwritten by 233 * hid_hw_request if needed 234 */ 235 hidpp_report->device_index = 0xff; 236 237 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) { 238 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count); 239 } else { 240 ret = hid_hw_raw_request(hdev, hidpp_report->report_id, 241 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT, 242 HID_REQ_SET_REPORT); 243 } 244 245 return ret == fields_count ? 0 : -1; 246 } 247 248 /** 249 * hidpp_send_message_sync() returns 0 in case of success, and something else 250 * in case of a failure. 251 * - If ' something else' is positive, that means that an error has been raised 252 * by the protocol itself. 253 * - If ' something else' is negative, that means that we had a classic error 254 * (-ENOMEM, -EPIPE, etc...) 255 */ 256 static int hidpp_send_message_sync(struct hidpp_device *hidpp, 257 struct hidpp_report *message, 258 struct hidpp_report *response) 259 { 260 int ret; 261 262 mutex_lock(&hidpp->send_mutex); 263 264 hidpp->send_receive_buf = response; 265 hidpp->answer_available = false; 266 267 /* 268 * So that we can later validate the answer when it arrives 269 * in hidpp_raw_event 270 */ 271 *response = *message; 272 273 ret = __hidpp_send_report(hidpp->hid_dev, message); 274 275 if (ret) { 276 dbg_hid("__hidpp_send_report returned err: %d\n", ret); 277 memset(response, 0, sizeof(struct hidpp_report)); 278 goto exit; 279 } 280 281 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available, 282 5*HZ)) { 283 dbg_hid("%s:timeout waiting for response\n", __func__); 284 memset(response, 0, sizeof(struct hidpp_report)); 285 ret = -ETIMEDOUT; 286 } 287 288 if (response->report_id == REPORT_ID_HIDPP_SHORT && 289 response->rap.sub_id == HIDPP_ERROR) { 290 ret = response->rap.params[1]; 291 dbg_hid("%s:got hidpp error %02X\n", __func__, ret); 292 goto exit; 293 } 294 295 if ((response->report_id == REPORT_ID_HIDPP_LONG || 296 response->report_id == REPORT_ID_HIDPP_VERY_LONG) && 297 response->fap.feature_index == HIDPP20_ERROR) { 298 ret = response->fap.params[1]; 299 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret); 300 goto exit; 301 } 302 303 exit: 304 mutex_unlock(&hidpp->send_mutex); 305 return ret; 306 307 } 308 309 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp, 310 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count, 311 struct hidpp_report *response) 312 { 313 struct hidpp_report *message; 314 int ret; 315 316 if (param_count > sizeof(message->fap.params)) 317 return -EINVAL; 318 319 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 320 if (!message) 321 return -ENOMEM; 322 323 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4)) 324 message->report_id = REPORT_ID_HIDPP_VERY_LONG; 325 else 326 message->report_id = REPORT_ID_HIDPP_LONG; 327 message->fap.feature_index = feat_index; 328 message->fap.funcindex_clientid = funcindex_clientid; 329 memcpy(&message->fap.params, params, param_count); 330 331 ret = hidpp_send_message_sync(hidpp, message, response); 332 kfree(message); 333 return ret; 334 } 335 336 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev, 337 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count, 338 struct hidpp_report *response) 339 { 340 struct hidpp_report *message; 341 int ret, max_count; 342 343 switch (report_id) { 344 case REPORT_ID_HIDPP_SHORT: 345 max_count = HIDPP_REPORT_SHORT_LENGTH - 4; 346 break; 347 case REPORT_ID_HIDPP_LONG: 348 max_count = HIDPP_REPORT_LONG_LENGTH - 4; 349 break; 350 case REPORT_ID_HIDPP_VERY_LONG: 351 max_count = hidpp_dev->very_long_report_length - 4; 352 break; 353 default: 354 return -EINVAL; 355 } 356 357 if (param_count > max_count) 358 return -EINVAL; 359 360 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL); 361 if (!message) 362 return -ENOMEM; 363 message->report_id = report_id; 364 message->rap.sub_id = sub_id; 365 message->rap.reg_address = reg_address; 366 memcpy(&message->rap.params, params, param_count); 367 368 ret = hidpp_send_message_sync(hidpp_dev, message, response); 369 kfree(message); 370 return ret; 371 } 372 373 static void delayed_work_cb(struct work_struct *work) 374 { 375 struct hidpp_device *hidpp = container_of(work, struct hidpp_device, 376 work); 377 hidpp_connect_event(hidpp); 378 } 379 380 static inline bool hidpp_match_answer(struct hidpp_report *question, 381 struct hidpp_report *answer) 382 { 383 return (answer->fap.feature_index == question->fap.feature_index) && 384 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid); 385 } 386 387 static inline bool hidpp_match_error(struct hidpp_report *question, 388 struct hidpp_report *answer) 389 { 390 return ((answer->rap.sub_id == HIDPP_ERROR) || 391 (answer->fap.feature_index == HIDPP20_ERROR)) && 392 (answer->fap.funcindex_clientid == question->fap.feature_index) && 393 (answer->fap.params[0] == question->fap.funcindex_clientid); 394 } 395 396 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report) 397 { 398 return (report->report_id == REPORT_ID_HIDPP_SHORT) && 399 (report->rap.sub_id == 0x41); 400 } 401 402 /** 403 * hidpp_prefix_name() prefixes the current given name with "Logitech ". 404 */ 405 static void hidpp_prefix_name(char **name, int name_length) 406 { 407 #define PREFIX_LENGTH 9 /* "Logitech " */ 408 409 int new_length; 410 char *new_name; 411 412 if (name_length > PREFIX_LENGTH && 413 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0) 414 /* The prefix has is already in the name */ 415 return; 416 417 new_length = PREFIX_LENGTH + name_length; 418 new_name = kzalloc(new_length, GFP_KERNEL); 419 if (!new_name) 420 return; 421 422 snprintf(new_name, new_length, "Logitech %s", *name); 423 424 kfree(*name); 425 426 *name = new_name; 427 } 428 429 /** 430 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll 431 * events given a high-resolution wheel 432 * movement. 433 * @counter: a hid_scroll_counter struct describing the wheel. 434 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution 435 * units. 436 * 437 * Given a high-resolution movement, this function converts the movement into 438 * fractions of 120 and emits high-resolution scroll events for the input 439 * device. It also uses the multiplier from &struct hid_scroll_counter to 440 * emit low-resolution scroll events when appropriate for 441 * backwards-compatibility with userspace input libraries. 442 */ 443 static void hidpp_scroll_counter_handle_scroll(struct input_dev *input_dev, 444 struct hidpp_scroll_counter *counter, 445 int hi_res_value) 446 { 447 int low_res_value, remainder, direction; 448 unsigned long long now, previous; 449 450 hi_res_value = hi_res_value * 120/counter->wheel_multiplier; 451 input_report_rel(input_dev, REL_WHEEL_HI_RES, hi_res_value); 452 453 remainder = counter->remainder; 454 direction = hi_res_value > 0 ? 1 : -1; 455 456 now = sched_clock(); 457 previous = counter->last_time; 458 counter->last_time = now; 459 /* 460 * Reset the remainder after a period of inactivity or when the 461 * direction changes. This prevents the REL_WHEEL emulation point 462 * from sliding for devices that don't always provide the same 463 * number of movements per detent. 464 */ 465 if (now - previous > 1000000000 || direction != counter->direction) 466 remainder = 0; 467 468 counter->direction = direction; 469 remainder += hi_res_value; 470 471 /* Some wheels will rest 7/8ths of a detent from the previous detent 472 * after slow movement, so we want the threshold for low-res events to 473 * be in the middle between two detents (e.g. after 4/8ths) as 474 * opposed to on the detents themselves (8/8ths). 475 */ 476 if (abs(remainder) >= 60) { 477 /* Add (or subtract) 1 because we want to trigger when the wheel 478 * is half-way to the next detent (i.e. scroll 1 detent after a 479 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement, 480 * etc.). 481 */ 482 low_res_value = remainder / 120; 483 if (low_res_value == 0) 484 low_res_value = (hi_res_value > 0 ? 1 : -1); 485 input_report_rel(input_dev, REL_WHEEL, low_res_value); 486 remainder -= low_res_value * 120; 487 } 488 counter->remainder = remainder; 489 } 490 491 /* -------------------------------------------------------------------------- */ 492 /* HIDP++ 1.0 commands */ 493 /* -------------------------------------------------------------------------- */ 494 495 #define HIDPP_SET_REGISTER 0x80 496 #define HIDPP_GET_REGISTER 0x81 497 #define HIDPP_SET_LONG_REGISTER 0x82 498 #define HIDPP_GET_LONG_REGISTER 0x83 499 500 /** 501 * hidpp10_set_register - Modify a HID++ 1.0 register. 502 * @hidpp_dev: the device to set the register on. 503 * @register_address: the address of the register to modify. 504 * @byte: the byte of the register to modify. Should be less than 3. 505 * @mask: mask of the bits to modify 506 * @value: new values for the bits in mask 507 * Return: 0 if successful, otherwise a negative error code. 508 */ 509 static int hidpp10_set_register(struct hidpp_device *hidpp_dev, 510 u8 register_address, u8 byte, u8 mask, u8 value) 511 { 512 struct hidpp_report response; 513 int ret; 514 u8 params[3] = { 0 }; 515 516 ret = hidpp_send_rap_command_sync(hidpp_dev, 517 REPORT_ID_HIDPP_SHORT, 518 HIDPP_GET_REGISTER, 519 register_address, 520 NULL, 0, &response); 521 if (ret) 522 return ret; 523 524 memcpy(params, response.rap.params, 3); 525 526 params[byte] &= ~mask; 527 params[byte] |= value & mask; 528 529 return hidpp_send_rap_command_sync(hidpp_dev, 530 REPORT_ID_HIDPP_SHORT, 531 HIDPP_SET_REGISTER, 532 register_address, 533 params, 3, &response); 534 } 535 536 #define HIDPP_REG_ENABLE_REPORTS 0x00 537 #define HIDPP_ENABLE_CONSUMER_REPORT BIT(0) 538 #define HIDPP_ENABLE_WHEEL_REPORT BIT(2) 539 #define HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT BIT(3) 540 #define HIDPP_ENABLE_BAT_REPORT BIT(4) 541 #define HIDPP_ENABLE_HWHEEL_REPORT BIT(5) 542 543 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev) 544 { 545 return hidpp10_set_register(hidpp_dev, HIDPP_REG_ENABLE_REPORTS, 0, 546 HIDPP_ENABLE_BAT_REPORT, HIDPP_ENABLE_BAT_REPORT); 547 } 548 549 #define HIDPP_REG_FEATURES 0x01 550 #define HIDPP_ENABLE_SPECIAL_BUTTON_FUNC BIT(1) 551 #define HIDPP_ENABLE_FAST_SCROLL BIT(6) 552 553 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */ 554 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev) 555 { 556 return hidpp10_set_register(hidpp_dev, HIDPP_REG_FEATURES, 0, 557 HIDPP_ENABLE_FAST_SCROLL, HIDPP_ENABLE_FAST_SCROLL); 558 } 559 560 #define HIDPP_REG_BATTERY_STATUS 0x07 561 562 static int hidpp10_battery_status_map_level(u8 param) 563 { 564 int level; 565 566 switch (param) { 567 case 1 ... 2: 568 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 569 break; 570 case 3 ... 4: 571 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 572 break; 573 case 5 ... 6: 574 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 575 break; 576 case 7: 577 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 578 break; 579 default: 580 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 581 } 582 583 return level; 584 } 585 586 static int hidpp10_battery_status_map_status(u8 param) 587 { 588 int status; 589 590 switch (param) { 591 case 0x00: 592 /* discharging (in use) */ 593 status = POWER_SUPPLY_STATUS_DISCHARGING; 594 break; 595 case 0x21: /* (standard) charging */ 596 case 0x24: /* fast charging */ 597 case 0x25: /* slow charging */ 598 status = POWER_SUPPLY_STATUS_CHARGING; 599 break; 600 case 0x26: /* topping charge */ 601 case 0x22: /* charge complete */ 602 status = POWER_SUPPLY_STATUS_FULL; 603 break; 604 case 0x20: /* unknown */ 605 status = POWER_SUPPLY_STATUS_UNKNOWN; 606 break; 607 /* 608 * 0x01...0x1F = reserved (not charging) 609 * 0x23 = charging error 610 * 0x27..0xff = reserved 611 */ 612 default: 613 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 614 break; 615 } 616 617 return status; 618 } 619 620 static int hidpp10_query_battery_status(struct hidpp_device *hidpp) 621 { 622 struct hidpp_report response; 623 int ret, status; 624 625 ret = hidpp_send_rap_command_sync(hidpp, 626 REPORT_ID_HIDPP_SHORT, 627 HIDPP_GET_REGISTER, 628 HIDPP_REG_BATTERY_STATUS, 629 NULL, 0, &response); 630 if (ret) 631 return ret; 632 633 hidpp->battery.level = 634 hidpp10_battery_status_map_level(response.rap.params[0]); 635 status = hidpp10_battery_status_map_status(response.rap.params[1]); 636 hidpp->battery.status = status; 637 /* the capacity is only available when discharging or full */ 638 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 639 status == POWER_SUPPLY_STATUS_FULL; 640 641 return 0; 642 } 643 644 #define HIDPP_REG_BATTERY_MILEAGE 0x0D 645 646 static int hidpp10_battery_mileage_map_status(u8 param) 647 { 648 int status; 649 650 switch (param >> 6) { 651 case 0x00: 652 /* discharging (in use) */ 653 status = POWER_SUPPLY_STATUS_DISCHARGING; 654 break; 655 case 0x01: /* charging */ 656 status = POWER_SUPPLY_STATUS_CHARGING; 657 break; 658 case 0x02: /* charge complete */ 659 status = POWER_SUPPLY_STATUS_FULL; 660 break; 661 /* 662 * 0x03 = charging error 663 */ 664 default: 665 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 666 break; 667 } 668 669 return status; 670 } 671 672 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp) 673 { 674 struct hidpp_report response; 675 int ret, status; 676 677 ret = hidpp_send_rap_command_sync(hidpp, 678 REPORT_ID_HIDPP_SHORT, 679 HIDPP_GET_REGISTER, 680 HIDPP_REG_BATTERY_MILEAGE, 681 NULL, 0, &response); 682 if (ret) 683 return ret; 684 685 hidpp->battery.capacity = response.rap.params[0]; 686 status = hidpp10_battery_mileage_map_status(response.rap.params[2]); 687 hidpp->battery.status = status; 688 /* the capacity is only available when discharging or full */ 689 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 690 status == POWER_SUPPLY_STATUS_FULL; 691 692 return 0; 693 } 694 695 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size) 696 { 697 struct hidpp_report *report = (struct hidpp_report *)data; 698 int status, capacity, level; 699 bool changed; 700 701 if (report->report_id != REPORT_ID_HIDPP_SHORT) 702 return 0; 703 704 switch (report->rap.sub_id) { 705 case HIDPP_REG_BATTERY_STATUS: 706 capacity = hidpp->battery.capacity; 707 level = hidpp10_battery_status_map_level(report->rawbytes[1]); 708 status = hidpp10_battery_status_map_status(report->rawbytes[2]); 709 break; 710 case HIDPP_REG_BATTERY_MILEAGE: 711 capacity = report->rap.params[0]; 712 level = hidpp->battery.level; 713 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]); 714 break; 715 default: 716 return 0; 717 } 718 719 changed = capacity != hidpp->battery.capacity || 720 level != hidpp->battery.level || 721 status != hidpp->battery.status; 722 723 /* the capacity is only available when discharging or full */ 724 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 725 status == POWER_SUPPLY_STATUS_FULL; 726 727 if (changed) { 728 hidpp->battery.level = level; 729 hidpp->battery.status = status; 730 if (hidpp->battery.ps) 731 power_supply_changed(hidpp->battery.ps); 732 } 733 734 return 0; 735 } 736 737 #define HIDPP_REG_PAIRING_INFORMATION 0xB5 738 #define HIDPP_EXTENDED_PAIRING 0x30 739 #define HIDPP_DEVICE_NAME 0x40 740 741 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev) 742 { 743 struct hidpp_report response; 744 int ret; 745 u8 params[1] = { HIDPP_DEVICE_NAME }; 746 char *name; 747 int len; 748 749 ret = hidpp_send_rap_command_sync(hidpp_dev, 750 REPORT_ID_HIDPP_SHORT, 751 HIDPP_GET_LONG_REGISTER, 752 HIDPP_REG_PAIRING_INFORMATION, 753 params, 1, &response); 754 if (ret) 755 return NULL; 756 757 len = response.rap.params[1]; 758 759 if (2 + len > sizeof(response.rap.params)) 760 return NULL; 761 762 if (len < 4) /* logitech devices are usually at least Xddd */ 763 return NULL; 764 765 name = kzalloc(len + 1, GFP_KERNEL); 766 if (!name) 767 return NULL; 768 769 memcpy(name, &response.rap.params[2], len); 770 771 /* include the terminating '\0' */ 772 hidpp_prefix_name(&name, len + 1); 773 774 return name; 775 } 776 777 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial) 778 { 779 struct hidpp_report response; 780 int ret; 781 u8 params[1] = { HIDPP_EXTENDED_PAIRING }; 782 783 ret = hidpp_send_rap_command_sync(hidpp, 784 REPORT_ID_HIDPP_SHORT, 785 HIDPP_GET_LONG_REGISTER, 786 HIDPP_REG_PAIRING_INFORMATION, 787 params, 1, &response); 788 if (ret) 789 return ret; 790 791 /* 792 * We don't care about LE or BE, we will output it as a string 793 * with %4phD, so we need to keep the order. 794 */ 795 *serial = *((u32 *)&response.rap.params[1]); 796 return 0; 797 } 798 799 static int hidpp_unifying_init(struct hidpp_device *hidpp) 800 { 801 struct hid_device *hdev = hidpp->hid_dev; 802 const char *name; 803 u32 serial; 804 int ret; 805 806 ret = hidpp_unifying_get_serial(hidpp, &serial); 807 if (ret) 808 return ret; 809 810 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD", 811 hdev->product, &serial); 812 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq); 813 814 name = hidpp_unifying_get_name(hidpp); 815 if (!name) 816 return -EIO; 817 818 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 819 dbg_hid("HID++ Unifying: Got name: %s\n", name); 820 821 kfree(name); 822 return 0; 823 } 824 825 /* -------------------------------------------------------------------------- */ 826 /* 0x0000: Root */ 827 /* -------------------------------------------------------------------------- */ 828 829 #define HIDPP_PAGE_ROOT 0x0000 830 #define HIDPP_PAGE_ROOT_IDX 0x00 831 832 #define CMD_ROOT_GET_FEATURE 0x01 833 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11 834 835 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature, 836 u8 *feature_index, u8 *feature_type) 837 { 838 struct hidpp_report response; 839 int ret; 840 u8 params[2] = { feature >> 8, feature & 0x00FF }; 841 842 ret = hidpp_send_fap_command_sync(hidpp, 843 HIDPP_PAGE_ROOT_IDX, 844 CMD_ROOT_GET_FEATURE, 845 params, 2, &response); 846 if (ret) 847 return ret; 848 849 if (response.fap.params[0] == 0) 850 return -ENOENT; 851 852 *feature_index = response.fap.params[0]; 853 *feature_type = response.fap.params[1]; 854 855 return ret; 856 } 857 858 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp) 859 { 860 const u8 ping_byte = 0x5a; 861 u8 ping_data[3] = { 0, 0, ping_byte }; 862 struct hidpp_report response; 863 int ret; 864 865 ret = hidpp_send_rap_command_sync(hidpp, 866 REPORT_ID_HIDPP_SHORT, 867 HIDPP_PAGE_ROOT_IDX, 868 CMD_ROOT_GET_PROTOCOL_VERSION, 869 ping_data, sizeof(ping_data), &response); 870 871 if (ret == HIDPP_ERROR_INVALID_SUBID) { 872 hidpp->protocol_major = 1; 873 hidpp->protocol_minor = 0; 874 goto print_version; 875 } 876 877 /* the device might not be connected */ 878 if (ret == HIDPP_ERROR_RESOURCE_ERROR) 879 return -EIO; 880 881 if (ret > 0) { 882 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 883 __func__, ret); 884 return -EPROTO; 885 } 886 if (ret) 887 return ret; 888 889 if (response.rap.params[2] != ping_byte) { 890 hid_err(hidpp->hid_dev, "%s: ping mismatch 0x%02x != 0x%02x\n", 891 __func__, response.rap.params[2], ping_byte); 892 return -EPROTO; 893 } 894 895 hidpp->protocol_major = response.rap.params[0]; 896 hidpp->protocol_minor = response.rap.params[1]; 897 898 print_version: 899 hid_info(hidpp->hid_dev, "HID++ %u.%u device connected.\n", 900 hidpp->protocol_major, hidpp->protocol_minor); 901 return 0; 902 } 903 904 /* -------------------------------------------------------------------------- */ 905 /* 0x0005: GetDeviceNameType */ 906 /* -------------------------------------------------------------------------- */ 907 908 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005 909 910 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01 911 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11 912 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21 913 914 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp, 915 u8 feature_index, u8 *nameLength) 916 { 917 struct hidpp_report response; 918 int ret; 919 920 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 921 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response); 922 923 if (ret > 0) { 924 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 925 __func__, ret); 926 return -EPROTO; 927 } 928 if (ret) 929 return ret; 930 931 *nameLength = response.fap.params[0]; 932 933 return ret; 934 } 935 936 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp, 937 u8 feature_index, u8 char_index, char *device_name, int len_buf) 938 { 939 struct hidpp_report response; 940 int ret, i; 941 int count; 942 943 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 944 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1, 945 &response); 946 947 if (ret > 0) { 948 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 949 __func__, ret); 950 return -EPROTO; 951 } 952 if (ret) 953 return ret; 954 955 switch (response.report_id) { 956 case REPORT_ID_HIDPP_VERY_LONG: 957 count = hidpp->very_long_report_length - 4; 958 break; 959 case REPORT_ID_HIDPP_LONG: 960 count = HIDPP_REPORT_LONG_LENGTH - 4; 961 break; 962 case REPORT_ID_HIDPP_SHORT: 963 count = HIDPP_REPORT_SHORT_LENGTH - 4; 964 break; 965 default: 966 return -EPROTO; 967 } 968 969 if (len_buf < count) 970 count = len_buf; 971 972 for (i = 0; i < count; i++) 973 device_name[i] = response.fap.params[i]; 974 975 return count; 976 } 977 978 static char *hidpp_get_device_name(struct hidpp_device *hidpp) 979 { 980 u8 feature_type; 981 u8 feature_index; 982 u8 __name_length; 983 char *name; 984 unsigned index = 0; 985 int ret; 986 987 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE, 988 &feature_index, &feature_type); 989 if (ret) 990 return NULL; 991 992 ret = hidpp_devicenametype_get_count(hidpp, feature_index, 993 &__name_length); 994 if (ret) 995 return NULL; 996 997 name = kzalloc(__name_length + 1, GFP_KERNEL); 998 if (!name) 999 return NULL; 1000 1001 while (index < __name_length) { 1002 ret = hidpp_devicenametype_get_device_name(hidpp, 1003 feature_index, index, name + index, 1004 __name_length - index); 1005 if (ret <= 0) { 1006 kfree(name); 1007 return NULL; 1008 } 1009 index += ret; 1010 } 1011 1012 /* include the terminating '\0' */ 1013 hidpp_prefix_name(&name, __name_length + 1); 1014 1015 return name; 1016 } 1017 1018 /* -------------------------------------------------------------------------- */ 1019 /* 0x1000: Battery level status */ 1020 /* -------------------------------------------------------------------------- */ 1021 1022 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000 1023 1024 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00 1025 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10 1026 1027 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00 1028 1029 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0) 1030 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1) 1031 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2) 1032 1033 static int hidpp_map_battery_level(int capacity) 1034 { 1035 if (capacity < 11) 1036 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1037 /* 1038 * The spec says this should be < 31 but some devices report 30 1039 * with brand new batteries and Windows reports 30 as "Good". 1040 */ 1041 else if (capacity < 30) 1042 return POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1043 else if (capacity < 81) 1044 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1045 return POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1046 } 1047 1048 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity, 1049 int *next_capacity, 1050 int *level) 1051 { 1052 int status; 1053 1054 *capacity = data[0]; 1055 *next_capacity = data[1]; 1056 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 1057 1058 /* When discharging, we can rely on the device reported capacity. 1059 * For all other states the device reports 0 (unknown). 1060 */ 1061 switch (data[2]) { 1062 case 0: /* discharging (in use) */ 1063 status = POWER_SUPPLY_STATUS_DISCHARGING; 1064 *level = hidpp_map_battery_level(*capacity); 1065 break; 1066 case 1: /* recharging */ 1067 status = POWER_SUPPLY_STATUS_CHARGING; 1068 break; 1069 case 2: /* charge in final stage */ 1070 status = POWER_SUPPLY_STATUS_CHARGING; 1071 break; 1072 case 3: /* charge complete */ 1073 status = POWER_SUPPLY_STATUS_FULL; 1074 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1075 *capacity = 100; 1076 break; 1077 case 4: /* recharging below optimal speed */ 1078 status = POWER_SUPPLY_STATUS_CHARGING; 1079 break; 1080 /* 5 = invalid battery type 1081 6 = thermal error 1082 7 = other charging error */ 1083 default: 1084 status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1085 break; 1086 } 1087 1088 return status; 1089 } 1090 1091 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp, 1092 u8 feature_index, 1093 int *status, 1094 int *capacity, 1095 int *next_capacity, 1096 int *level) 1097 { 1098 struct hidpp_report response; 1099 int ret; 1100 u8 *params = (u8 *)response.fap.params; 1101 1102 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1103 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS, 1104 NULL, 0, &response); 1105 if (ret > 0) { 1106 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1107 __func__, ret); 1108 return -EPROTO; 1109 } 1110 if (ret) 1111 return ret; 1112 1113 *status = hidpp20_batterylevel_map_status_capacity(params, capacity, 1114 next_capacity, 1115 level); 1116 1117 return 0; 1118 } 1119 1120 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp, 1121 u8 feature_index) 1122 { 1123 struct hidpp_report response; 1124 int ret; 1125 u8 *params = (u8 *)response.fap.params; 1126 unsigned int level_count, flags; 1127 1128 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1129 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY, 1130 NULL, 0, &response); 1131 if (ret > 0) { 1132 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1133 __func__, ret); 1134 return -EPROTO; 1135 } 1136 if (ret) 1137 return ret; 1138 1139 level_count = params[0]; 1140 flags = params[1]; 1141 1142 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE)) 1143 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 1144 else 1145 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1146 1147 return 0; 1148 } 1149 1150 static int hidpp20_query_battery_info(struct hidpp_device *hidpp) 1151 { 1152 u8 feature_type; 1153 int ret; 1154 int status, capacity, next_capacity, level; 1155 1156 if (hidpp->battery.feature_index == 0xff) { 1157 ret = hidpp_root_get_feature(hidpp, 1158 HIDPP_PAGE_BATTERY_LEVEL_STATUS, 1159 &hidpp->battery.feature_index, 1160 &feature_type); 1161 if (ret) 1162 return ret; 1163 } 1164 1165 ret = hidpp20_batterylevel_get_battery_capacity(hidpp, 1166 hidpp->battery.feature_index, 1167 &status, &capacity, 1168 &next_capacity, &level); 1169 if (ret) 1170 return ret; 1171 1172 ret = hidpp20_batterylevel_get_battery_info(hidpp, 1173 hidpp->battery.feature_index); 1174 if (ret) 1175 return ret; 1176 1177 hidpp->battery.status = status; 1178 hidpp->battery.capacity = capacity; 1179 hidpp->battery.level = level; 1180 /* the capacity is only available when discharging or full */ 1181 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1182 status == POWER_SUPPLY_STATUS_FULL; 1183 1184 return 0; 1185 } 1186 1187 static int hidpp20_battery_event(struct hidpp_device *hidpp, 1188 u8 *data, int size) 1189 { 1190 struct hidpp_report *report = (struct hidpp_report *)data; 1191 int status, capacity, next_capacity, level; 1192 bool changed; 1193 1194 if (report->fap.feature_index != hidpp->battery.feature_index || 1195 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST) 1196 return 0; 1197 1198 status = hidpp20_batterylevel_map_status_capacity(report->fap.params, 1199 &capacity, 1200 &next_capacity, 1201 &level); 1202 1203 /* the capacity is only available when discharging or full */ 1204 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING || 1205 status == POWER_SUPPLY_STATUS_FULL; 1206 1207 changed = capacity != hidpp->battery.capacity || 1208 level != hidpp->battery.level || 1209 status != hidpp->battery.status; 1210 1211 if (changed) { 1212 hidpp->battery.level = level; 1213 hidpp->battery.capacity = capacity; 1214 hidpp->battery.status = status; 1215 if (hidpp->battery.ps) 1216 power_supply_changed(hidpp->battery.ps); 1217 } 1218 1219 return 0; 1220 } 1221 1222 static enum power_supply_property hidpp_battery_props[] = { 1223 POWER_SUPPLY_PROP_ONLINE, 1224 POWER_SUPPLY_PROP_STATUS, 1225 POWER_SUPPLY_PROP_SCOPE, 1226 POWER_SUPPLY_PROP_MODEL_NAME, 1227 POWER_SUPPLY_PROP_MANUFACTURER, 1228 POWER_SUPPLY_PROP_SERIAL_NUMBER, 1229 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */ 1230 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */ 1231 }; 1232 1233 static int hidpp_battery_get_property(struct power_supply *psy, 1234 enum power_supply_property psp, 1235 union power_supply_propval *val) 1236 { 1237 struct hidpp_device *hidpp = power_supply_get_drvdata(psy); 1238 int ret = 0; 1239 1240 switch(psp) { 1241 case POWER_SUPPLY_PROP_STATUS: 1242 val->intval = hidpp->battery.status; 1243 break; 1244 case POWER_SUPPLY_PROP_CAPACITY: 1245 val->intval = hidpp->battery.capacity; 1246 break; 1247 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 1248 val->intval = hidpp->battery.level; 1249 break; 1250 case POWER_SUPPLY_PROP_SCOPE: 1251 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 1252 break; 1253 case POWER_SUPPLY_PROP_ONLINE: 1254 val->intval = hidpp->battery.online; 1255 break; 1256 case POWER_SUPPLY_PROP_MODEL_NAME: 1257 if (!strncmp(hidpp->name, "Logitech ", 9)) 1258 val->strval = hidpp->name + 9; 1259 else 1260 val->strval = hidpp->name; 1261 break; 1262 case POWER_SUPPLY_PROP_MANUFACTURER: 1263 val->strval = "Logitech"; 1264 break; 1265 case POWER_SUPPLY_PROP_SERIAL_NUMBER: 1266 val->strval = hidpp->hid_dev->uniq; 1267 break; 1268 default: 1269 ret = -EINVAL; 1270 break; 1271 } 1272 1273 return ret; 1274 } 1275 1276 /* -------------------------------------------------------------------------- */ 1277 /* 0x2120: Hi-resolution scrolling */ 1278 /* -------------------------------------------------------------------------- */ 1279 1280 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120 1281 1282 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10 1283 1284 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp, 1285 bool enabled, u8 *multiplier) 1286 { 1287 u8 feature_index; 1288 u8 feature_type; 1289 int ret; 1290 u8 params[1]; 1291 struct hidpp_report response; 1292 1293 ret = hidpp_root_get_feature(hidpp, 1294 HIDPP_PAGE_HI_RESOLUTION_SCROLLING, 1295 &feature_index, 1296 &feature_type); 1297 if (ret) 1298 return ret; 1299 1300 params[0] = enabled ? BIT(0) : 0; 1301 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1302 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE, 1303 params, sizeof(params), &response); 1304 if (ret) 1305 return ret; 1306 *multiplier = response.fap.params[1]; 1307 return 0; 1308 } 1309 1310 /* -------------------------------------------------------------------------- */ 1311 /* 0x2121: HiRes Wheel */ 1312 /* -------------------------------------------------------------------------- */ 1313 1314 #define HIDPP_PAGE_HIRES_WHEEL 0x2121 1315 1316 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00 1317 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20 1318 1319 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp, 1320 u8 *multiplier) 1321 { 1322 u8 feature_index; 1323 u8 feature_type; 1324 int ret; 1325 struct hidpp_report response; 1326 1327 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1328 &feature_index, &feature_type); 1329 if (ret) 1330 goto return_default; 1331 1332 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1333 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY, 1334 NULL, 0, &response); 1335 if (ret) 1336 goto return_default; 1337 1338 *multiplier = response.fap.params[0]; 1339 return 0; 1340 return_default: 1341 hid_warn(hidpp->hid_dev, 1342 "Couldn't get wheel multiplier (error %d)\n", ret); 1343 return ret; 1344 } 1345 1346 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert, 1347 bool high_resolution, bool use_hidpp) 1348 { 1349 u8 feature_index; 1350 u8 feature_type; 1351 int ret; 1352 u8 params[1]; 1353 struct hidpp_report response; 1354 1355 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL, 1356 &feature_index, &feature_type); 1357 if (ret) 1358 return ret; 1359 1360 params[0] = (invert ? BIT(2) : 0) | 1361 (high_resolution ? BIT(1) : 0) | 1362 (use_hidpp ? BIT(0) : 0); 1363 1364 return hidpp_send_fap_command_sync(hidpp, feature_index, 1365 CMD_HIRES_WHEEL_SET_WHEEL_MODE, 1366 params, sizeof(params), &response); 1367 } 1368 1369 /* -------------------------------------------------------------------------- */ 1370 /* 0x4301: Solar Keyboard */ 1371 /* -------------------------------------------------------------------------- */ 1372 1373 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301 1374 1375 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00 1376 1377 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00 1378 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10 1379 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20 1380 1381 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp) 1382 { 1383 struct hidpp_report response; 1384 u8 params[2] = { 1, 1 }; 1385 u8 feature_type; 1386 int ret; 1387 1388 if (hidpp->battery.feature_index == 0xff) { 1389 ret = hidpp_root_get_feature(hidpp, 1390 HIDPP_PAGE_SOLAR_KEYBOARD, 1391 &hidpp->battery.solar_feature_index, 1392 &feature_type); 1393 if (ret) 1394 return ret; 1395 } 1396 1397 ret = hidpp_send_fap_command_sync(hidpp, 1398 hidpp->battery.solar_feature_index, 1399 CMD_SOLAR_SET_LIGHT_MEASURE, 1400 params, 2, &response); 1401 if (ret > 0) { 1402 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1403 __func__, ret); 1404 return -EPROTO; 1405 } 1406 if (ret) 1407 return ret; 1408 1409 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 1410 1411 return 0; 1412 } 1413 1414 static int hidpp_solar_battery_event(struct hidpp_device *hidpp, 1415 u8 *data, int size) 1416 { 1417 struct hidpp_report *report = (struct hidpp_report *)data; 1418 int capacity, lux, status; 1419 u8 function; 1420 1421 function = report->fap.funcindex_clientid; 1422 1423 1424 if (report->fap.feature_index != hidpp->battery.solar_feature_index || 1425 !(function == EVENT_SOLAR_BATTERY_BROADCAST || 1426 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE || 1427 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON)) 1428 return 0; 1429 1430 capacity = report->fap.params[0]; 1431 1432 switch (function) { 1433 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE: 1434 lux = (report->fap.params[1] << 8) | report->fap.params[2]; 1435 if (lux > 200) 1436 status = POWER_SUPPLY_STATUS_CHARGING; 1437 else 1438 status = POWER_SUPPLY_STATUS_DISCHARGING; 1439 break; 1440 case EVENT_SOLAR_CHECK_LIGHT_BUTTON: 1441 default: 1442 if (capacity < hidpp->battery.capacity) 1443 status = POWER_SUPPLY_STATUS_DISCHARGING; 1444 else 1445 status = POWER_SUPPLY_STATUS_CHARGING; 1446 1447 } 1448 1449 if (capacity == 100) 1450 status = POWER_SUPPLY_STATUS_FULL; 1451 1452 hidpp->battery.online = true; 1453 if (capacity != hidpp->battery.capacity || 1454 status != hidpp->battery.status) { 1455 hidpp->battery.capacity = capacity; 1456 hidpp->battery.status = status; 1457 if (hidpp->battery.ps) 1458 power_supply_changed(hidpp->battery.ps); 1459 } 1460 1461 return 0; 1462 } 1463 1464 /* -------------------------------------------------------------------------- */ 1465 /* 0x6010: Touchpad FW items */ 1466 /* -------------------------------------------------------------------------- */ 1467 1468 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010 1469 1470 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10 1471 1472 struct hidpp_touchpad_fw_items { 1473 uint8_t presence; 1474 uint8_t desired_state; 1475 uint8_t state; 1476 uint8_t persistent; 1477 }; 1478 1479 /** 1480 * send a set state command to the device by reading the current items->state 1481 * field. items is then filled with the current state. 1482 */ 1483 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp, 1484 u8 feature_index, 1485 struct hidpp_touchpad_fw_items *items) 1486 { 1487 struct hidpp_report response; 1488 int ret; 1489 u8 *params = (u8 *)response.fap.params; 1490 1491 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1492 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response); 1493 1494 if (ret > 0) { 1495 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1496 __func__, ret); 1497 return -EPROTO; 1498 } 1499 if (ret) 1500 return ret; 1501 1502 items->presence = params[0]; 1503 items->desired_state = params[1]; 1504 items->state = params[2]; 1505 items->persistent = params[3]; 1506 1507 return 0; 1508 } 1509 1510 /* -------------------------------------------------------------------------- */ 1511 /* 0x6100: TouchPadRawXY */ 1512 /* -------------------------------------------------------------------------- */ 1513 1514 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100 1515 1516 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01 1517 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21 1518 1519 #define EVENT_TOUCHPAD_RAW_XY 0x00 1520 1521 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01 1522 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03 1523 1524 struct hidpp_touchpad_raw_info { 1525 u16 x_size; 1526 u16 y_size; 1527 u8 z_range; 1528 u8 area_range; 1529 u8 timestamp_unit; 1530 u8 maxcontacts; 1531 u8 origin; 1532 u16 res; 1533 }; 1534 1535 struct hidpp_touchpad_raw_xy_finger { 1536 u8 contact_type; 1537 u8 contact_status; 1538 u16 x; 1539 u16 y; 1540 u8 z; 1541 u8 area; 1542 u8 finger_id; 1543 }; 1544 1545 struct hidpp_touchpad_raw_xy { 1546 u16 timestamp; 1547 struct hidpp_touchpad_raw_xy_finger fingers[2]; 1548 u8 spurious_flag; 1549 u8 end_of_frame; 1550 u8 finger_count; 1551 u8 button; 1552 }; 1553 1554 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp, 1555 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info) 1556 { 1557 struct hidpp_report response; 1558 int ret; 1559 u8 *params = (u8 *)response.fap.params; 1560 1561 ret = hidpp_send_fap_command_sync(hidpp, feature_index, 1562 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response); 1563 1564 if (ret > 0) { 1565 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n", 1566 __func__, ret); 1567 return -EPROTO; 1568 } 1569 if (ret) 1570 return ret; 1571 1572 raw_info->x_size = get_unaligned_be16(¶ms[0]); 1573 raw_info->y_size = get_unaligned_be16(¶ms[2]); 1574 raw_info->z_range = params[4]; 1575 raw_info->area_range = params[5]; 1576 raw_info->maxcontacts = params[7]; 1577 raw_info->origin = params[8]; 1578 /* res is given in unit per inch */ 1579 raw_info->res = get_unaligned_be16(¶ms[13]) * 2 / 51; 1580 1581 return ret; 1582 } 1583 1584 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev, 1585 u8 feature_index, bool send_raw_reports, 1586 bool sensor_enhanced_settings) 1587 { 1588 struct hidpp_report response; 1589 1590 /* 1591 * Params: 1592 * bit 0 - enable raw 1593 * bit 1 - 16bit Z, no area 1594 * bit 2 - enhanced sensitivity 1595 * bit 3 - width, height (4 bits each) instead of area 1596 * bit 4 - send raw + gestures (degrades smoothness) 1597 * remaining bits - reserved 1598 */ 1599 u8 params = send_raw_reports | (sensor_enhanced_settings << 2); 1600 1601 return hidpp_send_fap_command_sync(hidpp_dev, feature_index, 1602 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, ¶ms, 1, &response); 1603 } 1604 1605 static void hidpp_touchpad_touch_event(u8 *data, 1606 struct hidpp_touchpad_raw_xy_finger *finger) 1607 { 1608 u8 x_m = data[0] << 2; 1609 u8 y_m = data[2] << 2; 1610 1611 finger->x = x_m << 6 | data[1]; 1612 finger->y = y_m << 6 | data[3]; 1613 1614 finger->contact_type = data[0] >> 6; 1615 finger->contact_status = data[2] >> 6; 1616 1617 finger->z = data[4]; 1618 finger->area = data[5]; 1619 finger->finger_id = data[6] >> 4; 1620 } 1621 1622 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev, 1623 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy) 1624 { 1625 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy)); 1626 raw_xy->end_of_frame = data[8] & 0x01; 1627 raw_xy->spurious_flag = (data[8] >> 1) & 0x01; 1628 raw_xy->finger_count = data[15] & 0x0f; 1629 raw_xy->button = (data[8] >> 2) & 0x01; 1630 1631 if (raw_xy->finger_count) { 1632 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]); 1633 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]); 1634 } 1635 } 1636 1637 /* -------------------------------------------------------------------------- */ 1638 /* 0x8123: Force feedback support */ 1639 /* -------------------------------------------------------------------------- */ 1640 1641 #define HIDPP_FF_GET_INFO 0x01 1642 #define HIDPP_FF_RESET_ALL 0x11 1643 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21 1644 #define HIDPP_FF_SET_EFFECT_STATE 0x31 1645 #define HIDPP_FF_DESTROY_EFFECT 0x41 1646 #define HIDPP_FF_GET_APERTURE 0x51 1647 #define HIDPP_FF_SET_APERTURE 0x61 1648 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71 1649 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81 1650 1651 #define HIDPP_FF_EFFECT_STATE_GET 0x00 1652 #define HIDPP_FF_EFFECT_STATE_STOP 0x01 1653 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02 1654 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03 1655 1656 #define HIDPP_FF_EFFECT_CONSTANT 0x00 1657 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01 1658 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02 1659 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03 1660 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04 1661 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05 1662 #define HIDPP_FF_EFFECT_SPRING 0x06 1663 #define HIDPP_FF_EFFECT_DAMPER 0x07 1664 #define HIDPP_FF_EFFECT_FRICTION 0x08 1665 #define HIDPP_FF_EFFECT_INERTIA 0x09 1666 #define HIDPP_FF_EFFECT_RAMP 0x0A 1667 1668 #define HIDPP_FF_EFFECT_AUTOSTART 0x80 1669 1670 #define HIDPP_FF_EFFECTID_NONE -1 1671 #define HIDPP_FF_EFFECTID_AUTOCENTER -2 1672 #define HIDPP_AUTOCENTER_PARAMS_LENGTH 18 1673 1674 #define HIDPP_FF_MAX_PARAMS 20 1675 #define HIDPP_FF_RESERVED_SLOTS 1 1676 1677 struct hidpp_ff_private_data { 1678 struct hidpp_device *hidpp; 1679 u8 feature_index; 1680 u8 version; 1681 u16 gain; 1682 s16 range; 1683 u8 slot_autocenter; 1684 u8 num_effects; 1685 int *effect_ids; 1686 struct workqueue_struct *wq; 1687 atomic_t workqueue_size; 1688 }; 1689 1690 struct hidpp_ff_work_data { 1691 struct work_struct work; 1692 struct hidpp_ff_private_data *data; 1693 int effect_id; 1694 u8 command; 1695 u8 params[HIDPP_FF_MAX_PARAMS]; 1696 u8 size; 1697 }; 1698 1699 static const signed short hidpp_ff_effects[] = { 1700 FF_CONSTANT, 1701 FF_PERIODIC, 1702 FF_SINE, 1703 FF_SQUARE, 1704 FF_SAW_UP, 1705 FF_SAW_DOWN, 1706 FF_TRIANGLE, 1707 FF_SPRING, 1708 FF_DAMPER, 1709 FF_AUTOCENTER, 1710 FF_GAIN, 1711 -1 1712 }; 1713 1714 static const signed short hidpp_ff_effects_v2[] = { 1715 FF_RAMP, 1716 FF_FRICTION, 1717 FF_INERTIA, 1718 -1 1719 }; 1720 1721 static const u8 HIDPP_FF_CONDITION_CMDS[] = { 1722 HIDPP_FF_EFFECT_SPRING, 1723 HIDPP_FF_EFFECT_FRICTION, 1724 HIDPP_FF_EFFECT_DAMPER, 1725 HIDPP_FF_EFFECT_INERTIA 1726 }; 1727 1728 static const char *HIDPP_FF_CONDITION_NAMES[] = { 1729 "spring", 1730 "friction", 1731 "damper", 1732 "inertia" 1733 }; 1734 1735 1736 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id) 1737 { 1738 int i; 1739 1740 for (i = 0; i < data->num_effects; i++) 1741 if (data->effect_ids[i] == effect_id) 1742 return i+1; 1743 1744 return 0; 1745 } 1746 1747 static void hidpp_ff_work_handler(struct work_struct *w) 1748 { 1749 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work); 1750 struct hidpp_ff_private_data *data = wd->data; 1751 struct hidpp_report response; 1752 u8 slot; 1753 int ret; 1754 1755 /* add slot number if needed */ 1756 switch (wd->effect_id) { 1757 case HIDPP_FF_EFFECTID_AUTOCENTER: 1758 wd->params[0] = data->slot_autocenter; 1759 break; 1760 case HIDPP_FF_EFFECTID_NONE: 1761 /* leave slot as zero */ 1762 break; 1763 default: 1764 /* find current slot for effect */ 1765 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id); 1766 break; 1767 } 1768 1769 /* send command and wait for reply */ 1770 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index, 1771 wd->command, wd->params, wd->size, &response); 1772 1773 if (ret) { 1774 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n"); 1775 goto out; 1776 } 1777 1778 /* parse return data */ 1779 switch (wd->command) { 1780 case HIDPP_FF_DOWNLOAD_EFFECT: 1781 slot = response.fap.params[0]; 1782 if (slot > 0 && slot <= data->num_effects) { 1783 if (wd->effect_id >= 0) 1784 /* regular effect uploaded */ 1785 data->effect_ids[slot-1] = wd->effect_id; 1786 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1787 /* autocenter spring uploaded */ 1788 data->slot_autocenter = slot; 1789 } 1790 break; 1791 case HIDPP_FF_DESTROY_EFFECT: 1792 if (wd->effect_id >= 0) 1793 /* regular effect destroyed */ 1794 data->effect_ids[wd->params[0]-1] = -1; 1795 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER) 1796 /* autocenter spring destoyed */ 1797 data->slot_autocenter = 0; 1798 break; 1799 case HIDPP_FF_SET_GLOBAL_GAINS: 1800 data->gain = (wd->params[0] << 8) + wd->params[1]; 1801 break; 1802 case HIDPP_FF_SET_APERTURE: 1803 data->range = (wd->params[0] << 8) + wd->params[1]; 1804 break; 1805 default: 1806 /* no action needed */ 1807 break; 1808 } 1809 1810 out: 1811 atomic_dec(&data->workqueue_size); 1812 kfree(wd); 1813 } 1814 1815 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size) 1816 { 1817 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL); 1818 int s; 1819 1820 if (!wd) 1821 return -ENOMEM; 1822 1823 INIT_WORK(&wd->work, hidpp_ff_work_handler); 1824 1825 wd->data = data; 1826 wd->effect_id = effect_id; 1827 wd->command = command; 1828 wd->size = size; 1829 memcpy(wd->params, params, size); 1830 1831 atomic_inc(&data->workqueue_size); 1832 queue_work(data->wq, &wd->work); 1833 1834 /* warn about excessive queue size */ 1835 s = atomic_read(&data->workqueue_size); 1836 if (s >= 20 && s % 20 == 0) 1837 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s); 1838 1839 return 0; 1840 } 1841 1842 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old) 1843 { 1844 struct hidpp_ff_private_data *data = dev->ff->private; 1845 u8 params[20]; 1846 u8 size; 1847 int force; 1848 1849 /* set common parameters */ 1850 params[2] = effect->replay.length >> 8; 1851 params[3] = effect->replay.length & 255; 1852 params[4] = effect->replay.delay >> 8; 1853 params[5] = effect->replay.delay & 255; 1854 1855 switch (effect->type) { 1856 case FF_CONSTANT: 1857 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1858 params[1] = HIDPP_FF_EFFECT_CONSTANT; 1859 params[6] = force >> 8; 1860 params[7] = force & 255; 1861 params[8] = effect->u.constant.envelope.attack_level >> 7; 1862 params[9] = effect->u.constant.envelope.attack_length >> 8; 1863 params[10] = effect->u.constant.envelope.attack_length & 255; 1864 params[11] = effect->u.constant.envelope.fade_level >> 7; 1865 params[12] = effect->u.constant.envelope.fade_length >> 8; 1866 params[13] = effect->u.constant.envelope.fade_length & 255; 1867 size = 14; 1868 dbg_hid("Uploading constant force level=%d in dir %d = %d\n", 1869 effect->u.constant.level, 1870 effect->direction, force); 1871 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1872 effect->u.constant.envelope.attack_level, 1873 effect->u.constant.envelope.attack_length, 1874 effect->u.constant.envelope.fade_level, 1875 effect->u.constant.envelope.fade_length); 1876 break; 1877 case FF_PERIODIC: 1878 { 1879 switch (effect->u.periodic.waveform) { 1880 case FF_SINE: 1881 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE; 1882 break; 1883 case FF_SQUARE: 1884 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE; 1885 break; 1886 case FF_SAW_UP: 1887 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP; 1888 break; 1889 case FF_SAW_DOWN: 1890 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN; 1891 break; 1892 case FF_TRIANGLE: 1893 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE; 1894 break; 1895 default: 1896 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform); 1897 return -EINVAL; 1898 } 1899 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1900 params[6] = effect->u.periodic.magnitude >> 8; 1901 params[7] = effect->u.periodic.magnitude & 255; 1902 params[8] = effect->u.periodic.offset >> 8; 1903 params[9] = effect->u.periodic.offset & 255; 1904 params[10] = effect->u.periodic.period >> 8; 1905 params[11] = effect->u.periodic.period & 255; 1906 params[12] = effect->u.periodic.phase >> 8; 1907 params[13] = effect->u.periodic.phase & 255; 1908 params[14] = effect->u.periodic.envelope.attack_level >> 7; 1909 params[15] = effect->u.periodic.envelope.attack_length >> 8; 1910 params[16] = effect->u.periodic.envelope.attack_length & 255; 1911 params[17] = effect->u.periodic.envelope.fade_level >> 7; 1912 params[18] = effect->u.periodic.envelope.fade_length >> 8; 1913 params[19] = effect->u.periodic.envelope.fade_length & 255; 1914 size = 20; 1915 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n", 1916 effect->u.periodic.magnitude, effect->direction, 1917 effect->u.periodic.offset, 1918 effect->u.periodic.period, 1919 effect->u.periodic.phase); 1920 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1921 effect->u.periodic.envelope.attack_level, 1922 effect->u.periodic.envelope.attack_length, 1923 effect->u.periodic.envelope.fade_level, 1924 effect->u.periodic.envelope.fade_length); 1925 break; 1926 } 1927 case FF_RAMP: 1928 params[1] = HIDPP_FF_EFFECT_RAMP; 1929 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1930 params[6] = force >> 8; 1931 params[7] = force & 255; 1932 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15; 1933 params[8] = force >> 8; 1934 params[9] = force & 255; 1935 params[10] = effect->u.ramp.envelope.attack_level >> 7; 1936 params[11] = effect->u.ramp.envelope.attack_length >> 8; 1937 params[12] = effect->u.ramp.envelope.attack_length & 255; 1938 params[13] = effect->u.ramp.envelope.fade_level >> 7; 1939 params[14] = effect->u.ramp.envelope.fade_length >> 8; 1940 params[15] = effect->u.ramp.envelope.fade_length & 255; 1941 size = 16; 1942 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n", 1943 effect->u.ramp.start_level, 1944 effect->u.ramp.end_level, 1945 effect->direction, force); 1946 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n", 1947 effect->u.ramp.envelope.attack_level, 1948 effect->u.ramp.envelope.attack_length, 1949 effect->u.ramp.envelope.fade_level, 1950 effect->u.ramp.envelope.fade_length); 1951 break; 1952 case FF_FRICTION: 1953 case FF_INERTIA: 1954 case FF_SPRING: 1955 case FF_DAMPER: 1956 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING]; 1957 params[6] = effect->u.condition[0].left_saturation >> 9; 1958 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255; 1959 params[8] = effect->u.condition[0].left_coeff >> 8; 1960 params[9] = effect->u.condition[0].left_coeff & 255; 1961 params[10] = effect->u.condition[0].deadband >> 9; 1962 params[11] = (effect->u.condition[0].deadband >> 1) & 255; 1963 params[12] = effect->u.condition[0].center >> 8; 1964 params[13] = effect->u.condition[0].center & 255; 1965 params[14] = effect->u.condition[0].right_coeff >> 8; 1966 params[15] = effect->u.condition[0].right_coeff & 255; 1967 params[16] = effect->u.condition[0].right_saturation >> 9; 1968 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255; 1969 size = 18; 1970 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n", 1971 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING], 1972 effect->u.condition[0].left_coeff, 1973 effect->u.condition[0].left_saturation, 1974 effect->u.condition[0].right_coeff, 1975 effect->u.condition[0].right_saturation); 1976 dbg_hid(" deadband=%d, center=%d\n", 1977 effect->u.condition[0].deadband, 1978 effect->u.condition[0].center); 1979 break; 1980 default: 1981 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type); 1982 return -EINVAL; 1983 } 1984 1985 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size); 1986 } 1987 1988 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value) 1989 { 1990 struct hidpp_ff_private_data *data = dev->ff->private; 1991 u8 params[2]; 1992 1993 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP; 1994 1995 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id); 1996 1997 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params)); 1998 } 1999 2000 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id) 2001 { 2002 struct hidpp_ff_private_data *data = dev->ff->private; 2003 u8 slot = 0; 2004 2005 dbg_hid("Erasing effect %d.\n", effect_id); 2006 2007 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1); 2008 } 2009 2010 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude) 2011 { 2012 struct hidpp_ff_private_data *data = dev->ff->private; 2013 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH]; 2014 2015 dbg_hid("Setting autocenter to %d.\n", magnitude); 2016 2017 /* start a standard spring effect */ 2018 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART; 2019 /* zero delay and duration */ 2020 params[2] = params[3] = params[4] = params[5] = 0; 2021 /* set coeff to 25% of saturation */ 2022 params[8] = params[14] = magnitude >> 11; 2023 params[9] = params[15] = (magnitude >> 3) & 255; 2024 params[6] = params[16] = magnitude >> 9; 2025 params[7] = params[17] = (magnitude >> 1) & 255; 2026 /* zero deadband and center */ 2027 params[10] = params[11] = params[12] = params[13] = 0; 2028 2029 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params)); 2030 } 2031 2032 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain) 2033 { 2034 struct hidpp_ff_private_data *data = dev->ff->private; 2035 u8 params[4]; 2036 2037 dbg_hid("Setting gain to %d.\n", gain); 2038 2039 params[0] = gain >> 8; 2040 params[1] = gain & 255; 2041 params[2] = 0; /* no boost */ 2042 params[3] = 0; 2043 2044 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params)); 2045 } 2046 2047 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf) 2048 { 2049 struct hid_device *hid = to_hid_device(dev); 2050 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2051 struct input_dev *idev = hidinput->input; 2052 struct hidpp_ff_private_data *data = idev->ff->private; 2053 2054 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range); 2055 } 2056 2057 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) 2058 { 2059 struct hid_device *hid = to_hid_device(dev); 2060 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2061 struct input_dev *idev = hidinput->input; 2062 struct hidpp_ff_private_data *data = idev->ff->private; 2063 u8 params[2]; 2064 int range = simple_strtoul(buf, NULL, 10); 2065 2066 range = clamp(range, 180, 900); 2067 2068 params[0] = range >> 8; 2069 params[1] = range & 0x00FF; 2070 2071 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params)); 2072 2073 return count; 2074 } 2075 2076 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store); 2077 2078 static void hidpp_ff_destroy(struct ff_device *ff) 2079 { 2080 struct hidpp_ff_private_data *data = ff->private; 2081 struct hid_device *hid = data->hidpp->hid_dev; 2082 2083 hid_info(hid, "Unloading HID++ force feedback.\n"); 2084 2085 device_remove_file(&hid->dev, &dev_attr_range); 2086 destroy_workqueue(data->wq); 2087 kfree(data->effect_ids); 2088 } 2089 2090 static int hidpp_ff_init(struct hidpp_device *hidpp, 2091 struct hidpp_ff_private_data *data) 2092 { 2093 struct hid_device *hid = hidpp->hid_dev; 2094 struct hid_input *hidinput; 2095 struct input_dev *dev; 2096 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor); 2097 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice); 2098 struct ff_device *ff; 2099 int error, j, num_slots = data->num_effects; 2100 u8 version; 2101 2102 if (list_empty(&hid->inputs)) { 2103 hid_err(hid, "no inputs found\n"); 2104 return -ENODEV; 2105 } 2106 hidinput = list_entry(hid->inputs.next, struct hid_input, list); 2107 dev = hidinput->input; 2108 2109 if (!dev) { 2110 hid_err(hid, "Struct input_dev not set!\n"); 2111 return -EINVAL; 2112 } 2113 2114 /* Get firmware release */ 2115 version = bcdDevice & 255; 2116 2117 /* Set supported force feedback capabilities */ 2118 for (j = 0; hidpp_ff_effects[j] >= 0; j++) 2119 set_bit(hidpp_ff_effects[j], dev->ffbit); 2120 if (version > 1) 2121 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++) 2122 set_bit(hidpp_ff_effects_v2[j], dev->ffbit); 2123 2124 error = input_ff_create(dev, num_slots); 2125 2126 if (error) { 2127 hid_err(dev, "Failed to create FF device!\n"); 2128 return error; 2129 } 2130 /* 2131 * Create a copy of passed data, so we can transfer memory 2132 * ownership to FF core 2133 */ 2134 data = kmemdup(data, sizeof(*data), GFP_KERNEL); 2135 if (!data) 2136 return -ENOMEM; 2137 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL); 2138 if (!data->effect_ids) { 2139 kfree(data); 2140 return -ENOMEM; 2141 } 2142 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue"); 2143 if (!data->wq) { 2144 kfree(data->effect_ids); 2145 kfree(data); 2146 return -ENOMEM; 2147 } 2148 2149 data->hidpp = hidpp; 2150 data->version = version; 2151 for (j = 0; j < num_slots; j++) 2152 data->effect_ids[j] = -1; 2153 2154 ff = dev->ff; 2155 ff->private = data; 2156 2157 ff->upload = hidpp_ff_upload_effect; 2158 ff->erase = hidpp_ff_erase_effect; 2159 ff->playback = hidpp_ff_playback; 2160 ff->set_gain = hidpp_ff_set_gain; 2161 ff->set_autocenter = hidpp_ff_set_autocenter; 2162 ff->destroy = hidpp_ff_destroy; 2163 2164 /* Create sysfs interface */ 2165 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range); 2166 if (error) 2167 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error); 2168 2169 /* init the hardware command queue */ 2170 atomic_set(&data->workqueue_size, 0); 2171 2172 hid_info(hid, "Force feedback support loaded (firmware release %d).\n", 2173 version); 2174 2175 return 0; 2176 } 2177 2178 /* ************************************************************************** */ 2179 /* */ 2180 /* Device Support */ 2181 /* */ 2182 /* ************************************************************************** */ 2183 2184 /* -------------------------------------------------------------------------- */ 2185 /* Touchpad HID++ devices */ 2186 /* -------------------------------------------------------------------------- */ 2187 2188 #define WTP_MANUAL_RESOLUTION 39 2189 2190 struct wtp_data { 2191 u16 x_size, y_size; 2192 u8 finger_count; 2193 u8 mt_feature_index; 2194 u8 button_feature_index; 2195 u8 maxcontacts; 2196 bool flip_y; 2197 unsigned int resolution; 2198 }; 2199 2200 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2201 struct hid_field *field, struct hid_usage *usage, 2202 unsigned long **bit, int *max) 2203 { 2204 return -1; 2205 } 2206 2207 static void wtp_populate_input(struct hidpp_device *hidpp, 2208 struct input_dev *input_dev) 2209 { 2210 struct wtp_data *wd = hidpp->private_data; 2211 2212 __set_bit(EV_ABS, input_dev->evbit); 2213 __set_bit(EV_KEY, input_dev->evbit); 2214 __clear_bit(EV_REL, input_dev->evbit); 2215 __clear_bit(EV_LED, input_dev->evbit); 2216 2217 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0); 2218 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution); 2219 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0); 2220 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution); 2221 2222 /* Max pressure is not given by the devices, pick one */ 2223 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0); 2224 2225 input_set_capability(input_dev, EV_KEY, BTN_LEFT); 2226 2227 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) 2228 input_set_capability(input_dev, EV_KEY, BTN_RIGHT); 2229 else 2230 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit); 2231 2232 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER | 2233 INPUT_MT_DROP_UNUSED); 2234 } 2235 2236 static void wtp_touch_event(struct hidpp_device *hidpp, 2237 struct hidpp_touchpad_raw_xy_finger *touch_report) 2238 { 2239 struct wtp_data *wd = hidpp->private_data; 2240 int slot; 2241 2242 if (!touch_report->finger_id || touch_report->contact_type) 2243 /* no actual data */ 2244 return; 2245 2246 slot = input_mt_get_slot_by_key(hidpp->input, touch_report->finger_id); 2247 2248 input_mt_slot(hidpp->input, slot); 2249 input_mt_report_slot_state(hidpp->input, MT_TOOL_FINGER, 2250 touch_report->contact_status); 2251 if (touch_report->contact_status) { 2252 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_X, 2253 touch_report->x); 2254 input_event(hidpp->input, EV_ABS, ABS_MT_POSITION_Y, 2255 wd->flip_y ? wd->y_size - touch_report->y : 2256 touch_report->y); 2257 input_event(hidpp->input, EV_ABS, ABS_MT_PRESSURE, 2258 touch_report->area); 2259 } 2260 } 2261 2262 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp, 2263 struct hidpp_touchpad_raw_xy *raw) 2264 { 2265 int i; 2266 2267 for (i = 0; i < 2; i++) 2268 wtp_touch_event(hidpp, &(raw->fingers[i])); 2269 2270 if (raw->end_of_frame && 2271 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)) 2272 input_event(hidpp->input, EV_KEY, BTN_LEFT, raw->button); 2273 2274 if (raw->end_of_frame || raw->finger_count <= 2) { 2275 input_mt_sync_frame(hidpp->input); 2276 input_sync(hidpp->input); 2277 } 2278 } 2279 2280 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data) 2281 { 2282 struct wtp_data *wd = hidpp->private_data; 2283 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) + 2284 (data[7] >> 4) * (data[7] >> 4)) / 2; 2285 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) + 2286 (data[13] >> 4) * (data[13] >> 4)) / 2; 2287 struct hidpp_touchpad_raw_xy raw = { 2288 .timestamp = data[1], 2289 .fingers = { 2290 { 2291 .contact_type = 0, 2292 .contact_status = !!data[7], 2293 .x = get_unaligned_le16(&data[3]), 2294 .y = get_unaligned_le16(&data[5]), 2295 .z = c1_area, 2296 .area = c1_area, 2297 .finger_id = data[2], 2298 }, { 2299 .contact_type = 0, 2300 .contact_status = !!data[13], 2301 .x = get_unaligned_le16(&data[9]), 2302 .y = get_unaligned_le16(&data[11]), 2303 .z = c2_area, 2304 .area = c2_area, 2305 .finger_id = data[8], 2306 } 2307 }, 2308 .finger_count = wd->maxcontacts, 2309 .spurious_flag = 0, 2310 .end_of_frame = (data[0] >> 7) == 0, 2311 .button = data[0] & 0x01, 2312 }; 2313 2314 wtp_send_raw_xy_event(hidpp, &raw); 2315 2316 return 1; 2317 } 2318 2319 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size) 2320 { 2321 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2322 struct wtp_data *wd = hidpp->private_data; 2323 struct hidpp_report *report = (struct hidpp_report *)data; 2324 struct hidpp_touchpad_raw_xy raw; 2325 2326 if (!wd || !hidpp->input) 2327 return 1; 2328 2329 switch (data[0]) { 2330 case 0x02: 2331 if (size < 2) { 2332 hid_err(hdev, "Received HID report of bad size (%d)", 2333 size); 2334 return 1; 2335 } 2336 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) { 2337 input_event(hidpp->input, EV_KEY, BTN_LEFT, 2338 !!(data[1] & 0x01)); 2339 input_event(hidpp->input, EV_KEY, BTN_RIGHT, 2340 !!(data[1] & 0x02)); 2341 input_sync(hidpp->input); 2342 return 0; 2343 } else { 2344 if (size < 21) 2345 return 1; 2346 return wtp_mouse_raw_xy_event(hidpp, &data[7]); 2347 } 2348 case REPORT_ID_HIDPP_LONG: 2349 /* size is already checked in hidpp_raw_event. */ 2350 if ((report->fap.feature_index != wd->mt_feature_index) || 2351 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY)) 2352 return 1; 2353 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw); 2354 2355 wtp_send_raw_xy_event(hidpp, &raw); 2356 return 0; 2357 } 2358 2359 return 0; 2360 } 2361 2362 static int wtp_get_config(struct hidpp_device *hidpp) 2363 { 2364 struct wtp_data *wd = hidpp->private_data; 2365 struct hidpp_touchpad_raw_info raw_info = {0}; 2366 u8 feature_type; 2367 int ret; 2368 2369 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY, 2370 &wd->mt_feature_index, &feature_type); 2371 if (ret) 2372 /* means that the device is not powered up */ 2373 return ret; 2374 2375 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index, 2376 &raw_info); 2377 if (ret) 2378 return ret; 2379 2380 wd->x_size = raw_info.x_size; 2381 wd->y_size = raw_info.y_size; 2382 wd->maxcontacts = raw_info.maxcontacts; 2383 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT; 2384 wd->resolution = raw_info.res; 2385 if (!wd->resolution) 2386 wd->resolution = WTP_MANUAL_RESOLUTION; 2387 2388 return 0; 2389 } 2390 2391 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id) 2392 { 2393 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2394 struct wtp_data *wd; 2395 2396 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data), 2397 GFP_KERNEL); 2398 if (!wd) 2399 return -ENOMEM; 2400 2401 hidpp->private_data = wd; 2402 2403 return 0; 2404 }; 2405 2406 static int wtp_connect(struct hid_device *hdev, bool connected) 2407 { 2408 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2409 struct wtp_data *wd = hidpp->private_data; 2410 int ret; 2411 2412 if (!wd->x_size) { 2413 ret = wtp_get_config(hidpp); 2414 if (ret) { 2415 hid_err(hdev, "Can not get wtp config: %d\n", ret); 2416 return ret; 2417 } 2418 } 2419 2420 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index, 2421 true, true); 2422 } 2423 2424 /* ------------------------------------------------------------------------- */ 2425 /* Logitech M560 devices */ 2426 /* ------------------------------------------------------------------------- */ 2427 2428 /* 2429 * Logitech M560 protocol overview 2430 * 2431 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or 2432 * the sides buttons are pressed, it sends some keyboard keys events 2433 * instead of buttons ones. 2434 * To complicate things further, the middle button keys sequence 2435 * is different from the odd press and the even press. 2436 * 2437 * forward button -> Super_R 2438 * backward button -> Super_L+'d' (press only) 2439 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only) 2440 * 2nd time: left-click (press only) 2441 * NB: press-only means that when the button is pressed, the 2442 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated 2443 * together sequentially; instead when the button is released, no event is 2444 * generated ! 2445 * 2446 * With the command 2447 * 10<xx>0a 3500af03 (where <xx> is the mouse id), 2448 * the mouse reacts differently: 2449 * - it never sends a keyboard key event 2450 * - for the three mouse button it sends: 2451 * middle button press 11<xx>0a 3500af00... 2452 * side 1 button (forward) press 11<xx>0a 3500b000... 2453 * side 2 button (backward) press 11<xx>0a 3500ae00... 2454 * middle/side1/side2 button release 11<xx>0a 35000000... 2455 */ 2456 2457 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03}; 2458 2459 /* how buttons are mapped in the report */ 2460 #define M560_MOUSE_BTN_LEFT 0x01 2461 #define M560_MOUSE_BTN_RIGHT 0x02 2462 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08 2463 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10 2464 2465 #define M560_SUB_ID 0x0a 2466 #define M560_BUTTON_MODE_REGISTER 0x35 2467 2468 static int m560_send_config_command(struct hid_device *hdev, bool connected) 2469 { 2470 struct hidpp_report response; 2471 struct hidpp_device *hidpp_dev; 2472 2473 hidpp_dev = hid_get_drvdata(hdev); 2474 2475 return hidpp_send_rap_command_sync( 2476 hidpp_dev, 2477 REPORT_ID_HIDPP_SHORT, 2478 M560_SUB_ID, 2479 M560_BUTTON_MODE_REGISTER, 2480 (u8 *)m560_config_parameter, 2481 sizeof(m560_config_parameter), 2482 &response 2483 ); 2484 } 2485 2486 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size) 2487 { 2488 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2489 2490 /* sanity check */ 2491 if (!hidpp->input) { 2492 hid_err(hdev, "error in parameter\n"); 2493 return -EINVAL; 2494 } 2495 2496 if (size < 7) { 2497 hid_err(hdev, "error in report\n"); 2498 return 0; 2499 } 2500 2501 if (data[0] == REPORT_ID_HIDPP_LONG && 2502 data[2] == M560_SUB_ID && data[6] == 0x00) { 2503 /* 2504 * m560 mouse report for middle, forward and backward button 2505 * 2506 * data[0] = 0x11 2507 * data[1] = device-id 2508 * data[2] = 0x0a 2509 * data[5] = 0xaf -> middle 2510 * 0xb0 -> forward 2511 * 0xae -> backward 2512 * 0x00 -> release all 2513 * data[6] = 0x00 2514 */ 2515 2516 switch (data[5]) { 2517 case 0xaf: 2518 input_report_key(hidpp->input, BTN_MIDDLE, 1); 2519 break; 2520 case 0xb0: 2521 input_report_key(hidpp->input, BTN_FORWARD, 1); 2522 break; 2523 case 0xae: 2524 input_report_key(hidpp->input, BTN_BACK, 1); 2525 break; 2526 case 0x00: 2527 input_report_key(hidpp->input, BTN_BACK, 0); 2528 input_report_key(hidpp->input, BTN_FORWARD, 0); 2529 input_report_key(hidpp->input, BTN_MIDDLE, 0); 2530 break; 2531 default: 2532 hid_err(hdev, "error in report\n"); 2533 return 0; 2534 } 2535 input_sync(hidpp->input); 2536 2537 } else if (data[0] == 0x02) { 2538 /* 2539 * Logitech M560 mouse report 2540 * 2541 * data[0] = type (0x02) 2542 * data[1..2] = buttons 2543 * data[3..5] = xy 2544 * data[6] = wheel 2545 */ 2546 2547 int v; 2548 2549 input_report_key(hidpp->input, BTN_LEFT, 2550 !!(data[1] & M560_MOUSE_BTN_LEFT)); 2551 input_report_key(hidpp->input, BTN_RIGHT, 2552 !!(data[1] & M560_MOUSE_BTN_RIGHT)); 2553 2554 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) { 2555 input_report_rel(hidpp->input, REL_HWHEEL, -1); 2556 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2557 -120); 2558 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) { 2559 input_report_rel(hidpp->input, REL_HWHEEL, 1); 2560 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, 2561 120); 2562 } 2563 2564 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12); 2565 input_report_rel(hidpp->input, REL_X, v); 2566 2567 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12); 2568 input_report_rel(hidpp->input, REL_Y, v); 2569 2570 v = hid_snto32(data[6], 8); 2571 if (v != 0) 2572 hidpp_scroll_counter_handle_scroll(hidpp->input, 2573 &hidpp->vertical_wheel_counter, v); 2574 2575 input_sync(hidpp->input); 2576 } 2577 2578 return 1; 2579 } 2580 2581 static void m560_populate_input(struct hidpp_device *hidpp, 2582 struct input_dev *input_dev) 2583 { 2584 __set_bit(EV_KEY, input_dev->evbit); 2585 __set_bit(BTN_MIDDLE, input_dev->keybit); 2586 __set_bit(BTN_RIGHT, input_dev->keybit); 2587 __set_bit(BTN_LEFT, input_dev->keybit); 2588 __set_bit(BTN_BACK, input_dev->keybit); 2589 __set_bit(BTN_FORWARD, input_dev->keybit); 2590 2591 __set_bit(EV_REL, input_dev->evbit); 2592 __set_bit(REL_X, input_dev->relbit); 2593 __set_bit(REL_Y, input_dev->relbit); 2594 __set_bit(REL_WHEEL, input_dev->relbit); 2595 __set_bit(REL_HWHEEL, input_dev->relbit); 2596 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2597 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2598 } 2599 2600 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2601 struct hid_field *field, struct hid_usage *usage, 2602 unsigned long **bit, int *max) 2603 { 2604 return -1; 2605 } 2606 2607 /* ------------------------------------------------------------------------- */ 2608 /* Logitech K400 devices */ 2609 /* ------------------------------------------------------------------------- */ 2610 2611 /* 2612 * The Logitech K400 keyboard has an embedded touchpad which is seen 2613 * as a mouse from the OS point of view. There is a hardware shortcut to disable 2614 * tap-to-click but the setting is not remembered accross reset, annoying some 2615 * users. 2616 * 2617 * We can toggle this feature from the host by using the feature 0x6010: 2618 * Touchpad FW items 2619 */ 2620 2621 struct k400_private_data { 2622 u8 feature_index; 2623 }; 2624 2625 static int k400_disable_tap_to_click(struct hidpp_device *hidpp) 2626 { 2627 struct k400_private_data *k400 = hidpp->private_data; 2628 struct hidpp_touchpad_fw_items items = {}; 2629 int ret; 2630 u8 feature_type; 2631 2632 if (!k400->feature_index) { 2633 ret = hidpp_root_get_feature(hidpp, 2634 HIDPP_PAGE_TOUCHPAD_FW_ITEMS, 2635 &k400->feature_index, &feature_type); 2636 if (ret) 2637 /* means that the device is not powered up */ 2638 return ret; 2639 } 2640 2641 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items); 2642 if (ret) 2643 return ret; 2644 2645 return 0; 2646 } 2647 2648 static int k400_allocate(struct hid_device *hdev) 2649 { 2650 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2651 struct k400_private_data *k400; 2652 2653 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data), 2654 GFP_KERNEL); 2655 if (!k400) 2656 return -ENOMEM; 2657 2658 hidpp->private_data = k400; 2659 2660 return 0; 2661 }; 2662 2663 static int k400_connect(struct hid_device *hdev, bool connected) 2664 { 2665 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2666 2667 if (!disable_tap_to_click) 2668 return 0; 2669 2670 return k400_disable_tap_to_click(hidpp); 2671 } 2672 2673 /* ------------------------------------------------------------------------- */ 2674 /* Logitech G920 Driving Force Racing Wheel for Xbox One */ 2675 /* ------------------------------------------------------------------------- */ 2676 2677 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123 2678 2679 static int g920_ff_set_autocenter(struct hidpp_device *hidpp, 2680 struct hidpp_ff_private_data *data) 2681 { 2682 struct hidpp_report response; 2683 u8 params[HIDPP_AUTOCENTER_PARAMS_LENGTH] = { 2684 [1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART, 2685 }; 2686 int ret; 2687 2688 /* initialize with zero autocenter to get wheel in usable state */ 2689 2690 dbg_hid("Setting autocenter to 0.\n"); 2691 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2692 HIDPP_FF_DOWNLOAD_EFFECT, 2693 params, ARRAY_SIZE(params), 2694 &response); 2695 if (ret) 2696 hid_warn(hidpp->hid_dev, "Failed to autocenter device!\n"); 2697 else 2698 data->slot_autocenter = response.fap.params[0]; 2699 2700 return ret; 2701 } 2702 2703 static int g920_get_config(struct hidpp_device *hidpp, 2704 struct hidpp_ff_private_data *data) 2705 { 2706 struct hidpp_report response; 2707 u8 feature_type; 2708 int ret; 2709 2710 memset(data, 0, sizeof(*data)); 2711 2712 /* Find feature and store for later use */ 2713 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK, 2714 &data->feature_index, &feature_type); 2715 if (ret) 2716 return ret; 2717 2718 /* Read number of slots available in device */ 2719 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2720 HIDPP_FF_GET_INFO, 2721 NULL, 0, 2722 &response); 2723 if (ret) { 2724 if (ret < 0) 2725 return ret; 2726 hid_err(hidpp->hid_dev, 2727 "%s: received protocol error 0x%02x\n", __func__, ret); 2728 return -EPROTO; 2729 } 2730 2731 data->num_effects = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS; 2732 2733 /* reset all forces */ 2734 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2735 HIDPP_FF_RESET_ALL, 2736 NULL, 0, 2737 &response); 2738 if (ret) 2739 hid_warn(hidpp->hid_dev, "Failed to reset all forces!\n"); 2740 2741 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2742 HIDPP_FF_GET_APERTURE, 2743 NULL, 0, 2744 &response); 2745 if (ret) { 2746 hid_warn(hidpp->hid_dev, 2747 "Failed to read range from device!\n"); 2748 } 2749 data->range = ret ? 2750 900 : get_unaligned_be16(&response.fap.params[0]); 2751 2752 /* Read the current gain values */ 2753 ret = hidpp_send_fap_command_sync(hidpp, data->feature_index, 2754 HIDPP_FF_GET_GLOBAL_GAINS, 2755 NULL, 0, 2756 &response); 2757 if (ret) 2758 hid_warn(hidpp->hid_dev, 2759 "Failed to read gain values from device!\n"); 2760 data->gain = ret ? 2761 0xffff : get_unaligned_be16(&response.fap.params[0]); 2762 2763 /* ignore boost value at response.fap.params[2] */ 2764 2765 return g920_ff_set_autocenter(hidpp, data); 2766 } 2767 2768 /* -------------------------------------------------------------------------- */ 2769 /* HID++1.0 devices which use HID++ reports for their wheels */ 2770 /* -------------------------------------------------------------------------- */ 2771 static int hidpp10_wheel_connect(struct hidpp_device *hidpp) 2772 { 2773 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2774 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT, 2775 HIDPP_ENABLE_WHEEL_REPORT | HIDPP_ENABLE_HWHEEL_REPORT); 2776 } 2777 2778 static int hidpp10_wheel_raw_event(struct hidpp_device *hidpp, 2779 u8 *data, int size) 2780 { 2781 s8 value, hvalue; 2782 2783 if (!hidpp->input) 2784 return -EINVAL; 2785 2786 if (size < 7) 2787 return 0; 2788 2789 if (data[0] != REPORT_ID_HIDPP_SHORT || data[2] != HIDPP_SUB_ID_ROLLER) 2790 return 0; 2791 2792 value = data[3]; 2793 hvalue = data[4]; 2794 2795 input_report_rel(hidpp->input, REL_WHEEL, value); 2796 input_report_rel(hidpp->input, REL_WHEEL_HI_RES, value * 120); 2797 input_report_rel(hidpp->input, REL_HWHEEL, hvalue); 2798 input_report_rel(hidpp->input, REL_HWHEEL_HI_RES, hvalue * 120); 2799 input_sync(hidpp->input); 2800 2801 return 1; 2802 } 2803 2804 static void hidpp10_wheel_populate_input(struct hidpp_device *hidpp, 2805 struct input_dev *input_dev) 2806 { 2807 __set_bit(EV_REL, input_dev->evbit); 2808 __set_bit(REL_WHEEL, input_dev->relbit); 2809 __set_bit(REL_WHEEL_HI_RES, input_dev->relbit); 2810 __set_bit(REL_HWHEEL, input_dev->relbit); 2811 __set_bit(REL_HWHEEL_HI_RES, input_dev->relbit); 2812 } 2813 2814 /* -------------------------------------------------------------------------- */ 2815 /* HID++1.0 mice which use HID++ reports for extra mouse buttons */ 2816 /* -------------------------------------------------------------------------- */ 2817 static int hidpp10_extra_mouse_buttons_connect(struct hidpp_device *hidpp) 2818 { 2819 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2820 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT, 2821 HIDPP_ENABLE_MOUSE_EXTRA_BTN_REPORT); 2822 } 2823 2824 static int hidpp10_extra_mouse_buttons_raw_event(struct hidpp_device *hidpp, 2825 u8 *data, int size) 2826 { 2827 int i; 2828 2829 if (!hidpp->input) 2830 return -EINVAL; 2831 2832 if (size < 7) 2833 return 0; 2834 2835 if (data[0] != REPORT_ID_HIDPP_SHORT || 2836 data[2] != HIDPP_SUB_ID_MOUSE_EXTRA_BTNS) 2837 return 0; 2838 2839 /* 2840 * Buttons are either delivered through the regular mouse report *or* 2841 * through the extra buttons report. At least for button 6 how it is 2842 * delivered differs per receiver firmware version. Even receivers with 2843 * the same usb-id show different behavior, so we handle both cases. 2844 */ 2845 for (i = 0; i < 8; i++) 2846 input_report_key(hidpp->input, BTN_MOUSE + i, 2847 (data[3] & (1 << i))); 2848 2849 /* Some mice report events on button 9+, use BTN_MISC */ 2850 for (i = 0; i < 8; i++) 2851 input_report_key(hidpp->input, BTN_MISC + i, 2852 (data[4] & (1 << i))); 2853 2854 input_sync(hidpp->input); 2855 return 1; 2856 } 2857 2858 static void hidpp10_extra_mouse_buttons_populate_input( 2859 struct hidpp_device *hidpp, struct input_dev *input_dev) 2860 { 2861 /* BTN_MOUSE - BTN_MOUSE+7 are set already by the descriptor */ 2862 __set_bit(BTN_0, input_dev->keybit); 2863 __set_bit(BTN_1, input_dev->keybit); 2864 __set_bit(BTN_2, input_dev->keybit); 2865 __set_bit(BTN_3, input_dev->keybit); 2866 __set_bit(BTN_4, input_dev->keybit); 2867 __set_bit(BTN_5, input_dev->keybit); 2868 __set_bit(BTN_6, input_dev->keybit); 2869 __set_bit(BTN_7, input_dev->keybit); 2870 } 2871 2872 /* -------------------------------------------------------------------------- */ 2873 /* HID++1.0 kbds which only report 0x10xx consumer usages through sub-id 0x03 */ 2874 /* -------------------------------------------------------------------------- */ 2875 2876 /* Find the consumer-page input report desc and change Maximums to 0x107f */ 2877 static u8 *hidpp10_consumer_keys_report_fixup(struct hidpp_device *hidpp, 2878 u8 *_rdesc, unsigned int *rsize) 2879 { 2880 /* Note 0 terminated so we can use strnstr to search for this. */ 2881 static const char consumer_rdesc_start[] = { 2882 0x05, 0x0C, /* USAGE_PAGE (Consumer Devices) */ 2883 0x09, 0x01, /* USAGE (Consumer Control) */ 2884 0xA1, 0x01, /* COLLECTION (Application) */ 2885 0x85, 0x03, /* REPORT_ID = 3 */ 2886 0x75, 0x10, /* REPORT_SIZE (16) */ 2887 0x95, 0x02, /* REPORT_COUNT (2) */ 2888 0x15, 0x01, /* LOGICAL_MIN (1) */ 2889 0x26, 0x00 /* LOGICAL_MAX (... */ 2890 }; 2891 char *consumer_rdesc, *rdesc = (char *)_rdesc; 2892 unsigned int size; 2893 2894 consumer_rdesc = strnstr(rdesc, consumer_rdesc_start, *rsize); 2895 size = *rsize - (consumer_rdesc - rdesc); 2896 if (consumer_rdesc && size >= 25) { 2897 consumer_rdesc[15] = 0x7f; 2898 consumer_rdesc[16] = 0x10; 2899 consumer_rdesc[20] = 0x7f; 2900 consumer_rdesc[21] = 0x10; 2901 } 2902 return _rdesc; 2903 } 2904 2905 static int hidpp10_consumer_keys_connect(struct hidpp_device *hidpp) 2906 { 2907 return hidpp10_set_register(hidpp, HIDPP_REG_ENABLE_REPORTS, 0, 2908 HIDPP_ENABLE_CONSUMER_REPORT, 2909 HIDPP_ENABLE_CONSUMER_REPORT); 2910 } 2911 2912 static int hidpp10_consumer_keys_raw_event(struct hidpp_device *hidpp, 2913 u8 *data, int size) 2914 { 2915 u8 consumer_report[5]; 2916 2917 if (size < 7) 2918 return 0; 2919 2920 if (data[0] != REPORT_ID_HIDPP_SHORT || 2921 data[2] != HIDPP_SUB_ID_CONSUMER_VENDOR_KEYS) 2922 return 0; 2923 2924 /* 2925 * Build a normal consumer report (3) out of the data, this detour 2926 * is necessary to get some keyboards to report their 0x10xx usages. 2927 */ 2928 consumer_report[0] = 0x03; 2929 memcpy(&consumer_report[1], &data[3], 4); 2930 /* We are called from atomic context */ 2931 hid_report_raw_event(hidpp->hid_dev, HID_INPUT_REPORT, 2932 consumer_report, 5, 1); 2933 2934 return 1; 2935 } 2936 2937 /* -------------------------------------------------------------------------- */ 2938 /* High-resolution scroll wheels */ 2939 /* -------------------------------------------------------------------------- */ 2940 2941 static int hi_res_scroll_enable(struct hidpp_device *hidpp) 2942 { 2943 int ret; 2944 u8 multiplier = 1; 2945 2946 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) { 2947 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false); 2948 if (ret == 0) 2949 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier); 2950 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) { 2951 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true, 2952 &multiplier); 2953 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ { 2954 ret = hidpp10_enable_scrolling_acceleration(hidpp); 2955 multiplier = 8; 2956 } 2957 if (ret) 2958 return ret; 2959 2960 if (multiplier == 0) 2961 multiplier = 1; 2962 2963 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier; 2964 hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier); 2965 return 0; 2966 } 2967 2968 /* -------------------------------------------------------------------------- */ 2969 /* Generic HID++ devices */ 2970 /* -------------------------------------------------------------------------- */ 2971 2972 static u8 *hidpp_report_fixup(struct hid_device *hdev, u8 *rdesc, 2973 unsigned int *rsize) 2974 { 2975 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2976 2977 if (!hidpp) 2978 return rdesc; 2979 2980 /* For 27 MHz keyboards the quirk gets set after hid_parse. */ 2981 if (hdev->group == HID_GROUP_LOGITECH_27MHZ_DEVICE || 2982 (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS)) 2983 rdesc = hidpp10_consumer_keys_report_fixup(hidpp, rdesc, rsize); 2984 2985 return rdesc; 2986 } 2987 2988 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi, 2989 struct hid_field *field, struct hid_usage *usage, 2990 unsigned long **bit, int *max) 2991 { 2992 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 2993 2994 if (!hidpp) 2995 return 0; 2996 2997 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 2998 return wtp_input_mapping(hdev, hi, field, usage, bit, max); 2999 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 && 3000 field->application != HID_GD_MOUSE) 3001 return m560_input_mapping(hdev, hi, field, usage, bit, max); 3002 3003 return 0; 3004 } 3005 3006 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi, 3007 struct hid_field *field, struct hid_usage *usage, 3008 unsigned long **bit, int *max) 3009 { 3010 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3011 3012 if (!hidpp) 3013 return 0; 3014 3015 /* Ensure that Logitech G920 is not given a default fuzz/flat value */ 3016 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3017 if (usage->type == EV_ABS && (usage->code == ABS_X || 3018 usage->code == ABS_Y || usage->code == ABS_Z || 3019 usage->code == ABS_RZ)) { 3020 field->application = HID_GD_MULTIAXIS; 3021 } 3022 } 3023 3024 return 0; 3025 } 3026 3027 3028 static void hidpp_populate_input(struct hidpp_device *hidpp, 3029 struct input_dev *input) 3030 { 3031 hidpp->input = input; 3032 3033 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3034 wtp_populate_input(hidpp, input); 3035 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3036 m560_populate_input(hidpp, input); 3037 3038 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) 3039 hidpp10_wheel_populate_input(hidpp, input); 3040 3041 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) 3042 hidpp10_extra_mouse_buttons_populate_input(hidpp, input); 3043 } 3044 3045 static int hidpp_input_configured(struct hid_device *hdev, 3046 struct hid_input *hidinput) 3047 { 3048 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3049 struct input_dev *input = hidinput->input; 3050 3051 if (!hidpp) 3052 return 0; 3053 3054 hidpp_populate_input(hidpp, input); 3055 3056 return 0; 3057 } 3058 3059 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data, 3060 int size) 3061 { 3062 struct hidpp_report *question = hidpp->send_receive_buf; 3063 struct hidpp_report *answer = hidpp->send_receive_buf; 3064 struct hidpp_report *report = (struct hidpp_report *)data; 3065 int ret; 3066 3067 /* 3068 * If the mutex is locked then we have a pending answer from a 3069 * previously sent command. 3070 */ 3071 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) { 3072 /* 3073 * Check for a correct hidpp20 answer or the corresponding 3074 * error 3075 */ 3076 if (hidpp_match_answer(question, report) || 3077 hidpp_match_error(question, report)) { 3078 *answer = *report; 3079 hidpp->answer_available = true; 3080 wake_up(&hidpp->wait); 3081 /* 3082 * This was an answer to a command that this driver sent 3083 * We return 1 to hid-core to avoid forwarding the 3084 * command upstream as it has been treated by the driver 3085 */ 3086 3087 return 1; 3088 } 3089 } 3090 3091 if (unlikely(hidpp_report_is_connect_event(report))) { 3092 atomic_set(&hidpp->connected, 3093 !(report->rap.params[0] & (1 << 6))); 3094 if (schedule_work(&hidpp->work) == 0) 3095 dbg_hid("%s: connect event already queued\n", __func__); 3096 return 1; 3097 } 3098 3099 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3100 ret = hidpp20_battery_event(hidpp, data, size); 3101 if (ret != 0) 3102 return ret; 3103 ret = hidpp_solar_battery_event(hidpp, data, size); 3104 if (ret != 0) 3105 return ret; 3106 } 3107 3108 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3109 ret = hidpp10_battery_event(hidpp, data, size); 3110 if (ret != 0) 3111 return ret; 3112 } 3113 3114 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3115 ret = hidpp10_wheel_raw_event(hidpp, data, size); 3116 if (ret != 0) 3117 return ret; 3118 } 3119 3120 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3121 ret = hidpp10_extra_mouse_buttons_raw_event(hidpp, data, size); 3122 if (ret != 0) 3123 return ret; 3124 } 3125 3126 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3127 ret = hidpp10_consumer_keys_raw_event(hidpp, data, size); 3128 if (ret != 0) 3129 return ret; 3130 } 3131 3132 return 0; 3133 } 3134 3135 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report, 3136 u8 *data, int size) 3137 { 3138 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3139 int ret = 0; 3140 3141 if (!hidpp) 3142 return 0; 3143 3144 /* Generic HID++ processing. */ 3145 switch (data[0]) { 3146 case REPORT_ID_HIDPP_VERY_LONG: 3147 if (size != hidpp->very_long_report_length) { 3148 hid_err(hdev, "received hid++ report of bad size (%d)", 3149 size); 3150 return 1; 3151 } 3152 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3153 break; 3154 case REPORT_ID_HIDPP_LONG: 3155 if (size != HIDPP_REPORT_LONG_LENGTH) { 3156 hid_err(hdev, "received hid++ report of bad size (%d)", 3157 size); 3158 return 1; 3159 } 3160 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3161 break; 3162 case REPORT_ID_HIDPP_SHORT: 3163 if (size != HIDPP_REPORT_SHORT_LENGTH) { 3164 hid_err(hdev, "received hid++ report of bad size (%d)", 3165 size); 3166 return 1; 3167 } 3168 ret = hidpp_raw_hidpp_event(hidpp, data, size); 3169 break; 3170 } 3171 3172 /* If no report is available for further processing, skip calling 3173 * raw_event of subclasses. */ 3174 if (ret != 0) 3175 return ret; 3176 3177 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) 3178 return wtp_raw_event(hdev, data, size); 3179 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) 3180 return m560_raw_event(hdev, data, size); 3181 3182 return 0; 3183 } 3184 3185 static int hidpp_event(struct hid_device *hdev, struct hid_field *field, 3186 struct hid_usage *usage, __s32 value) 3187 { 3188 /* This function will only be called for scroll events, due to the 3189 * restriction imposed in hidpp_usages. 3190 */ 3191 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3192 struct hidpp_scroll_counter *counter; 3193 3194 if (!hidpp) 3195 return 0; 3196 3197 counter = &hidpp->vertical_wheel_counter; 3198 /* A scroll event may occur before the multiplier has been retrieved or 3199 * the input device set, or high-res scroll enabling may fail. In such 3200 * cases we must return early (falling back to default behaviour) to 3201 * avoid a crash in hidpp_scroll_counter_handle_scroll. 3202 */ 3203 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0 3204 || hidpp->input == NULL || counter->wheel_multiplier == 0) 3205 return 0; 3206 3207 hidpp_scroll_counter_handle_scroll(hidpp->input, counter, value); 3208 return 1; 3209 } 3210 3211 static int hidpp_initialize_battery(struct hidpp_device *hidpp) 3212 { 3213 static atomic_t battery_no = ATOMIC_INIT(0); 3214 struct power_supply_config cfg = { .drv_data = hidpp }; 3215 struct power_supply_desc *desc = &hidpp->battery.desc; 3216 enum power_supply_property *battery_props; 3217 struct hidpp_battery *battery; 3218 unsigned int num_battery_props; 3219 unsigned long n; 3220 int ret; 3221 3222 if (hidpp->battery.ps) 3223 return 0; 3224 3225 hidpp->battery.feature_index = 0xff; 3226 hidpp->battery.solar_feature_index = 0xff; 3227 3228 if (hidpp->protocol_major >= 2) { 3229 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750) 3230 ret = hidpp_solar_request_battery_event(hidpp); 3231 else 3232 ret = hidpp20_query_battery_info(hidpp); 3233 3234 if (ret) 3235 return ret; 3236 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY; 3237 } else { 3238 ret = hidpp10_query_battery_status(hidpp); 3239 if (ret) { 3240 ret = hidpp10_query_battery_mileage(hidpp); 3241 if (ret) 3242 return -ENOENT; 3243 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE; 3244 } else { 3245 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS; 3246 } 3247 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY; 3248 } 3249 3250 battery_props = devm_kmemdup(&hidpp->hid_dev->dev, 3251 hidpp_battery_props, 3252 sizeof(hidpp_battery_props), 3253 GFP_KERNEL); 3254 if (!battery_props) 3255 return -ENOMEM; 3256 3257 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2; 3258 3259 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3260 battery_props[num_battery_props++] = 3261 POWER_SUPPLY_PROP_CAPACITY; 3262 3263 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS) 3264 battery_props[num_battery_props++] = 3265 POWER_SUPPLY_PROP_CAPACITY_LEVEL; 3266 3267 battery = &hidpp->battery; 3268 3269 n = atomic_inc_return(&battery_no) - 1; 3270 desc->properties = battery_props; 3271 desc->num_properties = num_battery_props; 3272 desc->get_property = hidpp_battery_get_property; 3273 sprintf(battery->name, "hidpp_battery_%ld", n); 3274 desc->name = battery->name; 3275 desc->type = POWER_SUPPLY_TYPE_BATTERY; 3276 desc->use_for_apm = 0; 3277 3278 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev, 3279 &battery->desc, 3280 &cfg); 3281 if (IS_ERR(battery->ps)) 3282 return PTR_ERR(battery->ps); 3283 3284 power_supply_powers(battery->ps, &hidpp->hid_dev->dev); 3285 3286 return ret; 3287 } 3288 3289 static void hidpp_overwrite_name(struct hid_device *hdev) 3290 { 3291 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3292 char *name; 3293 3294 if (hidpp->protocol_major < 2) 3295 return; 3296 3297 name = hidpp_get_device_name(hidpp); 3298 3299 if (!name) { 3300 hid_err(hdev, "unable to retrieve the name of the device"); 3301 } else { 3302 dbg_hid("HID++: Got name: %s\n", name); 3303 snprintf(hdev->name, sizeof(hdev->name), "%s", name); 3304 } 3305 3306 kfree(name); 3307 } 3308 3309 static int hidpp_input_open(struct input_dev *dev) 3310 { 3311 struct hid_device *hid = input_get_drvdata(dev); 3312 3313 return hid_hw_open(hid); 3314 } 3315 3316 static void hidpp_input_close(struct input_dev *dev) 3317 { 3318 struct hid_device *hid = input_get_drvdata(dev); 3319 3320 hid_hw_close(hid); 3321 } 3322 3323 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev) 3324 { 3325 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev); 3326 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3327 3328 if (!input_dev) 3329 return NULL; 3330 3331 input_set_drvdata(input_dev, hdev); 3332 input_dev->open = hidpp_input_open; 3333 input_dev->close = hidpp_input_close; 3334 3335 input_dev->name = hidpp->name; 3336 input_dev->phys = hdev->phys; 3337 input_dev->uniq = hdev->uniq; 3338 input_dev->id.bustype = hdev->bus; 3339 input_dev->id.vendor = hdev->vendor; 3340 input_dev->id.product = hdev->product; 3341 input_dev->id.version = hdev->version; 3342 input_dev->dev.parent = &hdev->dev; 3343 3344 return input_dev; 3345 } 3346 3347 static void hidpp_connect_event(struct hidpp_device *hidpp) 3348 { 3349 struct hid_device *hdev = hidpp->hid_dev; 3350 int ret = 0; 3351 bool connected = atomic_read(&hidpp->connected); 3352 struct input_dev *input; 3353 char *name, *devm_name; 3354 3355 if (!connected) { 3356 if (hidpp->battery.ps) { 3357 hidpp->battery.online = false; 3358 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN; 3359 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 3360 power_supply_changed(hidpp->battery.ps); 3361 } 3362 return; 3363 } 3364 3365 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3366 ret = wtp_connect(hdev, connected); 3367 if (ret) 3368 return; 3369 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) { 3370 ret = m560_send_config_command(hdev, connected); 3371 if (ret) 3372 return; 3373 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3374 ret = k400_connect(hdev, connected); 3375 if (ret) 3376 return; 3377 } 3378 3379 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_WHEELS) { 3380 ret = hidpp10_wheel_connect(hidpp); 3381 if (ret) 3382 return; 3383 } 3384 3385 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS) { 3386 ret = hidpp10_extra_mouse_buttons_connect(hidpp); 3387 if (ret) 3388 return; 3389 } 3390 3391 if (hidpp->quirks & HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS) { 3392 ret = hidpp10_consumer_keys_connect(hidpp); 3393 if (ret) 3394 return; 3395 } 3396 3397 /* the device is already connected, we can ask for its name and 3398 * protocol */ 3399 if (!hidpp->protocol_major) { 3400 ret = hidpp_root_get_protocol_version(hidpp); 3401 if (ret) { 3402 hid_err(hdev, "Can not get the protocol version.\n"); 3403 return; 3404 } 3405 } 3406 3407 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) { 3408 name = hidpp_get_device_name(hidpp); 3409 if (name) { 3410 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, 3411 "%s", name); 3412 kfree(name); 3413 if (!devm_name) 3414 return; 3415 3416 hidpp->name = devm_name; 3417 } 3418 } 3419 3420 hidpp_initialize_battery(hidpp); 3421 3422 /* forward current battery state */ 3423 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) { 3424 hidpp10_enable_battery_reporting(hidpp); 3425 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE) 3426 hidpp10_query_battery_mileage(hidpp); 3427 else 3428 hidpp10_query_battery_status(hidpp); 3429 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) { 3430 hidpp20_query_battery_info(hidpp); 3431 } 3432 if (hidpp->battery.ps) 3433 power_supply_changed(hidpp->battery.ps); 3434 3435 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) 3436 hi_res_scroll_enable(hidpp); 3437 3438 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input) 3439 /* if the input nodes are already created, we can stop now */ 3440 return; 3441 3442 input = hidpp_allocate_input(hdev); 3443 if (!input) { 3444 hid_err(hdev, "cannot allocate new input device: %d\n", ret); 3445 return; 3446 } 3447 3448 hidpp_populate_input(hidpp, input); 3449 3450 ret = input_register_device(input); 3451 if (ret) 3452 input_free_device(input); 3453 3454 hidpp->delayed_input = input; 3455 } 3456 3457 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL); 3458 3459 static struct attribute *sysfs_attrs[] = { 3460 &dev_attr_builtin_power_supply.attr, 3461 NULL 3462 }; 3463 3464 static const struct attribute_group ps_attribute_group = { 3465 .attrs = sysfs_attrs 3466 }; 3467 3468 static int hidpp_get_report_length(struct hid_device *hdev, int id) 3469 { 3470 struct hid_report_enum *re; 3471 struct hid_report *report; 3472 3473 re = &(hdev->report_enum[HID_OUTPUT_REPORT]); 3474 report = re->report_id_hash[id]; 3475 if (!report) 3476 return 0; 3477 3478 return report->field[0]->report_count + 1; 3479 } 3480 3481 static bool hidpp_validate_device(struct hid_device *hdev) 3482 { 3483 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3484 int id, report_length, supported_reports = 0; 3485 3486 id = REPORT_ID_HIDPP_SHORT; 3487 report_length = hidpp_get_report_length(hdev, id); 3488 if (report_length) { 3489 if (report_length < HIDPP_REPORT_SHORT_LENGTH) 3490 goto bad_device; 3491 3492 supported_reports++; 3493 } 3494 3495 id = REPORT_ID_HIDPP_LONG; 3496 report_length = hidpp_get_report_length(hdev, id); 3497 if (report_length) { 3498 if (report_length < HIDPP_REPORT_LONG_LENGTH) 3499 goto bad_device; 3500 3501 supported_reports++; 3502 } 3503 3504 id = REPORT_ID_HIDPP_VERY_LONG; 3505 report_length = hidpp_get_report_length(hdev, id); 3506 if (report_length) { 3507 if (report_length < HIDPP_REPORT_LONG_LENGTH || 3508 report_length > HIDPP_REPORT_VERY_LONG_MAX_LENGTH) 3509 goto bad_device; 3510 3511 supported_reports++; 3512 hidpp->very_long_report_length = report_length; 3513 } 3514 3515 return supported_reports; 3516 3517 bad_device: 3518 hid_warn(hdev, "not enough values in hidpp report %d\n", id); 3519 return false; 3520 } 3521 3522 static bool hidpp_application_equals(struct hid_device *hdev, 3523 unsigned int application) 3524 { 3525 struct list_head *report_list; 3526 struct hid_report *report; 3527 3528 report_list = &hdev->report_enum[HID_INPUT_REPORT].report_list; 3529 report = list_first_entry_or_null(report_list, struct hid_report, list); 3530 return report && report->application == application; 3531 } 3532 3533 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id) 3534 { 3535 struct hidpp_device *hidpp; 3536 int ret; 3537 bool connected; 3538 unsigned int connect_mask = HID_CONNECT_DEFAULT; 3539 struct hidpp_ff_private_data data; 3540 3541 /* report_fixup needs drvdata to be set before we call hid_parse */ 3542 hidpp = devm_kzalloc(&hdev->dev, sizeof(*hidpp), GFP_KERNEL); 3543 if (!hidpp) 3544 return -ENOMEM; 3545 3546 hidpp->hid_dev = hdev; 3547 hidpp->name = hdev->name; 3548 hidpp->quirks = id->driver_data; 3549 hid_set_drvdata(hdev, hidpp); 3550 3551 ret = hid_parse(hdev); 3552 if (ret) { 3553 hid_err(hdev, "%s:parse failed\n", __func__); 3554 return ret; 3555 } 3556 3557 /* 3558 * Make sure the device is HID++ capable, otherwise treat as generic HID 3559 */ 3560 if (!hidpp_validate_device(hdev)) { 3561 hid_set_drvdata(hdev, NULL); 3562 devm_kfree(&hdev->dev, hidpp); 3563 return hid_hw_start(hdev, HID_CONNECT_DEFAULT); 3564 } 3565 3566 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE) 3567 hidpp->quirks |= HIDPP_QUIRK_UNIFYING; 3568 3569 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3570 hidpp_application_equals(hdev, HID_GD_MOUSE)) 3571 hidpp->quirks |= HIDPP_QUIRK_HIDPP_WHEELS | 3572 HIDPP_QUIRK_HIDPP_EXTRA_MOUSE_BTNS; 3573 3574 if (id->group == HID_GROUP_LOGITECH_27MHZ_DEVICE && 3575 hidpp_application_equals(hdev, HID_GD_KEYBOARD)) 3576 hidpp->quirks |= HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS; 3577 3578 if (disable_raw_mode) { 3579 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP; 3580 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT; 3581 } 3582 3583 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) { 3584 ret = wtp_allocate(hdev, id); 3585 if (ret) 3586 return ret; 3587 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) { 3588 ret = k400_allocate(hdev); 3589 if (ret) 3590 return ret; 3591 } 3592 3593 INIT_WORK(&hidpp->work, delayed_work_cb); 3594 mutex_init(&hidpp->send_mutex); 3595 init_waitqueue_head(&hidpp->wait); 3596 3597 /* indicates we are handling the battery properties in the kernel */ 3598 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group); 3599 if (ret) 3600 hid_warn(hdev, "Cannot allocate sysfs group for %s\n", 3601 hdev->name); 3602 3603 /* 3604 * Plain USB connections need to actually call start and open 3605 * on the transport driver to allow incoming data. 3606 */ 3607 ret = hid_hw_start(hdev, 0); 3608 if (ret) { 3609 hid_err(hdev, "hw start failed\n"); 3610 goto hid_hw_start_fail; 3611 } 3612 3613 ret = hid_hw_open(hdev); 3614 if (ret < 0) { 3615 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n", 3616 __func__, ret); 3617 hid_hw_stop(hdev); 3618 goto hid_hw_open_fail; 3619 } 3620 3621 /* Allow incoming packets */ 3622 hid_device_io_start(hdev); 3623 3624 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING) 3625 hidpp_unifying_init(hidpp); 3626 3627 connected = hidpp_root_get_protocol_version(hidpp) == 0; 3628 atomic_set(&hidpp->connected, connected); 3629 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) { 3630 if (!connected) { 3631 ret = -ENODEV; 3632 hid_err(hdev, "Device not connected"); 3633 goto hid_hw_init_fail; 3634 } 3635 3636 hidpp_overwrite_name(hdev); 3637 } 3638 3639 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) { 3640 ret = wtp_get_config(hidpp); 3641 if (ret) 3642 goto hid_hw_init_fail; 3643 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) { 3644 ret = g920_get_config(hidpp, &data); 3645 if (ret) 3646 goto hid_hw_init_fail; 3647 } 3648 3649 hidpp_connect_event(hidpp); 3650 3651 /* Reset the HID node state */ 3652 hid_device_io_stop(hdev); 3653 hid_hw_close(hdev); 3654 hid_hw_stop(hdev); 3655 3656 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) 3657 connect_mask &= ~HID_CONNECT_HIDINPUT; 3658 3659 /* Now export the actual inputs and hidraw nodes to the world */ 3660 ret = hid_hw_start(hdev, connect_mask); 3661 if (ret) { 3662 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__); 3663 goto hid_hw_start_fail; 3664 } 3665 3666 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) { 3667 ret = hidpp_ff_init(hidpp, &data); 3668 if (ret) 3669 hid_warn(hidpp->hid_dev, 3670 "Unable to initialize force feedback support, errno %d\n", 3671 ret); 3672 } 3673 3674 return ret; 3675 3676 hid_hw_init_fail: 3677 hid_hw_close(hdev); 3678 hid_hw_open_fail: 3679 hid_hw_stop(hdev); 3680 hid_hw_start_fail: 3681 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3682 cancel_work_sync(&hidpp->work); 3683 mutex_destroy(&hidpp->send_mutex); 3684 return ret; 3685 } 3686 3687 static void hidpp_remove(struct hid_device *hdev) 3688 { 3689 struct hidpp_device *hidpp = hid_get_drvdata(hdev); 3690 3691 if (!hidpp) 3692 return hid_hw_stop(hdev); 3693 3694 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group); 3695 3696 hid_hw_stop(hdev); 3697 cancel_work_sync(&hidpp->work); 3698 mutex_destroy(&hidpp->send_mutex); 3699 } 3700 3701 #define LDJ_DEVICE(product) \ 3702 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \ 3703 USB_VENDOR_ID_LOGITECH, (product)) 3704 3705 #define L27MHZ_DEVICE(product) \ 3706 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_27MHZ_DEVICE, \ 3707 USB_VENDOR_ID_LOGITECH, (product)) 3708 3709 static const struct hid_device_id hidpp_devices[] = { 3710 { /* wireless touchpad */ 3711 LDJ_DEVICE(0x4011), 3712 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT | 3713 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS }, 3714 { /* wireless touchpad T650 */ 3715 LDJ_DEVICE(0x4101), 3716 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT }, 3717 { /* wireless touchpad T651 */ 3718 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 3719 USB_DEVICE_ID_LOGITECH_T651), 3720 .driver_data = HIDPP_QUIRK_CLASS_WTP }, 3721 { /* Mouse Logitech Anywhere MX */ 3722 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3723 { /* Mouse Logitech Cube */ 3724 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3725 { /* Mouse Logitech M335 */ 3726 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3727 { /* Mouse Logitech M515 */ 3728 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3729 { /* Mouse logitech M560 */ 3730 LDJ_DEVICE(0x402d), 3731 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560 3732 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 }, 3733 { /* Mouse Logitech M705 (firmware RQM17) */ 3734 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3735 { /* Mouse Logitech M705 (firmware RQM67) */ 3736 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3737 { /* Mouse Logitech M720 */ 3738 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3739 { /* Mouse Logitech MX Anywhere 2 */ 3740 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3741 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3742 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3743 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3744 { /* Mouse Logitech MX Anywhere 2S */ 3745 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3746 { /* Mouse Logitech MX Master */ 3747 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3748 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3749 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3750 { /* Mouse Logitech MX Master 2S */ 3751 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 }, 3752 { /* Mouse Logitech Performance MX */ 3753 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 }, 3754 { /* Keyboard logitech K400 */ 3755 LDJ_DEVICE(0x4024), 3756 .driver_data = HIDPP_QUIRK_CLASS_K400 }, 3757 { /* Solar Keyboard Logitech K750 */ 3758 LDJ_DEVICE(0x4002), 3759 .driver_data = HIDPP_QUIRK_CLASS_K750 }, 3760 { /* Keyboard MX5000 (Bluetooth-receiver in HID proxy mode) */ 3761 LDJ_DEVICE(0xb305), 3762 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3763 { /* Keyboard MX5500 (Bluetooth-receiver in HID proxy mode) */ 3764 LDJ_DEVICE(0xb30b), 3765 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3766 3767 { LDJ_DEVICE(HID_ANY_ID) }, 3768 3769 { /* Keyboard LX501 (Y-RR53) */ 3770 L27MHZ_DEVICE(0x0049), 3771 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 3772 { /* Keyboard MX3000 (Y-RAM74) */ 3773 L27MHZ_DEVICE(0x0057), 3774 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 3775 { /* Keyboard MX3200 (Y-RAV80) */ 3776 L27MHZ_DEVICE(0x005c), 3777 .driver_data = HIDPP_QUIRK_KBD_ZOOM_WHEEL }, 3778 { /* S510 Media Remote */ 3779 L27MHZ_DEVICE(0x00fe), 3780 .driver_data = HIDPP_QUIRK_KBD_SCROLL_WHEEL }, 3781 3782 { L27MHZ_DEVICE(HID_ANY_ID) }, 3783 3784 { /* Logitech G403 Wireless Gaming Mouse over USB */ 3785 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC082) }, 3786 { /* Logitech G703 Gaming Mouse over USB */ 3787 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC087) }, 3788 { /* Logitech G703 Hero Gaming Mouse over USB */ 3789 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC090) }, 3790 { /* Logitech G900 Gaming Mouse over USB */ 3791 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC081) }, 3792 { /* Logitech G903 Gaming Mouse over USB */ 3793 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC086) }, 3794 { /* Logitech G903 Hero Gaming Mouse over USB */ 3795 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC091) }, 3796 { /* Logitech G920 Wheel over USB */ 3797 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL), 3798 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS}, 3799 { /* Logitech G Pro Gaming Mouse over USB */ 3800 HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, 0xC088) }, 3801 3802 { /* MX5000 keyboard over Bluetooth */ 3803 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb305), 3804 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3805 { /* MX5500 keyboard over Bluetooth */ 3806 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH, 0xb30b), 3807 .driver_data = HIDPP_QUIRK_HIDPP_CONSUMER_VENDOR_KEYS }, 3808 {} 3809 }; 3810 3811 MODULE_DEVICE_TABLE(hid, hidpp_devices); 3812 3813 static const struct hid_usage_id hidpp_usages[] = { 3814 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES }, 3815 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1} 3816 }; 3817 3818 static struct hid_driver hidpp_driver = { 3819 .name = "logitech-hidpp-device", 3820 .id_table = hidpp_devices, 3821 .report_fixup = hidpp_report_fixup, 3822 .probe = hidpp_probe, 3823 .remove = hidpp_remove, 3824 .raw_event = hidpp_raw_event, 3825 .usage_table = hidpp_usages, 3826 .event = hidpp_event, 3827 .input_configured = hidpp_input_configured, 3828 .input_mapping = hidpp_input_mapping, 3829 .input_mapped = hidpp_input_mapped, 3830 }; 3831 3832 module_hid_driver(hidpp_driver); 3833