xref: /linux/drivers/hid/hid-logitech-hidpp.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  *  HIDPP protocol for Logitech Unifying receivers
3  *
4  *  Copyright (c) 2011 Logitech (c)
5  *  Copyright (c) 2012-2013 Google (c)
6  *  Copyright (c) 2013-2014 Red Hat Inc.
7  */
8 
9 /*
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; version 2 of the License.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/device.h>
18 #include <linux/input.h>
19 #include <linux/usb.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/sched/clock.h>
25 #include <linux/kfifo.h>
26 #include <linux/input/mt.h>
27 #include <linux/workqueue.h>
28 #include <linux/atomic.h>
29 #include <linux/fixp-arith.h>
30 #include <asm/unaligned.h>
31 #include "usbhid/usbhid.h"
32 #include "hid-ids.h"
33 
34 MODULE_LICENSE("GPL");
35 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
36 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
37 
38 static bool disable_raw_mode;
39 module_param(disable_raw_mode, bool, 0644);
40 MODULE_PARM_DESC(disable_raw_mode,
41 	"Disable Raw mode reporting for touchpads and keep firmware gestures.");
42 
43 static bool disable_tap_to_click;
44 module_param(disable_tap_to_click, bool, 0644);
45 MODULE_PARM_DESC(disable_tap_to_click,
46 	"Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
47 
48 #define REPORT_ID_HIDPP_SHORT			0x10
49 #define REPORT_ID_HIDPP_LONG			0x11
50 #define REPORT_ID_HIDPP_VERY_LONG		0x12
51 
52 #define HIDPP_REPORT_SHORT_LENGTH		7
53 #define HIDPP_REPORT_LONG_LENGTH		20
54 #define HIDPP_REPORT_VERY_LONG_LENGTH		64
55 
56 #define HIDPP_QUIRK_CLASS_WTP			BIT(0)
57 #define HIDPP_QUIRK_CLASS_M560			BIT(1)
58 #define HIDPP_QUIRK_CLASS_K400			BIT(2)
59 #define HIDPP_QUIRK_CLASS_G920			BIT(3)
60 #define HIDPP_QUIRK_CLASS_K750			BIT(4)
61 
62 /* bits 2..20 are reserved for classes */
63 /* #define HIDPP_QUIRK_CONNECT_EVENTS		BIT(21) disabled */
64 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS	BIT(22)
65 #define HIDPP_QUIRK_NO_HIDINPUT			BIT(23)
66 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS	BIT(24)
67 #define HIDPP_QUIRK_UNIFYING			BIT(25)
68 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0		BIT(26)
69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120		BIT(27)
70 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121		BIT(28)
71 
72 /* Convenience constant to check for any high-res support. */
73 #define HIDPP_QUIRK_HI_RES_SCROLL	(HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
74 					 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
75 					 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
76 
77 #define HIDPP_QUIRK_DELAYED_INIT		HIDPP_QUIRK_NO_HIDINPUT
78 
79 #define HIDPP_CAPABILITY_HIDPP10_BATTERY	BIT(0)
80 #define HIDPP_CAPABILITY_HIDPP20_BATTERY	BIT(1)
81 #define HIDPP_CAPABILITY_BATTERY_MILEAGE	BIT(2)
82 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS	BIT(3)
83 
84 /*
85  * There are two hidpp protocols in use, the first version hidpp10 is known
86  * as register access protocol or RAP, the second version hidpp20 is known as
87  * feature access protocol or FAP
88  *
89  * Most older devices (including the Unifying usb receiver) use the RAP protocol
90  * where as most newer devices use the FAP protocol. Both protocols are
91  * compatible with the underlying transport, which could be usb, Unifiying, or
92  * bluetooth. The message lengths are defined by the hid vendor specific report
93  * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
94  * the HIDPP_LONG report type (total message length 20 bytes)
95  *
96  * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
97  * messages. The Unifying receiver itself responds to RAP messages (device index
98  * is 0xFF for the receiver), and all messages (short or long) with a device
99  * index between 1 and 6 are passed untouched to the corresponding paired
100  * Unifying device.
101  *
102  * The paired device can be RAP or FAP, it will receive the message untouched
103  * from the Unifiying receiver.
104  */
105 
106 struct fap {
107 	u8 feature_index;
108 	u8 funcindex_clientid;
109 	u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
110 };
111 
112 struct rap {
113 	u8 sub_id;
114 	u8 reg_address;
115 	u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
116 };
117 
118 struct hidpp_report {
119 	u8 report_id;
120 	u8 device_index;
121 	union {
122 		struct fap fap;
123 		struct rap rap;
124 		u8 rawbytes[sizeof(struct fap)];
125 	};
126 } __packed;
127 
128 struct hidpp_battery {
129 	u8 feature_index;
130 	u8 solar_feature_index;
131 	struct power_supply_desc desc;
132 	struct power_supply *ps;
133 	char name[64];
134 	int status;
135 	int capacity;
136 	int level;
137 	bool online;
138 };
139 
140 /**
141  * struct hidpp_scroll_counter - Utility class for processing high-resolution
142  *                             scroll events.
143  * @dev: the input device for which events should be reported.
144  * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
145  * @remainder: counts the number of high-resolution units moved since the last
146  *             low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
147  *             only be used by class methods.
148  * @direction: direction of last movement (1 or -1)
149  * @last_time: last event time, used to reset remainder after inactivity
150  */
151 struct hidpp_scroll_counter {
152 	struct input_dev *dev;
153 	int wheel_multiplier;
154 	int remainder;
155 	int direction;
156 	unsigned long long last_time;
157 };
158 
159 struct hidpp_device {
160 	struct hid_device *hid_dev;
161 	struct mutex send_mutex;
162 	void *send_receive_buf;
163 	char *name;		/* will never be NULL and should not be freed */
164 	wait_queue_head_t wait;
165 	bool answer_available;
166 	u8 protocol_major;
167 	u8 protocol_minor;
168 
169 	void *private_data;
170 
171 	struct work_struct work;
172 	struct kfifo delayed_work_fifo;
173 	atomic_t connected;
174 	struct input_dev *delayed_input;
175 
176 	unsigned long quirks;
177 	unsigned long capabilities;
178 
179 	struct hidpp_battery battery;
180 	struct hidpp_scroll_counter vertical_wheel_counter;
181 };
182 
183 /* HID++ 1.0 error codes */
184 #define HIDPP_ERROR				0x8f
185 #define HIDPP_ERROR_SUCCESS			0x00
186 #define HIDPP_ERROR_INVALID_SUBID		0x01
187 #define HIDPP_ERROR_INVALID_ADRESS		0x02
188 #define HIDPP_ERROR_INVALID_VALUE		0x03
189 #define HIDPP_ERROR_CONNECT_FAIL		0x04
190 #define HIDPP_ERROR_TOO_MANY_DEVICES		0x05
191 #define HIDPP_ERROR_ALREADY_EXISTS		0x06
192 #define HIDPP_ERROR_BUSY			0x07
193 #define HIDPP_ERROR_UNKNOWN_DEVICE		0x08
194 #define HIDPP_ERROR_RESOURCE_ERROR		0x09
195 #define HIDPP_ERROR_REQUEST_UNAVAILABLE		0x0a
196 #define HIDPP_ERROR_INVALID_PARAM_VALUE		0x0b
197 #define HIDPP_ERROR_WRONG_PIN_CODE		0x0c
198 /* HID++ 2.0 error codes */
199 #define HIDPP20_ERROR				0xff
200 
201 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
202 
203 static int __hidpp_send_report(struct hid_device *hdev,
204 				struct hidpp_report *hidpp_report)
205 {
206 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
207 	int fields_count, ret;
208 
209 	hidpp = hid_get_drvdata(hdev);
210 
211 	switch (hidpp_report->report_id) {
212 	case REPORT_ID_HIDPP_SHORT:
213 		fields_count = HIDPP_REPORT_SHORT_LENGTH;
214 		break;
215 	case REPORT_ID_HIDPP_LONG:
216 		fields_count = HIDPP_REPORT_LONG_LENGTH;
217 		break;
218 	case REPORT_ID_HIDPP_VERY_LONG:
219 		fields_count = HIDPP_REPORT_VERY_LONG_LENGTH;
220 		break;
221 	default:
222 		return -ENODEV;
223 	}
224 
225 	/*
226 	 * set the device_index as the receiver, it will be overwritten by
227 	 * hid_hw_request if needed
228 	 */
229 	hidpp_report->device_index = 0xff;
230 
231 	if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
232 		ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
233 	} else {
234 		ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
235 			(u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
236 			HID_REQ_SET_REPORT);
237 	}
238 
239 	return ret == fields_count ? 0 : -1;
240 }
241 
242 /**
243  * hidpp_send_message_sync() returns 0 in case of success, and something else
244  * in case of a failure.
245  * - If ' something else' is positive, that means that an error has been raised
246  *   by the protocol itself.
247  * - If ' something else' is negative, that means that we had a classic error
248  *   (-ENOMEM, -EPIPE, etc...)
249  */
250 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
251 	struct hidpp_report *message,
252 	struct hidpp_report *response)
253 {
254 	int ret;
255 
256 	mutex_lock(&hidpp->send_mutex);
257 
258 	hidpp->send_receive_buf = response;
259 	hidpp->answer_available = false;
260 
261 	/*
262 	 * So that we can later validate the answer when it arrives
263 	 * in hidpp_raw_event
264 	 */
265 	*response = *message;
266 
267 	ret = __hidpp_send_report(hidpp->hid_dev, message);
268 
269 	if (ret) {
270 		dbg_hid("__hidpp_send_report returned err: %d\n", ret);
271 		memset(response, 0, sizeof(struct hidpp_report));
272 		goto exit;
273 	}
274 
275 	if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
276 				5*HZ)) {
277 		dbg_hid("%s:timeout waiting for response\n", __func__);
278 		memset(response, 0, sizeof(struct hidpp_report));
279 		ret = -ETIMEDOUT;
280 	}
281 
282 	if (response->report_id == REPORT_ID_HIDPP_SHORT &&
283 	    response->rap.sub_id == HIDPP_ERROR) {
284 		ret = response->rap.params[1];
285 		dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
286 		goto exit;
287 	}
288 
289 	if ((response->report_id == REPORT_ID_HIDPP_LONG ||
290 			response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
291 			response->fap.feature_index == HIDPP20_ERROR) {
292 		ret = response->fap.params[1];
293 		dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
294 		goto exit;
295 	}
296 
297 exit:
298 	mutex_unlock(&hidpp->send_mutex);
299 	return ret;
300 
301 }
302 
303 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
304 	u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
305 	struct hidpp_report *response)
306 {
307 	struct hidpp_report *message;
308 	int ret;
309 
310 	if (param_count > sizeof(message->fap.params))
311 		return -EINVAL;
312 
313 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
314 	if (!message)
315 		return -ENOMEM;
316 
317 	if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
318 		message->report_id = REPORT_ID_HIDPP_VERY_LONG;
319 	else
320 		message->report_id = REPORT_ID_HIDPP_LONG;
321 	message->fap.feature_index = feat_index;
322 	message->fap.funcindex_clientid = funcindex_clientid;
323 	memcpy(&message->fap.params, params, param_count);
324 
325 	ret = hidpp_send_message_sync(hidpp, message, response);
326 	kfree(message);
327 	return ret;
328 }
329 
330 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
331 	u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
332 	struct hidpp_report *response)
333 {
334 	struct hidpp_report *message;
335 	int ret, max_count;
336 
337 	switch (report_id) {
338 	case REPORT_ID_HIDPP_SHORT:
339 		max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
340 		break;
341 	case REPORT_ID_HIDPP_LONG:
342 		max_count = HIDPP_REPORT_LONG_LENGTH - 4;
343 		break;
344 	case REPORT_ID_HIDPP_VERY_LONG:
345 		max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
346 		break;
347 	default:
348 		return -EINVAL;
349 	}
350 
351 	if (param_count > max_count)
352 		return -EINVAL;
353 
354 	message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
355 	if (!message)
356 		return -ENOMEM;
357 	message->report_id = report_id;
358 	message->rap.sub_id = sub_id;
359 	message->rap.reg_address = reg_address;
360 	memcpy(&message->rap.params, params, param_count);
361 
362 	ret = hidpp_send_message_sync(hidpp_dev, message, response);
363 	kfree(message);
364 	return ret;
365 }
366 
367 static void delayed_work_cb(struct work_struct *work)
368 {
369 	struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
370 							work);
371 	hidpp_connect_event(hidpp);
372 }
373 
374 static inline bool hidpp_match_answer(struct hidpp_report *question,
375 		struct hidpp_report *answer)
376 {
377 	return (answer->fap.feature_index == question->fap.feature_index) &&
378 	   (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
379 }
380 
381 static inline bool hidpp_match_error(struct hidpp_report *question,
382 		struct hidpp_report *answer)
383 {
384 	return ((answer->rap.sub_id == HIDPP_ERROR) ||
385 	    (answer->fap.feature_index == HIDPP20_ERROR)) &&
386 	    (answer->fap.funcindex_clientid == question->fap.feature_index) &&
387 	    (answer->fap.params[0] == question->fap.funcindex_clientid);
388 }
389 
390 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
391 {
392 	return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
393 		(report->rap.sub_id == 0x41);
394 }
395 
396 /**
397  * hidpp_prefix_name() prefixes the current given name with "Logitech ".
398  */
399 static void hidpp_prefix_name(char **name, int name_length)
400 {
401 #define PREFIX_LENGTH 9 /* "Logitech " */
402 
403 	int new_length;
404 	char *new_name;
405 
406 	if (name_length > PREFIX_LENGTH &&
407 	    strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
408 		/* The prefix has is already in the name */
409 		return;
410 
411 	new_length = PREFIX_LENGTH + name_length;
412 	new_name = kzalloc(new_length, GFP_KERNEL);
413 	if (!new_name)
414 		return;
415 
416 	snprintf(new_name, new_length, "Logitech %s", *name);
417 
418 	kfree(*name);
419 
420 	*name = new_name;
421 }
422 
423 /**
424  * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
425  *                                        events given a high-resolution wheel
426  *                                        movement.
427  * @counter: a hid_scroll_counter struct describing the wheel.
428  * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
429  *                units.
430  *
431  * Given a high-resolution movement, this function converts the movement into
432  * fractions of 120 and emits high-resolution scroll events for the input
433  * device. It also uses the multiplier from &struct hid_scroll_counter to
434  * emit low-resolution scroll events when appropriate for
435  * backwards-compatibility with userspace input libraries.
436  */
437 static void hidpp_scroll_counter_handle_scroll(struct hidpp_scroll_counter *counter,
438 					       int hi_res_value)
439 {
440 	int low_res_value, remainder, direction;
441 	unsigned long long now, previous;
442 
443 	hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
444 	input_report_rel(counter->dev, REL_WHEEL_HI_RES, hi_res_value);
445 
446 	remainder = counter->remainder;
447 	direction = hi_res_value > 0 ? 1 : -1;
448 
449 	now = sched_clock();
450 	previous = counter->last_time;
451 	counter->last_time = now;
452 	/*
453 	 * Reset the remainder after a period of inactivity or when the
454 	 * direction changes. This prevents the REL_WHEEL emulation point
455 	 * from sliding for devices that don't always provide the same
456 	 * number of movements per detent.
457 	 */
458 	if (now - previous > 1000000000 || direction != counter->direction)
459 		remainder = 0;
460 
461 	counter->direction = direction;
462 	remainder += hi_res_value;
463 
464 	/* Some wheels will rest 7/8ths of a detent from the previous detent
465 	 * after slow movement, so we want the threshold for low-res events to
466 	 * be in the middle between two detents (e.g. after 4/8ths) as
467 	 * opposed to on the detents themselves (8/8ths).
468 	 */
469 	if (abs(remainder) >= 60) {
470 		/* Add (or subtract) 1 because we want to trigger when the wheel
471 		 * is half-way to the next detent (i.e. scroll 1 detent after a
472 		 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
473 		 * etc.).
474 		 */
475 		low_res_value = remainder / 120;
476 		if (low_res_value == 0)
477 			low_res_value = (hi_res_value > 0 ? 1 : -1);
478 		input_report_rel(counter->dev, REL_WHEEL, low_res_value);
479 		remainder -= low_res_value * 120;
480 	}
481 	counter->remainder = remainder;
482 }
483 
484 /* -------------------------------------------------------------------------- */
485 /* HIDP++ 1.0 commands                                                        */
486 /* -------------------------------------------------------------------------- */
487 
488 #define HIDPP_SET_REGISTER				0x80
489 #define HIDPP_GET_REGISTER				0x81
490 #define HIDPP_SET_LONG_REGISTER				0x82
491 #define HIDPP_GET_LONG_REGISTER				0x83
492 
493 /**
494  * hidpp10_set_register_bit() - Sets a single bit in a HID++ 1.0 register.
495  * @hidpp_dev: the device to set the register on.
496  * @register_address: the address of the register to modify.
497  * @byte: the byte of the register to modify. Should be less than 3.
498  * Return: 0 if successful, otherwise a negative error code.
499  */
500 static int hidpp10_set_register_bit(struct hidpp_device *hidpp_dev,
501 	u8 register_address, u8 byte, u8 bit)
502 {
503 	struct hidpp_report response;
504 	int ret;
505 	u8 params[3] = { 0 };
506 
507 	ret = hidpp_send_rap_command_sync(hidpp_dev,
508 					  REPORT_ID_HIDPP_SHORT,
509 					  HIDPP_GET_REGISTER,
510 					  register_address,
511 					  NULL, 0, &response);
512 	if (ret)
513 		return ret;
514 
515 	memcpy(params, response.rap.params, 3);
516 
517 	params[byte] |= BIT(bit);
518 
519 	return hidpp_send_rap_command_sync(hidpp_dev,
520 					   REPORT_ID_HIDPP_SHORT,
521 					   HIDPP_SET_REGISTER,
522 					   register_address,
523 					   params, 3, &response);
524 }
525 
526 
527 #define HIDPP_REG_GENERAL				0x00
528 
529 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
530 {
531 	return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_GENERAL, 0, 4);
532 }
533 
534 #define HIDPP_REG_FEATURES				0x01
535 
536 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
537 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
538 {
539 	return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_FEATURES, 0, 6);
540 }
541 
542 #define HIDPP_REG_BATTERY_STATUS			0x07
543 
544 static int hidpp10_battery_status_map_level(u8 param)
545 {
546 	int level;
547 
548 	switch (param) {
549 	case 1 ... 2:
550 		level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
551 		break;
552 	case 3 ... 4:
553 		level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
554 		break;
555 	case 5 ... 6:
556 		level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
557 		break;
558 	case 7:
559 		level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
560 		break;
561 	default:
562 		level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
563 	}
564 
565 	return level;
566 }
567 
568 static int hidpp10_battery_status_map_status(u8 param)
569 {
570 	int status;
571 
572 	switch (param) {
573 	case 0x00:
574 		/* discharging (in use) */
575 		status = POWER_SUPPLY_STATUS_DISCHARGING;
576 		break;
577 	case 0x21: /* (standard) charging */
578 	case 0x24: /* fast charging */
579 	case 0x25: /* slow charging */
580 		status = POWER_SUPPLY_STATUS_CHARGING;
581 		break;
582 	case 0x26: /* topping charge */
583 	case 0x22: /* charge complete */
584 		status = POWER_SUPPLY_STATUS_FULL;
585 		break;
586 	case 0x20: /* unknown */
587 		status = POWER_SUPPLY_STATUS_UNKNOWN;
588 		break;
589 	/*
590 	 * 0x01...0x1F = reserved (not charging)
591 	 * 0x23 = charging error
592 	 * 0x27..0xff = reserved
593 	 */
594 	default:
595 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
596 		break;
597 	}
598 
599 	return status;
600 }
601 
602 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
603 {
604 	struct hidpp_report response;
605 	int ret, status;
606 
607 	ret = hidpp_send_rap_command_sync(hidpp,
608 					REPORT_ID_HIDPP_SHORT,
609 					HIDPP_GET_REGISTER,
610 					HIDPP_REG_BATTERY_STATUS,
611 					NULL, 0, &response);
612 	if (ret)
613 		return ret;
614 
615 	hidpp->battery.level =
616 		hidpp10_battery_status_map_level(response.rap.params[0]);
617 	status = hidpp10_battery_status_map_status(response.rap.params[1]);
618 	hidpp->battery.status = status;
619 	/* the capacity is only available when discharging or full */
620 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
621 				status == POWER_SUPPLY_STATUS_FULL;
622 
623 	return 0;
624 }
625 
626 #define HIDPP_REG_BATTERY_MILEAGE			0x0D
627 
628 static int hidpp10_battery_mileage_map_status(u8 param)
629 {
630 	int status;
631 
632 	switch (param >> 6) {
633 	case 0x00:
634 		/* discharging (in use) */
635 		status = POWER_SUPPLY_STATUS_DISCHARGING;
636 		break;
637 	case 0x01: /* charging */
638 		status = POWER_SUPPLY_STATUS_CHARGING;
639 		break;
640 	case 0x02: /* charge complete */
641 		status = POWER_SUPPLY_STATUS_FULL;
642 		break;
643 	/*
644 	 * 0x03 = charging error
645 	 */
646 	default:
647 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
648 		break;
649 	}
650 
651 	return status;
652 }
653 
654 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
655 {
656 	struct hidpp_report response;
657 	int ret, status;
658 
659 	ret = hidpp_send_rap_command_sync(hidpp,
660 					REPORT_ID_HIDPP_SHORT,
661 					HIDPP_GET_REGISTER,
662 					HIDPP_REG_BATTERY_MILEAGE,
663 					NULL, 0, &response);
664 	if (ret)
665 		return ret;
666 
667 	hidpp->battery.capacity = response.rap.params[0];
668 	status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
669 	hidpp->battery.status = status;
670 	/* the capacity is only available when discharging or full */
671 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
672 				status == POWER_SUPPLY_STATUS_FULL;
673 
674 	return 0;
675 }
676 
677 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
678 {
679 	struct hidpp_report *report = (struct hidpp_report *)data;
680 	int status, capacity, level;
681 	bool changed;
682 
683 	if (report->report_id != REPORT_ID_HIDPP_SHORT)
684 		return 0;
685 
686 	switch (report->rap.sub_id) {
687 	case HIDPP_REG_BATTERY_STATUS:
688 		capacity = hidpp->battery.capacity;
689 		level = hidpp10_battery_status_map_level(report->rawbytes[1]);
690 		status = hidpp10_battery_status_map_status(report->rawbytes[2]);
691 		break;
692 	case HIDPP_REG_BATTERY_MILEAGE:
693 		capacity = report->rap.params[0];
694 		level = hidpp->battery.level;
695 		status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
696 		break;
697 	default:
698 		return 0;
699 	}
700 
701 	changed = capacity != hidpp->battery.capacity ||
702 		  level != hidpp->battery.level ||
703 		  status != hidpp->battery.status;
704 
705 	/* the capacity is only available when discharging or full */
706 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
707 				status == POWER_SUPPLY_STATUS_FULL;
708 
709 	if (changed) {
710 		hidpp->battery.level = level;
711 		hidpp->battery.status = status;
712 		if (hidpp->battery.ps)
713 			power_supply_changed(hidpp->battery.ps);
714 	}
715 
716 	return 0;
717 }
718 
719 #define HIDPP_REG_PAIRING_INFORMATION			0xB5
720 #define HIDPP_EXTENDED_PAIRING				0x30
721 #define HIDPP_DEVICE_NAME				0x40
722 
723 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
724 {
725 	struct hidpp_report response;
726 	int ret;
727 	u8 params[1] = { HIDPP_DEVICE_NAME };
728 	char *name;
729 	int len;
730 
731 	ret = hidpp_send_rap_command_sync(hidpp_dev,
732 					REPORT_ID_HIDPP_SHORT,
733 					HIDPP_GET_LONG_REGISTER,
734 					HIDPP_REG_PAIRING_INFORMATION,
735 					params, 1, &response);
736 	if (ret)
737 		return NULL;
738 
739 	len = response.rap.params[1];
740 
741 	if (2 + len > sizeof(response.rap.params))
742 		return NULL;
743 
744 	name = kzalloc(len + 1, GFP_KERNEL);
745 	if (!name)
746 		return NULL;
747 
748 	memcpy(name, &response.rap.params[2], len);
749 
750 	/* include the terminating '\0' */
751 	hidpp_prefix_name(&name, len + 1);
752 
753 	return name;
754 }
755 
756 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
757 {
758 	struct hidpp_report response;
759 	int ret;
760 	u8 params[1] = { HIDPP_EXTENDED_PAIRING };
761 
762 	ret = hidpp_send_rap_command_sync(hidpp,
763 					REPORT_ID_HIDPP_SHORT,
764 					HIDPP_GET_LONG_REGISTER,
765 					HIDPP_REG_PAIRING_INFORMATION,
766 					params, 1, &response);
767 	if (ret)
768 		return ret;
769 
770 	/*
771 	 * We don't care about LE or BE, we will output it as a string
772 	 * with %4phD, so we need to keep the order.
773 	 */
774 	*serial = *((u32 *)&response.rap.params[1]);
775 	return 0;
776 }
777 
778 static int hidpp_unifying_init(struct hidpp_device *hidpp)
779 {
780 	struct hid_device *hdev = hidpp->hid_dev;
781 	const char *name;
782 	u32 serial;
783 	int ret;
784 
785 	ret = hidpp_unifying_get_serial(hidpp, &serial);
786 	if (ret)
787 		return ret;
788 
789 	snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
790 		 hdev->product, &serial);
791 	dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
792 
793 	name = hidpp_unifying_get_name(hidpp);
794 	if (!name)
795 		return -EIO;
796 
797 	snprintf(hdev->name, sizeof(hdev->name), "%s", name);
798 	dbg_hid("HID++ Unifying: Got name: %s\n", name);
799 
800 	kfree(name);
801 	return 0;
802 }
803 
804 /* -------------------------------------------------------------------------- */
805 /* 0x0000: Root                                                               */
806 /* -------------------------------------------------------------------------- */
807 
808 #define HIDPP_PAGE_ROOT					0x0000
809 #define HIDPP_PAGE_ROOT_IDX				0x00
810 
811 #define CMD_ROOT_GET_FEATURE				0x01
812 #define CMD_ROOT_GET_PROTOCOL_VERSION			0x11
813 
814 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
815 	u8 *feature_index, u8 *feature_type)
816 {
817 	struct hidpp_report response;
818 	int ret;
819 	u8 params[2] = { feature >> 8, feature & 0x00FF };
820 
821 	ret = hidpp_send_fap_command_sync(hidpp,
822 			HIDPP_PAGE_ROOT_IDX,
823 			CMD_ROOT_GET_FEATURE,
824 			params, 2, &response);
825 	if (ret)
826 		return ret;
827 
828 	if (response.fap.params[0] == 0)
829 		return -ENOENT;
830 
831 	*feature_index = response.fap.params[0];
832 	*feature_type = response.fap.params[1];
833 
834 	return ret;
835 }
836 
837 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
838 {
839 	struct hidpp_report response;
840 	int ret;
841 
842 	ret = hidpp_send_fap_command_sync(hidpp,
843 			HIDPP_PAGE_ROOT_IDX,
844 			CMD_ROOT_GET_PROTOCOL_VERSION,
845 			NULL, 0, &response);
846 
847 	if (ret == HIDPP_ERROR_INVALID_SUBID) {
848 		hidpp->protocol_major = 1;
849 		hidpp->protocol_minor = 0;
850 		return 0;
851 	}
852 
853 	/* the device might not be connected */
854 	if (ret == HIDPP_ERROR_RESOURCE_ERROR)
855 		return -EIO;
856 
857 	if (ret > 0) {
858 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
859 			__func__, ret);
860 		return -EPROTO;
861 	}
862 	if (ret)
863 		return ret;
864 
865 	hidpp->protocol_major = response.fap.params[0];
866 	hidpp->protocol_minor = response.fap.params[1];
867 
868 	return ret;
869 }
870 
871 static bool hidpp_is_connected(struct hidpp_device *hidpp)
872 {
873 	int ret;
874 
875 	ret = hidpp_root_get_protocol_version(hidpp);
876 	if (!ret)
877 		hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
878 			hidpp->protocol_major, hidpp->protocol_minor);
879 	return ret == 0;
880 }
881 
882 /* -------------------------------------------------------------------------- */
883 /* 0x0005: GetDeviceNameType                                                  */
884 /* -------------------------------------------------------------------------- */
885 
886 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE			0x0005
887 
888 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT		0x01
889 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME	0x11
890 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE		0x21
891 
892 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
893 	u8 feature_index, u8 *nameLength)
894 {
895 	struct hidpp_report response;
896 	int ret;
897 
898 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
899 		CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
900 
901 	if (ret > 0) {
902 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
903 			__func__, ret);
904 		return -EPROTO;
905 	}
906 	if (ret)
907 		return ret;
908 
909 	*nameLength = response.fap.params[0];
910 
911 	return ret;
912 }
913 
914 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
915 	u8 feature_index, u8 char_index, char *device_name, int len_buf)
916 {
917 	struct hidpp_report response;
918 	int ret, i;
919 	int count;
920 
921 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
922 		CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
923 		&response);
924 
925 	if (ret > 0) {
926 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
927 			__func__, ret);
928 		return -EPROTO;
929 	}
930 	if (ret)
931 		return ret;
932 
933 	switch (response.report_id) {
934 	case REPORT_ID_HIDPP_VERY_LONG:
935 		count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
936 		break;
937 	case REPORT_ID_HIDPP_LONG:
938 		count = HIDPP_REPORT_LONG_LENGTH - 4;
939 		break;
940 	case REPORT_ID_HIDPP_SHORT:
941 		count = HIDPP_REPORT_SHORT_LENGTH - 4;
942 		break;
943 	default:
944 		return -EPROTO;
945 	}
946 
947 	if (len_buf < count)
948 		count = len_buf;
949 
950 	for (i = 0; i < count; i++)
951 		device_name[i] = response.fap.params[i];
952 
953 	return count;
954 }
955 
956 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
957 {
958 	u8 feature_type;
959 	u8 feature_index;
960 	u8 __name_length;
961 	char *name;
962 	unsigned index = 0;
963 	int ret;
964 
965 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
966 		&feature_index, &feature_type);
967 	if (ret)
968 		return NULL;
969 
970 	ret = hidpp_devicenametype_get_count(hidpp, feature_index,
971 		&__name_length);
972 	if (ret)
973 		return NULL;
974 
975 	name = kzalloc(__name_length + 1, GFP_KERNEL);
976 	if (!name)
977 		return NULL;
978 
979 	while (index < __name_length) {
980 		ret = hidpp_devicenametype_get_device_name(hidpp,
981 			feature_index, index, name + index,
982 			__name_length - index);
983 		if (ret <= 0) {
984 			kfree(name);
985 			return NULL;
986 		}
987 		index += ret;
988 	}
989 
990 	/* include the terminating '\0' */
991 	hidpp_prefix_name(&name, __name_length + 1);
992 
993 	return name;
994 }
995 
996 /* -------------------------------------------------------------------------- */
997 /* 0x1000: Battery level status                                               */
998 /* -------------------------------------------------------------------------- */
999 
1000 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS				0x1000
1001 
1002 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS	0x00
1003 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY		0x10
1004 
1005 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST			0x00
1006 
1007 #define FLAG_BATTERY_LEVEL_DISABLE_OSD				BIT(0)
1008 #define FLAG_BATTERY_LEVEL_MILEAGE				BIT(1)
1009 #define FLAG_BATTERY_LEVEL_RECHARGEABLE				BIT(2)
1010 
1011 static int hidpp_map_battery_level(int capacity)
1012 {
1013 	if (capacity < 11)
1014 		return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1015 	else if (capacity < 31)
1016 		return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1017 	else if (capacity < 81)
1018 		return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1019 	return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1020 }
1021 
1022 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1023 						    int *next_capacity,
1024 						    int *level)
1025 {
1026 	int status;
1027 
1028 	*capacity = data[0];
1029 	*next_capacity = data[1];
1030 	*level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1031 
1032 	/* When discharging, we can rely on the device reported capacity.
1033 	 * For all other states the device reports 0 (unknown).
1034 	 */
1035 	switch (data[2]) {
1036 		case 0: /* discharging (in use) */
1037 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1038 			*level = hidpp_map_battery_level(*capacity);
1039 			break;
1040 		case 1: /* recharging */
1041 			status = POWER_SUPPLY_STATUS_CHARGING;
1042 			break;
1043 		case 2: /* charge in final stage */
1044 			status = POWER_SUPPLY_STATUS_CHARGING;
1045 			break;
1046 		case 3: /* charge complete */
1047 			status = POWER_SUPPLY_STATUS_FULL;
1048 			*level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1049 			*capacity = 100;
1050 			break;
1051 		case 4: /* recharging below optimal speed */
1052 			status = POWER_SUPPLY_STATUS_CHARGING;
1053 			break;
1054 		/* 5 = invalid battery type
1055 		   6 = thermal error
1056 		   7 = other charging error */
1057 		default:
1058 			status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1059 			break;
1060 	}
1061 
1062 	return status;
1063 }
1064 
1065 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1066 						     u8 feature_index,
1067 						     int *status,
1068 						     int *capacity,
1069 						     int *next_capacity,
1070 						     int *level)
1071 {
1072 	struct hidpp_report response;
1073 	int ret;
1074 	u8 *params = (u8 *)response.fap.params;
1075 
1076 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1077 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1078 					  NULL, 0, &response);
1079 	if (ret > 0) {
1080 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1081 			__func__, ret);
1082 		return -EPROTO;
1083 	}
1084 	if (ret)
1085 		return ret;
1086 
1087 	*status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1088 							   next_capacity,
1089 							   level);
1090 
1091 	return 0;
1092 }
1093 
1094 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1095 						  u8 feature_index)
1096 {
1097 	struct hidpp_report response;
1098 	int ret;
1099 	u8 *params = (u8 *)response.fap.params;
1100 	unsigned int level_count, flags;
1101 
1102 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1103 					  CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1104 					  NULL, 0, &response);
1105 	if (ret > 0) {
1106 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1107 			__func__, ret);
1108 		return -EPROTO;
1109 	}
1110 	if (ret)
1111 		return ret;
1112 
1113 	level_count = params[0];
1114 	flags = params[1];
1115 
1116 	if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1117 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1118 	else
1119 		hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1120 
1121 	return 0;
1122 }
1123 
1124 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1125 {
1126 	u8 feature_type;
1127 	int ret;
1128 	int status, capacity, next_capacity, level;
1129 
1130 	if (hidpp->battery.feature_index == 0xff) {
1131 		ret = hidpp_root_get_feature(hidpp,
1132 					     HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1133 					     &hidpp->battery.feature_index,
1134 					     &feature_type);
1135 		if (ret)
1136 			return ret;
1137 	}
1138 
1139 	ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1140 						hidpp->battery.feature_index,
1141 						&status, &capacity,
1142 						&next_capacity, &level);
1143 	if (ret)
1144 		return ret;
1145 
1146 	ret = hidpp20_batterylevel_get_battery_info(hidpp,
1147 						hidpp->battery.feature_index);
1148 	if (ret)
1149 		return ret;
1150 
1151 	hidpp->battery.status = status;
1152 	hidpp->battery.capacity = capacity;
1153 	hidpp->battery.level = level;
1154 	/* the capacity is only available when discharging or full */
1155 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1156 				status == POWER_SUPPLY_STATUS_FULL;
1157 
1158 	return 0;
1159 }
1160 
1161 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1162 				 u8 *data, int size)
1163 {
1164 	struct hidpp_report *report = (struct hidpp_report *)data;
1165 	int status, capacity, next_capacity, level;
1166 	bool changed;
1167 
1168 	if (report->fap.feature_index != hidpp->battery.feature_index ||
1169 	    report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1170 		return 0;
1171 
1172 	status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1173 							  &capacity,
1174 							  &next_capacity,
1175 							  &level);
1176 
1177 	/* the capacity is only available when discharging or full */
1178 	hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1179 				status == POWER_SUPPLY_STATUS_FULL;
1180 
1181 	changed = capacity != hidpp->battery.capacity ||
1182 		  level != hidpp->battery.level ||
1183 		  status != hidpp->battery.status;
1184 
1185 	if (changed) {
1186 		hidpp->battery.level = level;
1187 		hidpp->battery.capacity = capacity;
1188 		hidpp->battery.status = status;
1189 		if (hidpp->battery.ps)
1190 			power_supply_changed(hidpp->battery.ps);
1191 	}
1192 
1193 	return 0;
1194 }
1195 
1196 static enum power_supply_property hidpp_battery_props[] = {
1197 	POWER_SUPPLY_PROP_ONLINE,
1198 	POWER_SUPPLY_PROP_STATUS,
1199 	POWER_SUPPLY_PROP_SCOPE,
1200 	POWER_SUPPLY_PROP_MODEL_NAME,
1201 	POWER_SUPPLY_PROP_MANUFACTURER,
1202 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
1203 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1204 	0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1205 };
1206 
1207 static int hidpp_battery_get_property(struct power_supply *psy,
1208 				      enum power_supply_property psp,
1209 				      union power_supply_propval *val)
1210 {
1211 	struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1212 	int ret = 0;
1213 
1214 	switch(psp) {
1215 		case POWER_SUPPLY_PROP_STATUS:
1216 			val->intval = hidpp->battery.status;
1217 			break;
1218 		case POWER_SUPPLY_PROP_CAPACITY:
1219 			val->intval = hidpp->battery.capacity;
1220 			break;
1221 		case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1222 			val->intval = hidpp->battery.level;
1223 			break;
1224 		case POWER_SUPPLY_PROP_SCOPE:
1225 			val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1226 			break;
1227 		case POWER_SUPPLY_PROP_ONLINE:
1228 			val->intval = hidpp->battery.online;
1229 			break;
1230 		case POWER_SUPPLY_PROP_MODEL_NAME:
1231 			if (!strncmp(hidpp->name, "Logitech ", 9))
1232 				val->strval = hidpp->name + 9;
1233 			else
1234 				val->strval = hidpp->name;
1235 			break;
1236 		case POWER_SUPPLY_PROP_MANUFACTURER:
1237 			val->strval = "Logitech";
1238 			break;
1239 		case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1240 			val->strval = hidpp->hid_dev->uniq;
1241 			break;
1242 		default:
1243 			ret = -EINVAL;
1244 			break;
1245 	}
1246 
1247 	return ret;
1248 }
1249 
1250 /* -------------------------------------------------------------------------- */
1251 /* 0x2120: Hi-resolution scrolling                                            */
1252 /* -------------------------------------------------------------------------- */
1253 
1254 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING			0x2120
1255 
1256 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE	0x10
1257 
1258 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1259 	bool enabled, u8 *multiplier)
1260 {
1261 	u8 feature_index;
1262 	u8 feature_type;
1263 	int ret;
1264 	u8 params[1];
1265 	struct hidpp_report response;
1266 
1267 	ret = hidpp_root_get_feature(hidpp,
1268 				     HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1269 				     &feature_index,
1270 				     &feature_type);
1271 	if (ret)
1272 		return ret;
1273 
1274 	params[0] = enabled ? BIT(0) : 0;
1275 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1276 					  CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1277 					  params, sizeof(params), &response);
1278 	if (ret)
1279 		return ret;
1280 	*multiplier = response.fap.params[1];
1281 	return 0;
1282 }
1283 
1284 /* -------------------------------------------------------------------------- */
1285 /* 0x2121: HiRes Wheel                                                        */
1286 /* -------------------------------------------------------------------------- */
1287 
1288 #define HIDPP_PAGE_HIRES_WHEEL		0x2121
1289 
1290 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY	0x00
1291 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE		0x20
1292 
1293 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1294 	u8 *multiplier)
1295 {
1296 	u8 feature_index;
1297 	u8 feature_type;
1298 	int ret;
1299 	struct hidpp_report response;
1300 
1301 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1302 				     &feature_index, &feature_type);
1303 	if (ret)
1304 		goto return_default;
1305 
1306 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1307 					  CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1308 					  NULL, 0, &response);
1309 	if (ret)
1310 		goto return_default;
1311 
1312 	*multiplier = response.fap.params[0];
1313 	return 0;
1314 return_default:
1315 	hid_warn(hidpp->hid_dev,
1316 		 "Couldn't get wheel multiplier (error %d)\n", ret);
1317 	return ret;
1318 }
1319 
1320 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1321 	bool high_resolution, bool use_hidpp)
1322 {
1323 	u8 feature_index;
1324 	u8 feature_type;
1325 	int ret;
1326 	u8 params[1];
1327 	struct hidpp_report response;
1328 
1329 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1330 				     &feature_index, &feature_type);
1331 	if (ret)
1332 		return ret;
1333 
1334 	params[0] = (invert          ? BIT(2) : 0) |
1335 		    (high_resolution ? BIT(1) : 0) |
1336 		    (use_hidpp       ? BIT(0) : 0);
1337 
1338 	return hidpp_send_fap_command_sync(hidpp, feature_index,
1339 					   CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1340 					   params, sizeof(params), &response);
1341 }
1342 
1343 /* -------------------------------------------------------------------------- */
1344 /* 0x4301: Solar Keyboard                                                     */
1345 /* -------------------------------------------------------------------------- */
1346 
1347 #define HIDPP_PAGE_SOLAR_KEYBOARD			0x4301
1348 
1349 #define CMD_SOLAR_SET_LIGHT_MEASURE			0x00
1350 
1351 #define EVENT_SOLAR_BATTERY_BROADCAST			0x00
1352 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE		0x10
1353 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON			0x20
1354 
1355 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1356 {
1357 	struct hidpp_report response;
1358 	u8 params[2] = { 1, 1 };
1359 	u8 feature_type;
1360 	int ret;
1361 
1362 	if (hidpp->battery.feature_index == 0xff) {
1363 		ret = hidpp_root_get_feature(hidpp,
1364 					     HIDPP_PAGE_SOLAR_KEYBOARD,
1365 					     &hidpp->battery.solar_feature_index,
1366 					     &feature_type);
1367 		if (ret)
1368 			return ret;
1369 	}
1370 
1371 	ret = hidpp_send_fap_command_sync(hidpp,
1372 					  hidpp->battery.solar_feature_index,
1373 					  CMD_SOLAR_SET_LIGHT_MEASURE,
1374 					  params, 2, &response);
1375 	if (ret > 0) {
1376 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1377 			__func__, ret);
1378 		return -EPROTO;
1379 	}
1380 	if (ret)
1381 		return ret;
1382 
1383 	hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1384 
1385 	return 0;
1386 }
1387 
1388 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1389 				     u8 *data, int size)
1390 {
1391 	struct hidpp_report *report = (struct hidpp_report *)data;
1392 	int capacity, lux, status;
1393 	u8 function;
1394 
1395 	function = report->fap.funcindex_clientid;
1396 
1397 
1398 	if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1399 	    !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1400 	      function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1401 	      function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1402 		return 0;
1403 
1404 	capacity = report->fap.params[0];
1405 
1406 	switch (function) {
1407 	case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1408 		lux = (report->fap.params[1] << 8) | report->fap.params[2];
1409 		if (lux > 200)
1410 			status = POWER_SUPPLY_STATUS_CHARGING;
1411 		else
1412 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1413 		break;
1414 	case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1415 	default:
1416 		if (capacity < hidpp->battery.capacity)
1417 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1418 		else
1419 			status = POWER_SUPPLY_STATUS_CHARGING;
1420 
1421 	}
1422 
1423 	if (capacity == 100)
1424 		status = POWER_SUPPLY_STATUS_FULL;
1425 
1426 	hidpp->battery.online = true;
1427 	if (capacity != hidpp->battery.capacity ||
1428 	    status != hidpp->battery.status) {
1429 		hidpp->battery.capacity = capacity;
1430 		hidpp->battery.status = status;
1431 		if (hidpp->battery.ps)
1432 			power_supply_changed(hidpp->battery.ps);
1433 	}
1434 
1435 	return 0;
1436 }
1437 
1438 /* -------------------------------------------------------------------------- */
1439 /* 0x6010: Touchpad FW items                                                  */
1440 /* -------------------------------------------------------------------------- */
1441 
1442 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS			0x6010
1443 
1444 #define CMD_TOUCHPAD_FW_ITEMS_SET			0x10
1445 
1446 struct hidpp_touchpad_fw_items {
1447 	uint8_t presence;
1448 	uint8_t desired_state;
1449 	uint8_t state;
1450 	uint8_t persistent;
1451 };
1452 
1453 /**
1454  * send a set state command to the device by reading the current items->state
1455  * field. items is then filled with the current state.
1456  */
1457 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1458 				       u8 feature_index,
1459 				       struct hidpp_touchpad_fw_items *items)
1460 {
1461 	struct hidpp_report response;
1462 	int ret;
1463 	u8 *params = (u8 *)response.fap.params;
1464 
1465 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1466 		CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1467 
1468 	if (ret > 0) {
1469 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1470 			__func__, ret);
1471 		return -EPROTO;
1472 	}
1473 	if (ret)
1474 		return ret;
1475 
1476 	items->presence = params[0];
1477 	items->desired_state = params[1];
1478 	items->state = params[2];
1479 	items->persistent = params[3];
1480 
1481 	return 0;
1482 }
1483 
1484 /* -------------------------------------------------------------------------- */
1485 /* 0x6100: TouchPadRawXY                                                      */
1486 /* -------------------------------------------------------------------------- */
1487 
1488 #define HIDPP_PAGE_TOUCHPAD_RAW_XY			0x6100
1489 
1490 #define CMD_TOUCHPAD_GET_RAW_INFO			0x01
1491 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE		0x21
1492 
1493 #define EVENT_TOUCHPAD_RAW_XY				0x00
1494 
1495 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT		0x01
1496 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT		0x03
1497 
1498 struct hidpp_touchpad_raw_info {
1499 	u16 x_size;
1500 	u16 y_size;
1501 	u8 z_range;
1502 	u8 area_range;
1503 	u8 timestamp_unit;
1504 	u8 maxcontacts;
1505 	u8 origin;
1506 	u16 res;
1507 };
1508 
1509 struct hidpp_touchpad_raw_xy_finger {
1510 	u8 contact_type;
1511 	u8 contact_status;
1512 	u16 x;
1513 	u16 y;
1514 	u8 z;
1515 	u8 area;
1516 	u8 finger_id;
1517 };
1518 
1519 struct hidpp_touchpad_raw_xy {
1520 	u16 timestamp;
1521 	struct hidpp_touchpad_raw_xy_finger fingers[2];
1522 	u8 spurious_flag;
1523 	u8 end_of_frame;
1524 	u8 finger_count;
1525 	u8 button;
1526 };
1527 
1528 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1529 	u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1530 {
1531 	struct hidpp_report response;
1532 	int ret;
1533 	u8 *params = (u8 *)response.fap.params;
1534 
1535 	ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1536 		CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1537 
1538 	if (ret > 0) {
1539 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1540 			__func__, ret);
1541 		return -EPROTO;
1542 	}
1543 	if (ret)
1544 		return ret;
1545 
1546 	raw_info->x_size = get_unaligned_be16(&params[0]);
1547 	raw_info->y_size = get_unaligned_be16(&params[2]);
1548 	raw_info->z_range = params[4];
1549 	raw_info->area_range = params[5];
1550 	raw_info->maxcontacts = params[7];
1551 	raw_info->origin = params[8];
1552 	/* res is given in unit per inch */
1553 	raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1554 
1555 	return ret;
1556 }
1557 
1558 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1559 		u8 feature_index, bool send_raw_reports,
1560 		bool sensor_enhanced_settings)
1561 {
1562 	struct hidpp_report response;
1563 
1564 	/*
1565 	 * Params:
1566 	 *   bit 0 - enable raw
1567 	 *   bit 1 - 16bit Z, no area
1568 	 *   bit 2 - enhanced sensitivity
1569 	 *   bit 3 - width, height (4 bits each) instead of area
1570 	 *   bit 4 - send raw + gestures (degrades smoothness)
1571 	 *   remaining bits - reserved
1572 	 */
1573 	u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1574 
1575 	return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1576 		CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1577 }
1578 
1579 static void hidpp_touchpad_touch_event(u8 *data,
1580 	struct hidpp_touchpad_raw_xy_finger *finger)
1581 {
1582 	u8 x_m = data[0] << 2;
1583 	u8 y_m = data[2] << 2;
1584 
1585 	finger->x = x_m << 6 | data[1];
1586 	finger->y = y_m << 6 | data[3];
1587 
1588 	finger->contact_type = data[0] >> 6;
1589 	finger->contact_status = data[2] >> 6;
1590 
1591 	finger->z = data[4];
1592 	finger->area = data[5];
1593 	finger->finger_id = data[6] >> 4;
1594 }
1595 
1596 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1597 		u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1598 {
1599 	memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1600 	raw_xy->end_of_frame = data[8] & 0x01;
1601 	raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1602 	raw_xy->finger_count = data[15] & 0x0f;
1603 	raw_xy->button = (data[8] >> 2) & 0x01;
1604 
1605 	if (raw_xy->finger_count) {
1606 		hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1607 		hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1608 	}
1609 }
1610 
1611 /* -------------------------------------------------------------------------- */
1612 /* 0x8123: Force feedback support                                             */
1613 /* -------------------------------------------------------------------------- */
1614 
1615 #define HIDPP_FF_GET_INFO		0x01
1616 #define HIDPP_FF_RESET_ALL		0x11
1617 #define HIDPP_FF_DOWNLOAD_EFFECT	0x21
1618 #define HIDPP_FF_SET_EFFECT_STATE	0x31
1619 #define HIDPP_FF_DESTROY_EFFECT		0x41
1620 #define HIDPP_FF_GET_APERTURE		0x51
1621 #define HIDPP_FF_SET_APERTURE		0x61
1622 #define HIDPP_FF_GET_GLOBAL_GAINS	0x71
1623 #define HIDPP_FF_SET_GLOBAL_GAINS	0x81
1624 
1625 #define HIDPP_FF_EFFECT_STATE_GET	0x00
1626 #define HIDPP_FF_EFFECT_STATE_STOP	0x01
1627 #define HIDPP_FF_EFFECT_STATE_PLAY	0x02
1628 #define HIDPP_FF_EFFECT_STATE_PAUSE	0x03
1629 
1630 #define HIDPP_FF_EFFECT_CONSTANT	0x00
1631 #define HIDPP_FF_EFFECT_PERIODIC_SINE		0x01
1632 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE		0x02
1633 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE	0x03
1634 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP	0x04
1635 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN	0x05
1636 #define HIDPP_FF_EFFECT_SPRING		0x06
1637 #define HIDPP_FF_EFFECT_DAMPER		0x07
1638 #define HIDPP_FF_EFFECT_FRICTION	0x08
1639 #define HIDPP_FF_EFFECT_INERTIA		0x09
1640 #define HIDPP_FF_EFFECT_RAMP		0x0A
1641 
1642 #define HIDPP_FF_EFFECT_AUTOSTART	0x80
1643 
1644 #define HIDPP_FF_EFFECTID_NONE		-1
1645 #define HIDPP_FF_EFFECTID_AUTOCENTER	-2
1646 
1647 #define HIDPP_FF_MAX_PARAMS	20
1648 #define HIDPP_FF_RESERVED_SLOTS	1
1649 
1650 struct hidpp_ff_private_data {
1651 	struct hidpp_device *hidpp;
1652 	u8 feature_index;
1653 	u8 version;
1654 	u16 gain;
1655 	s16 range;
1656 	u8 slot_autocenter;
1657 	u8 num_effects;
1658 	int *effect_ids;
1659 	struct workqueue_struct *wq;
1660 	atomic_t workqueue_size;
1661 };
1662 
1663 struct hidpp_ff_work_data {
1664 	struct work_struct work;
1665 	struct hidpp_ff_private_data *data;
1666 	int effect_id;
1667 	u8 command;
1668 	u8 params[HIDPP_FF_MAX_PARAMS];
1669 	u8 size;
1670 };
1671 
1672 static const signed short hidpp_ff_effects[] = {
1673 	FF_CONSTANT,
1674 	FF_PERIODIC,
1675 	FF_SINE,
1676 	FF_SQUARE,
1677 	FF_SAW_UP,
1678 	FF_SAW_DOWN,
1679 	FF_TRIANGLE,
1680 	FF_SPRING,
1681 	FF_DAMPER,
1682 	FF_AUTOCENTER,
1683 	FF_GAIN,
1684 	-1
1685 };
1686 
1687 static const signed short hidpp_ff_effects_v2[] = {
1688 	FF_RAMP,
1689 	FF_FRICTION,
1690 	FF_INERTIA,
1691 	-1
1692 };
1693 
1694 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1695 	HIDPP_FF_EFFECT_SPRING,
1696 	HIDPP_FF_EFFECT_FRICTION,
1697 	HIDPP_FF_EFFECT_DAMPER,
1698 	HIDPP_FF_EFFECT_INERTIA
1699 };
1700 
1701 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1702 	"spring",
1703 	"friction",
1704 	"damper",
1705 	"inertia"
1706 };
1707 
1708 
1709 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1710 {
1711 	int i;
1712 
1713 	for (i = 0; i < data->num_effects; i++)
1714 		if (data->effect_ids[i] == effect_id)
1715 			return i+1;
1716 
1717 	return 0;
1718 }
1719 
1720 static void hidpp_ff_work_handler(struct work_struct *w)
1721 {
1722 	struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1723 	struct hidpp_ff_private_data *data = wd->data;
1724 	struct hidpp_report response;
1725 	u8 slot;
1726 	int ret;
1727 
1728 	/* add slot number if needed */
1729 	switch (wd->effect_id) {
1730 	case HIDPP_FF_EFFECTID_AUTOCENTER:
1731 		wd->params[0] = data->slot_autocenter;
1732 		break;
1733 	case HIDPP_FF_EFFECTID_NONE:
1734 		/* leave slot as zero */
1735 		break;
1736 	default:
1737 		/* find current slot for effect */
1738 		wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1739 		break;
1740 	}
1741 
1742 	/* send command and wait for reply */
1743 	ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1744 		wd->command, wd->params, wd->size, &response);
1745 
1746 	if (ret) {
1747 		hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1748 		goto out;
1749 	}
1750 
1751 	/* parse return data */
1752 	switch (wd->command) {
1753 	case HIDPP_FF_DOWNLOAD_EFFECT:
1754 		slot = response.fap.params[0];
1755 		if (slot > 0 && slot <= data->num_effects) {
1756 			if (wd->effect_id >= 0)
1757 				/* regular effect uploaded */
1758 				data->effect_ids[slot-1] = wd->effect_id;
1759 			else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1760 				/* autocenter spring uploaded */
1761 				data->slot_autocenter = slot;
1762 		}
1763 		break;
1764 	case HIDPP_FF_DESTROY_EFFECT:
1765 		if (wd->effect_id >= 0)
1766 			/* regular effect destroyed */
1767 			data->effect_ids[wd->params[0]-1] = -1;
1768 		else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1769 			/* autocenter spring destoyed */
1770 			data->slot_autocenter = 0;
1771 		break;
1772 	case HIDPP_FF_SET_GLOBAL_GAINS:
1773 		data->gain = (wd->params[0] << 8) + wd->params[1];
1774 		break;
1775 	case HIDPP_FF_SET_APERTURE:
1776 		data->range = (wd->params[0] << 8) + wd->params[1];
1777 		break;
1778 	default:
1779 		/* no action needed */
1780 		break;
1781 	}
1782 
1783 out:
1784 	atomic_dec(&data->workqueue_size);
1785 	kfree(wd);
1786 }
1787 
1788 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1789 {
1790 	struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1791 	int s;
1792 
1793 	if (!wd)
1794 		return -ENOMEM;
1795 
1796 	INIT_WORK(&wd->work, hidpp_ff_work_handler);
1797 
1798 	wd->data = data;
1799 	wd->effect_id = effect_id;
1800 	wd->command = command;
1801 	wd->size = size;
1802 	memcpy(wd->params, params, size);
1803 
1804 	atomic_inc(&data->workqueue_size);
1805 	queue_work(data->wq, &wd->work);
1806 
1807 	/* warn about excessive queue size */
1808 	s = atomic_read(&data->workqueue_size);
1809 	if (s >= 20 && s % 20 == 0)
1810 		hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1811 
1812 	return 0;
1813 }
1814 
1815 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1816 {
1817 	struct hidpp_ff_private_data *data = dev->ff->private;
1818 	u8 params[20];
1819 	u8 size;
1820 	int force;
1821 
1822 	/* set common parameters */
1823 	params[2] = effect->replay.length >> 8;
1824 	params[3] = effect->replay.length & 255;
1825 	params[4] = effect->replay.delay >> 8;
1826 	params[5] = effect->replay.delay & 255;
1827 
1828 	switch (effect->type) {
1829 	case FF_CONSTANT:
1830 		force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1831 		params[1] = HIDPP_FF_EFFECT_CONSTANT;
1832 		params[6] = force >> 8;
1833 		params[7] = force & 255;
1834 		params[8] = effect->u.constant.envelope.attack_level >> 7;
1835 		params[9] = effect->u.constant.envelope.attack_length >> 8;
1836 		params[10] = effect->u.constant.envelope.attack_length & 255;
1837 		params[11] = effect->u.constant.envelope.fade_level >> 7;
1838 		params[12] = effect->u.constant.envelope.fade_length >> 8;
1839 		params[13] = effect->u.constant.envelope.fade_length & 255;
1840 		size = 14;
1841 		dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1842 				effect->u.constant.level,
1843 				effect->direction, force);
1844 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1845 				effect->u.constant.envelope.attack_level,
1846 				effect->u.constant.envelope.attack_length,
1847 				effect->u.constant.envelope.fade_level,
1848 				effect->u.constant.envelope.fade_length);
1849 		break;
1850 	case FF_PERIODIC:
1851 	{
1852 		switch (effect->u.periodic.waveform) {
1853 		case FF_SINE:
1854 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1855 			break;
1856 		case FF_SQUARE:
1857 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1858 			break;
1859 		case FF_SAW_UP:
1860 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1861 			break;
1862 		case FF_SAW_DOWN:
1863 			params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1864 			break;
1865 		case FF_TRIANGLE:
1866 			params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1867 			break;
1868 		default:
1869 			hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1870 			return -EINVAL;
1871 		}
1872 		force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1873 		params[6] = effect->u.periodic.magnitude >> 8;
1874 		params[7] = effect->u.periodic.magnitude & 255;
1875 		params[8] = effect->u.periodic.offset >> 8;
1876 		params[9] = effect->u.periodic.offset & 255;
1877 		params[10] = effect->u.periodic.period >> 8;
1878 		params[11] = effect->u.periodic.period & 255;
1879 		params[12] = effect->u.periodic.phase >> 8;
1880 		params[13] = effect->u.periodic.phase & 255;
1881 		params[14] = effect->u.periodic.envelope.attack_level >> 7;
1882 		params[15] = effect->u.periodic.envelope.attack_length >> 8;
1883 		params[16] = effect->u.periodic.envelope.attack_length & 255;
1884 		params[17] = effect->u.periodic.envelope.fade_level >> 7;
1885 		params[18] = effect->u.periodic.envelope.fade_length >> 8;
1886 		params[19] = effect->u.periodic.envelope.fade_length & 255;
1887 		size = 20;
1888 		dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1889 				effect->u.periodic.magnitude, effect->direction,
1890 				effect->u.periodic.offset,
1891 				effect->u.periodic.period,
1892 				effect->u.periodic.phase);
1893 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1894 				effect->u.periodic.envelope.attack_level,
1895 				effect->u.periodic.envelope.attack_length,
1896 				effect->u.periodic.envelope.fade_level,
1897 				effect->u.periodic.envelope.fade_length);
1898 		break;
1899 	}
1900 	case FF_RAMP:
1901 		params[1] = HIDPP_FF_EFFECT_RAMP;
1902 		force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1903 		params[6] = force >> 8;
1904 		params[7] = force & 255;
1905 		force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1906 		params[8] = force >> 8;
1907 		params[9] = force & 255;
1908 		params[10] = effect->u.ramp.envelope.attack_level >> 7;
1909 		params[11] = effect->u.ramp.envelope.attack_length >> 8;
1910 		params[12] = effect->u.ramp.envelope.attack_length & 255;
1911 		params[13] = effect->u.ramp.envelope.fade_level >> 7;
1912 		params[14] = effect->u.ramp.envelope.fade_length >> 8;
1913 		params[15] = effect->u.ramp.envelope.fade_length & 255;
1914 		size = 16;
1915 		dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1916 				effect->u.ramp.start_level,
1917 				effect->u.ramp.end_level,
1918 				effect->direction, force);
1919 		dbg_hid("          envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1920 				effect->u.ramp.envelope.attack_level,
1921 				effect->u.ramp.envelope.attack_length,
1922 				effect->u.ramp.envelope.fade_level,
1923 				effect->u.ramp.envelope.fade_length);
1924 		break;
1925 	case FF_FRICTION:
1926 	case FF_INERTIA:
1927 	case FF_SPRING:
1928 	case FF_DAMPER:
1929 		params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1930 		params[6] = effect->u.condition[0].left_saturation >> 9;
1931 		params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1932 		params[8] = effect->u.condition[0].left_coeff >> 8;
1933 		params[9] = effect->u.condition[0].left_coeff & 255;
1934 		params[10] = effect->u.condition[0].deadband >> 9;
1935 		params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1936 		params[12] = effect->u.condition[0].center >> 8;
1937 		params[13] = effect->u.condition[0].center & 255;
1938 		params[14] = effect->u.condition[0].right_coeff >> 8;
1939 		params[15] = effect->u.condition[0].right_coeff & 255;
1940 		params[16] = effect->u.condition[0].right_saturation >> 9;
1941 		params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1942 		size = 18;
1943 		dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1944 				HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1945 				effect->u.condition[0].left_coeff,
1946 				effect->u.condition[0].left_saturation,
1947 				effect->u.condition[0].right_coeff,
1948 				effect->u.condition[0].right_saturation);
1949 		dbg_hid("          deadband=%d, center=%d\n",
1950 				effect->u.condition[0].deadband,
1951 				effect->u.condition[0].center);
1952 		break;
1953 	default:
1954 		hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1955 		return -EINVAL;
1956 	}
1957 
1958 	return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1959 }
1960 
1961 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1962 {
1963 	struct hidpp_ff_private_data *data = dev->ff->private;
1964 	u8 params[2];
1965 
1966 	params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1967 
1968 	dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1969 
1970 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
1971 }
1972 
1973 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
1974 {
1975 	struct hidpp_ff_private_data *data = dev->ff->private;
1976 	u8 slot = 0;
1977 
1978 	dbg_hid("Erasing effect %d.\n", effect_id);
1979 
1980 	return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
1981 }
1982 
1983 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
1984 {
1985 	struct hidpp_ff_private_data *data = dev->ff->private;
1986 	u8 params[18];
1987 
1988 	dbg_hid("Setting autocenter to %d.\n", magnitude);
1989 
1990 	/* start a standard spring effect */
1991 	params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
1992 	/* zero delay and duration */
1993 	params[2] = params[3] = params[4] = params[5] = 0;
1994 	/* set coeff to 25% of saturation */
1995 	params[8] = params[14] = magnitude >> 11;
1996 	params[9] = params[15] = (magnitude >> 3) & 255;
1997 	params[6] = params[16] = magnitude >> 9;
1998 	params[7] = params[17] = (magnitude >> 1) & 255;
1999 	/* zero deadband and center */
2000 	params[10] = params[11] = params[12] = params[13] = 0;
2001 
2002 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2003 }
2004 
2005 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2006 {
2007 	struct hidpp_ff_private_data *data = dev->ff->private;
2008 	u8 params[4];
2009 
2010 	dbg_hid("Setting gain to %d.\n", gain);
2011 
2012 	params[0] = gain >> 8;
2013 	params[1] = gain & 255;
2014 	params[2] = 0; /* no boost */
2015 	params[3] = 0;
2016 
2017 	hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2018 }
2019 
2020 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2021 {
2022 	struct hid_device *hid = to_hid_device(dev);
2023 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2024 	struct input_dev *idev = hidinput->input;
2025 	struct hidpp_ff_private_data *data = idev->ff->private;
2026 
2027 	return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2028 }
2029 
2030 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2031 {
2032 	struct hid_device *hid = to_hid_device(dev);
2033 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2034 	struct input_dev *idev = hidinput->input;
2035 	struct hidpp_ff_private_data *data = idev->ff->private;
2036 	u8 params[2];
2037 	int range = simple_strtoul(buf, NULL, 10);
2038 
2039 	range = clamp(range, 180, 900);
2040 
2041 	params[0] = range >> 8;
2042 	params[1] = range & 0x00FF;
2043 
2044 	hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2045 
2046 	return count;
2047 }
2048 
2049 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2050 
2051 static void hidpp_ff_destroy(struct ff_device *ff)
2052 {
2053 	struct hidpp_ff_private_data *data = ff->private;
2054 
2055 	kfree(data->effect_ids);
2056 }
2057 
2058 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
2059 {
2060 	struct hid_device *hid = hidpp->hid_dev;
2061 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2062 	struct input_dev *dev = hidinput->input;
2063 	const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2064 	const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2065 	struct ff_device *ff;
2066 	struct hidpp_report response;
2067 	struct hidpp_ff_private_data *data;
2068 	int error, j, num_slots;
2069 	u8 version;
2070 
2071 	if (!dev) {
2072 		hid_err(hid, "Struct input_dev not set!\n");
2073 		return -EINVAL;
2074 	}
2075 
2076 	/* Get firmware release */
2077 	version = bcdDevice & 255;
2078 
2079 	/* Set supported force feedback capabilities */
2080 	for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2081 		set_bit(hidpp_ff_effects[j], dev->ffbit);
2082 	if (version > 1)
2083 		for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2084 			set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2085 
2086 	/* Read number of slots available in device */
2087 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2088 		HIDPP_FF_GET_INFO, NULL, 0, &response);
2089 	if (error) {
2090 		if (error < 0)
2091 			return error;
2092 		hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
2093 			__func__, error);
2094 		return -EPROTO;
2095 	}
2096 
2097 	num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2098 
2099 	error = input_ff_create(dev, num_slots);
2100 
2101 	if (error) {
2102 		hid_err(dev, "Failed to create FF device!\n");
2103 		return error;
2104 	}
2105 
2106 	data = kzalloc(sizeof(*data), GFP_KERNEL);
2107 	if (!data)
2108 		return -ENOMEM;
2109 	data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2110 	if (!data->effect_ids) {
2111 		kfree(data);
2112 		return -ENOMEM;
2113 	}
2114 	data->hidpp = hidpp;
2115 	data->feature_index = feature_index;
2116 	data->version = version;
2117 	data->slot_autocenter = 0;
2118 	data->num_effects = num_slots;
2119 	for (j = 0; j < num_slots; j++)
2120 		data->effect_ids[j] = -1;
2121 
2122 	ff = dev->ff;
2123 	ff->private = data;
2124 
2125 	ff->upload = hidpp_ff_upload_effect;
2126 	ff->erase = hidpp_ff_erase_effect;
2127 	ff->playback = hidpp_ff_playback;
2128 	ff->set_gain = hidpp_ff_set_gain;
2129 	ff->set_autocenter = hidpp_ff_set_autocenter;
2130 	ff->destroy = hidpp_ff_destroy;
2131 
2132 
2133 	/* reset all forces */
2134 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2135 		HIDPP_FF_RESET_ALL, NULL, 0, &response);
2136 
2137 	/* Read current Range */
2138 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2139 		HIDPP_FF_GET_APERTURE, NULL, 0, &response);
2140 	if (error)
2141 		hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
2142 	data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
2143 
2144 	/* Create sysfs interface */
2145 	error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2146 	if (error)
2147 		hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2148 
2149 	/* Read the current gain values */
2150 	error = hidpp_send_fap_command_sync(hidpp, feature_index,
2151 		HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
2152 	if (error)
2153 		hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
2154 	data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
2155 	/* ignore boost value at response.fap.params[2] */
2156 
2157 	/* init the hardware command queue */
2158 	data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2159 	atomic_set(&data->workqueue_size, 0);
2160 
2161 	/* initialize with zero autocenter to get wheel in usable state */
2162 	hidpp_ff_set_autocenter(dev, 0);
2163 
2164 	hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2165 		 version);
2166 
2167 	return 0;
2168 }
2169 
2170 static int hidpp_ff_deinit(struct hid_device *hid)
2171 {
2172 	struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2173 	struct input_dev *dev = hidinput->input;
2174 	struct hidpp_ff_private_data *data;
2175 
2176 	if (!dev) {
2177 		hid_err(hid, "Struct input_dev not found!\n");
2178 		return -EINVAL;
2179 	}
2180 
2181 	hid_info(hid, "Unloading HID++ force feedback.\n");
2182 	data = dev->ff->private;
2183 	if (!data) {
2184 		hid_err(hid, "Private data not found!\n");
2185 		return -EINVAL;
2186 	}
2187 
2188 	destroy_workqueue(data->wq);
2189 	device_remove_file(&hid->dev, &dev_attr_range);
2190 
2191 	return 0;
2192 }
2193 
2194 
2195 /* ************************************************************************** */
2196 /*                                                                            */
2197 /* Device Support                                                             */
2198 /*                                                                            */
2199 /* ************************************************************************** */
2200 
2201 /* -------------------------------------------------------------------------- */
2202 /* Touchpad HID++ devices                                                     */
2203 /* -------------------------------------------------------------------------- */
2204 
2205 #define WTP_MANUAL_RESOLUTION				39
2206 
2207 struct wtp_data {
2208 	struct input_dev *input;
2209 	u16 x_size, y_size;
2210 	u8 finger_count;
2211 	u8 mt_feature_index;
2212 	u8 button_feature_index;
2213 	u8 maxcontacts;
2214 	bool flip_y;
2215 	unsigned int resolution;
2216 };
2217 
2218 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2219 		struct hid_field *field, struct hid_usage *usage,
2220 		unsigned long **bit, int *max)
2221 {
2222 	return -1;
2223 }
2224 
2225 static void wtp_populate_input(struct hidpp_device *hidpp,
2226 		struct input_dev *input_dev, bool origin_is_hid_core)
2227 {
2228 	struct wtp_data *wd = hidpp->private_data;
2229 
2230 	__set_bit(EV_ABS, input_dev->evbit);
2231 	__set_bit(EV_KEY, input_dev->evbit);
2232 	__clear_bit(EV_REL, input_dev->evbit);
2233 	__clear_bit(EV_LED, input_dev->evbit);
2234 
2235 	input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2236 	input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2237 	input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2238 	input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2239 
2240 	/* Max pressure is not given by the devices, pick one */
2241 	input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2242 
2243 	input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2244 
2245 	if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2246 		input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2247 	else
2248 		__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2249 
2250 	input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2251 		INPUT_MT_DROP_UNUSED);
2252 
2253 	wd->input = input_dev;
2254 }
2255 
2256 static void wtp_touch_event(struct wtp_data *wd,
2257 	struct hidpp_touchpad_raw_xy_finger *touch_report)
2258 {
2259 	int slot;
2260 
2261 	if (!touch_report->finger_id || touch_report->contact_type)
2262 		/* no actual data */
2263 		return;
2264 
2265 	slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id);
2266 
2267 	input_mt_slot(wd->input, slot);
2268 	input_mt_report_slot_state(wd->input, MT_TOOL_FINGER,
2269 					touch_report->contact_status);
2270 	if (touch_report->contact_status) {
2271 		input_event(wd->input, EV_ABS, ABS_MT_POSITION_X,
2272 				touch_report->x);
2273 		input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y,
2274 				wd->flip_y ? wd->y_size - touch_report->y :
2275 					     touch_report->y);
2276 		input_event(wd->input, EV_ABS, ABS_MT_PRESSURE,
2277 				touch_report->area);
2278 	}
2279 }
2280 
2281 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2282 		struct hidpp_touchpad_raw_xy *raw)
2283 {
2284 	struct wtp_data *wd = hidpp->private_data;
2285 	int i;
2286 
2287 	for (i = 0; i < 2; i++)
2288 		wtp_touch_event(wd, &(raw->fingers[i]));
2289 
2290 	if (raw->end_of_frame &&
2291 	    !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2292 		input_event(wd->input, EV_KEY, BTN_LEFT, raw->button);
2293 
2294 	if (raw->end_of_frame || raw->finger_count <= 2) {
2295 		input_mt_sync_frame(wd->input);
2296 		input_sync(wd->input);
2297 	}
2298 }
2299 
2300 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2301 {
2302 	struct wtp_data *wd = hidpp->private_data;
2303 	u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2304 		      (data[7] >> 4) * (data[7] >> 4)) / 2;
2305 	u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2306 		      (data[13] >> 4) * (data[13] >> 4)) / 2;
2307 	struct hidpp_touchpad_raw_xy raw = {
2308 		.timestamp = data[1],
2309 		.fingers = {
2310 			{
2311 				.contact_type = 0,
2312 				.contact_status = !!data[7],
2313 				.x = get_unaligned_le16(&data[3]),
2314 				.y = get_unaligned_le16(&data[5]),
2315 				.z = c1_area,
2316 				.area = c1_area,
2317 				.finger_id = data[2],
2318 			}, {
2319 				.contact_type = 0,
2320 				.contact_status = !!data[13],
2321 				.x = get_unaligned_le16(&data[9]),
2322 				.y = get_unaligned_le16(&data[11]),
2323 				.z = c2_area,
2324 				.area = c2_area,
2325 				.finger_id = data[8],
2326 			}
2327 		},
2328 		.finger_count = wd->maxcontacts,
2329 		.spurious_flag = 0,
2330 		.end_of_frame = (data[0] >> 7) == 0,
2331 		.button = data[0] & 0x01,
2332 	};
2333 
2334 	wtp_send_raw_xy_event(hidpp, &raw);
2335 
2336 	return 1;
2337 }
2338 
2339 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2340 {
2341 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2342 	struct wtp_data *wd = hidpp->private_data;
2343 	struct hidpp_report *report = (struct hidpp_report *)data;
2344 	struct hidpp_touchpad_raw_xy raw;
2345 
2346 	if (!wd || !wd->input)
2347 		return 1;
2348 
2349 	switch (data[0]) {
2350 	case 0x02:
2351 		if (size < 2) {
2352 			hid_err(hdev, "Received HID report of bad size (%d)",
2353 				size);
2354 			return 1;
2355 		}
2356 		if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2357 			input_event(wd->input, EV_KEY, BTN_LEFT,
2358 					!!(data[1] & 0x01));
2359 			input_event(wd->input, EV_KEY, BTN_RIGHT,
2360 					!!(data[1] & 0x02));
2361 			input_sync(wd->input);
2362 			return 0;
2363 		} else {
2364 			if (size < 21)
2365 				return 1;
2366 			return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2367 		}
2368 	case REPORT_ID_HIDPP_LONG:
2369 		/* size is already checked in hidpp_raw_event. */
2370 		if ((report->fap.feature_index != wd->mt_feature_index) ||
2371 		    (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2372 			return 1;
2373 		hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2374 
2375 		wtp_send_raw_xy_event(hidpp, &raw);
2376 		return 0;
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 static int wtp_get_config(struct hidpp_device *hidpp)
2383 {
2384 	struct wtp_data *wd = hidpp->private_data;
2385 	struct hidpp_touchpad_raw_info raw_info = {0};
2386 	u8 feature_type;
2387 	int ret;
2388 
2389 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2390 		&wd->mt_feature_index, &feature_type);
2391 	if (ret)
2392 		/* means that the device is not powered up */
2393 		return ret;
2394 
2395 	ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2396 		&raw_info);
2397 	if (ret)
2398 		return ret;
2399 
2400 	wd->x_size = raw_info.x_size;
2401 	wd->y_size = raw_info.y_size;
2402 	wd->maxcontacts = raw_info.maxcontacts;
2403 	wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2404 	wd->resolution = raw_info.res;
2405 	if (!wd->resolution)
2406 		wd->resolution = WTP_MANUAL_RESOLUTION;
2407 
2408 	return 0;
2409 }
2410 
2411 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2412 {
2413 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2414 	struct wtp_data *wd;
2415 
2416 	wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2417 			GFP_KERNEL);
2418 	if (!wd)
2419 		return -ENOMEM;
2420 
2421 	hidpp->private_data = wd;
2422 
2423 	return 0;
2424 };
2425 
2426 static int wtp_connect(struct hid_device *hdev, bool connected)
2427 {
2428 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2429 	struct wtp_data *wd = hidpp->private_data;
2430 	int ret;
2431 
2432 	if (!wd->x_size) {
2433 		ret = wtp_get_config(hidpp);
2434 		if (ret) {
2435 			hid_err(hdev, "Can not get wtp config: %d\n", ret);
2436 			return ret;
2437 		}
2438 	}
2439 
2440 	return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2441 			true, true);
2442 }
2443 
2444 /* ------------------------------------------------------------------------- */
2445 /* Logitech M560 devices                                                     */
2446 /* ------------------------------------------------------------------------- */
2447 
2448 /*
2449  * Logitech M560 protocol overview
2450  *
2451  * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2452  * the sides buttons are pressed, it sends some keyboard keys events
2453  * instead of buttons ones.
2454  * To complicate things further, the middle button keys sequence
2455  * is different from the odd press and the even press.
2456  *
2457  * forward button -> Super_R
2458  * backward button -> Super_L+'d' (press only)
2459  * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2460  *                  2nd time: left-click (press only)
2461  * NB: press-only means that when the button is pressed, the
2462  * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2463  * together sequentially; instead when the button is released, no event is
2464  * generated !
2465  *
2466  * With the command
2467  *	10<xx>0a 3500af03 (where <xx> is the mouse id),
2468  * the mouse reacts differently:
2469  * - it never sends a keyboard key event
2470  * - for the three mouse button it sends:
2471  *	middle button               press   11<xx>0a 3500af00...
2472  *	side 1 button (forward)     press   11<xx>0a 3500b000...
2473  *	side 2 button (backward)    press   11<xx>0a 3500ae00...
2474  *	middle/side1/side2 button   release 11<xx>0a 35000000...
2475  */
2476 
2477 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2478 
2479 struct m560_private_data {
2480 	struct input_dev *input;
2481 };
2482 
2483 /* how buttons are mapped in the report */
2484 #define M560_MOUSE_BTN_LEFT		0x01
2485 #define M560_MOUSE_BTN_RIGHT		0x02
2486 #define M560_MOUSE_BTN_WHEEL_LEFT	0x08
2487 #define M560_MOUSE_BTN_WHEEL_RIGHT	0x10
2488 
2489 #define M560_SUB_ID			0x0a
2490 #define M560_BUTTON_MODE_REGISTER	0x35
2491 
2492 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2493 {
2494 	struct hidpp_report response;
2495 	struct hidpp_device *hidpp_dev;
2496 
2497 	hidpp_dev = hid_get_drvdata(hdev);
2498 
2499 	return hidpp_send_rap_command_sync(
2500 		hidpp_dev,
2501 		REPORT_ID_HIDPP_SHORT,
2502 		M560_SUB_ID,
2503 		M560_BUTTON_MODE_REGISTER,
2504 		(u8 *)m560_config_parameter,
2505 		sizeof(m560_config_parameter),
2506 		&response
2507 	);
2508 }
2509 
2510 static int m560_allocate(struct hid_device *hdev)
2511 {
2512 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2513 	struct m560_private_data *d;
2514 
2515 	d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data),
2516 			GFP_KERNEL);
2517 	if (!d)
2518 		return -ENOMEM;
2519 
2520 	hidpp->private_data = d;
2521 
2522 	return 0;
2523 };
2524 
2525 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2526 {
2527 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2528 	struct m560_private_data *mydata = hidpp->private_data;
2529 
2530 	/* sanity check */
2531 	if (!mydata || !mydata->input) {
2532 		hid_err(hdev, "error in parameter\n");
2533 		return -EINVAL;
2534 	}
2535 
2536 	if (size < 7) {
2537 		hid_err(hdev, "error in report\n");
2538 		return 0;
2539 	}
2540 
2541 	if (data[0] == REPORT_ID_HIDPP_LONG &&
2542 	    data[2] == M560_SUB_ID && data[6] == 0x00) {
2543 		/*
2544 		 * m560 mouse report for middle, forward and backward button
2545 		 *
2546 		 * data[0] = 0x11
2547 		 * data[1] = device-id
2548 		 * data[2] = 0x0a
2549 		 * data[5] = 0xaf -> middle
2550 		 *	     0xb0 -> forward
2551 		 *	     0xae -> backward
2552 		 *	     0x00 -> release all
2553 		 * data[6] = 0x00
2554 		 */
2555 
2556 		switch (data[5]) {
2557 		case 0xaf:
2558 			input_report_key(mydata->input, BTN_MIDDLE, 1);
2559 			break;
2560 		case 0xb0:
2561 			input_report_key(mydata->input, BTN_FORWARD, 1);
2562 			break;
2563 		case 0xae:
2564 			input_report_key(mydata->input, BTN_BACK, 1);
2565 			break;
2566 		case 0x00:
2567 			input_report_key(mydata->input, BTN_BACK, 0);
2568 			input_report_key(mydata->input, BTN_FORWARD, 0);
2569 			input_report_key(mydata->input, BTN_MIDDLE, 0);
2570 			break;
2571 		default:
2572 			hid_err(hdev, "error in report\n");
2573 			return 0;
2574 		}
2575 		input_sync(mydata->input);
2576 
2577 	} else if (data[0] == 0x02) {
2578 		/*
2579 		 * Logitech M560 mouse report
2580 		 *
2581 		 * data[0] = type (0x02)
2582 		 * data[1..2] = buttons
2583 		 * data[3..5] = xy
2584 		 * data[6] = wheel
2585 		 */
2586 
2587 		int v;
2588 
2589 		input_report_key(mydata->input, BTN_LEFT,
2590 			!!(data[1] & M560_MOUSE_BTN_LEFT));
2591 		input_report_key(mydata->input, BTN_RIGHT,
2592 			!!(data[1] & M560_MOUSE_BTN_RIGHT));
2593 
2594 		if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2595 			input_report_rel(mydata->input, REL_HWHEEL, -1);
2596 			input_report_rel(mydata->input, REL_HWHEEL_HI_RES,
2597 					 -120);
2598 		} else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2599 			input_report_rel(mydata->input, REL_HWHEEL, 1);
2600 			input_report_rel(mydata->input, REL_HWHEEL_HI_RES,
2601 					 120);
2602 		}
2603 
2604 		v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2605 		input_report_rel(mydata->input, REL_X, v);
2606 
2607 		v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2608 		input_report_rel(mydata->input, REL_Y, v);
2609 
2610 		v = hid_snto32(data[6], 8);
2611 		hidpp_scroll_counter_handle_scroll(
2612 				&hidpp->vertical_wheel_counter, v);
2613 
2614 		input_sync(mydata->input);
2615 	}
2616 
2617 	return 1;
2618 }
2619 
2620 static void m560_populate_input(struct hidpp_device *hidpp,
2621 		struct input_dev *input_dev, bool origin_is_hid_core)
2622 {
2623 	struct m560_private_data *mydata = hidpp->private_data;
2624 
2625 	mydata->input = input_dev;
2626 
2627 	__set_bit(EV_KEY, mydata->input->evbit);
2628 	__set_bit(BTN_MIDDLE, mydata->input->keybit);
2629 	__set_bit(BTN_RIGHT, mydata->input->keybit);
2630 	__set_bit(BTN_LEFT, mydata->input->keybit);
2631 	__set_bit(BTN_BACK, mydata->input->keybit);
2632 	__set_bit(BTN_FORWARD, mydata->input->keybit);
2633 
2634 	__set_bit(EV_REL, mydata->input->evbit);
2635 	__set_bit(REL_X, mydata->input->relbit);
2636 	__set_bit(REL_Y, mydata->input->relbit);
2637 	__set_bit(REL_WHEEL, mydata->input->relbit);
2638 	__set_bit(REL_HWHEEL, mydata->input->relbit);
2639 	__set_bit(REL_WHEEL_HI_RES, mydata->input->relbit);
2640 	__set_bit(REL_HWHEEL_HI_RES, mydata->input->relbit);
2641 }
2642 
2643 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2644 		struct hid_field *field, struct hid_usage *usage,
2645 		unsigned long **bit, int *max)
2646 {
2647 	return -1;
2648 }
2649 
2650 /* ------------------------------------------------------------------------- */
2651 /* Logitech K400 devices                                                     */
2652 /* ------------------------------------------------------------------------- */
2653 
2654 /*
2655  * The Logitech K400 keyboard has an embedded touchpad which is seen
2656  * as a mouse from the OS point of view. There is a hardware shortcut to disable
2657  * tap-to-click but the setting is not remembered accross reset, annoying some
2658  * users.
2659  *
2660  * We can toggle this feature from the host by using the feature 0x6010:
2661  * Touchpad FW items
2662  */
2663 
2664 struct k400_private_data {
2665 	u8 feature_index;
2666 };
2667 
2668 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2669 {
2670 	struct k400_private_data *k400 = hidpp->private_data;
2671 	struct hidpp_touchpad_fw_items items = {};
2672 	int ret;
2673 	u8 feature_type;
2674 
2675 	if (!k400->feature_index) {
2676 		ret = hidpp_root_get_feature(hidpp,
2677 			HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2678 			&k400->feature_index, &feature_type);
2679 		if (ret)
2680 			/* means that the device is not powered up */
2681 			return ret;
2682 	}
2683 
2684 	ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2685 	if (ret)
2686 		return ret;
2687 
2688 	return 0;
2689 }
2690 
2691 static int k400_allocate(struct hid_device *hdev)
2692 {
2693 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2694 	struct k400_private_data *k400;
2695 
2696 	k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2697 			    GFP_KERNEL);
2698 	if (!k400)
2699 		return -ENOMEM;
2700 
2701 	hidpp->private_data = k400;
2702 
2703 	return 0;
2704 };
2705 
2706 static int k400_connect(struct hid_device *hdev, bool connected)
2707 {
2708 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2709 
2710 	if (!disable_tap_to_click)
2711 		return 0;
2712 
2713 	return k400_disable_tap_to_click(hidpp);
2714 }
2715 
2716 /* ------------------------------------------------------------------------- */
2717 /* Logitech G920 Driving Force Racing Wheel for Xbox One                     */
2718 /* ------------------------------------------------------------------------- */
2719 
2720 #define HIDPP_PAGE_G920_FORCE_FEEDBACK			0x8123
2721 
2722 static int g920_get_config(struct hidpp_device *hidpp)
2723 {
2724 	u8 feature_type;
2725 	u8 feature_index;
2726 	int ret;
2727 
2728 	/* Find feature and store for later use */
2729 	ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2730 		&feature_index, &feature_type);
2731 	if (ret)
2732 		return ret;
2733 
2734 	ret = hidpp_ff_init(hidpp, feature_index);
2735 	if (ret)
2736 		hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2737 				ret);
2738 
2739 	return 0;
2740 }
2741 
2742 /* -------------------------------------------------------------------------- */
2743 /* High-resolution scroll wheels                                              */
2744 /* -------------------------------------------------------------------------- */
2745 
2746 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
2747 {
2748 	int ret;
2749 	u8 multiplier = 1;
2750 
2751 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
2752 		ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
2753 		if (ret == 0)
2754 			ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
2755 	} else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
2756 		ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
2757 							   &multiplier);
2758 	} else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
2759 		ret = hidpp10_enable_scrolling_acceleration(hidpp);
2760 		multiplier = 8;
2761 	}
2762 	if (ret)
2763 		return ret;
2764 
2765 	if (multiplier == 0)
2766 		multiplier = 1;
2767 
2768 	hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
2769 	hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
2770 	return 0;
2771 }
2772 
2773 /* -------------------------------------------------------------------------- */
2774 /* Generic HID++ devices                                                      */
2775 /* -------------------------------------------------------------------------- */
2776 
2777 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2778 		struct hid_field *field, struct hid_usage *usage,
2779 		unsigned long **bit, int *max)
2780 {
2781 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2782 
2783 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2784 		return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2785 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2786 			field->application != HID_GD_MOUSE)
2787 		return m560_input_mapping(hdev, hi, field, usage, bit, max);
2788 
2789 	return 0;
2790 }
2791 
2792 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2793 		struct hid_field *field, struct hid_usage *usage,
2794 		unsigned long **bit, int *max)
2795 {
2796 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2797 
2798 	/* Ensure that Logitech G920 is not given a default fuzz/flat value */
2799 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2800 		if (usage->type == EV_ABS && (usage->code == ABS_X ||
2801 				usage->code == ABS_Y || usage->code == ABS_Z ||
2802 				usage->code == ABS_RZ)) {
2803 			field->application = HID_GD_MULTIAXIS;
2804 		}
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 
2811 static void hidpp_populate_input(struct hidpp_device *hidpp,
2812 		struct input_dev *input, bool origin_is_hid_core)
2813 {
2814 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2815 		wtp_populate_input(hidpp, input, origin_is_hid_core);
2816 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2817 		m560_populate_input(hidpp, input, origin_is_hid_core);
2818 
2819 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
2820 		hidpp->vertical_wheel_counter.dev = input;
2821 }
2822 
2823 static int hidpp_input_configured(struct hid_device *hdev,
2824 				struct hid_input *hidinput)
2825 {
2826 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2827 	struct input_dev *input = hidinput->input;
2828 
2829 	hidpp_populate_input(hidpp, input, true);
2830 
2831 	return 0;
2832 }
2833 
2834 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
2835 		int size)
2836 {
2837 	struct hidpp_report *question = hidpp->send_receive_buf;
2838 	struct hidpp_report *answer = hidpp->send_receive_buf;
2839 	struct hidpp_report *report = (struct hidpp_report *)data;
2840 	int ret;
2841 
2842 	/*
2843 	 * If the mutex is locked then we have a pending answer from a
2844 	 * previously sent command.
2845 	 */
2846 	if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
2847 		/*
2848 		 * Check for a correct hidpp20 answer or the corresponding
2849 		 * error
2850 		 */
2851 		if (hidpp_match_answer(question, report) ||
2852 				hidpp_match_error(question, report)) {
2853 			*answer = *report;
2854 			hidpp->answer_available = true;
2855 			wake_up(&hidpp->wait);
2856 			/*
2857 			 * This was an answer to a command that this driver sent
2858 			 * We return 1 to hid-core to avoid forwarding the
2859 			 * command upstream as it has been treated by the driver
2860 			 */
2861 
2862 			return 1;
2863 		}
2864 	}
2865 
2866 	if (unlikely(hidpp_report_is_connect_event(report))) {
2867 		atomic_set(&hidpp->connected,
2868 				!(report->rap.params[0] & (1 << 6)));
2869 		if (schedule_work(&hidpp->work) == 0)
2870 			dbg_hid("%s: connect event already queued\n", __func__);
2871 		return 1;
2872 	}
2873 
2874 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
2875 		ret = hidpp20_battery_event(hidpp, data, size);
2876 		if (ret != 0)
2877 			return ret;
2878 		ret = hidpp_solar_battery_event(hidpp, data, size);
2879 		if (ret != 0)
2880 			return ret;
2881 	}
2882 
2883 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
2884 		ret = hidpp10_battery_event(hidpp, data, size);
2885 		if (ret != 0)
2886 			return ret;
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
2893 		u8 *data, int size)
2894 {
2895 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2896 	int ret = 0;
2897 
2898 	/* Generic HID++ processing. */
2899 	switch (data[0]) {
2900 	case REPORT_ID_HIDPP_VERY_LONG:
2901 		if (size != HIDPP_REPORT_VERY_LONG_LENGTH) {
2902 			hid_err(hdev, "received hid++ report of bad size (%d)",
2903 				size);
2904 			return 1;
2905 		}
2906 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2907 		break;
2908 	case REPORT_ID_HIDPP_LONG:
2909 		if (size != HIDPP_REPORT_LONG_LENGTH) {
2910 			hid_err(hdev, "received hid++ report of bad size (%d)",
2911 				size);
2912 			return 1;
2913 		}
2914 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2915 		break;
2916 	case REPORT_ID_HIDPP_SHORT:
2917 		if (size != HIDPP_REPORT_SHORT_LENGTH) {
2918 			hid_err(hdev, "received hid++ report of bad size (%d)",
2919 				size);
2920 			return 1;
2921 		}
2922 		ret = hidpp_raw_hidpp_event(hidpp, data, size);
2923 		break;
2924 	}
2925 
2926 	/* If no report is available for further processing, skip calling
2927 	 * raw_event of subclasses. */
2928 	if (ret != 0)
2929 		return ret;
2930 
2931 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2932 		return wtp_raw_event(hdev, data, size);
2933 	else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2934 		return m560_raw_event(hdev, data, size);
2935 
2936 	return 0;
2937 }
2938 
2939 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
2940 	struct hid_usage *usage, __s32 value)
2941 {
2942 	/* This function will only be called for scroll events, due to the
2943 	 * restriction imposed in hidpp_usages.
2944 	 */
2945 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2946 	struct hidpp_scroll_counter *counter = &hidpp->vertical_wheel_counter;
2947 	/* A scroll event may occur before the multiplier has been retrieved or
2948 	 * the input device set, or high-res scroll enabling may fail. In such
2949 	 * cases we must return early (falling back to default behaviour) to
2950 	 * avoid a crash in hidpp_scroll_counter_handle_scroll.
2951 	 */
2952 	if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
2953 	    || counter->dev == NULL || counter->wheel_multiplier == 0)
2954 		return 0;
2955 
2956 	hidpp_scroll_counter_handle_scroll(counter, value);
2957 	return 1;
2958 }
2959 
2960 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
2961 {
2962 	static atomic_t battery_no = ATOMIC_INIT(0);
2963 	struct power_supply_config cfg = { .drv_data = hidpp };
2964 	struct power_supply_desc *desc = &hidpp->battery.desc;
2965 	enum power_supply_property *battery_props;
2966 	struct hidpp_battery *battery;
2967 	unsigned int num_battery_props;
2968 	unsigned long n;
2969 	int ret;
2970 
2971 	if (hidpp->battery.ps)
2972 		return 0;
2973 
2974 	hidpp->battery.feature_index = 0xff;
2975 	hidpp->battery.solar_feature_index = 0xff;
2976 
2977 	if (hidpp->protocol_major >= 2) {
2978 		if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
2979 			ret = hidpp_solar_request_battery_event(hidpp);
2980 		else
2981 			ret = hidpp20_query_battery_info(hidpp);
2982 
2983 		if (ret)
2984 			return ret;
2985 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
2986 	} else {
2987 		ret = hidpp10_query_battery_status(hidpp);
2988 		if (ret) {
2989 			ret = hidpp10_query_battery_mileage(hidpp);
2990 			if (ret)
2991 				return -ENOENT;
2992 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
2993 		} else {
2994 			hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
2995 		}
2996 		hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
2997 	}
2998 
2999 	battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3000 				     hidpp_battery_props,
3001 				     sizeof(hidpp_battery_props),
3002 				     GFP_KERNEL);
3003 	if (!battery_props)
3004 		return -ENOMEM;
3005 
3006 	num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
3007 
3008 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3009 		battery_props[num_battery_props++] =
3010 				POWER_SUPPLY_PROP_CAPACITY;
3011 
3012 	if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3013 		battery_props[num_battery_props++] =
3014 				POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3015 
3016 	battery = &hidpp->battery;
3017 
3018 	n = atomic_inc_return(&battery_no) - 1;
3019 	desc->properties = battery_props;
3020 	desc->num_properties = num_battery_props;
3021 	desc->get_property = hidpp_battery_get_property;
3022 	sprintf(battery->name, "hidpp_battery_%ld", n);
3023 	desc->name = battery->name;
3024 	desc->type = POWER_SUPPLY_TYPE_BATTERY;
3025 	desc->use_for_apm = 0;
3026 
3027 	battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3028 						 &battery->desc,
3029 						 &cfg);
3030 	if (IS_ERR(battery->ps))
3031 		return PTR_ERR(battery->ps);
3032 
3033 	power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3034 
3035 	return ret;
3036 }
3037 
3038 static void hidpp_overwrite_name(struct hid_device *hdev)
3039 {
3040 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3041 	char *name;
3042 
3043 	if (hidpp->protocol_major < 2)
3044 		return;
3045 
3046 	name = hidpp_get_device_name(hidpp);
3047 
3048 	if (!name) {
3049 		hid_err(hdev, "unable to retrieve the name of the device");
3050 	} else {
3051 		dbg_hid("HID++: Got name: %s\n", name);
3052 		snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3053 	}
3054 
3055 	kfree(name);
3056 }
3057 
3058 static int hidpp_input_open(struct input_dev *dev)
3059 {
3060 	struct hid_device *hid = input_get_drvdata(dev);
3061 
3062 	return hid_hw_open(hid);
3063 }
3064 
3065 static void hidpp_input_close(struct input_dev *dev)
3066 {
3067 	struct hid_device *hid = input_get_drvdata(dev);
3068 
3069 	hid_hw_close(hid);
3070 }
3071 
3072 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3073 {
3074 	struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3075 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3076 
3077 	if (!input_dev)
3078 		return NULL;
3079 
3080 	input_set_drvdata(input_dev, hdev);
3081 	input_dev->open = hidpp_input_open;
3082 	input_dev->close = hidpp_input_close;
3083 
3084 	input_dev->name = hidpp->name;
3085 	input_dev->phys = hdev->phys;
3086 	input_dev->uniq = hdev->uniq;
3087 	input_dev->id.bustype = hdev->bus;
3088 	input_dev->id.vendor  = hdev->vendor;
3089 	input_dev->id.product = hdev->product;
3090 	input_dev->id.version = hdev->version;
3091 	input_dev->dev.parent = &hdev->dev;
3092 
3093 	return input_dev;
3094 }
3095 
3096 static void hidpp_connect_event(struct hidpp_device *hidpp)
3097 {
3098 	struct hid_device *hdev = hidpp->hid_dev;
3099 	int ret = 0;
3100 	bool connected = atomic_read(&hidpp->connected);
3101 	struct input_dev *input;
3102 	char *name, *devm_name;
3103 
3104 	if (!connected) {
3105 		if (hidpp->battery.ps) {
3106 			hidpp->battery.online = false;
3107 			hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3108 			hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3109 			power_supply_changed(hidpp->battery.ps);
3110 		}
3111 		return;
3112 	}
3113 
3114 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3115 		ret = wtp_connect(hdev, connected);
3116 		if (ret)
3117 			return;
3118 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3119 		ret = m560_send_config_command(hdev, connected);
3120 		if (ret)
3121 			return;
3122 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3123 		ret = k400_connect(hdev, connected);
3124 		if (ret)
3125 			return;
3126 	}
3127 
3128 	/* the device is already connected, we can ask for its name and
3129 	 * protocol */
3130 	if (!hidpp->protocol_major) {
3131 		ret = !hidpp_is_connected(hidpp);
3132 		if (ret) {
3133 			hid_err(hdev, "Can not get the protocol version.\n");
3134 			return;
3135 		}
3136 		hid_info(hdev, "HID++ %u.%u device connected.\n",
3137 			 hidpp->protocol_major, hidpp->protocol_minor);
3138 	}
3139 
3140 	if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3141 		name = hidpp_get_device_name(hidpp);
3142 		if (!name) {
3143 			hid_err(hdev,
3144 				"unable to retrieve the name of the device");
3145 			return;
3146 		}
3147 
3148 		devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name);
3149 		kfree(name);
3150 		if (!devm_name)
3151 			return;
3152 
3153 		hidpp->name = devm_name;
3154 	}
3155 
3156 	hidpp_initialize_battery(hidpp);
3157 
3158 	/* forward current battery state */
3159 	if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3160 		hidpp10_enable_battery_reporting(hidpp);
3161 		if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3162 			hidpp10_query_battery_mileage(hidpp);
3163 		else
3164 			hidpp10_query_battery_status(hidpp);
3165 	} else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3166 		hidpp20_query_battery_info(hidpp);
3167 	}
3168 	if (hidpp->battery.ps)
3169 		power_supply_changed(hidpp->battery.ps);
3170 
3171 	if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3172 		hi_res_scroll_enable(hidpp);
3173 
3174 	if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3175 		/* if the input nodes are already created, we can stop now */
3176 		return;
3177 
3178 	input = hidpp_allocate_input(hdev);
3179 	if (!input) {
3180 		hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3181 		return;
3182 	}
3183 
3184 	hidpp_populate_input(hidpp, input, false);
3185 
3186 	ret = input_register_device(input);
3187 	if (ret)
3188 		input_free_device(input);
3189 
3190 	hidpp->delayed_input = input;
3191 }
3192 
3193 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3194 
3195 static struct attribute *sysfs_attrs[] = {
3196 	&dev_attr_builtin_power_supply.attr,
3197 	NULL
3198 };
3199 
3200 static const struct attribute_group ps_attribute_group = {
3201 	.attrs = sysfs_attrs
3202 };
3203 
3204 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3205 {
3206 	struct hidpp_device *hidpp;
3207 	int ret;
3208 	bool connected;
3209 	unsigned int connect_mask = HID_CONNECT_DEFAULT;
3210 
3211 	hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device),
3212 			GFP_KERNEL);
3213 	if (!hidpp)
3214 		return -ENOMEM;
3215 
3216 	hidpp->hid_dev = hdev;
3217 	hidpp->name = hdev->name;
3218 	hid_set_drvdata(hdev, hidpp);
3219 
3220 	hidpp->quirks = id->driver_data;
3221 
3222 	if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3223 		hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3224 
3225 	if (disable_raw_mode) {
3226 		hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3227 		hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3228 	}
3229 
3230 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3231 		ret = wtp_allocate(hdev, id);
3232 		if (ret)
3233 			goto allocate_fail;
3234 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3235 		ret = m560_allocate(hdev);
3236 		if (ret)
3237 			goto allocate_fail;
3238 	} else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3239 		ret = k400_allocate(hdev);
3240 		if (ret)
3241 			goto allocate_fail;
3242 	}
3243 
3244 	INIT_WORK(&hidpp->work, delayed_work_cb);
3245 	mutex_init(&hidpp->send_mutex);
3246 	init_waitqueue_head(&hidpp->wait);
3247 
3248 	/* indicates we are handling the battery properties in the kernel */
3249 	ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3250 	if (ret)
3251 		hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3252 			 hdev->name);
3253 
3254 	ret = hid_parse(hdev);
3255 	if (ret) {
3256 		hid_err(hdev, "%s:parse failed\n", __func__);
3257 		goto hid_parse_fail;
3258 	}
3259 
3260 	if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3261 		connect_mask &= ~HID_CONNECT_HIDINPUT;
3262 
3263 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3264 		ret = hid_hw_start(hdev, connect_mask);
3265 		if (ret) {
3266 			hid_err(hdev, "hw start failed\n");
3267 			goto hid_hw_start_fail;
3268 		}
3269 		ret = hid_hw_open(hdev);
3270 		if (ret < 0) {
3271 			dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3272 				__func__, ret);
3273 			hid_hw_stop(hdev);
3274 			goto hid_hw_start_fail;
3275 		}
3276 	}
3277 
3278 
3279 	/* Allow incoming packets */
3280 	hid_device_io_start(hdev);
3281 
3282 	if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3283 		hidpp_unifying_init(hidpp);
3284 
3285 	connected = hidpp_is_connected(hidpp);
3286 	atomic_set(&hidpp->connected, connected);
3287 	if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3288 		if (!connected) {
3289 			ret = -ENODEV;
3290 			hid_err(hdev, "Device not connected");
3291 			goto hid_hw_open_failed;
3292 		}
3293 
3294 		hid_info(hdev, "HID++ %u.%u device connected.\n",
3295 			 hidpp->protocol_major, hidpp->protocol_minor);
3296 
3297 		hidpp_overwrite_name(hdev);
3298 	}
3299 
3300 	if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3301 		ret = wtp_get_config(hidpp);
3302 		if (ret)
3303 			goto hid_hw_open_failed;
3304 	} else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3305 		ret = g920_get_config(hidpp);
3306 		if (ret)
3307 			goto hid_hw_open_failed;
3308 	}
3309 
3310 	/* Block incoming packets */
3311 	hid_device_io_stop(hdev);
3312 
3313 	if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3314 		ret = hid_hw_start(hdev, connect_mask);
3315 		if (ret) {
3316 			hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3317 			goto hid_hw_start_fail;
3318 		}
3319 	}
3320 
3321 	/* Allow incoming packets */
3322 	hid_device_io_start(hdev);
3323 
3324 	hidpp_connect_event(hidpp);
3325 
3326 	return ret;
3327 
3328 hid_hw_open_failed:
3329 	hid_device_io_stop(hdev);
3330 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3331 		hid_hw_close(hdev);
3332 		hid_hw_stop(hdev);
3333 	}
3334 hid_hw_start_fail:
3335 hid_parse_fail:
3336 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3337 	cancel_work_sync(&hidpp->work);
3338 	mutex_destroy(&hidpp->send_mutex);
3339 allocate_fail:
3340 	hid_set_drvdata(hdev, NULL);
3341 	return ret;
3342 }
3343 
3344 static void hidpp_remove(struct hid_device *hdev)
3345 {
3346 	struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3347 
3348 	sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3349 
3350 	if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3351 		hidpp_ff_deinit(hdev);
3352 		hid_hw_close(hdev);
3353 	}
3354 	hid_hw_stop(hdev);
3355 	cancel_work_sync(&hidpp->work);
3356 	mutex_destroy(&hidpp->send_mutex);
3357 }
3358 
3359 #define LDJ_DEVICE(product) \
3360 	HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3361 		   USB_VENDOR_ID_LOGITECH, (product))
3362 
3363 static const struct hid_device_id hidpp_devices[] = {
3364 	{ /* wireless touchpad */
3365 	  LDJ_DEVICE(0x4011),
3366 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3367 			 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3368 	{ /* wireless touchpad T650 */
3369 	  LDJ_DEVICE(0x4101),
3370 	  .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3371 	{ /* wireless touchpad T651 */
3372 	  HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3373 		USB_DEVICE_ID_LOGITECH_T651),
3374 	  .driver_data = HIDPP_QUIRK_CLASS_WTP },
3375 	{ /* Mouse Logitech Anywhere MX */
3376 	  LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3377 	{ /* Mouse Logitech Cube */
3378 	  LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3379 	{ /* Mouse Logitech M335 */
3380 	  LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3381 	{ /* Mouse Logitech M515 */
3382 	  LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3383 	{ /* Mouse logitech M560 */
3384 	  LDJ_DEVICE(0x402d),
3385 	  .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3386 		| HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3387 	{ /* Mouse Logitech M705 (firmware RQM17) */
3388 	  LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3389 	{ /* Mouse Logitech M705 (firmware RQM67) */
3390 	  LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3391 	{ /* Mouse Logitech M720 */
3392 	  LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3393 	{ /* Mouse Logitech MX Anywhere 2 */
3394 	  LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3395 	{ LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3396 	{ LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3397 	{ LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3398 	{ /* Mouse Logitech MX Anywhere 2S */
3399 	  LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3400 	{ /* Mouse Logitech MX Master */
3401 	  LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3402 	{ LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3403 	{ LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3404 	{ /* Mouse Logitech MX Master 2S */
3405 	  LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3406 	{ /* Mouse Logitech Performance MX */
3407 	  LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3408 	{ /* Keyboard logitech K400 */
3409 	  LDJ_DEVICE(0x4024),
3410 	  .driver_data = HIDPP_QUIRK_CLASS_K400 },
3411 	{ /* Solar Keyboard Logitech K750 */
3412 	  LDJ_DEVICE(0x4002),
3413 	  .driver_data = HIDPP_QUIRK_CLASS_K750 },
3414 
3415 	{ LDJ_DEVICE(HID_ANY_ID) },
3416 
3417 	{ HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3418 		.driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3419 	{}
3420 };
3421 
3422 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3423 
3424 static const struct hid_usage_id hidpp_usages[] = {
3425 	{ HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
3426 	{ HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
3427 };
3428 
3429 static struct hid_driver hidpp_driver = {
3430 	.name = "logitech-hidpp-device",
3431 	.id_table = hidpp_devices,
3432 	.probe = hidpp_probe,
3433 	.remove = hidpp_remove,
3434 	.raw_event = hidpp_raw_event,
3435 	.usage_table = hidpp_usages,
3436 	.event = hidpp_event,
3437 	.input_configured = hidpp_input_configured,
3438 	.input_mapping = hidpp_input_mapping,
3439 	.input_mapped = hidpp_input_mapped,
3440 };
3441 
3442 module_hid_driver(hidpp_driver);
3443