1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID support for Linux 4 * 5 * Copyright (c) 1999 Andreas Gal 6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 8 * Copyright (c) 2006-2012 Jiri Kosina 9 */ 10 11 /* 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/spinlock.h> 23 #include <linux/unaligned.h> 24 #include <asm/byteorder.h> 25 #include <linux/input.h> 26 #include <linux/wait.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sched.h> 29 #include <linux/semaphore.h> 30 31 #include <linux/hid.h> 32 #include <linux/hiddev.h> 33 #include <linux/hid-debug.h> 34 #include <linux/hidraw.h> 35 36 #include "hid-ids.h" 37 38 /* 39 * Version Information 40 */ 41 42 #define DRIVER_DESC "HID core driver" 43 44 static int hid_ignore_special_drivers = 0; 45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 47 48 /* 49 * Convert a signed n-bit integer to signed 32-bit integer. 50 */ 51 52 static s32 snto32(__u32 value, unsigned int n) 53 { 54 if (!value || !n) 55 return 0; 56 57 if (n > 32) 58 n = 32; 59 60 return sign_extend32(value, n - 1); 61 } 62 63 /* 64 * Convert a signed 32-bit integer to a signed n-bit integer. 65 */ 66 67 static u32 s32ton(__s32 value, unsigned int n) 68 { 69 s32 a = value >> (n - 1); 70 71 if (a && a != -1) 72 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 73 return value & ((1 << n) - 1); 74 } 75 76 /* 77 * Register a new report for a device. 78 */ 79 80 struct hid_report *hid_register_report(struct hid_device *device, 81 enum hid_report_type type, unsigned int id, 82 unsigned int application) 83 { 84 struct hid_report_enum *report_enum = device->report_enum + type; 85 struct hid_report *report; 86 87 if (id >= HID_MAX_IDS) 88 return NULL; 89 if (report_enum->report_id_hash[id]) 90 return report_enum->report_id_hash[id]; 91 92 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 93 if (!report) 94 return NULL; 95 96 if (id != 0) 97 report_enum->numbered = 1; 98 99 report->id = id; 100 report->type = type; 101 report->size = 0; 102 report->device = device; 103 report->application = application; 104 report_enum->report_id_hash[id] = report; 105 106 list_add_tail(&report->list, &report_enum->report_list); 107 INIT_LIST_HEAD(&report->field_entry_list); 108 109 return report; 110 } 111 EXPORT_SYMBOL_GPL(hid_register_report); 112 113 /* 114 * Register a new field for this report. 115 */ 116 117 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages) 118 { 119 struct hid_field *field; 120 121 if (report->maxfield == HID_MAX_FIELDS) { 122 hid_err(report->device, "too many fields in report\n"); 123 return NULL; 124 } 125 126 field = kvzalloc((sizeof(struct hid_field) + 127 usages * sizeof(struct hid_usage) + 128 3 * usages * sizeof(unsigned int)), GFP_KERNEL); 129 if (!field) 130 return NULL; 131 132 field->index = report->maxfield++; 133 report->field[field->index] = field; 134 field->usage = (struct hid_usage *)(field + 1); 135 field->value = (s32 *)(field->usage + usages); 136 field->new_value = (s32 *)(field->value + usages); 137 field->usages_priorities = (s32 *)(field->new_value + usages); 138 field->report = report; 139 140 return field; 141 } 142 143 /* 144 * Open a collection. The type/usage is pushed on the stack. 145 */ 146 147 static int open_collection(struct hid_parser *parser, unsigned type) 148 { 149 struct hid_collection *collection; 150 unsigned usage; 151 int collection_index; 152 153 usage = parser->local.usage[0]; 154 155 if (parser->collection_stack_ptr == parser->collection_stack_size) { 156 unsigned int *collection_stack; 157 unsigned int new_size = parser->collection_stack_size + 158 HID_COLLECTION_STACK_SIZE; 159 160 collection_stack = krealloc(parser->collection_stack, 161 new_size * sizeof(unsigned int), 162 GFP_KERNEL); 163 if (!collection_stack) 164 return -ENOMEM; 165 166 parser->collection_stack = collection_stack; 167 parser->collection_stack_size = new_size; 168 } 169 170 if (parser->device->maxcollection == parser->device->collection_size) { 171 collection = kmalloc( 172 array3_size(sizeof(struct hid_collection), 173 parser->device->collection_size, 174 2), 175 GFP_KERNEL); 176 if (collection == NULL) { 177 hid_err(parser->device, "failed to reallocate collection array\n"); 178 return -ENOMEM; 179 } 180 memcpy(collection, parser->device->collection, 181 sizeof(struct hid_collection) * 182 parser->device->collection_size); 183 memset(collection + parser->device->collection_size, 0, 184 sizeof(struct hid_collection) * 185 parser->device->collection_size); 186 kfree(parser->device->collection); 187 parser->device->collection = collection; 188 parser->device->collection_size *= 2; 189 } 190 191 parser->collection_stack[parser->collection_stack_ptr++] = 192 parser->device->maxcollection; 193 194 collection_index = parser->device->maxcollection++; 195 collection = parser->device->collection + collection_index; 196 collection->type = type; 197 collection->usage = usage; 198 collection->level = parser->collection_stack_ptr - 1; 199 collection->parent_idx = (collection->level == 0) ? -1 : 200 parser->collection_stack[collection->level - 1]; 201 202 if (type == HID_COLLECTION_APPLICATION) 203 parser->device->maxapplication++; 204 205 return 0; 206 } 207 208 /* 209 * Close a collection. 210 */ 211 212 static int close_collection(struct hid_parser *parser) 213 { 214 if (!parser->collection_stack_ptr) { 215 hid_err(parser->device, "collection stack underflow\n"); 216 return -EINVAL; 217 } 218 parser->collection_stack_ptr--; 219 return 0; 220 } 221 222 /* 223 * Climb up the stack, search for the specified collection type 224 * and return the usage. 225 */ 226 227 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 228 { 229 struct hid_collection *collection = parser->device->collection; 230 int n; 231 232 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 233 unsigned index = parser->collection_stack[n]; 234 if (collection[index].type == type) 235 return collection[index].usage; 236 } 237 return 0; /* we know nothing about this usage type */ 238 } 239 240 /* 241 * Concatenate usage which defines 16 bits or less with the 242 * currently defined usage page to form a 32 bit usage 243 */ 244 245 static void complete_usage(struct hid_parser *parser, unsigned int index) 246 { 247 parser->local.usage[index] &= 0xFFFF; 248 parser->local.usage[index] |= 249 (parser->global.usage_page & 0xFFFF) << 16; 250 } 251 252 /* 253 * Add a usage to the temporary parser table. 254 */ 255 256 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) 257 { 258 if (parser->local.usage_index >= HID_MAX_USAGES) { 259 hid_err(parser->device, "usage index exceeded\n"); 260 return -1; 261 } 262 parser->local.usage[parser->local.usage_index] = usage; 263 264 /* 265 * If Usage item only includes usage id, concatenate it with 266 * currently defined usage page 267 */ 268 if (size <= 2) 269 complete_usage(parser, parser->local.usage_index); 270 271 parser->local.usage_size[parser->local.usage_index] = size; 272 parser->local.collection_index[parser->local.usage_index] = 273 parser->collection_stack_ptr ? 274 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 275 parser->local.usage_index++; 276 return 0; 277 } 278 279 /* 280 * Register a new field for this report. 281 */ 282 283 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 284 { 285 struct hid_report *report; 286 struct hid_field *field; 287 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 288 unsigned int usages; 289 unsigned int offset; 290 unsigned int i; 291 unsigned int application; 292 293 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 294 295 report = hid_register_report(parser->device, report_type, 296 parser->global.report_id, application); 297 if (!report) { 298 hid_err(parser->device, "hid_register_report failed\n"); 299 return -1; 300 } 301 302 /* Handle both signed and unsigned cases properly */ 303 if ((parser->global.logical_minimum < 0 && 304 parser->global.logical_maximum < 305 parser->global.logical_minimum) || 306 (parser->global.logical_minimum >= 0 && 307 (__u32)parser->global.logical_maximum < 308 (__u32)parser->global.logical_minimum)) { 309 dbg_hid("logical range invalid 0x%x 0x%x\n", 310 parser->global.logical_minimum, 311 parser->global.logical_maximum); 312 return -1; 313 } 314 315 offset = report->size; 316 report->size += parser->global.report_size * parser->global.report_count; 317 318 if (parser->device->ll_driver->max_buffer_size) 319 max_buffer_size = parser->device->ll_driver->max_buffer_size; 320 321 /* Total size check: Allow for possible report index byte */ 322 if (report->size > (max_buffer_size - 1) << 3) { 323 hid_err(parser->device, "report is too long\n"); 324 return -1; 325 } 326 327 if (!parser->local.usage_index) /* Ignore padding fields */ 328 return 0; 329 330 usages = max_t(unsigned, parser->local.usage_index, 331 parser->global.report_count); 332 333 field = hid_register_field(report, usages); 334 if (!field) 335 return 0; 336 337 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 338 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 339 field->application = application; 340 341 for (i = 0; i < usages; i++) { 342 unsigned j = i; 343 /* Duplicate the last usage we parsed if we have excess values */ 344 if (i >= parser->local.usage_index) 345 j = parser->local.usage_index - 1; 346 field->usage[i].hid = parser->local.usage[j]; 347 field->usage[i].collection_index = 348 parser->local.collection_index[j]; 349 field->usage[i].usage_index = i; 350 field->usage[i].resolution_multiplier = 1; 351 } 352 353 field->maxusage = usages; 354 field->flags = flags; 355 field->report_offset = offset; 356 field->report_type = report_type; 357 field->report_size = parser->global.report_size; 358 field->report_count = parser->global.report_count; 359 field->logical_minimum = parser->global.logical_minimum; 360 field->logical_maximum = parser->global.logical_maximum; 361 field->physical_minimum = parser->global.physical_minimum; 362 field->physical_maximum = parser->global.physical_maximum; 363 field->unit_exponent = parser->global.unit_exponent; 364 field->unit = parser->global.unit; 365 366 return 0; 367 } 368 369 /* 370 * Read data value from item. 371 */ 372 373 static u32 item_udata(struct hid_item *item) 374 { 375 switch (item->size) { 376 case 1: return item->data.u8; 377 case 2: return item->data.u16; 378 case 4: return item->data.u32; 379 } 380 return 0; 381 } 382 383 static s32 item_sdata(struct hid_item *item) 384 { 385 switch (item->size) { 386 case 1: return item->data.s8; 387 case 2: return item->data.s16; 388 case 4: return item->data.s32; 389 } 390 return 0; 391 } 392 393 /* 394 * Process a global item. 395 */ 396 397 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 398 { 399 __s32 raw_value; 400 switch (item->tag) { 401 case HID_GLOBAL_ITEM_TAG_PUSH: 402 403 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 404 hid_err(parser->device, "global environment stack overflow\n"); 405 return -1; 406 } 407 408 memcpy(parser->global_stack + parser->global_stack_ptr++, 409 &parser->global, sizeof(struct hid_global)); 410 return 0; 411 412 case HID_GLOBAL_ITEM_TAG_POP: 413 414 if (!parser->global_stack_ptr) { 415 hid_err(parser->device, "global environment stack underflow\n"); 416 return -1; 417 } 418 419 memcpy(&parser->global, parser->global_stack + 420 --parser->global_stack_ptr, sizeof(struct hid_global)); 421 return 0; 422 423 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 424 parser->global.usage_page = item_udata(item); 425 return 0; 426 427 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 428 parser->global.logical_minimum = item_sdata(item); 429 return 0; 430 431 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 432 if (parser->global.logical_minimum < 0) 433 parser->global.logical_maximum = item_sdata(item); 434 else 435 parser->global.logical_maximum = item_udata(item); 436 return 0; 437 438 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 439 parser->global.physical_minimum = item_sdata(item); 440 return 0; 441 442 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 443 if (parser->global.physical_minimum < 0) 444 parser->global.physical_maximum = item_sdata(item); 445 else 446 parser->global.physical_maximum = item_udata(item); 447 return 0; 448 449 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 450 /* Many devices provide unit exponent as a two's complement 451 * nibble due to the common misunderstanding of HID 452 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 453 * both this and the standard encoding. */ 454 raw_value = item_sdata(item); 455 if (!(raw_value & 0xfffffff0)) 456 parser->global.unit_exponent = snto32(raw_value, 4); 457 else 458 parser->global.unit_exponent = raw_value; 459 return 0; 460 461 case HID_GLOBAL_ITEM_TAG_UNIT: 462 parser->global.unit = item_udata(item); 463 return 0; 464 465 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 466 parser->global.report_size = item_udata(item); 467 if (parser->global.report_size > 256) { 468 hid_err(parser->device, "invalid report_size %d\n", 469 parser->global.report_size); 470 return -1; 471 } 472 return 0; 473 474 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 475 parser->global.report_count = item_udata(item); 476 if (parser->global.report_count > HID_MAX_USAGES) { 477 hid_err(parser->device, "invalid report_count %d\n", 478 parser->global.report_count); 479 return -1; 480 } 481 return 0; 482 483 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 484 parser->global.report_id = item_udata(item); 485 if (parser->global.report_id == 0 || 486 parser->global.report_id >= HID_MAX_IDS) { 487 hid_err(parser->device, "report_id %u is invalid\n", 488 parser->global.report_id); 489 return -1; 490 } 491 return 0; 492 493 default: 494 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 495 return -1; 496 } 497 } 498 499 /* 500 * Process a local item. 501 */ 502 503 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 504 { 505 __u32 data; 506 unsigned n; 507 __u32 count; 508 509 data = item_udata(item); 510 511 switch (item->tag) { 512 case HID_LOCAL_ITEM_TAG_DELIMITER: 513 514 if (data) { 515 /* 516 * We treat items before the first delimiter 517 * as global to all usage sets (branch 0). 518 * In the moment we process only these global 519 * items and the first delimiter set. 520 */ 521 if (parser->local.delimiter_depth != 0) { 522 hid_err(parser->device, "nested delimiters\n"); 523 return -1; 524 } 525 parser->local.delimiter_depth++; 526 parser->local.delimiter_branch++; 527 } else { 528 if (parser->local.delimiter_depth < 1) { 529 hid_err(parser->device, "bogus close delimiter\n"); 530 return -1; 531 } 532 parser->local.delimiter_depth--; 533 } 534 return 0; 535 536 case HID_LOCAL_ITEM_TAG_USAGE: 537 538 if (parser->local.delimiter_branch > 1) { 539 dbg_hid("alternative usage ignored\n"); 540 return 0; 541 } 542 543 return hid_add_usage(parser, data, item->size); 544 545 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 546 547 if (parser->local.delimiter_branch > 1) { 548 dbg_hid("alternative usage ignored\n"); 549 return 0; 550 } 551 552 parser->local.usage_minimum = data; 553 return 0; 554 555 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 556 557 if (parser->local.delimiter_branch > 1) { 558 dbg_hid("alternative usage ignored\n"); 559 return 0; 560 } 561 562 count = data - parser->local.usage_minimum; 563 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 564 /* 565 * We do not warn if the name is not set, we are 566 * actually pre-scanning the device. 567 */ 568 if (dev_name(&parser->device->dev)) 569 hid_warn(parser->device, 570 "ignoring exceeding usage max\n"); 571 data = HID_MAX_USAGES - parser->local.usage_index + 572 parser->local.usage_minimum - 1; 573 if (data <= 0) { 574 hid_err(parser->device, 575 "no more usage index available\n"); 576 return -1; 577 } 578 } 579 580 for (n = parser->local.usage_minimum; n <= data; n++) 581 if (hid_add_usage(parser, n, item->size)) { 582 dbg_hid("hid_add_usage failed\n"); 583 return -1; 584 } 585 return 0; 586 587 default: 588 589 dbg_hid("unknown local item tag 0x%x\n", item->tag); 590 return 0; 591 } 592 return 0; 593 } 594 595 /* 596 * Concatenate Usage Pages into Usages where relevant: 597 * As per specification, 6.2.2.8: "When the parser encounters a main item it 598 * concatenates the last declared Usage Page with a Usage to form a complete 599 * usage value." 600 */ 601 602 static void hid_concatenate_last_usage_page(struct hid_parser *parser) 603 { 604 int i; 605 unsigned int usage_page; 606 unsigned int current_page; 607 608 if (!parser->local.usage_index) 609 return; 610 611 usage_page = parser->global.usage_page; 612 613 /* 614 * Concatenate usage page again only if last declared Usage Page 615 * has not been already used in previous usages concatenation 616 */ 617 for (i = parser->local.usage_index - 1; i >= 0; i--) { 618 if (parser->local.usage_size[i] > 2) 619 /* Ignore extended usages */ 620 continue; 621 622 current_page = parser->local.usage[i] >> 16; 623 if (current_page == usage_page) 624 break; 625 626 complete_usage(parser, i); 627 } 628 } 629 630 /* 631 * Process a main item. 632 */ 633 634 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 635 { 636 __u32 data; 637 int ret; 638 639 hid_concatenate_last_usage_page(parser); 640 641 data = item_udata(item); 642 643 switch (item->tag) { 644 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 645 ret = open_collection(parser, data & 0xff); 646 break; 647 case HID_MAIN_ITEM_TAG_END_COLLECTION: 648 ret = close_collection(parser); 649 break; 650 case HID_MAIN_ITEM_TAG_INPUT: 651 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 652 break; 653 case HID_MAIN_ITEM_TAG_OUTPUT: 654 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 655 break; 656 case HID_MAIN_ITEM_TAG_FEATURE: 657 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 658 break; 659 default: 660 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 661 ret = 0; 662 } 663 664 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 665 666 return ret; 667 } 668 669 /* 670 * Process a reserved item. 671 */ 672 673 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 674 { 675 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 676 return 0; 677 } 678 679 /* 680 * Free a report and all registered fields. The field->usage and 681 * field->value table's are allocated behind the field, so we need 682 * only to free(field) itself. 683 */ 684 685 static void hid_free_report(struct hid_report *report) 686 { 687 unsigned n; 688 689 kfree(report->field_entries); 690 691 for (n = 0; n < report->maxfield; n++) 692 kvfree(report->field[n]); 693 kfree(report); 694 } 695 696 /* 697 * Close report. This function returns the device 698 * state to the point prior to hid_open_report(). 699 */ 700 static void hid_close_report(struct hid_device *device) 701 { 702 unsigned i, j; 703 704 for (i = 0; i < HID_REPORT_TYPES; i++) { 705 struct hid_report_enum *report_enum = device->report_enum + i; 706 707 for (j = 0; j < HID_MAX_IDS; j++) { 708 struct hid_report *report = report_enum->report_id_hash[j]; 709 if (report) 710 hid_free_report(report); 711 } 712 memset(report_enum, 0, sizeof(*report_enum)); 713 INIT_LIST_HEAD(&report_enum->report_list); 714 } 715 716 /* 717 * If the HID driver had a rdesc_fixup() callback, dev->rdesc 718 * will be allocated by hid-core and needs to be freed. 719 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in 720 * which cases it'll be freed later on device removal or destroy. 721 */ 722 if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc) 723 kfree(device->rdesc); 724 device->rdesc = NULL; 725 device->rsize = 0; 726 727 kfree(device->collection); 728 device->collection = NULL; 729 device->collection_size = 0; 730 device->maxcollection = 0; 731 device->maxapplication = 0; 732 733 device->status &= ~HID_STAT_PARSED; 734 } 735 736 static inline void hid_free_bpf_rdesc(struct hid_device *hdev) 737 { 738 /* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */ 739 if (hdev->bpf_rdesc != hdev->dev_rdesc) 740 kfree(hdev->bpf_rdesc); 741 hdev->bpf_rdesc = NULL; 742 } 743 744 /* 745 * Free a device structure, all reports, and all fields. 746 */ 747 748 void hiddev_free(struct kref *ref) 749 { 750 struct hid_device *hid = container_of(ref, struct hid_device, ref); 751 752 hid_close_report(hid); 753 hid_free_bpf_rdesc(hid); 754 kfree(hid->dev_rdesc); 755 kfree(hid); 756 } 757 758 static void hid_device_release(struct device *dev) 759 { 760 struct hid_device *hid = to_hid_device(dev); 761 762 kref_put(&hid->ref, hiddev_free); 763 } 764 765 /* 766 * Fetch a report description item from the data stream. We support long 767 * items, though they are not used yet. 768 */ 769 770 static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item) 771 { 772 u8 b; 773 774 if ((end - start) <= 0) 775 return NULL; 776 777 b = *start++; 778 779 item->type = (b >> 2) & 3; 780 item->tag = (b >> 4) & 15; 781 782 if (item->tag == HID_ITEM_TAG_LONG) { 783 784 item->format = HID_ITEM_FORMAT_LONG; 785 786 if ((end - start) < 2) 787 return NULL; 788 789 item->size = *start++; 790 item->tag = *start++; 791 792 if ((end - start) < item->size) 793 return NULL; 794 795 item->data.longdata = start; 796 start += item->size; 797 return start; 798 } 799 800 item->format = HID_ITEM_FORMAT_SHORT; 801 item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */ 802 803 if (end - start < item->size) 804 return NULL; 805 806 switch (item->size) { 807 case 0: 808 break; 809 810 case 1: 811 item->data.u8 = *start; 812 break; 813 814 case 2: 815 item->data.u16 = get_unaligned_le16(start); 816 break; 817 818 case 4: 819 item->data.u32 = get_unaligned_le32(start); 820 break; 821 } 822 823 return start + item->size; 824 } 825 826 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 827 { 828 struct hid_device *hid = parser->device; 829 830 if (usage == HID_DG_CONTACTID) 831 hid->group = HID_GROUP_MULTITOUCH; 832 } 833 834 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 835 { 836 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 837 parser->global.report_size == 8) 838 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 839 840 if (usage == 0xff0000c6 && parser->global.report_count == 1 && 841 parser->global.report_size == 8) 842 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 843 } 844 845 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 846 { 847 struct hid_device *hid = parser->device; 848 int i; 849 850 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 851 (type == HID_COLLECTION_PHYSICAL || 852 type == HID_COLLECTION_APPLICATION)) 853 hid->group = HID_GROUP_SENSOR_HUB; 854 855 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 856 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 857 hid->group == HID_GROUP_MULTITOUCH) 858 hid->group = HID_GROUP_GENERIC; 859 860 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 861 for (i = 0; i < parser->local.usage_index; i++) 862 if (parser->local.usage[i] == HID_GD_POINTER) 863 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 864 865 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 866 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 867 868 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR) 869 for (i = 0; i < parser->local.usage_index; i++) 870 if (parser->local.usage[i] == 871 (HID_UP_GOOGLEVENDOR | 0x0001)) 872 parser->device->group = 873 HID_GROUP_VIVALDI; 874 } 875 876 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 877 { 878 __u32 data; 879 int i; 880 881 hid_concatenate_last_usage_page(parser); 882 883 data = item_udata(item); 884 885 switch (item->tag) { 886 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 887 hid_scan_collection(parser, data & 0xff); 888 break; 889 case HID_MAIN_ITEM_TAG_END_COLLECTION: 890 break; 891 case HID_MAIN_ITEM_TAG_INPUT: 892 /* ignore constant inputs, they will be ignored by hid-input */ 893 if (data & HID_MAIN_ITEM_CONSTANT) 894 break; 895 for (i = 0; i < parser->local.usage_index; i++) 896 hid_scan_input_usage(parser, parser->local.usage[i]); 897 break; 898 case HID_MAIN_ITEM_TAG_OUTPUT: 899 break; 900 case HID_MAIN_ITEM_TAG_FEATURE: 901 for (i = 0; i < parser->local.usage_index; i++) 902 hid_scan_feature_usage(parser, parser->local.usage[i]); 903 break; 904 } 905 906 /* Reset the local parser environment */ 907 memset(&parser->local, 0, sizeof(parser->local)); 908 909 return 0; 910 } 911 912 /* 913 * Scan a report descriptor before the device is added to the bus. 914 * Sets device groups and other properties that determine what driver 915 * to load. 916 */ 917 static int hid_scan_report(struct hid_device *hid) 918 { 919 struct hid_parser *parser; 920 struct hid_item item; 921 const __u8 *start = hid->dev_rdesc; 922 const __u8 *end = start + hid->dev_rsize; 923 static int (*dispatch_type[])(struct hid_parser *parser, 924 struct hid_item *item) = { 925 hid_scan_main, 926 hid_parser_global, 927 hid_parser_local, 928 hid_parser_reserved 929 }; 930 931 parser = vzalloc(sizeof(struct hid_parser)); 932 if (!parser) 933 return -ENOMEM; 934 935 parser->device = hid; 936 hid->group = HID_GROUP_GENERIC; 937 938 /* 939 * The parsing is simpler than the one in hid_open_report() as we should 940 * be robust against hid errors. Those errors will be raised by 941 * hid_open_report() anyway. 942 */ 943 while ((start = fetch_item(start, end, &item)) != NULL) 944 dispatch_type[item.type](parser, &item); 945 946 /* 947 * Handle special flags set during scanning. 948 */ 949 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 950 (hid->group == HID_GROUP_MULTITOUCH)) 951 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 952 953 /* 954 * Vendor specific handlings 955 */ 956 switch (hid->vendor) { 957 case USB_VENDOR_ID_WACOM: 958 hid->group = HID_GROUP_WACOM; 959 break; 960 case USB_VENDOR_ID_SYNAPTICS: 961 if (hid->group == HID_GROUP_GENERIC) 962 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 963 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 964 /* 965 * hid-rmi should take care of them, 966 * not hid-generic 967 */ 968 hid->group = HID_GROUP_RMI; 969 break; 970 } 971 972 kfree(parser->collection_stack); 973 vfree(parser); 974 return 0; 975 } 976 977 /** 978 * hid_parse_report - parse device report 979 * 980 * @hid: hid device 981 * @start: report start 982 * @size: report size 983 * 984 * Allocate the device report as read by the bus driver. This function should 985 * only be called from parse() in ll drivers. 986 */ 987 int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size) 988 { 989 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 990 if (!hid->dev_rdesc) 991 return -ENOMEM; 992 hid->dev_rsize = size; 993 return 0; 994 } 995 EXPORT_SYMBOL_GPL(hid_parse_report); 996 997 static const char * const hid_report_names[] = { 998 "HID_INPUT_REPORT", 999 "HID_OUTPUT_REPORT", 1000 "HID_FEATURE_REPORT", 1001 }; 1002 /** 1003 * hid_validate_values - validate existing device report's value indexes 1004 * 1005 * @hid: hid device 1006 * @type: which report type to examine 1007 * @id: which report ID to examine (0 for first) 1008 * @field_index: which report field to examine 1009 * @report_counts: expected number of values 1010 * 1011 * Validate the number of values in a given field of a given report, after 1012 * parsing. 1013 */ 1014 struct hid_report *hid_validate_values(struct hid_device *hid, 1015 enum hid_report_type type, unsigned int id, 1016 unsigned int field_index, 1017 unsigned int report_counts) 1018 { 1019 struct hid_report *report; 1020 1021 if (type > HID_FEATURE_REPORT) { 1022 hid_err(hid, "invalid HID report type %u\n", type); 1023 return NULL; 1024 } 1025 1026 if (id >= HID_MAX_IDS) { 1027 hid_err(hid, "invalid HID report id %u\n", id); 1028 return NULL; 1029 } 1030 1031 /* 1032 * Explicitly not using hid_get_report() here since it depends on 1033 * ->numbered being checked, which may not always be the case when 1034 * drivers go to access report values. 1035 */ 1036 if (id == 0) { 1037 /* 1038 * Validating on id 0 means we should examine the first 1039 * report in the list. 1040 */ 1041 report = list_first_entry_or_null( 1042 &hid->report_enum[type].report_list, 1043 struct hid_report, list); 1044 } else { 1045 report = hid->report_enum[type].report_id_hash[id]; 1046 } 1047 if (!report) { 1048 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 1049 return NULL; 1050 } 1051 if (report->maxfield <= field_index) { 1052 hid_err(hid, "not enough fields in %s %u\n", 1053 hid_report_names[type], id); 1054 return NULL; 1055 } 1056 if (report->field[field_index]->report_count < report_counts) { 1057 hid_err(hid, "not enough values in %s %u field %u\n", 1058 hid_report_names[type], id, field_index); 1059 return NULL; 1060 } 1061 return report; 1062 } 1063 EXPORT_SYMBOL_GPL(hid_validate_values); 1064 1065 static int hid_calculate_multiplier(struct hid_device *hid, 1066 struct hid_field *multiplier) 1067 { 1068 int m; 1069 __s32 v = *multiplier->value; 1070 __s32 lmin = multiplier->logical_minimum; 1071 __s32 lmax = multiplier->logical_maximum; 1072 __s32 pmin = multiplier->physical_minimum; 1073 __s32 pmax = multiplier->physical_maximum; 1074 1075 /* 1076 * "Because OS implementations will generally divide the control's 1077 * reported count by the Effective Resolution Multiplier, designers 1078 * should take care not to establish a potential Effective 1079 * Resolution Multiplier of zero." 1080 * HID Usage Table, v1.12, Section 4.3.1, p31 1081 */ 1082 if (lmax - lmin == 0) 1083 return 1; 1084 /* 1085 * Handling the unit exponent is left as an exercise to whoever 1086 * finds a device where that exponent is not 0. 1087 */ 1088 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 1089 if (unlikely(multiplier->unit_exponent != 0)) { 1090 hid_warn(hid, 1091 "unsupported Resolution Multiplier unit exponent %d\n", 1092 multiplier->unit_exponent); 1093 } 1094 1095 /* There are no devices with an effective multiplier > 255 */ 1096 if (unlikely(m == 0 || m > 255 || m < -255)) { 1097 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 1098 m = 1; 1099 } 1100 1101 return m; 1102 } 1103 1104 static void hid_apply_multiplier_to_field(struct hid_device *hid, 1105 struct hid_field *field, 1106 struct hid_collection *multiplier_collection, 1107 int effective_multiplier) 1108 { 1109 struct hid_collection *collection; 1110 struct hid_usage *usage; 1111 int i; 1112 1113 /* 1114 * If multiplier_collection is NULL, the multiplier applies 1115 * to all fields in the report. 1116 * Otherwise, it is the Logical Collection the multiplier applies to 1117 * but our field may be in a subcollection of that collection. 1118 */ 1119 for (i = 0; i < field->maxusage; i++) { 1120 usage = &field->usage[i]; 1121 1122 collection = &hid->collection[usage->collection_index]; 1123 while (collection->parent_idx != -1 && 1124 collection != multiplier_collection) 1125 collection = &hid->collection[collection->parent_idx]; 1126 1127 if (collection->parent_idx != -1 || 1128 multiplier_collection == NULL) 1129 usage->resolution_multiplier = effective_multiplier; 1130 1131 } 1132 } 1133 1134 static void hid_apply_multiplier(struct hid_device *hid, 1135 struct hid_field *multiplier) 1136 { 1137 struct hid_report_enum *rep_enum; 1138 struct hid_report *rep; 1139 struct hid_field *field; 1140 struct hid_collection *multiplier_collection; 1141 int effective_multiplier; 1142 int i; 1143 1144 /* 1145 * "The Resolution Multiplier control must be contained in the same 1146 * Logical Collection as the control(s) to which it is to be applied. 1147 * If no Resolution Multiplier is defined, then the Resolution 1148 * Multiplier defaults to 1. If more than one control exists in a 1149 * Logical Collection, the Resolution Multiplier is associated with 1150 * all controls in the collection. If no Logical Collection is 1151 * defined, the Resolution Multiplier is associated with all 1152 * controls in the report." 1153 * HID Usage Table, v1.12, Section 4.3.1, p30 1154 * 1155 * Thus, search from the current collection upwards until we find a 1156 * logical collection. Then search all fields for that same parent 1157 * collection. Those are the fields the multiplier applies to. 1158 * 1159 * If we have more than one multiplier, it will overwrite the 1160 * applicable fields later. 1161 */ 1162 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1163 while (multiplier_collection->parent_idx != -1 && 1164 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1165 multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; 1166 1167 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1168 1169 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1170 list_for_each_entry(rep, &rep_enum->report_list, list) { 1171 for (i = 0; i < rep->maxfield; i++) { 1172 field = rep->field[i]; 1173 hid_apply_multiplier_to_field(hid, field, 1174 multiplier_collection, 1175 effective_multiplier); 1176 } 1177 } 1178 } 1179 1180 /* 1181 * hid_setup_resolution_multiplier - set up all resolution multipliers 1182 * 1183 * @device: hid device 1184 * 1185 * Search for all Resolution Multiplier Feature Reports and apply their 1186 * value to all matching Input items. This only updates the internal struct 1187 * fields. 1188 * 1189 * The Resolution Multiplier is applied by the hardware. If the multiplier 1190 * is anything other than 1, the hardware will send pre-multiplied events 1191 * so that the same physical interaction generates an accumulated 1192 * accumulated_value = value * * multiplier 1193 * This may be achieved by sending 1194 * - "value * multiplier" for each event, or 1195 * - "value" but "multiplier" times as frequently, or 1196 * - a combination of the above 1197 * The only guarantee is that the same physical interaction always generates 1198 * an accumulated 'value * multiplier'. 1199 * 1200 * This function must be called before any event processing and after 1201 * any SetRequest to the Resolution Multiplier. 1202 */ 1203 void hid_setup_resolution_multiplier(struct hid_device *hid) 1204 { 1205 struct hid_report_enum *rep_enum; 1206 struct hid_report *rep; 1207 struct hid_usage *usage; 1208 int i, j; 1209 1210 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1211 list_for_each_entry(rep, &rep_enum->report_list, list) { 1212 for (i = 0; i < rep->maxfield; i++) { 1213 /* Ignore if report count is out of bounds. */ 1214 if (rep->field[i]->report_count < 1) 1215 continue; 1216 1217 for (j = 0; j < rep->field[i]->maxusage; j++) { 1218 usage = &rep->field[i]->usage[j]; 1219 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1220 hid_apply_multiplier(hid, 1221 rep->field[i]); 1222 } 1223 } 1224 } 1225 } 1226 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1227 1228 /** 1229 * hid_open_report - open a driver-specific device report 1230 * 1231 * @device: hid device 1232 * 1233 * Parse a report description into a hid_device structure. Reports are 1234 * enumerated, fields are attached to these reports. 1235 * 0 returned on success, otherwise nonzero error value. 1236 * 1237 * This function (or the equivalent hid_parse() macro) should only be 1238 * called from probe() in drivers, before starting the device. 1239 */ 1240 int hid_open_report(struct hid_device *device) 1241 { 1242 struct hid_parser *parser; 1243 struct hid_item item; 1244 unsigned int size; 1245 const __u8 *start; 1246 const __u8 *end; 1247 const __u8 *next; 1248 int ret; 1249 int i; 1250 static int (*dispatch_type[])(struct hid_parser *parser, 1251 struct hid_item *item) = { 1252 hid_parser_main, 1253 hid_parser_global, 1254 hid_parser_local, 1255 hid_parser_reserved 1256 }; 1257 1258 if (WARN_ON(device->status & HID_STAT_PARSED)) 1259 return -EBUSY; 1260 1261 start = device->bpf_rdesc; 1262 if (WARN_ON(!start)) 1263 return -ENODEV; 1264 size = device->bpf_rsize; 1265 1266 if (device->driver->report_fixup) { 1267 /* 1268 * device->driver->report_fixup() needs to work 1269 * on a copy of our report descriptor so it can 1270 * change it. 1271 */ 1272 __u8 *buf = kmemdup(start, size, GFP_KERNEL); 1273 1274 if (buf == NULL) 1275 return -ENOMEM; 1276 1277 start = device->driver->report_fixup(device, buf, &size); 1278 1279 /* 1280 * The second kmemdup is required in case report_fixup() returns 1281 * a static read-only memory, but we have no idea if that memory 1282 * needs to be cleaned up or not at the end. 1283 */ 1284 start = kmemdup(start, size, GFP_KERNEL); 1285 kfree(buf); 1286 if (start == NULL) 1287 return -ENOMEM; 1288 } 1289 1290 device->rdesc = start; 1291 device->rsize = size; 1292 1293 parser = vzalloc(sizeof(struct hid_parser)); 1294 if (!parser) { 1295 ret = -ENOMEM; 1296 goto alloc_err; 1297 } 1298 1299 parser->device = device; 1300 1301 end = start + size; 1302 1303 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1304 sizeof(struct hid_collection), GFP_KERNEL); 1305 if (!device->collection) { 1306 ret = -ENOMEM; 1307 goto err; 1308 } 1309 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1310 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++) 1311 device->collection[i].parent_idx = -1; 1312 1313 ret = -EINVAL; 1314 while ((next = fetch_item(start, end, &item)) != NULL) { 1315 start = next; 1316 1317 if (item.format != HID_ITEM_FORMAT_SHORT) { 1318 hid_err(device, "unexpected long global item\n"); 1319 goto err; 1320 } 1321 1322 if (dispatch_type[item.type](parser, &item)) { 1323 hid_err(device, "item %u %u %u %u parsing failed\n", 1324 item.format, (unsigned)item.size, 1325 (unsigned)item.type, (unsigned)item.tag); 1326 goto err; 1327 } 1328 1329 if (start == end) { 1330 if (parser->collection_stack_ptr) { 1331 hid_err(device, "unbalanced collection at end of report description\n"); 1332 goto err; 1333 } 1334 if (parser->local.delimiter_depth) { 1335 hid_err(device, "unbalanced delimiter at end of report description\n"); 1336 goto err; 1337 } 1338 1339 /* 1340 * fetch initial values in case the device's 1341 * default multiplier isn't the recommended 1 1342 */ 1343 hid_setup_resolution_multiplier(device); 1344 1345 kfree(parser->collection_stack); 1346 vfree(parser); 1347 device->status |= HID_STAT_PARSED; 1348 1349 return 0; 1350 } 1351 } 1352 1353 hid_err(device, "item fetching failed at offset %u/%u\n", 1354 size - (unsigned int)(end - start), size); 1355 err: 1356 kfree(parser->collection_stack); 1357 alloc_err: 1358 vfree(parser); 1359 hid_close_report(device); 1360 return ret; 1361 } 1362 EXPORT_SYMBOL_GPL(hid_open_report); 1363 1364 /* 1365 * Extract/implement a data field from/to a little endian report (bit array). 1366 * 1367 * Code sort-of follows HID spec: 1368 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1369 * 1370 * While the USB HID spec allows unlimited length bit fields in "report 1371 * descriptors", most devices never use more than 16 bits. 1372 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1373 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1374 */ 1375 1376 static u32 __extract(u8 *report, unsigned offset, int n) 1377 { 1378 unsigned int idx = offset / 8; 1379 unsigned int bit_nr = 0; 1380 unsigned int bit_shift = offset % 8; 1381 int bits_to_copy = 8 - bit_shift; 1382 u32 value = 0; 1383 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1384 1385 while (n > 0) { 1386 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1387 n -= bits_to_copy; 1388 bit_nr += bits_to_copy; 1389 bits_to_copy = 8; 1390 bit_shift = 0; 1391 idx++; 1392 } 1393 1394 return value & mask; 1395 } 1396 1397 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1398 unsigned offset, unsigned n) 1399 { 1400 if (n > 32) { 1401 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n", 1402 __func__, n, current->comm); 1403 n = 32; 1404 } 1405 1406 return __extract(report, offset, n); 1407 } 1408 EXPORT_SYMBOL_GPL(hid_field_extract); 1409 1410 /* 1411 * "implement" : set bits in a little endian bit stream. 1412 * Same concepts as "extract" (see comments above). 1413 * The data mangled in the bit stream remains in little endian 1414 * order the whole time. It make more sense to talk about 1415 * endianness of register values by considering a register 1416 * a "cached" copy of the little endian bit stream. 1417 */ 1418 1419 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1420 { 1421 unsigned int idx = offset / 8; 1422 unsigned int bit_shift = offset % 8; 1423 int bits_to_set = 8 - bit_shift; 1424 1425 while (n - bits_to_set >= 0) { 1426 report[idx] &= ~(0xff << bit_shift); 1427 report[idx] |= value << bit_shift; 1428 value >>= bits_to_set; 1429 n -= bits_to_set; 1430 bits_to_set = 8; 1431 bit_shift = 0; 1432 idx++; 1433 } 1434 1435 /* last nibble */ 1436 if (n) { 1437 u8 bit_mask = ((1U << n) - 1); 1438 report[idx] &= ~(bit_mask << bit_shift); 1439 report[idx] |= value << bit_shift; 1440 } 1441 } 1442 1443 static void implement(const struct hid_device *hid, u8 *report, 1444 unsigned offset, unsigned n, u32 value) 1445 { 1446 if (unlikely(n > 32)) { 1447 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1448 __func__, n, current->comm); 1449 n = 32; 1450 } else if (n < 32) { 1451 u32 m = (1U << n) - 1; 1452 1453 if (unlikely(value > m)) { 1454 hid_warn(hid, 1455 "%s() called with too large value %d (n: %d)! (%s)\n", 1456 __func__, value, n, current->comm); 1457 value &= m; 1458 } 1459 } 1460 1461 __implement(report, offset, n, value); 1462 } 1463 1464 /* 1465 * Search an array for a value. 1466 */ 1467 1468 static int search(__s32 *array, __s32 value, unsigned n) 1469 { 1470 while (n--) { 1471 if (*array++ == value) 1472 return 0; 1473 } 1474 return -1; 1475 } 1476 1477 /** 1478 * hid_match_report - check if driver's raw_event should be called 1479 * 1480 * @hid: hid device 1481 * @report: hid report to match against 1482 * 1483 * compare hid->driver->report_table->report_type to report->type 1484 */ 1485 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1486 { 1487 const struct hid_report_id *id = hid->driver->report_table; 1488 1489 if (!id) /* NULL means all */ 1490 return 1; 1491 1492 for (; id->report_type != HID_TERMINATOR; id++) 1493 if (id->report_type == HID_ANY_ID || 1494 id->report_type == report->type) 1495 return 1; 1496 return 0; 1497 } 1498 1499 /** 1500 * hid_match_usage - check if driver's event should be called 1501 * 1502 * @hid: hid device 1503 * @usage: usage to match against 1504 * 1505 * compare hid->driver->usage_table->usage_{type,code} to 1506 * usage->usage_{type,code} 1507 */ 1508 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1509 { 1510 const struct hid_usage_id *id = hid->driver->usage_table; 1511 1512 if (!id) /* NULL means all */ 1513 return 1; 1514 1515 for (; id->usage_type != HID_ANY_ID - 1; id++) 1516 if ((id->usage_hid == HID_ANY_ID || 1517 id->usage_hid == usage->hid) && 1518 (id->usage_type == HID_ANY_ID || 1519 id->usage_type == usage->type) && 1520 (id->usage_code == HID_ANY_ID || 1521 id->usage_code == usage->code)) 1522 return 1; 1523 return 0; 1524 } 1525 1526 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1527 struct hid_usage *usage, __s32 value, int interrupt) 1528 { 1529 struct hid_driver *hdrv = hid->driver; 1530 int ret; 1531 1532 if (!list_empty(&hid->debug_list)) 1533 hid_dump_input(hid, usage, value); 1534 1535 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1536 ret = hdrv->event(hid, field, usage, value); 1537 if (ret != 0) { 1538 if (ret < 0) 1539 hid_err(hid, "%s's event failed with %d\n", 1540 hdrv->name, ret); 1541 return; 1542 } 1543 } 1544 1545 if (hid->claimed & HID_CLAIMED_INPUT) 1546 hidinput_hid_event(hid, field, usage, value); 1547 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1548 hid->hiddev_hid_event(hid, field, usage, value); 1549 } 1550 1551 /* 1552 * Checks if the given value is valid within this field 1553 */ 1554 static inline int hid_array_value_is_valid(struct hid_field *field, 1555 __s32 value) 1556 { 1557 __s32 min = field->logical_minimum; 1558 1559 /* 1560 * Value needs to be between logical min and max, and 1561 * (value - min) is used as an index in the usage array. 1562 * This array is of size field->maxusage 1563 */ 1564 return value >= min && 1565 value <= field->logical_maximum && 1566 value - min < field->maxusage; 1567 } 1568 1569 /* 1570 * Fetch the field from the data. The field content is stored for next 1571 * report processing (we do differential reporting to the layer). 1572 */ 1573 static void hid_input_fetch_field(struct hid_device *hid, 1574 struct hid_field *field, 1575 __u8 *data) 1576 { 1577 unsigned n; 1578 unsigned count = field->report_count; 1579 unsigned offset = field->report_offset; 1580 unsigned size = field->report_size; 1581 __s32 min = field->logical_minimum; 1582 __s32 *value; 1583 1584 value = field->new_value; 1585 memset(value, 0, count * sizeof(__s32)); 1586 field->ignored = false; 1587 1588 for (n = 0; n < count; n++) { 1589 1590 value[n] = min < 0 ? 1591 snto32(hid_field_extract(hid, data, offset + n * size, 1592 size), size) : 1593 hid_field_extract(hid, data, offset + n * size, size); 1594 1595 /* Ignore report if ErrorRollOver */ 1596 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1597 hid_array_value_is_valid(field, value[n]) && 1598 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) { 1599 field->ignored = true; 1600 return; 1601 } 1602 } 1603 } 1604 1605 /* 1606 * Process a received variable field. 1607 */ 1608 1609 static void hid_input_var_field(struct hid_device *hid, 1610 struct hid_field *field, 1611 int interrupt) 1612 { 1613 unsigned int count = field->report_count; 1614 __s32 *value = field->new_value; 1615 unsigned int n; 1616 1617 for (n = 0; n < count; n++) 1618 hid_process_event(hid, 1619 field, 1620 &field->usage[n], 1621 value[n], 1622 interrupt); 1623 1624 memcpy(field->value, value, count * sizeof(__s32)); 1625 } 1626 1627 /* 1628 * Process a received array field. The field content is stored for 1629 * next report processing (we do differential reporting to the layer). 1630 */ 1631 1632 static void hid_input_array_field(struct hid_device *hid, 1633 struct hid_field *field, 1634 int interrupt) 1635 { 1636 unsigned int n; 1637 unsigned int count = field->report_count; 1638 __s32 min = field->logical_minimum; 1639 __s32 *value; 1640 1641 value = field->new_value; 1642 1643 /* ErrorRollOver */ 1644 if (field->ignored) 1645 return; 1646 1647 for (n = 0; n < count; n++) { 1648 if (hid_array_value_is_valid(field, field->value[n]) && 1649 search(value, field->value[n], count)) 1650 hid_process_event(hid, 1651 field, 1652 &field->usage[field->value[n] - min], 1653 0, 1654 interrupt); 1655 1656 if (hid_array_value_is_valid(field, value[n]) && 1657 search(field->value, value[n], count)) 1658 hid_process_event(hid, 1659 field, 1660 &field->usage[value[n] - min], 1661 1, 1662 interrupt); 1663 } 1664 1665 memcpy(field->value, value, count * sizeof(__s32)); 1666 } 1667 1668 /* 1669 * Analyse a received report, and fetch the data from it. The field 1670 * content is stored for next report processing (we do differential 1671 * reporting to the layer). 1672 */ 1673 static void hid_process_report(struct hid_device *hid, 1674 struct hid_report *report, 1675 __u8 *data, 1676 int interrupt) 1677 { 1678 unsigned int a; 1679 struct hid_field_entry *entry; 1680 struct hid_field *field; 1681 1682 /* first retrieve all incoming values in data */ 1683 for (a = 0; a < report->maxfield; a++) 1684 hid_input_fetch_field(hid, report->field[a], data); 1685 1686 if (!list_empty(&report->field_entry_list)) { 1687 /* INPUT_REPORT, we have a priority list of fields */ 1688 list_for_each_entry(entry, 1689 &report->field_entry_list, 1690 list) { 1691 field = entry->field; 1692 1693 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1694 hid_process_event(hid, 1695 field, 1696 &field->usage[entry->index], 1697 field->new_value[entry->index], 1698 interrupt); 1699 else 1700 hid_input_array_field(hid, field, interrupt); 1701 } 1702 1703 /* we need to do the memcpy at the end for var items */ 1704 for (a = 0; a < report->maxfield; a++) { 1705 field = report->field[a]; 1706 1707 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1708 memcpy(field->value, field->new_value, 1709 field->report_count * sizeof(__s32)); 1710 } 1711 } else { 1712 /* FEATURE_REPORT, regular processing */ 1713 for (a = 0; a < report->maxfield; a++) { 1714 field = report->field[a]; 1715 1716 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1717 hid_input_var_field(hid, field, interrupt); 1718 else 1719 hid_input_array_field(hid, field, interrupt); 1720 } 1721 } 1722 } 1723 1724 /* 1725 * Insert a given usage_index in a field in the list 1726 * of processed usages in the report. 1727 * 1728 * The elements of lower priority score are processed 1729 * first. 1730 */ 1731 static void __hid_insert_field_entry(struct hid_device *hid, 1732 struct hid_report *report, 1733 struct hid_field_entry *entry, 1734 struct hid_field *field, 1735 unsigned int usage_index) 1736 { 1737 struct hid_field_entry *next; 1738 1739 entry->field = field; 1740 entry->index = usage_index; 1741 entry->priority = field->usages_priorities[usage_index]; 1742 1743 /* insert the element at the correct position */ 1744 list_for_each_entry(next, 1745 &report->field_entry_list, 1746 list) { 1747 /* 1748 * the priority of our element is strictly higher 1749 * than the next one, insert it before 1750 */ 1751 if (entry->priority > next->priority) { 1752 list_add_tail(&entry->list, &next->list); 1753 return; 1754 } 1755 } 1756 1757 /* lowest priority score: insert at the end */ 1758 list_add_tail(&entry->list, &report->field_entry_list); 1759 } 1760 1761 static void hid_report_process_ordering(struct hid_device *hid, 1762 struct hid_report *report) 1763 { 1764 struct hid_field *field; 1765 struct hid_field_entry *entries; 1766 unsigned int a, u, usages; 1767 unsigned int count = 0; 1768 1769 /* count the number of individual fields in the report */ 1770 for (a = 0; a < report->maxfield; a++) { 1771 field = report->field[a]; 1772 1773 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1774 count += field->report_count; 1775 else 1776 count++; 1777 } 1778 1779 /* allocate the memory to process the fields */ 1780 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL); 1781 if (!entries) 1782 return; 1783 1784 report->field_entries = entries; 1785 1786 /* 1787 * walk through all fields in the report and 1788 * store them by priority order in report->field_entry_list 1789 * 1790 * - Var elements are individualized (field + usage_index) 1791 * - Arrays are taken as one, we can not chose an order for them 1792 */ 1793 usages = 0; 1794 for (a = 0; a < report->maxfield; a++) { 1795 field = report->field[a]; 1796 1797 if (field->flags & HID_MAIN_ITEM_VARIABLE) { 1798 for (u = 0; u < field->report_count; u++) { 1799 __hid_insert_field_entry(hid, report, 1800 &entries[usages], 1801 field, u); 1802 usages++; 1803 } 1804 } else { 1805 __hid_insert_field_entry(hid, report, &entries[usages], 1806 field, 0); 1807 usages++; 1808 } 1809 } 1810 } 1811 1812 static void hid_process_ordering(struct hid_device *hid) 1813 { 1814 struct hid_report *report; 1815 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT]; 1816 1817 list_for_each_entry(report, &report_enum->report_list, list) 1818 hid_report_process_ordering(hid, report); 1819 } 1820 1821 /* 1822 * Output the field into the report. 1823 */ 1824 1825 static void hid_output_field(const struct hid_device *hid, 1826 struct hid_field *field, __u8 *data) 1827 { 1828 unsigned count = field->report_count; 1829 unsigned offset = field->report_offset; 1830 unsigned size = field->report_size; 1831 unsigned n; 1832 1833 for (n = 0; n < count; n++) { 1834 if (field->logical_minimum < 0) /* signed values */ 1835 implement(hid, data, offset + n * size, size, 1836 s32ton(field->value[n], size)); 1837 else /* unsigned values */ 1838 implement(hid, data, offset + n * size, size, 1839 field->value[n]); 1840 } 1841 } 1842 1843 /* 1844 * Compute the size of a report. 1845 */ 1846 static size_t hid_compute_report_size(struct hid_report *report) 1847 { 1848 if (report->size) 1849 return ((report->size - 1) >> 3) + 1; 1850 1851 return 0; 1852 } 1853 1854 /* 1855 * Create a report. 'data' has to be allocated using 1856 * hid_alloc_report_buf() so that it has proper size. 1857 */ 1858 1859 void hid_output_report(struct hid_report *report, __u8 *data) 1860 { 1861 unsigned n; 1862 1863 if (report->id > 0) 1864 *data++ = report->id; 1865 1866 memset(data, 0, hid_compute_report_size(report)); 1867 for (n = 0; n < report->maxfield; n++) 1868 hid_output_field(report->device, report->field[n], data); 1869 } 1870 EXPORT_SYMBOL_GPL(hid_output_report); 1871 1872 /* 1873 * Allocator for buffer that is going to be passed to hid_output_report() 1874 */ 1875 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1876 { 1877 /* 1878 * 7 extra bytes are necessary to achieve proper functionality 1879 * of implement() working on 8 byte chunks 1880 */ 1881 1882 u32 len = hid_report_len(report) + 7; 1883 1884 return kzalloc(len, flags); 1885 } 1886 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1887 1888 /* 1889 * Set a field value. The report this field belongs to has to be 1890 * created and transferred to the device, to set this value in the 1891 * device. 1892 */ 1893 1894 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1895 { 1896 unsigned size; 1897 1898 if (!field) 1899 return -1; 1900 1901 size = field->report_size; 1902 1903 hid_dump_input(field->report->device, field->usage + offset, value); 1904 1905 if (offset >= field->report_count) { 1906 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1907 offset, field->report_count); 1908 return -1; 1909 } 1910 if (field->logical_minimum < 0) { 1911 if (value != snto32(s32ton(value, size), size)) { 1912 hid_err(field->report->device, "value %d is out of range\n", value); 1913 return -1; 1914 } 1915 } 1916 field->value[offset] = value; 1917 return 0; 1918 } 1919 EXPORT_SYMBOL_GPL(hid_set_field); 1920 1921 struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type, 1922 unsigned int application, unsigned int usage) 1923 { 1924 struct list_head *report_list = &hdev->report_enum[report_type].report_list; 1925 struct hid_report *report; 1926 int i, j; 1927 1928 list_for_each_entry(report, report_list, list) { 1929 if (report->application != application) 1930 continue; 1931 1932 for (i = 0; i < report->maxfield; i++) { 1933 struct hid_field *field = report->field[i]; 1934 1935 for (j = 0; j < field->maxusage; j++) { 1936 if (field->usage[j].hid == usage) 1937 return field; 1938 } 1939 } 1940 } 1941 1942 return NULL; 1943 } 1944 EXPORT_SYMBOL_GPL(hid_find_field); 1945 1946 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1947 const u8 *data) 1948 { 1949 struct hid_report *report; 1950 unsigned int n = 0; /* Normally report number is 0 */ 1951 1952 /* Device uses numbered reports, data[0] is report number */ 1953 if (report_enum->numbered) 1954 n = *data; 1955 1956 report = report_enum->report_id_hash[n]; 1957 if (report == NULL) 1958 dbg_hid("undefined report_id %u received\n", n); 1959 1960 return report; 1961 } 1962 1963 /* 1964 * Implement a generic .request() callback, using .raw_request() 1965 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1966 */ 1967 int __hid_request(struct hid_device *hid, struct hid_report *report, 1968 enum hid_class_request reqtype) 1969 { 1970 char *buf; 1971 int ret; 1972 u32 len; 1973 1974 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1975 if (!buf) 1976 return -ENOMEM; 1977 1978 len = hid_report_len(report); 1979 1980 if (reqtype == HID_REQ_SET_REPORT) 1981 hid_output_report(report, buf); 1982 1983 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1984 report->type, reqtype); 1985 if (ret < 0) { 1986 dbg_hid("unable to complete request: %d\n", ret); 1987 goto out; 1988 } 1989 1990 if (reqtype == HID_REQ_GET_REPORT) 1991 hid_input_report(hid, report->type, buf, ret, 0); 1992 1993 ret = 0; 1994 1995 out: 1996 kfree(buf); 1997 return ret; 1998 } 1999 EXPORT_SYMBOL_GPL(__hid_request); 2000 2001 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, 2002 int interrupt) 2003 { 2004 struct hid_report_enum *report_enum = hid->report_enum + type; 2005 struct hid_report *report; 2006 struct hid_driver *hdrv; 2007 int max_buffer_size = HID_MAX_BUFFER_SIZE; 2008 u32 rsize, csize = size; 2009 u8 *cdata = data; 2010 int ret = 0; 2011 2012 report = hid_get_report(report_enum, data); 2013 if (!report) 2014 goto out; 2015 2016 if (report_enum->numbered) { 2017 cdata++; 2018 csize--; 2019 } 2020 2021 rsize = hid_compute_report_size(report); 2022 2023 if (hid->ll_driver->max_buffer_size) 2024 max_buffer_size = hid->ll_driver->max_buffer_size; 2025 2026 if (report_enum->numbered && rsize >= max_buffer_size) 2027 rsize = max_buffer_size - 1; 2028 else if (rsize > max_buffer_size) 2029 rsize = max_buffer_size; 2030 2031 if (csize < rsize) { 2032 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 2033 csize, rsize); 2034 memset(cdata + csize, 0, rsize - csize); 2035 } 2036 2037 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 2038 hid->hiddev_report_event(hid, report); 2039 if (hid->claimed & HID_CLAIMED_HIDRAW) { 2040 ret = hidraw_report_event(hid, data, size); 2041 if (ret) 2042 goto out; 2043 } 2044 2045 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 2046 hid_process_report(hid, report, cdata, interrupt); 2047 hdrv = hid->driver; 2048 if (hdrv && hdrv->report) 2049 hdrv->report(hid, report); 2050 } 2051 2052 if (hid->claimed & HID_CLAIMED_INPUT) 2053 hidinput_report_event(hid, report); 2054 out: 2055 return ret; 2056 } 2057 EXPORT_SYMBOL_GPL(hid_report_raw_event); 2058 2059 2060 static int __hid_input_report(struct hid_device *hid, enum hid_report_type type, 2061 u8 *data, u32 size, int interrupt, u64 source, bool from_bpf, 2062 bool lock_already_taken) 2063 { 2064 struct hid_report_enum *report_enum; 2065 struct hid_driver *hdrv; 2066 struct hid_report *report; 2067 int ret = 0; 2068 2069 if (!hid) 2070 return -ENODEV; 2071 2072 ret = down_trylock(&hid->driver_input_lock); 2073 if (lock_already_taken && !ret) { 2074 up(&hid->driver_input_lock); 2075 return -EINVAL; 2076 } else if (!lock_already_taken && ret) { 2077 return -EBUSY; 2078 } 2079 2080 if (!hid->driver) { 2081 ret = -ENODEV; 2082 goto unlock; 2083 } 2084 report_enum = hid->report_enum + type; 2085 hdrv = hid->driver; 2086 2087 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf); 2088 if (IS_ERR(data)) { 2089 ret = PTR_ERR(data); 2090 goto unlock; 2091 } 2092 2093 if (!size) { 2094 dbg_hid("empty report\n"); 2095 ret = -1; 2096 goto unlock; 2097 } 2098 2099 /* Avoid unnecessary overhead if debugfs is disabled */ 2100 if (!list_empty(&hid->debug_list)) 2101 hid_dump_report(hid, type, data, size); 2102 2103 report = hid_get_report(report_enum, data); 2104 2105 if (!report) { 2106 ret = -1; 2107 goto unlock; 2108 } 2109 2110 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 2111 ret = hdrv->raw_event(hid, report, data, size); 2112 if (ret < 0) 2113 goto unlock; 2114 } 2115 2116 ret = hid_report_raw_event(hid, type, data, size, interrupt); 2117 2118 unlock: 2119 if (!lock_already_taken) 2120 up(&hid->driver_input_lock); 2121 return ret; 2122 } 2123 2124 /** 2125 * hid_input_report - report data from lower layer (usb, bt...) 2126 * 2127 * @hid: hid device 2128 * @type: HID report type (HID_*_REPORT) 2129 * @data: report contents 2130 * @size: size of data parameter 2131 * @interrupt: distinguish between interrupt and control transfers 2132 * 2133 * This is data entry for lower layers. 2134 */ 2135 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, 2136 int interrupt) 2137 { 2138 return __hid_input_report(hid, type, data, size, interrupt, 0, 2139 false, /* from_bpf */ 2140 false /* lock_already_taken */); 2141 } 2142 EXPORT_SYMBOL_GPL(hid_input_report); 2143 2144 bool hid_match_one_id(const struct hid_device *hdev, 2145 const struct hid_device_id *id) 2146 { 2147 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 2148 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 2149 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 2150 (id->product == HID_ANY_ID || id->product == hdev->product); 2151 } 2152 2153 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 2154 const struct hid_device_id *id) 2155 { 2156 for (; id->bus; id++) 2157 if (hid_match_one_id(hdev, id)) 2158 return id; 2159 2160 return NULL; 2161 } 2162 EXPORT_SYMBOL_GPL(hid_match_id); 2163 2164 static const struct hid_device_id hid_hiddev_list[] = { 2165 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 2166 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 2167 { } 2168 }; 2169 2170 static bool hid_hiddev(struct hid_device *hdev) 2171 { 2172 return !!hid_match_id(hdev, hid_hiddev_list); 2173 } 2174 2175 2176 static ssize_t 2177 read_report_descriptor(struct file *filp, struct kobject *kobj, 2178 struct bin_attribute *attr, 2179 char *buf, loff_t off, size_t count) 2180 { 2181 struct device *dev = kobj_to_dev(kobj); 2182 struct hid_device *hdev = to_hid_device(dev); 2183 2184 if (off >= hdev->rsize) 2185 return 0; 2186 2187 if (off + count > hdev->rsize) 2188 count = hdev->rsize - off; 2189 2190 memcpy(buf, hdev->rdesc + off, count); 2191 2192 return count; 2193 } 2194 2195 static ssize_t 2196 show_country(struct device *dev, struct device_attribute *attr, 2197 char *buf) 2198 { 2199 struct hid_device *hdev = to_hid_device(dev); 2200 2201 return sprintf(buf, "%02x\n", hdev->country & 0xff); 2202 } 2203 2204 static struct bin_attribute dev_bin_attr_report_desc = { 2205 .attr = { .name = "report_descriptor", .mode = 0444 }, 2206 .read = read_report_descriptor, 2207 .size = HID_MAX_DESCRIPTOR_SIZE, 2208 }; 2209 2210 static const struct device_attribute dev_attr_country = { 2211 .attr = { .name = "country", .mode = 0444 }, 2212 .show = show_country, 2213 }; 2214 2215 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 2216 { 2217 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 2218 "Joystick", "Gamepad", "Keyboard", "Keypad", 2219 "Multi-Axis Controller" 2220 }; 2221 const char *type, *bus; 2222 char buf[64] = ""; 2223 unsigned int i; 2224 int len; 2225 int ret; 2226 2227 ret = hid_bpf_connect_device(hdev); 2228 if (ret) 2229 return ret; 2230 2231 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 2232 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 2233 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 2234 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 2235 if (hdev->bus != BUS_USB) 2236 connect_mask &= ~HID_CONNECT_HIDDEV; 2237 if (hid_hiddev(hdev)) 2238 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 2239 2240 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 2241 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 2242 hdev->claimed |= HID_CLAIMED_INPUT; 2243 2244 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 2245 !hdev->hiddev_connect(hdev, 2246 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 2247 hdev->claimed |= HID_CLAIMED_HIDDEV; 2248 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 2249 hdev->claimed |= HID_CLAIMED_HIDRAW; 2250 2251 if (connect_mask & HID_CONNECT_DRIVER) 2252 hdev->claimed |= HID_CLAIMED_DRIVER; 2253 2254 /* Drivers with the ->raw_event callback set are not required to connect 2255 * to any other listener. */ 2256 if (!hdev->claimed && !hdev->driver->raw_event) { 2257 hid_err(hdev, "device has no listeners, quitting\n"); 2258 return -ENODEV; 2259 } 2260 2261 hid_process_ordering(hdev); 2262 2263 if ((hdev->claimed & HID_CLAIMED_INPUT) && 2264 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 2265 hdev->ff_init(hdev); 2266 2267 len = 0; 2268 if (hdev->claimed & HID_CLAIMED_INPUT) 2269 len += sprintf(buf + len, "input"); 2270 if (hdev->claimed & HID_CLAIMED_HIDDEV) 2271 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 2272 ((struct hiddev *)hdev->hiddev)->minor); 2273 if (hdev->claimed & HID_CLAIMED_HIDRAW) 2274 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 2275 ((struct hidraw *)hdev->hidraw)->minor); 2276 2277 type = "Device"; 2278 for (i = 0; i < hdev->maxcollection; i++) { 2279 struct hid_collection *col = &hdev->collection[i]; 2280 if (col->type == HID_COLLECTION_APPLICATION && 2281 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 2282 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 2283 type = types[col->usage & 0xffff]; 2284 break; 2285 } 2286 } 2287 2288 switch (hdev->bus) { 2289 case BUS_USB: 2290 bus = "USB"; 2291 break; 2292 case BUS_BLUETOOTH: 2293 bus = "BLUETOOTH"; 2294 break; 2295 case BUS_I2C: 2296 bus = "I2C"; 2297 break; 2298 case BUS_VIRTUAL: 2299 bus = "VIRTUAL"; 2300 break; 2301 case BUS_INTEL_ISHTP: 2302 case BUS_AMD_SFH: 2303 bus = "SENSOR HUB"; 2304 break; 2305 default: 2306 bus = "<UNKNOWN>"; 2307 } 2308 2309 ret = device_create_file(&hdev->dev, &dev_attr_country); 2310 if (ret) 2311 hid_warn(hdev, 2312 "can't create sysfs country code attribute err: %d\n", ret); 2313 2314 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 2315 buf, bus, hdev->version >> 8, hdev->version & 0xff, 2316 type, hdev->name, hdev->phys); 2317 2318 return 0; 2319 } 2320 EXPORT_SYMBOL_GPL(hid_connect); 2321 2322 void hid_disconnect(struct hid_device *hdev) 2323 { 2324 device_remove_file(&hdev->dev, &dev_attr_country); 2325 if (hdev->claimed & HID_CLAIMED_INPUT) 2326 hidinput_disconnect(hdev); 2327 if (hdev->claimed & HID_CLAIMED_HIDDEV) 2328 hdev->hiddev_disconnect(hdev); 2329 if (hdev->claimed & HID_CLAIMED_HIDRAW) 2330 hidraw_disconnect(hdev); 2331 hdev->claimed = 0; 2332 2333 hid_bpf_disconnect_device(hdev); 2334 } 2335 EXPORT_SYMBOL_GPL(hid_disconnect); 2336 2337 /** 2338 * hid_hw_start - start underlying HW 2339 * @hdev: hid device 2340 * @connect_mask: which outputs to connect, see HID_CONNECT_* 2341 * 2342 * Call this in probe function *after* hid_parse. This will setup HW 2343 * buffers and start the device (if not defeirred to device open). 2344 * hid_hw_stop must be called if this was successful. 2345 */ 2346 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 2347 { 2348 int error; 2349 2350 error = hdev->ll_driver->start(hdev); 2351 if (error) 2352 return error; 2353 2354 if (connect_mask) { 2355 error = hid_connect(hdev, connect_mask); 2356 if (error) { 2357 hdev->ll_driver->stop(hdev); 2358 return error; 2359 } 2360 } 2361 2362 return 0; 2363 } 2364 EXPORT_SYMBOL_GPL(hid_hw_start); 2365 2366 /** 2367 * hid_hw_stop - stop underlying HW 2368 * @hdev: hid device 2369 * 2370 * This is usually called from remove function or from probe when something 2371 * failed and hid_hw_start was called already. 2372 */ 2373 void hid_hw_stop(struct hid_device *hdev) 2374 { 2375 hid_disconnect(hdev); 2376 hdev->ll_driver->stop(hdev); 2377 } 2378 EXPORT_SYMBOL_GPL(hid_hw_stop); 2379 2380 /** 2381 * hid_hw_open - signal underlying HW to start delivering events 2382 * @hdev: hid device 2383 * 2384 * Tell underlying HW to start delivering events from the device. 2385 * This function should be called sometime after successful call 2386 * to hid_hw_start(). 2387 */ 2388 int hid_hw_open(struct hid_device *hdev) 2389 { 2390 int ret; 2391 2392 ret = mutex_lock_killable(&hdev->ll_open_lock); 2393 if (ret) 2394 return ret; 2395 2396 if (!hdev->ll_open_count++) { 2397 ret = hdev->ll_driver->open(hdev); 2398 if (ret) 2399 hdev->ll_open_count--; 2400 } 2401 2402 mutex_unlock(&hdev->ll_open_lock); 2403 return ret; 2404 } 2405 EXPORT_SYMBOL_GPL(hid_hw_open); 2406 2407 /** 2408 * hid_hw_close - signal underlaying HW to stop delivering events 2409 * 2410 * @hdev: hid device 2411 * 2412 * This function indicates that we are not interested in the events 2413 * from this device anymore. Delivery of events may or may not stop, 2414 * depending on the number of users still outstanding. 2415 */ 2416 void hid_hw_close(struct hid_device *hdev) 2417 { 2418 mutex_lock(&hdev->ll_open_lock); 2419 if (!--hdev->ll_open_count) 2420 hdev->ll_driver->close(hdev); 2421 mutex_unlock(&hdev->ll_open_lock); 2422 } 2423 EXPORT_SYMBOL_GPL(hid_hw_close); 2424 2425 /** 2426 * hid_hw_request - send report request to device 2427 * 2428 * @hdev: hid device 2429 * @report: report to send 2430 * @reqtype: hid request type 2431 */ 2432 void hid_hw_request(struct hid_device *hdev, 2433 struct hid_report *report, enum hid_class_request reqtype) 2434 { 2435 if (hdev->ll_driver->request) 2436 return hdev->ll_driver->request(hdev, report, reqtype); 2437 2438 __hid_request(hdev, report, reqtype); 2439 } 2440 EXPORT_SYMBOL_GPL(hid_hw_request); 2441 2442 int __hid_hw_raw_request(struct hid_device *hdev, 2443 unsigned char reportnum, __u8 *buf, 2444 size_t len, enum hid_report_type rtype, 2445 enum hid_class_request reqtype, 2446 u64 source, bool from_bpf) 2447 { 2448 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 2449 int ret; 2450 2451 if (hdev->ll_driver->max_buffer_size) 2452 max_buffer_size = hdev->ll_driver->max_buffer_size; 2453 2454 if (len < 1 || len > max_buffer_size || !buf) 2455 return -EINVAL; 2456 2457 ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype, 2458 reqtype, source, from_bpf); 2459 if (ret) 2460 return ret; 2461 2462 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len, 2463 rtype, reqtype); 2464 } 2465 2466 /** 2467 * hid_hw_raw_request - send report request to device 2468 * 2469 * @hdev: hid device 2470 * @reportnum: report ID 2471 * @buf: in/out data to transfer 2472 * @len: length of buf 2473 * @rtype: HID report type 2474 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT 2475 * 2476 * Return: count of data transferred, negative if error 2477 * 2478 * Same behavior as hid_hw_request, but with raw buffers instead. 2479 */ 2480 int hid_hw_raw_request(struct hid_device *hdev, 2481 unsigned char reportnum, __u8 *buf, 2482 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype) 2483 { 2484 return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false); 2485 } 2486 EXPORT_SYMBOL_GPL(hid_hw_raw_request); 2487 2488 int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source, 2489 bool from_bpf) 2490 { 2491 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 2492 int ret; 2493 2494 if (hdev->ll_driver->max_buffer_size) 2495 max_buffer_size = hdev->ll_driver->max_buffer_size; 2496 2497 if (len < 1 || len > max_buffer_size || !buf) 2498 return -EINVAL; 2499 2500 ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf); 2501 if (ret) 2502 return ret; 2503 2504 if (hdev->ll_driver->output_report) 2505 return hdev->ll_driver->output_report(hdev, buf, len); 2506 2507 return -ENOSYS; 2508 } 2509 2510 /** 2511 * hid_hw_output_report - send output report to device 2512 * 2513 * @hdev: hid device 2514 * @buf: raw data to transfer 2515 * @len: length of buf 2516 * 2517 * Return: count of data transferred, negative if error 2518 */ 2519 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len) 2520 { 2521 return __hid_hw_output_report(hdev, buf, len, 0, false); 2522 } 2523 EXPORT_SYMBOL_GPL(hid_hw_output_report); 2524 2525 #ifdef CONFIG_PM 2526 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state) 2527 { 2528 if (hdev->driver && hdev->driver->suspend) 2529 return hdev->driver->suspend(hdev, state); 2530 2531 return 0; 2532 } 2533 EXPORT_SYMBOL_GPL(hid_driver_suspend); 2534 2535 int hid_driver_reset_resume(struct hid_device *hdev) 2536 { 2537 if (hdev->driver && hdev->driver->reset_resume) 2538 return hdev->driver->reset_resume(hdev); 2539 2540 return 0; 2541 } 2542 EXPORT_SYMBOL_GPL(hid_driver_reset_resume); 2543 2544 int hid_driver_resume(struct hid_device *hdev) 2545 { 2546 if (hdev->driver && hdev->driver->resume) 2547 return hdev->driver->resume(hdev); 2548 2549 return 0; 2550 } 2551 EXPORT_SYMBOL_GPL(hid_driver_resume); 2552 #endif /* CONFIG_PM */ 2553 2554 struct hid_dynid { 2555 struct list_head list; 2556 struct hid_device_id id; 2557 }; 2558 2559 /** 2560 * new_id_store - add a new HID device ID to this driver and re-probe devices 2561 * @drv: target device driver 2562 * @buf: buffer for scanning device ID data 2563 * @count: input size 2564 * 2565 * Adds a new dynamic hid device ID to this driver, 2566 * and causes the driver to probe for all devices again. 2567 */ 2568 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2569 size_t count) 2570 { 2571 struct hid_driver *hdrv = to_hid_driver(drv); 2572 struct hid_dynid *dynid; 2573 __u32 bus, vendor, product; 2574 unsigned long driver_data = 0; 2575 int ret; 2576 2577 ret = sscanf(buf, "%x %x %x %lx", 2578 &bus, &vendor, &product, &driver_data); 2579 if (ret < 3) 2580 return -EINVAL; 2581 2582 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2583 if (!dynid) 2584 return -ENOMEM; 2585 2586 dynid->id.bus = bus; 2587 dynid->id.group = HID_GROUP_ANY; 2588 dynid->id.vendor = vendor; 2589 dynid->id.product = product; 2590 dynid->id.driver_data = driver_data; 2591 2592 spin_lock(&hdrv->dyn_lock); 2593 list_add_tail(&dynid->list, &hdrv->dyn_list); 2594 spin_unlock(&hdrv->dyn_lock); 2595 2596 ret = driver_attach(&hdrv->driver); 2597 2598 return ret ? : count; 2599 } 2600 static DRIVER_ATTR_WO(new_id); 2601 2602 static struct attribute *hid_drv_attrs[] = { 2603 &driver_attr_new_id.attr, 2604 NULL, 2605 }; 2606 ATTRIBUTE_GROUPS(hid_drv); 2607 2608 static void hid_free_dynids(struct hid_driver *hdrv) 2609 { 2610 struct hid_dynid *dynid, *n; 2611 2612 spin_lock(&hdrv->dyn_lock); 2613 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2614 list_del(&dynid->list); 2615 kfree(dynid); 2616 } 2617 spin_unlock(&hdrv->dyn_lock); 2618 } 2619 2620 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2621 struct hid_driver *hdrv) 2622 { 2623 struct hid_dynid *dynid; 2624 2625 spin_lock(&hdrv->dyn_lock); 2626 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2627 if (hid_match_one_id(hdev, &dynid->id)) { 2628 spin_unlock(&hdrv->dyn_lock); 2629 return &dynid->id; 2630 } 2631 } 2632 spin_unlock(&hdrv->dyn_lock); 2633 2634 return hid_match_id(hdev, hdrv->id_table); 2635 } 2636 EXPORT_SYMBOL_GPL(hid_match_device); 2637 2638 static int hid_bus_match(struct device *dev, const struct device_driver *drv) 2639 { 2640 struct hid_driver *hdrv = to_hid_driver(drv); 2641 struct hid_device *hdev = to_hid_device(dev); 2642 2643 return hid_match_device(hdev, hdrv) != NULL; 2644 } 2645 2646 /** 2647 * hid_compare_device_paths - check if both devices share the same path 2648 * @hdev_a: hid device 2649 * @hdev_b: hid device 2650 * @separator: char to use as separator 2651 * 2652 * Check if two devices share the same path up to the last occurrence of 2653 * the separator char. Both paths must exist (i.e., zero-length paths 2654 * don't match). 2655 */ 2656 bool hid_compare_device_paths(struct hid_device *hdev_a, 2657 struct hid_device *hdev_b, char separator) 2658 { 2659 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2660 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2661 2662 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2663 return false; 2664 2665 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2666 } 2667 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2668 2669 static bool hid_check_device_match(struct hid_device *hdev, 2670 struct hid_driver *hdrv, 2671 const struct hid_device_id **id) 2672 { 2673 *id = hid_match_device(hdev, hdrv); 2674 if (!*id) 2675 return false; 2676 2677 if (hdrv->match) 2678 return hdrv->match(hdev, hid_ignore_special_drivers); 2679 2680 /* 2681 * hid-generic implements .match(), so we must be dealing with a 2682 * different HID driver here, and can simply check if 2683 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER 2684 * are set or not. 2685 */ 2686 return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER); 2687 } 2688 2689 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv) 2690 { 2691 const struct hid_device_id *id; 2692 int ret; 2693 2694 if (!hdev->bpf_rsize) { 2695 unsigned int quirks; 2696 2697 /* reset the quirks that has been previously set */ 2698 quirks = hid_lookup_quirk(hdev); 2699 hdev->quirks = quirks; 2700 2701 /* in case a bpf program gets detached, we need to free the old one */ 2702 hid_free_bpf_rdesc(hdev); 2703 2704 /* keep this around so we know we called it once */ 2705 hdev->bpf_rsize = hdev->dev_rsize; 2706 2707 /* call_hid_bpf_rdesc_fixup will always return a valid pointer */ 2708 hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc, 2709 &hdev->bpf_rsize); 2710 if (quirks ^ hdev->quirks) 2711 hid_info(hdev, "HID-BPF toggled quirks on the device: %04x", 2712 quirks ^ hdev->quirks); 2713 } 2714 2715 if (!hid_check_device_match(hdev, hdrv, &id)) 2716 return -ENODEV; 2717 2718 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL); 2719 if (!hdev->devres_group_id) 2720 return -ENOMEM; 2721 2722 hdev->driver = hdrv; 2723 2724 if (hdrv->probe) { 2725 ret = hdrv->probe(hdev, id); 2726 } else { /* default probe */ 2727 ret = hid_open_report(hdev); 2728 if (!ret) 2729 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2730 } 2731 2732 /* 2733 * Note that we are not closing the devres group opened above so 2734 * even resources that were attached to the device after probe is 2735 * run are released when hid_device_remove() is executed. This is 2736 * needed as some drivers would allocate additional resources, 2737 * for example when updating firmware. 2738 */ 2739 2740 if (ret) { 2741 devres_release_group(&hdev->dev, hdev->devres_group_id); 2742 hid_close_report(hdev); 2743 hdev->driver = NULL; 2744 } 2745 2746 return ret; 2747 } 2748 2749 static int hid_device_probe(struct device *dev) 2750 { 2751 struct hid_device *hdev = to_hid_device(dev); 2752 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2753 int ret = 0; 2754 2755 if (down_interruptible(&hdev->driver_input_lock)) 2756 return -EINTR; 2757 2758 hdev->io_started = false; 2759 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2760 2761 if (!hdev->driver) 2762 ret = __hid_device_probe(hdev, hdrv); 2763 2764 if (!hdev->io_started) 2765 up(&hdev->driver_input_lock); 2766 2767 return ret; 2768 } 2769 2770 static void hid_device_remove(struct device *dev) 2771 { 2772 struct hid_device *hdev = to_hid_device(dev); 2773 struct hid_driver *hdrv; 2774 2775 down(&hdev->driver_input_lock); 2776 hdev->io_started = false; 2777 2778 hdrv = hdev->driver; 2779 if (hdrv) { 2780 if (hdrv->remove) 2781 hdrv->remove(hdev); 2782 else /* default remove */ 2783 hid_hw_stop(hdev); 2784 2785 /* Release all devres resources allocated by the driver */ 2786 devres_release_group(&hdev->dev, hdev->devres_group_id); 2787 2788 hid_close_report(hdev); 2789 hdev->driver = NULL; 2790 } 2791 2792 if (!hdev->io_started) 2793 up(&hdev->driver_input_lock); 2794 } 2795 2796 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2797 char *buf) 2798 { 2799 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2800 2801 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2802 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2803 } 2804 static DEVICE_ATTR_RO(modalias); 2805 2806 static struct attribute *hid_dev_attrs[] = { 2807 &dev_attr_modalias.attr, 2808 NULL, 2809 }; 2810 static struct bin_attribute *hid_dev_bin_attrs[] = { 2811 &dev_bin_attr_report_desc, 2812 NULL 2813 }; 2814 static const struct attribute_group hid_dev_group = { 2815 .attrs = hid_dev_attrs, 2816 .bin_attrs = hid_dev_bin_attrs, 2817 }; 2818 __ATTRIBUTE_GROUPS(hid_dev); 2819 2820 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env) 2821 { 2822 const struct hid_device *hdev = to_hid_device(dev); 2823 2824 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2825 hdev->bus, hdev->vendor, hdev->product)) 2826 return -ENOMEM; 2827 2828 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2829 return -ENOMEM; 2830 2831 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2832 return -ENOMEM; 2833 2834 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2835 return -ENOMEM; 2836 2837 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2838 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2839 return -ENOMEM; 2840 2841 return 0; 2842 } 2843 2844 const struct bus_type hid_bus_type = { 2845 .name = "hid", 2846 .dev_groups = hid_dev_groups, 2847 .drv_groups = hid_drv_groups, 2848 .match = hid_bus_match, 2849 .probe = hid_device_probe, 2850 .remove = hid_device_remove, 2851 .uevent = hid_uevent, 2852 }; 2853 EXPORT_SYMBOL(hid_bus_type); 2854 2855 int hid_add_device(struct hid_device *hdev) 2856 { 2857 static atomic_t id = ATOMIC_INIT(0); 2858 int ret; 2859 2860 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2861 return -EBUSY; 2862 2863 hdev->quirks = hid_lookup_quirk(hdev); 2864 2865 /* we need to kill them here, otherwise they will stay allocated to 2866 * wait for coming driver */ 2867 if (hid_ignore(hdev)) 2868 return -ENODEV; 2869 2870 /* 2871 * Check for the mandatory transport channel. 2872 */ 2873 if (!hdev->ll_driver->raw_request) { 2874 hid_err(hdev, "transport driver missing .raw_request()\n"); 2875 return -EINVAL; 2876 } 2877 2878 /* 2879 * Read the device report descriptor once and use as template 2880 * for the driver-specific modifications. 2881 */ 2882 ret = hdev->ll_driver->parse(hdev); 2883 if (ret) 2884 return ret; 2885 if (!hdev->dev_rdesc) 2886 return -ENODEV; 2887 2888 /* 2889 * Scan generic devices for group information 2890 */ 2891 if (hid_ignore_special_drivers) { 2892 hdev->group = HID_GROUP_GENERIC; 2893 } else if (!hdev->group && 2894 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2895 ret = hid_scan_report(hdev); 2896 if (ret) 2897 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2898 } 2899 2900 hdev->id = atomic_inc_return(&id); 2901 2902 /* XXX hack, any other cleaner solution after the driver core 2903 * is converted to allow more than 20 bytes as the device name? */ 2904 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2905 hdev->vendor, hdev->product, hdev->id); 2906 2907 hid_debug_register(hdev, dev_name(&hdev->dev)); 2908 ret = device_add(&hdev->dev); 2909 if (!ret) 2910 hdev->status |= HID_STAT_ADDED; 2911 else 2912 hid_debug_unregister(hdev); 2913 2914 return ret; 2915 } 2916 EXPORT_SYMBOL_GPL(hid_add_device); 2917 2918 /** 2919 * hid_allocate_device - allocate new hid device descriptor 2920 * 2921 * Allocate and initialize hid device, so that hid_destroy_device might be 2922 * used to free it. 2923 * 2924 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2925 * error value. 2926 */ 2927 struct hid_device *hid_allocate_device(void) 2928 { 2929 struct hid_device *hdev; 2930 int ret = -ENOMEM; 2931 2932 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2933 if (hdev == NULL) 2934 return ERR_PTR(ret); 2935 2936 device_initialize(&hdev->dev); 2937 hdev->dev.release = hid_device_release; 2938 hdev->dev.bus = &hid_bus_type; 2939 device_enable_async_suspend(&hdev->dev); 2940 2941 hid_close_report(hdev); 2942 2943 init_waitqueue_head(&hdev->debug_wait); 2944 INIT_LIST_HEAD(&hdev->debug_list); 2945 spin_lock_init(&hdev->debug_list_lock); 2946 sema_init(&hdev->driver_input_lock, 1); 2947 mutex_init(&hdev->ll_open_lock); 2948 kref_init(&hdev->ref); 2949 2950 ret = hid_bpf_device_init(hdev); 2951 if (ret) 2952 goto out_err; 2953 2954 return hdev; 2955 2956 out_err: 2957 hid_destroy_device(hdev); 2958 return ERR_PTR(ret); 2959 } 2960 EXPORT_SYMBOL_GPL(hid_allocate_device); 2961 2962 static void hid_remove_device(struct hid_device *hdev) 2963 { 2964 if (hdev->status & HID_STAT_ADDED) { 2965 device_del(&hdev->dev); 2966 hid_debug_unregister(hdev); 2967 hdev->status &= ~HID_STAT_ADDED; 2968 } 2969 hid_free_bpf_rdesc(hdev); 2970 kfree(hdev->dev_rdesc); 2971 hdev->dev_rdesc = NULL; 2972 hdev->dev_rsize = 0; 2973 hdev->bpf_rsize = 0; 2974 } 2975 2976 /** 2977 * hid_destroy_device - free previously allocated device 2978 * 2979 * @hdev: hid device 2980 * 2981 * If you allocate hid_device through hid_allocate_device, you should ever 2982 * free by this function. 2983 */ 2984 void hid_destroy_device(struct hid_device *hdev) 2985 { 2986 hid_bpf_destroy_device(hdev); 2987 hid_remove_device(hdev); 2988 put_device(&hdev->dev); 2989 } 2990 EXPORT_SYMBOL_GPL(hid_destroy_device); 2991 2992 2993 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2994 { 2995 struct hid_driver *hdrv = data; 2996 struct hid_device *hdev = to_hid_device(dev); 2997 2998 if (hdev->driver == hdrv && 2999 !hdrv->match(hdev, hid_ignore_special_drivers) && 3000 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 3001 return device_reprobe(dev); 3002 3003 return 0; 3004 } 3005 3006 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 3007 { 3008 struct hid_driver *hdrv = to_hid_driver(drv); 3009 3010 if (hdrv->match) { 3011 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 3012 __hid_bus_reprobe_drivers); 3013 } 3014 3015 return 0; 3016 } 3017 3018 static int __bus_removed_driver(struct device_driver *drv, void *data) 3019 { 3020 return bus_rescan_devices(&hid_bus_type); 3021 } 3022 3023 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 3024 const char *mod_name) 3025 { 3026 int ret; 3027 3028 hdrv->driver.name = hdrv->name; 3029 hdrv->driver.bus = &hid_bus_type; 3030 hdrv->driver.owner = owner; 3031 hdrv->driver.mod_name = mod_name; 3032 3033 INIT_LIST_HEAD(&hdrv->dyn_list); 3034 spin_lock_init(&hdrv->dyn_lock); 3035 3036 ret = driver_register(&hdrv->driver); 3037 3038 if (ret == 0) 3039 bus_for_each_drv(&hid_bus_type, NULL, NULL, 3040 __hid_bus_driver_added); 3041 3042 return ret; 3043 } 3044 EXPORT_SYMBOL_GPL(__hid_register_driver); 3045 3046 void hid_unregister_driver(struct hid_driver *hdrv) 3047 { 3048 driver_unregister(&hdrv->driver); 3049 hid_free_dynids(hdrv); 3050 3051 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 3052 } 3053 EXPORT_SYMBOL_GPL(hid_unregister_driver); 3054 3055 int hid_check_keys_pressed(struct hid_device *hid) 3056 { 3057 struct hid_input *hidinput; 3058 int i; 3059 3060 if (!(hid->claimed & HID_CLAIMED_INPUT)) 3061 return 0; 3062 3063 list_for_each_entry(hidinput, &hid->inputs, list) { 3064 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 3065 if (hidinput->input->key[i]) 3066 return 1; 3067 } 3068 3069 return 0; 3070 } 3071 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 3072 3073 #ifdef CONFIG_HID_BPF 3074 static struct hid_ops __hid_ops = { 3075 .hid_get_report = hid_get_report, 3076 .hid_hw_raw_request = __hid_hw_raw_request, 3077 .hid_hw_output_report = __hid_hw_output_report, 3078 .hid_input_report = __hid_input_report, 3079 .owner = THIS_MODULE, 3080 .bus_type = &hid_bus_type, 3081 }; 3082 #endif 3083 3084 static int __init hid_init(void) 3085 { 3086 int ret; 3087 3088 ret = bus_register(&hid_bus_type); 3089 if (ret) { 3090 pr_err("can't register hid bus\n"); 3091 goto err; 3092 } 3093 3094 #ifdef CONFIG_HID_BPF 3095 hid_ops = &__hid_ops; 3096 #endif 3097 3098 ret = hidraw_init(); 3099 if (ret) 3100 goto err_bus; 3101 3102 hid_debug_init(); 3103 3104 return 0; 3105 err_bus: 3106 bus_unregister(&hid_bus_type); 3107 err: 3108 return ret; 3109 } 3110 3111 static void __exit hid_exit(void) 3112 { 3113 #ifdef CONFIG_HID_BPF 3114 hid_ops = NULL; 3115 #endif 3116 hid_debug_exit(); 3117 hidraw_exit(); 3118 bus_unregister(&hid_bus_type); 3119 hid_quirks_exit(HID_BUS_ANY); 3120 } 3121 3122 module_init(hid_init); 3123 module_exit(hid_exit); 3124 3125 MODULE_AUTHOR("Andreas Gal"); 3126 MODULE_AUTHOR("Vojtech Pavlik"); 3127 MODULE_AUTHOR("Jiri Kosina"); 3128 MODULE_DESCRIPTION("HID support for Linux"); 3129 MODULE_LICENSE("GPL"); 3130