xref: /linux/drivers/hid/hid-core.c (revision f85f5ae45ad945270a8884261de8249431e8b5a6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47 
48 /*
49  * Register a new report for a device.
50  */
51 
52 struct hid_report *hid_register_report(struct hid_device *device,
53 				       enum hid_report_type type, unsigned int id,
54 				       unsigned int application)
55 {
56 	struct hid_report_enum *report_enum = device->report_enum + type;
57 	struct hid_report *report;
58 
59 	if (id >= HID_MAX_IDS)
60 		return NULL;
61 	if (report_enum->report_id_hash[id])
62 		return report_enum->report_id_hash[id];
63 
64 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 	if (!report)
66 		return NULL;
67 
68 	if (id != 0)
69 		report_enum->numbered = 1;
70 
71 	report->id = id;
72 	report->type = type;
73 	report->size = 0;
74 	report->device = device;
75 	report->application = application;
76 	report_enum->report_id_hash[id] = report;
77 
78 	list_add_tail(&report->list, &report_enum->report_list);
79 	INIT_LIST_HEAD(&report->field_entry_list);
80 
81 	return report;
82 }
83 EXPORT_SYMBOL_GPL(hid_register_report);
84 
85 /*
86  * Register a new field for this report.
87  */
88 
89 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90 {
91 	struct hid_field *field;
92 
93 	if (report->maxfield == HID_MAX_FIELDS) {
94 		hid_err(report->device, "too many fields in report\n");
95 		return NULL;
96 	}
97 
98 	field = kzalloc((sizeof(struct hid_field) +
99 			 usages * sizeof(struct hid_usage) +
100 			 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101 	if (!field)
102 		return NULL;
103 
104 	field->index = report->maxfield++;
105 	report->field[field->index] = field;
106 	field->usage = (struct hid_usage *)(field + 1);
107 	field->value = (s32 *)(field->usage + usages);
108 	field->new_value = (s32 *)(field->value + usages);
109 	field->usages_priorities = (s32 *)(field->new_value + usages);
110 	field->report = report;
111 
112 	return field;
113 }
114 
115 /*
116  * Open a collection. The type/usage is pushed on the stack.
117  */
118 
119 static int open_collection(struct hid_parser *parser, unsigned type)
120 {
121 	struct hid_collection *collection;
122 	unsigned usage;
123 	int collection_index;
124 
125 	usage = parser->local.usage[0];
126 
127 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
128 		unsigned int *collection_stack;
129 		unsigned int new_size = parser->collection_stack_size +
130 					HID_COLLECTION_STACK_SIZE;
131 
132 		collection_stack = krealloc(parser->collection_stack,
133 					    new_size * sizeof(unsigned int),
134 					    GFP_KERNEL);
135 		if (!collection_stack)
136 			return -ENOMEM;
137 
138 		parser->collection_stack = collection_stack;
139 		parser->collection_stack_size = new_size;
140 	}
141 
142 	if (parser->device->maxcollection == parser->device->collection_size) {
143 		collection = kmalloc(
144 				array3_size(sizeof(struct hid_collection),
145 					    parser->device->collection_size,
146 					    2),
147 				GFP_KERNEL);
148 		if (collection == NULL) {
149 			hid_err(parser->device, "failed to reallocate collection array\n");
150 			return -ENOMEM;
151 		}
152 		memcpy(collection, parser->device->collection,
153 			sizeof(struct hid_collection) *
154 			parser->device->collection_size);
155 		memset(collection + parser->device->collection_size, 0,
156 			sizeof(struct hid_collection) *
157 			parser->device->collection_size);
158 		kfree(parser->device->collection);
159 		parser->device->collection = collection;
160 		parser->device->collection_size *= 2;
161 	}
162 
163 	parser->collection_stack[parser->collection_stack_ptr++] =
164 		parser->device->maxcollection;
165 
166 	collection_index = parser->device->maxcollection++;
167 	collection = parser->device->collection + collection_index;
168 	collection->type = type;
169 	collection->usage = usage;
170 	collection->level = parser->collection_stack_ptr - 1;
171 	collection->parent_idx = (collection->level == 0) ? -1 :
172 		parser->collection_stack[collection->level - 1];
173 
174 	if (type == HID_COLLECTION_APPLICATION)
175 		parser->device->maxapplication++;
176 
177 	return 0;
178 }
179 
180 /*
181  * Close a collection.
182  */
183 
184 static int close_collection(struct hid_parser *parser)
185 {
186 	if (!parser->collection_stack_ptr) {
187 		hid_err(parser->device, "collection stack underflow\n");
188 		return -EINVAL;
189 	}
190 	parser->collection_stack_ptr--;
191 	return 0;
192 }
193 
194 /*
195  * Climb up the stack, search for the specified collection type
196  * and return the usage.
197  */
198 
199 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200 {
201 	struct hid_collection *collection = parser->device->collection;
202 	int n;
203 
204 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205 		unsigned index = parser->collection_stack[n];
206 		if (collection[index].type == type)
207 			return collection[index].usage;
208 	}
209 	return 0; /* we know nothing about this usage type */
210 }
211 
212 /*
213  * Concatenate usage which defines 16 bits or less with the
214  * currently defined usage page to form a 32 bit usage
215  */
216 
217 static void complete_usage(struct hid_parser *parser, unsigned int index)
218 {
219 	parser->local.usage[index] &= 0xFFFF;
220 	parser->local.usage[index] |=
221 		(parser->global.usage_page & 0xFFFF) << 16;
222 }
223 
224 /*
225  * Add a usage to the temporary parser table.
226  */
227 
228 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229 {
230 	if (parser->local.usage_index >= HID_MAX_USAGES) {
231 		hid_err(parser->device, "usage index exceeded\n");
232 		return -1;
233 	}
234 	parser->local.usage[parser->local.usage_index] = usage;
235 
236 	/*
237 	 * If Usage item only includes usage id, concatenate it with
238 	 * currently defined usage page
239 	 */
240 	if (size <= 2)
241 		complete_usage(parser, parser->local.usage_index);
242 
243 	parser->local.usage_size[parser->local.usage_index] = size;
244 	parser->local.collection_index[parser->local.usage_index] =
245 		parser->collection_stack_ptr ?
246 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247 	parser->local.usage_index++;
248 	return 0;
249 }
250 
251 /*
252  * Register a new field for this report.
253  */
254 
255 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256 {
257 	struct hid_report *report;
258 	struct hid_field *field;
259 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
260 	unsigned int usages;
261 	unsigned int offset;
262 	unsigned int i;
263 	unsigned int application;
264 
265 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
266 
267 	report = hid_register_report(parser->device, report_type,
268 				     parser->global.report_id, application);
269 	if (!report) {
270 		hid_err(parser->device, "hid_register_report failed\n");
271 		return -1;
272 	}
273 
274 	/* Handle both signed and unsigned cases properly */
275 	if ((parser->global.logical_minimum < 0 &&
276 		parser->global.logical_maximum <
277 		parser->global.logical_minimum) ||
278 		(parser->global.logical_minimum >= 0 &&
279 		(__u32)parser->global.logical_maximum <
280 		(__u32)parser->global.logical_minimum)) {
281 		dbg_hid("logical range invalid 0x%x 0x%x\n",
282 			parser->global.logical_minimum,
283 			parser->global.logical_maximum);
284 		return -1;
285 	}
286 
287 	offset = report->size;
288 	report->size += parser->global.report_size * parser->global.report_count;
289 
290 	if (parser->device->ll_driver->max_buffer_size)
291 		max_buffer_size = parser->device->ll_driver->max_buffer_size;
292 
293 	/* Total size check: Allow for possible report index byte */
294 	if (report->size > (max_buffer_size - 1) << 3) {
295 		hid_err(parser->device, "report is too long\n");
296 		return -1;
297 	}
298 
299 	if (!parser->local.usage_index) /* Ignore padding fields */
300 		return 0;
301 
302 	usages = max_t(unsigned, parser->local.usage_index,
303 				 parser->global.report_count);
304 
305 	field = hid_register_field(report, usages);
306 	if (!field)
307 		return 0;
308 
309 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
310 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
311 	field->application = application;
312 
313 	for (i = 0; i < usages; i++) {
314 		unsigned j = i;
315 		/* Duplicate the last usage we parsed if we have excess values */
316 		if (i >= parser->local.usage_index)
317 			j = parser->local.usage_index - 1;
318 		field->usage[i].hid = parser->local.usage[j];
319 		field->usage[i].collection_index =
320 			parser->local.collection_index[j];
321 		field->usage[i].usage_index = i;
322 		field->usage[i].resolution_multiplier = 1;
323 	}
324 
325 	field->maxusage = usages;
326 	field->flags = flags;
327 	field->report_offset = offset;
328 	field->report_type = report_type;
329 	field->report_size = parser->global.report_size;
330 	field->report_count = parser->global.report_count;
331 	field->logical_minimum = parser->global.logical_minimum;
332 	field->logical_maximum = parser->global.logical_maximum;
333 	field->physical_minimum = parser->global.physical_minimum;
334 	field->physical_maximum = parser->global.physical_maximum;
335 	field->unit_exponent = parser->global.unit_exponent;
336 	field->unit = parser->global.unit;
337 
338 	return 0;
339 }
340 
341 /*
342  * Read data value from item.
343  */
344 
345 static u32 item_udata(struct hid_item *item)
346 {
347 	switch (item->size) {
348 	case 1: return item->data.u8;
349 	case 2: return item->data.u16;
350 	case 4: return item->data.u32;
351 	}
352 	return 0;
353 }
354 
355 static s32 item_sdata(struct hid_item *item)
356 {
357 	switch (item->size) {
358 	case 1: return item->data.s8;
359 	case 2: return item->data.s16;
360 	case 4: return item->data.s32;
361 	}
362 	return 0;
363 }
364 
365 /*
366  * Process a global item.
367  */
368 
369 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
370 {
371 	__s32 raw_value;
372 	switch (item->tag) {
373 	case HID_GLOBAL_ITEM_TAG_PUSH:
374 
375 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
376 			hid_err(parser->device, "global environment stack overflow\n");
377 			return -1;
378 		}
379 
380 		memcpy(parser->global_stack + parser->global_stack_ptr++,
381 			&parser->global, sizeof(struct hid_global));
382 		return 0;
383 
384 	case HID_GLOBAL_ITEM_TAG_POP:
385 
386 		if (!parser->global_stack_ptr) {
387 			hid_err(parser->device, "global environment stack underflow\n");
388 			return -1;
389 		}
390 
391 		memcpy(&parser->global, parser->global_stack +
392 			--parser->global_stack_ptr, sizeof(struct hid_global));
393 		return 0;
394 
395 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
396 		parser->global.usage_page = item_udata(item);
397 		return 0;
398 
399 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
400 		parser->global.logical_minimum = item_sdata(item);
401 		return 0;
402 
403 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
404 		if (parser->global.logical_minimum < 0)
405 			parser->global.logical_maximum = item_sdata(item);
406 		else
407 			parser->global.logical_maximum = item_udata(item);
408 		return 0;
409 
410 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
411 		parser->global.physical_minimum = item_sdata(item);
412 		return 0;
413 
414 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
415 		if (parser->global.physical_minimum < 0)
416 			parser->global.physical_maximum = item_sdata(item);
417 		else
418 			parser->global.physical_maximum = item_udata(item);
419 		return 0;
420 
421 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
422 		/* Many devices provide unit exponent as a two's complement
423 		 * nibble due to the common misunderstanding of HID
424 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
425 		 * both this and the standard encoding. */
426 		raw_value = item_sdata(item);
427 		if (!(raw_value & 0xfffffff0))
428 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
429 		else
430 			parser->global.unit_exponent = raw_value;
431 		return 0;
432 
433 	case HID_GLOBAL_ITEM_TAG_UNIT:
434 		parser->global.unit = item_udata(item);
435 		return 0;
436 
437 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
438 		parser->global.report_size = item_udata(item);
439 		if (parser->global.report_size > 256) {
440 			hid_err(parser->device, "invalid report_size %d\n",
441 					parser->global.report_size);
442 			return -1;
443 		}
444 		return 0;
445 
446 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
447 		parser->global.report_count = item_udata(item);
448 		if (parser->global.report_count > HID_MAX_USAGES) {
449 			hid_err(parser->device, "invalid report_count %d\n",
450 					parser->global.report_count);
451 			return -1;
452 		}
453 		return 0;
454 
455 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
456 		parser->global.report_id = item_udata(item);
457 		if (parser->global.report_id == 0 ||
458 		    parser->global.report_id >= HID_MAX_IDS) {
459 			hid_err(parser->device, "report_id %u is invalid\n",
460 				parser->global.report_id);
461 			return -1;
462 		}
463 		return 0;
464 
465 	default:
466 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
467 		return -1;
468 	}
469 }
470 
471 /*
472  * Process a local item.
473  */
474 
475 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
476 {
477 	__u32 data;
478 	unsigned n;
479 	__u32 count;
480 
481 	data = item_udata(item);
482 
483 	switch (item->tag) {
484 	case HID_LOCAL_ITEM_TAG_DELIMITER:
485 
486 		if (data) {
487 			/*
488 			 * We treat items before the first delimiter
489 			 * as global to all usage sets (branch 0).
490 			 * In the moment we process only these global
491 			 * items and the first delimiter set.
492 			 */
493 			if (parser->local.delimiter_depth != 0) {
494 				hid_err(parser->device, "nested delimiters\n");
495 				return -1;
496 			}
497 			parser->local.delimiter_depth++;
498 			parser->local.delimiter_branch++;
499 		} else {
500 			if (parser->local.delimiter_depth < 1) {
501 				hid_err(parser->device, "bogus close delimiter\n");
502 				return -1;
503 			}
504 			parser->local.delimiter_depth--;
505 		}
506 		return 0;
507 
508 	case HID_LOCAL_ITEM_TAG_USAGE:
509 
510 		if (parser->local.delimiter_branch > 1) {
511 			dbg_hid("alternative usage ignored\n");
512 			return 0;
513 		}
514 
515 		return hid_add_usage(parser, data, item->size);
516 
517 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
518 
519 		if (parser->local.delimiter_branch > 1) {
520 			dbg_hid("alternative usage ignored\n");
521 			return 0;
522 		}
523 
524 		parser->local.usage_minimum = data;
525 		return 0;
526 
527 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
528 
529 		if (parser->local.delimiter_branch > 1) {
530 			dbg_hid("alternative usage ignored\n");
531 			return 0;
532 		}
533 
534 		count = data - parser->local.usage_minimum;
535 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
536 			/*
537 			 * We do not warn if the name is not set, we are
538 			 * actually pre-scanning the device.
539 			 */
540 			if (dev_name(&parser->device->dev))
541 				hid_warn(parser->device,
542 					 "ignoring exceeding usage max\n");
543 			data = HID_MAX_USAGES - parser->local.usage_index +
544 				parser->local.usage_minimum - 1;
545 			if (data <= 0) {
546 				hid_err(parser->device,
547 					"no more usage index available\n");
548 				return -1;
549 			}
550 		}
551 
552 		for (n = parser->local.usage_minimum; n <= data; n++)
553 			if (hid_add_usage(parser, n, item->size)) {
554 				dbg_hid("hid_add_usage failed\n");
555 				return -1;
556 			}
557 		return 0;
558 
559 	default:
560 
561 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
562 		return 0;
563 	}
564 	return 0;
565 }
566 
567 /*
568  * Concatenate Usage Pages into Usages where relevant:
569  * As per specification, 6.2.2.8: "When the parser encounters a main item it
570  * concatenates the last declared Usage Page with a Usage to form a complete
571  * usage value."
572  */
573 
574 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
575 {
576 	int i;
577 	unsigned int usage_page;
578 	unsigned int current_page;
579 
580 	if (!parser->local.usage_index)
581 		return;
582 
583 	usage_page = parser->global.usage_page;
584 
585 	/*
586 	 * Concatenate usage page again only if last declared Usage Page
587 	 * has not been already used in previous usages concatenation
588 	 */
589 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
590 		if (parser->local.usage_size[i] > 2)
591 			/* Ignore extended usages */
592 			continue;
593 
594 		current_page = parser->local.usage[i] >> 16;
595 		if (current_page == usage_page)
596 			break;
597 
598 		complete_usage(parser, i);
599 	}
600 }
601 
602 /*
603  * Process a main item.
604  */
605 
606 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
607 {
608 	__u32 data;
609 	int ret;
610 
611 	hid_concatenate_last_usage_page(parser);
612 
613 	data = item_udata(item);
614 
615 	switch (item->tag) {
616 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
617 		ret = open_collection(parser, data & 0xff);
618 		break;
619 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
620 		ret = close_collection(parser);
621 		break;
622 	case HID_MAIN_ITEM_TAG_INPUT:
623 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
624 		break;
625 	case HID_MAIN_ITEM_TAG_OUTPUT:
626 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
627 		break;
628 	case HID_MAIN_ITEM_TAG_FEATURE:
629 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
630 		break;
631 	default:
632 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
633 		ret = 0;
634 	}
635 
636 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
637 
638 	return ret;
639 }
640 
641 /*
642  * Process a reserved item.
643  */
644 
645 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
646 {
647 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
648 	return 0;
649 }
650 
651 /*
652  * Free a report and all registered fields. The field->usage and
653  * field->value table's are allocated behind the field, so we need
654  * only to free(field) itself.
655  */
656 
657 static void hid_free_report(struct hid_report *report)
658 {
659 	unsigned n;
660 
661 	kfree(report->field_entries);
662 
663 	for (n = 0; n < report->maxfield; n++)
664 		kfree(report->field[n]);
665 	kfree(report);
666 }
667 
668 /*
669  * Close report. This function returns the device
670  * state to the point prior to hid_open_report().
671  */
672 static void hid_close_report(struct hid_device *device)
673 {
674 	unsigned i, j;
675 
676 	for (i = 0; i < HID_REPORT_TYPES; i++) {
677 		struct hid_report_enum *report_enum = device->report_enum + i;
678 
679 		for (j = 0; j < HID_MAX_IDS; j++) {
680 			struct hid_report *report = report_enum->report_id_hash[j];
681 			if (report)
682 				hid_free_report(report);
683 		}
684 		memset(report_enum, 0, sizeof(*report_enum));
685 		INIT_LIST_HEAD(&report_enum->report_list);
686 	}
687 
688 	kfree(device->rdesc);
689 	device->rdesc = NULL;
690 	device->rsize = 0;
691 
692 	kfree(device->collection);
693 	device->collection = NULL;
694 	device->collection_size = 0;
695 	device->maxcollection = 0;
696 	device->maxapplication = 0;
697 
698 	device->status &= ~HID_STAT_PARSED;
699 }
700 
701 /*
702  * Free a device structure, all reports, and all fields.
703  */
704 
705 static void hid_device_release(struct device *dev)
706 {
707 	struct hid_device *hid = to_hid_device(dev);
708 
709 	hid_close_report(hid);
710 	kfree(hid->dev_rdesc);
711 	kfree(hid);
712 }
713 
714 /*
715  * Fetch a report description item from the data stream. We support long
716  * items, though they are not used yet.
717  */
718 
719 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
720 {
721 	u8 b;
722 
723 	if ((end - start) <= 0)
724 		return NULL;
725 
726 	b = *start++;
727 
728 	item->type = (b >> 2) & 3;
729 	item->tag  = (b >> 4) & 15;
730 
731 	if (item->tag == HID_ITEM_TAG_LONG) {
732 
733 		item->format = HID_ITEM_FORMAT_LONG;
734 
735 		if ((end - start) < 2)
736 			return NULL;
737 
738 		item->size = *start++;
739 		item->tag  = *start++;
740 
741 		if ((end - start) < item->size)
742 			return NULL;
743 
744 		item->data.longdata = start;
745 		start += item->size;
746 		return start;
747 	}
748 
749 	item->format = HID_ITEM_FORMAT_SHORT;
750 	item->size = b & 3;
751 
752 	switch (item->size) {
753 	case 0:
754 		return start;
755 
756 	case 1:
757 		if ((end - start) < 1)
758 			return NULL;
759 		item->data.u8 = *start++;
760 		return start;
761 
762 	case 2:
763 		if ((end - start) < 2)
764 			return NULL;
765 		item->data.u16 = get_unaligned_le16(start);
766 		start = (__u8 *)((__le16 *)start + 1);
767 		return start;
768 
769 	case 3:
770 		item->size++;
771 		if ((end - start) < 4)
772 			return NULL;
773 		item->data.u32 = get_unaligned_le32(start);
774 		start = (__u8 *)((__le32 *)start + 1);
775 		return start;
776 	}
777 
778 	return NULL;
779 }
780 
781 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
782 {
783 	struct hid_device *hid = parser->device;
784 
785 	if (usage == HID_DG_CONTACTID)
786 		hid->group = HID_GROUP_MULTITOUCH;
787 }
788 
789 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
790 {
791 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
792 	    parser->global.report_size == 8)
793 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 
795 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
796 	    parser->global.report_size == 8)
797 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
798 }
799 
800 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
801 {
802 	struct hid_device *hid = parser->device;
803 	int i;
804 
805 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
806 	    (type == HID_COLLECTION_PHYSICAL ||
807 	     type == HID_COLLECTION_APPLICATION))
808 		hid->group = HID_GROUP_SENSOR_HUB;
809 
810 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
811 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
812 	    hid->group == HID_GROUP_MULTITOUCH)
813 		hid->group = HID_GROUP_GENERIC;
814 
815 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
816 		for (i = 0; i < parser->local.usage_index; i++)
817 			if (parser->local.usage[i] == HID_GD_POINTER)
818 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
819 
820 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
821 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
822 
823 	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
824 		for (i = 0; i < parser->local.usage_index; i++)
825 			if (parser->local.usage[i] ==
826 					(HID_UP_GOOGLEVENDOR | 0x0001))
827 				parser->device->group =
828 					HID_GROUP_VIVALDI;
829 }
830 
831 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
832 {
833 	__u32 data;
834 	int i;
835 
836 	hid_concatenate_last_usage_page(parser);
837 
838 	data = item_udata(item);
839 
840 	switch (item->tag) {
841 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
842 		hid_scan_collection(parser, data & 0xff);
843 		break;
844 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
845 		break;
846 	case HID_MAIN_ITEM_TAG_INPUT:
847 		/* ignore constant inputs, they will be ignored by hid-input */
848 		if (data & HID_MAIN_ITEM_CONSTANT)
849 			break;
850 		for (i = 0; i < parser->local.usage_index; i++)
851 			hid_scan_input_usage(parser, parser->local.usage[i]);
852 		break;
853 	case HID_MAIN_ITEM_TAG_OUTPUT:
854 		break;
855 	case HID_MAIN_ITEM_TAG_FEATURE:
856 		for (i = 0; i < parser->local.usage_index; i++)
857 			hid_scan_feature_usage(parser, parser->local.usage[i]);
858 		break;
859 	}
860 
861 	/* Reset the local parser environment */
862 	memset(&parser->local, 0, sizeof(parser->local));
863 
864 	return 0;
865 }
866 
867 /*
868  * Scan a report descriptor before the device is added to the bus.
869  * Sets device groups and other properties that determine what driver
870  * to load.
871  */
872 static int hid_scan_report(struct hid_device *hid)
873 {
874 	struct hid_parser *parser;
875 	struct hid_item item;
876 	__u8 *start = hid->dev_rdesc;
877 	__u8 *end = start + hid->dev_rsize;
878 	static int (*dispatch_type[])(struct hid_parser *parser,
879 				      struct hid_item *item) = {
880 		hid_scan_main,
881 		hid_parser_global,
882 		hid_parser_local,
883 		hid_parser_reserved
884 	};
885 
886 	parser = vzalloc(sizeof(struct hid_parser));
887 	if (!parser)
888 		return -ENOMEM;
889 
890 	parser->device = hid;
891 	hid->group = HID_GROUP_GENERIC;
892 
893 	/*
894 	 * The parsing is simpler than the one in hid_open_report() as we should
895 	 * be robust against hid errors. Those errors will be raised by
896 	 * hid_open_report() anyway.
897 	 */
898 	while ((start = fetch_item(start, end, &item)) != NULL)
899 		dispatch_type[item.type](parser, &item);
900 
901 	/*
902 	 * Handle special flags set during scanning.
903 	 */
904 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
905 	    (hid->group == HID_GROUP_MULTITOUCH))
906 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
907 
908 	/*
909 	 * Vendor specific handlings
910 	 */
911 	switch (hid->vendor) {
912 	case USB_VENDOR_ID_WACOM:
913 		hid->group = HID_GROUP_WACOM;
914 		break;
915 	case USB_VENDOR_ID_SYNAPTICS:
916 		if (hid->group == HID_GROUP_GENERIC)
917 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
918 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
919 				/*
920 				 * hid-rmi should take care of them,
921 				 * not hid-generic
922 				 */
923 				hid->group = HID_GROUP_RMI;
924 		break;
925 	}
926 
927 	kfree(parser->collection_stack);
928 	vfree(parser);
929 	return 0;
930 }
931 
932 /**
933  * hid_parse_report - parse device report
934  *
935  * @hid: hid device
936  * @start: report start
937  * @size: report size
938  *
939  * Allocate the device report as read by the bus driver. This function should
940  * only be called from parse() in ll drivers.
941  */
942 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
943 {
944 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
945 	if (!hid->dev_rdesc)
946 		return -ENOMEM;
947 	hid->dev_rsize = size;
948 	return 0;
949 }
950 EXPORT_SYMBOL_GPL(hid_parse_report);
951 
952 static const char * const hid_report_names[] = {
953 	"HID_INPUT_REPORT",
954 	"HID_OUTPUT_REPORT",
955 	"HID_FEATURE_REPORT",
956 };
957 /**
958  * hid_validate_values - validate existing device report's value indexes
959  *
960  * @hid: hid device
961  * @type: which report type to examine
962  * @id: which report ID to examine (0 for first)
963  * @field_index: which report field to examine
964  * @report_counts: expected number of values
965  *
966  * Validate the number of values in a given field of a given report, after
967  * parsing.
968  */
969 struct hid_report *hid_validate_values(struct hid_device *hid,
970 				       enum hid_report_type type, unsigned int id,
971 				       unsigned int field_index,
972 				       unsigned int report_counts)
973 {
974 	struct hid_report *report;
975 
976 	if (type > HID_FEATURE_REPORT) {
977 		hid_err(hid, "invalid HID report type %u\n", type);
978 		return NULL;
979 	}
980 
981 	if (id >= HID_MAX_IDS) {
982 		hid_err(hid, "invalid HID report id %u\n", id);
983 		return NULL;
984 	}
985 
986 	/*
987 	 * Explicitly not using hid_get_report() here since it depends on
988 	 * ->numbered being checked, which may not always be the case when
989 	 * drivers go to access report values.
990 	 */
991 	if (id == 0) {
992 		/*
993 		 * Validating on id 0 means we should examine the first
994 		 * report in the list.
995 		 */
996 		report = list_first_entry_or_null(
997 				&hid->report_enum[type].report_list,
998 				struct hid_report, list);
999 	} else {
1000 		report = hid->report_enum[type].report_id_hash[id];
1001 	}
1002 	if (!report) {
1003 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004 		return NULL;
1005 	}
1006 	if (report->maxfield <= field_index) {
1007 		hid_err(hid, "not enough fields in %s %u\n",
1008 			hid_report_names[type], id);
1009 		return NULL;
1010 	}
1011 	if (report->field[field_index]->report_count < report_counts) {
1012 		hid_err(hid, "not enough values in %s %u field %u\n",
1013 			hid_report_names[type], id, field_index);
1014 		return NULL;
1015 	}
1016 	return report;
1017 }
1018 EXPORT_SYMBOL_GPL(hid_validate_values);
1019 
1020 static int hid_calculate_multiplier(struct hid_device *hid,
1021 				     struct hid_field *multiplier)
1022 {
1023 	int m;
1024 	__s32 v = *multiplier->value;
1025 	__s32 lmin = multiplier->logical_minimum;
1026 	__s32 lmax = multiplier->logical_maximum;
1027 	__s32 pmin = multiplier->physical_minimum;
1028 	__s32 pmax = multiplier->physical_maximum;
1029 
1030 	/*
1031 	 * "Because OS implementations will generally divide the control's
1032 	 * reported count by the Effective Resolution Multiplier, designers
1033 	 * should take care not to establish a potential Effective
1034 	 * Resolution Multiplier of zero."
1035 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1036 	 */
1037 	if (lmax - lmin == 0)
1038 		return 1;
1039 	/*
1040 	 * Handling the unit exponent is left as an exercise to whoever
1041 	 * finds a device where that exponent is not 0.
1042 	 */
1043 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044 	if (unlikely(multiplier->unit_exponent != 0)) {
1045 		hid_warn(hid,
1046 			 "unsupported Resolution Multiplier unit exponent %d\n",
1047 			 multiplier->unit_exponent);
1048 	}
1049 
1050 	/* There are no devices with an effective multiplier > 255 */
1051 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1052 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053 		m = 1;
1054 	}
1055 
1056 	return m;
1057 }
1058 
1059 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060 					  struct hid_field *field,
1061 					  struct hid_collection *multiplier_collection,
1062 					  int effective_multiplier)
1063 {
1064 	struct hid_collection *collection;
1065 	struct hid_usage *usage;
1066 	int i;
1067 
1068 	/*
1069 	 * If multiplier_collection is NULL, the multiplier applies
1070 	 * to all fields in the report.
1071 	 * Otherwise, it is the Logical Collection the multiplier applies to
1072 	 * but our field may be in a subcollection of that collection.
1073 	 */
1074 	for (i = 0; i < field->maxusage; i++) {
1075 		usage = &field->usage[i];
1076 
1077 		collection = &hid->collection[usage->collection_index];
1078 		while (collection->parent_idx != -1 &&
1079 		       collection != multiplier_collection)
1080 			collection = &hid->collection[collection->parent_idx];
1081 
1082 		if (collection->parent_idx != -1 ||
1083 		    multiplier_collection == NULL)
1084 			usage->resolution_multiplier = effective_multiplier;
1085 
1086 	}
1087 }
1088 
1089 static void hid_apply_multiplier(struct hid_device *hid,
1090 				 struct hid_field *multiplier)
1091 {
1092 	struct hid_report_enum *rep_enum;
1093 	struct hid_report *rep;
1094 	struct hid_field *field;
1095 	struct hid_collection *multiplier_collection;
1096 	int effective_multiplier;
1097 	int i;
1098 
1099 	/*
1100 	 * "The Resolution Multiplier control must be contained in the same
1101 	 * Logical Collection as the control(s) to which it is to be applied.
1102 	 * If no Resolution Multiplier is defined, then the Resolution
1103 	 * Multiplier defaults to 1.  If more than one control exists in a
1104 	 * Logical Collection, the Resolution Multiplier is associated with
1105 	 * all controls in the collection. If no Logical Collection is
1106 	 * defined, the Resolution Multiplier is associated with all
1107 	 * controls in the report."
1108 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1109 	 *
1110 	 * Thus, search from the current collection upwards until we find a
1111 	 * logical collection. Then search all fields for that same parent
1112 	 * collection. Those are the fields the multiplier applies to.
1113 	 *
1114 	 * If we have more than one multiplier, it will overwrite the
1115 	 * applicable fields later.
1116 	 */
1117 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118 	while (multiplier_collection->parent_idx != -1 &&
1119 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121 
1122 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123 
1124 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1126 		for (i = 0; i < rep->maxfield; i++) {
1127 			field = rep->field[i];
1128 			hid_apply_multiplier_to_field(hid, field,
1129 						      multiplier_collection,
1130 						      effective_multiplier);
1131 		}
1132 	}
1133 }
1134 
1135 /*
1136  * hid_setup_resolution_multiplier - set up all resolution multipliers
1137  *
1138  * @device: hid device
1139  *
1140  * Search for all Resolution Multiplier Feature Reports and apply their
1141  * value to all matching Input items. This only updates the internal struct
1142  * fields.
1143  *
1144  * The Resolution Multiplier is applied by the hardware. If the multiplier
1145  * is anything other than 1, the hardware will send pre-multiplied events
1146  * so that the same physical interaction generates an accumulated
1147  *	accumulated_value = value * * multiplier
1148  * This may be achieved by sending
1149  * - "value * multiplier" for each event, or
1150  * - "value" but "multiplier" times as frequently, or
1151  * - a combination of the above
1152  * The only guarantee is that the same physical interaction always generates
1153  * an accumulated 'value * multiplier'.
1154  *
1155  * This function must be called before any event processing and after
1156  * any SetRequest to the Resolution Multiplier.
1157  */
1158 void hid_setup_resolution_multiplier(struct hid_device *hid)
1159 {
1160 	struct hid_report_enum *rep_enum;
1161 	struct hid_report *rep;
1162 	struct hid_usage *usage;
1163 	int i, j;
1164 
1165 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 		for (i = 0; i < rep->maxfield; i++) {
1168 			/* Ignore if report count is out of bounds. */
1169 			if (rep->field[i]->report_count < 1)
1170 				continue;
1171 
1172 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1173 				usage = &rep->field[i]->usage[j];
1174 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175 					hid_apply_multiplier(hid,
1176 							     rep->field[i]);
1177 			}
1178 		}
1179 	}
1180 }
1181 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182 
1183 /**
1184  * hid_open_report - open a driver-specific device report
1185  *
1186  * @device: hid device
1187  *
1188  * Parse a report description into a hid_device structure. Reports are
1189  * enumerated, fields are attached to these reports.
1190  * 0 returned on success, otherwise nonzero error value.
1191  *
1192  * This function (or the equivalent hid_parse() macro) should only be
1193  * called from probe() in drivers, before starting the device.
1194  */
1195 int hid_open_report(struct hid_device *device)
1196 {
1197 	struct hid_parser *parser;
1198 	struct hid_item item;
1199 	unsigned int size;
1200 	__u8 *start;
1201 	__u8 *buf;
1202 	__u8 *end;
1203 	__u8 *next;
1204 	int ret;
1205 	int i;
1206 	static int (*dispatch_type[])(struct hid_parser *parser,
1207 				      struct hid_item *item) = {
1208 		hid_parser_main,
1209 		hid_parser_global,
1210 		hid_parser_local,
1211 		hid_parser_reserved
1212 	};
1213 
1214 	if (WARN_ON(device->status & HID_STAT_PARSED))
1215 		return -EBUSY;
1216 
1217 	start = device->dev_rdesc;
1218 	if (WARN_ON(!start))
1219 		return -ENODEV;
1220 	size = device->dev_rsize;
1221 
1222 	/* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1223 	buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1224 	if (buf == NULL)
1225 		return -ENOMEM;
1226 
1227 	if (device->driver->report_fixup)
1228 		start = device->driver->report_fixup(device, buf, &size);
1229 	else
1230 		start = buf;
1231 
1232 	start = kmemdup(start, size, GFP_KERNEL);
1233 	kfree(buf);
1234 	if (start == NULL)
1235 		return -ENOMEM;
1236 
1237 	device->rdesc = start;
1238 	device->rsize = size;
1239 
1240 	parser = vzalloc(sizeof(struct hid_parser));
1241 	if (!parser) {
1242 		ret = -ENOMEM;
1243 		goto alloc_err;
1244 	}
1245 
1246 	parser->device = device;
1247 
1248 	end = start + size;
1249 
1250 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1251 				     sizeof(struct hid_collection), GFP_KERNEL);
1252 	if (!device->collection) {
1253 		ret = -ENOMEM;
1254 		goto err;
1255 	}
1256 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1257 	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1258 		device->collection[i].parent_idx = -1;
1259 
1260 	ret = -EINVAL;
1261 	while ((next = fetch_item(start, end, &item)) != NULL) {
1262 		start = next;
1263 
1264 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1265 			hid_err(device, "unexpected long global item\n");
1266 			goto err;
1267 		}
1268 
1269 		if (dispatch_type[item.type](parser, &item)) {
1270 			hid_err(device, "item %u %u %u %u parsing failed\n",
1271 				item.format, (unsigned)item.size,
1272 				(unsigned)item.type, (unsigned)item.tag);
1273 			goto err;
1274 		}
1275 
1276 		if (start == end) {
1277 			if (parser->collection_stack_ptr) {
1278 				hid_err(device, "unbalanced collection at end of report description\n");
1279 				goto err;
1280 			}
1281 			if (parser->local.delimiter_depth) {
1282 				hid_err(device, "unbalanced delimiter at end of report description\n");
1283 				goto err;
1284 			}
1285 
1286 			/*
1287 			 * fetch initial values in case the device's
1288 			 * default multiplier isn't the recommended 1
1289 			 */
1290 			hid_setup_resolution_multiplier(device);
1291 
1292 			kfree(parser->collection_stack);
1293 			vfree(parser);
1294 			device->status |= HID_STAT_PARSED;
1295 
1296 			return 0;
1297 		}
1298 	}
1299 
1300 	hid_err(device, "item fetching failed at offset %u/%u\n",
1301 		size - (unsigned int)(end - start), size);
1302 err:
1303 	kfree(parser->collection_stack);
1304 alloc_err:
1305 	vfree(parser);
1306 	hid_close_report(device);
1307 	return ret;
1308 }
1309 EXPORT_SYMBOL_GPL(hid_open_report);
1310 
1311 /*
1312  * Convert a signed n-bit integer to signed 32-bit integer. Common
1313  * cases are done through the compiler, the screwed things has to be
1314  * done by hand.
1315  */
1316 
1317 static s32 snto32(__u32 value, unsigned n)
1318 {
1319 	if (!value || !n)
1320 		return 0;
1321 
1322 	if (n > 32)
1323 		n = 32;
1324 
1325 	switch (n) {
1326 	case 8:  return ((__s8)value);
1327 	case 16: return ((__s16)value);
1328 	case 32: return ((__s32)value);
1329 	}
1330 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1331 }
1332 
1333 s32 hid_snto32(__u32 value, unsigned n)
1334 {
1335 	return snto32(value, n);
1336 }
1337 EXPORT_SYMBOL_GPL(hid_snto32);
1338 
1339 /*
1340  * Convert a signed 32-bit integer to a signed n-bit integer.
1341  */
1342 
1343 static u32 s32ton(__s32 value, unsigned n)
1344 {
1345 	s32 a = value >> (n - 1);
1346 	if (a && a != -1)
1347 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1348 	return value & ((1 << n) - 1);
1349 }
1350 
1351 /*
1352  * Extract/implement a data field from/to a little endian report (bit array).
1353  *
1354  * Code sort-of follows HID spec:
1355  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1356  *
1357  * While the USB HID spec allows unlimited length bit fields in "report
1358  * descriptors", most devices never use more than 16 bits.
1359  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1360  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1361  */
1362 
1363 static u32 __extract(u8 *report, unsigned offset, int n)
1364 {
1365 	unsigned int idx = offset / 8;
1366 	unsigned int bit_nr = 0;
1367 	unsigned int bit_shift = offset % 8;
1368 	int bits_to_copy = 8 - bit_shift;
1369 	u32 value = 0;
1370 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1371 
1372 	while (n > 0) {
1373 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1374 		n -= bits_to_copy;
1375 		bit_nr += bits_to_copy;
1376 		bits_to_copy = 8;
1377 		bit_shift = 0;
1378 		idx++;
1379 	}
1380 
1381 	return value & mask;
1382 }
1383 
1384 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1385 			unsigned offset, unsigned n)
1386 {
1387 	if (n > 32) {
1388 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1389 			      __func__, n, current->comm);
1390 		n = 32;
1391 	}
1392 
1393 	return __extract(report, offset, n);
1394 }
1395 EXPORT_SYMBOL_GPL(hid_field_extract);
1396 
1397 /*
1398  * "implement" : set bits in a little endian bit stream.
1399  * Same concepts as "extract" (see comments above).
1400  * The data mangled in the bit stream remains in little endian
1401  * order the whole time. It make more sense to talk about
1402  * endianness of register values by considering a register
1403  * a "cached" copy of the little endian bit stream.
1404  */
1405 
1406 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1407 {
1408 	unsigned int idx = offset / 8;
1409 	unsigned int bit_shift = offset % 8;
1410 	int bits_to_set = 8 - bit_shift;
1411 
1412 	while (n - bits_to_set >= 0) {
1413 		report[idx] &= ~(0xff << bit_shift);
1414 		report[idx] |= value << bit_shift;
1415 		value >>= bits_to_set;
1416 		n -= bits_to_set;
1417 		bits_to_set = 8;
1418 		bit_shift = 0;
1419 		idx++;
1420 	}
1421 
1422 	/* last nibble */
1423 	if (n) {
1424 		u8 bit_mask = ((1U << n) - 1);
1425 		report[idx] &= ~(bit_mask << bit_shift);
1426 		report[idx] |= value << bit_shift;
1427 	}
1428 }
1429 
1430 static void implement(const struct hid_device *hid, u8 *report,
1431 		      unsigned offset, unsigned n, u32 value)
1432 {
1433 	if (unlikely(n > 32)) {
1434 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1435 			 __func__, n, current->comm);
1436 		n = 32;
1437 	} else if (n < 32) {
1438 		u32 m = (1U << n) - 1;
1439 
1440 		if (unlikely(value > m)) {
1441 			hid_warn(hid,
1442 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1443 				 __func__, value, n, current->comm);
1444 			WARN_ON(1);
1445 			value &= m;
1446 		}
1447 	}
1448 
1449 	__implement(report, offset, n, value);
1450 }
1451 
1452 /*
1453  * Search an array for a value.
1454  */
1455 
1456 static int search(__s32 *array, __s32 value, unsigned n)
1457 {
1458 	while (n--) {
1459 		if (*array++ == value)
1460 			return 0;
1461 	}
1462 	return -1;
1463 }
1464 
1465 /**
1466  * hid_match_report - check if driver's raw_event should be called
1467  *
1468  * @hid: hid device
1469  * @report: hid report to match against
1470  *
1471  * compare hid->driver->report_table->report_type to report->type
1472  */
1473 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1474 {
1475 	const struct hid_report_id *id = hid->driver->report_table;
1476 
1477 	if (!id) /* NULL means all */
1478 		return 1;
1479 
1480 	for (; id->report_type != HID_TERMINATOR; id++)
1481 		if (id->report_type == HID_ANY_ID ||
1482 				id->report_type == report->type)
1483 			return 1;
1484 	return 0;
1485 }
1486 
1487 /**
1488  * hid_match_usage - check if driver's event should be called
1489  *
1490  * @hid: hid device
1491  * @usage: usage to match against
1492  *
1493  * compare hid->driver->usage_table->usage_{type,code} to
1494  * usage->usage_{type,code}
1495  */
1496 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1497 {
1498 	const struct hid_usage_id *id = hid->driver->usage_table;
1499 
1500 	if (!id) /* NULL means all */
1501 		return 1;
1502 
1503 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1504 		if ((id->usage_hid == HID_ANY_ID ||
1505 				id->usage_hid == usage->hid) &&
1506 				(id->usage_type == HID_ANY_ID ||
1507 				id->usage_type == usage->type) &&
1508 				(id->usage_code == HID_ANY_ID ||
1509 				 id->usage_code == usage->code))
1510 			return 1;
1511 	return 0;
1512 }
1513 
1514 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1515 		struct hid_usage *usage, __s32 value, int interrupt)
1516 {
1517 	struct hid_driver *hdrv = hid->driver;
1518 	int ret;
1519 
1520 	if (!list_empty(&hid->debug_list))
1521 		hid_dump_input(hid, usage, value);
1522 
1523 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1524 		ret = hdrv->event(hid, field, usage, value);
1525 		if (ret != 0) {
1526 			if (ret < 0)
1527 				hid_err(hid, "%s's event failed with %d\n",
1528 						hdrv->name, ret);
1529 			return;
1530 		}
1531 	}
1532 
1533 	if (hid->claimed & HID_CLAIMED_INPUT)
1534 		hidinput_hid_event(hid, field, usage, value);
1535 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1536 		hid->hiddev_hid_event(hid, field, usage, value);
1537 }
1538 
1539 /*
1540  * Checks if the given value is valid within this field
1541  */
1542 static inline int hid_array_value_is_valid(struct hid_field *field,
1543 					   __s32 value)
1544 {
1545 	__s32 min = field->logical_minimum;
1546 
1547 	/*
1548 	 * Value needs to be between logical min and max, and
1549 	 * (value - min) is used as an index in the usage array.
1550 	 * This array is of size field->maxusage
1551 	 */
1552 	return value >= min &&
1553 	       value <= field->logical_maximum &&
1554 	       value - min < field->maxusage;
1555 }
1556 
1557 /*
1558  * Fetch the field from the data. The field content is stored for next
1559  * report processing (we do differential reporting to the layer).
1560  */
1561 static void hid_input_fetch_field(struct hid_device *hid,
1562 				  struct hid_field *field,
1563 				  __u8 *data)
1564 {
1565 	unsigned n;
1566 	unsigned count = field->report_count;
1567 	unsigned offset = field->report_offset;
1568 	unsigned size = field->report_size;
1569 	__s32 min = field->logical_minimum;
1570 	__s32 *value;
1571 
1572 	value = field->new_value;
1573 	memset(value, 0, count * sizeof(__s32));
1574 	field->ignored = false;
1575 
1576 	for (n = 0; n < count; n++) {
1577 
1578 		value[n] = min < 0 ?
1579 			snto32(hid_field_extract(hid, data, offset + n * size,
1580 			       size), size) :
1581 			hid_field_extract(hid, data, offset + n * size, size);
1582 
1583 		/* Ignore report if ErrorRollOver */
1584 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1585 		    hid_array_value_is_valid(field, value[n]) &&
1586 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1587 			field->ignored = true;
1588 			return;
1589 		}
1590 	}
1591 }
1592 
1593 /*
1594  * Process a received variable field.
1595  */
1596 
1597 static void hid_input_var_field(struct hid_device *hid,
1598 				struct hid_field *field,
1599 				int interrupt)
1600 {
1601 	unsigned int count = field->report_count;
1602 	__s32 *value = field->new_value;
1603 	unsigned int n;
1604 
1605 	for (n = 0; n < count; n++)
1606 		hid_process_event(hid,
1607 				  field,
1608 				  &field->usage[n],
1609 				  value[n],
1610 				  interrupt);
1611 
1612 	memcpy(field->value, value, count * sizeof(__s32));
1613 }
1614 
1615 /*
1616  * Process a received array field. The field content is stored for
1617  * next report processing (we do differential reporting to the layer).
1618  */
1619 
1620 static void hid_input_array_field(struct hid_device *hid,
1621 				  struct hid_field *field,
1622 				  int interrupt)
1623 {
1624 	unsigned int n;
1625 	unsigned int count = field->report_count;
1626 	__s32 min = field->logical_minimum;
1627 	__s32 *value;
1628 
1629 	value = field->new_value;
1630 
1631 	/* ErrorRollOver */
1632 	if (field->ignored)
1633 		return;
1634 
1635 	for (n = 0; n < count; n++) {
1636 		if (hid_array_value_is_valid(field, field->value[n]) &&
1637 		    search(value, field->value[n], count))
1638 			hid_process_event(hid,
1639 					  field,
1640 					  &field->usage[field->value[n] - min],
1641 					  0,
1642 					  interrupt);
1643 
1644 		if (hid_array_value_is_valid(field, value[n]) &&
1645 		    search(field->value, value[n], count))
1646 			hid_process_event(hid,
1647 					  field,
1648 					  &field->usage[value[n] - min],
1649 					  1,
1650 					  interrupt);
1651 	}
1652 
1653 	memcpy(field->value, value, count * sizeof(__s32));
1654 }
1655 
1656 /*
1657  * Analyse a received report, and fetch the data from it. The field
1658  * content is stored for next report processing (we do differential
1659  * reporting to the layer).
1660  */
1661 static void hid_process_report(struct hid_device *hid,
1662 			       struct hid_report *report,
1663 			       __u8 *data,
1664 			       int interrupt)
1665 {
1666 	unsigned int a;
1667 	struct hid_field_entry *entry;
1668 	struct hid_field *field;
1669 
1670 	/* first retrieve all incoming values in data */
1671 	for (a = 0; a < report->maxfield; a++)
1672 		hid_input_fetch_field(hid, report->field[a], data);
1673 
1674 	if (!list_empty(&report->field_entry_list)) {
1675 		/* INPUT_REPORT, we have a priority list of fields */
1676 		list_for_each_entry(entry,
1677 				    &report->field_entry_list,
1678 				    list) {
1679 			field = entry->field;
1680 
1681 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1682 				hid_process_event(hid,
1683 						  field,
1684 						  &field->usage[entry->index],
1685 						  field->new_value[entry->index],
1686 						  interrupt);
1687 			else
1688 				hid_input_array_field(hid, field, interrupt);
1689 		}
1690 
1691 		/* we need to do the memcpy at the end for var items */
1692 		for (a = 0; a < report->maxfield; a++) {
1693 			field = report->field[a];
1694 
1695 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1696 				memcpy(field->value, field->new_value,
1697 				       field->report_count * sizeof(__s32));
1698 		}
1699 	} else {
1700 		/* FEATURE_REPORT, regular processing */
1701 		for (a = 0; a < report->maxfield; a++) {
1702 			field = report->field[a];
1703 
1704 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1705 				hid_input_var_field(hid, field, interrupt);
1706 			else
1707 				hid_input_array_field(hid, field, interrupt);
1708 		}
1709 	}
1710 }
1711 
1712 /*
1713  * Insert a given usage_index in a field in the list
1714  * of processed usages in the report.
1715  *
1716  * The elements of lower priority score are processed
1717  * first.
1718  */
1719 static void __hid_insert_field_entry(struct hid_device *hid,
1720 				     struct hid_report *report,
1721 				     struct hid_field_entry *entry,
1722 				     struct hid_field *field,
1723 				     unsigned int usage_index)
1724 {
1725 	struct hid_field_entry *next;
1726 
1727 	entry->field = field;
1728 	entry->index = usage_index;
1729 	entry->priority = field->usages_priorities[usage_index];
1730 
1731 	/* insert the element at the correct position */
1732 	list_for_each_entry(next,
1733 			    &report->field_entry_list,
1734 			    list) {
1735 		/*
1736 		 * the priority of our element is strictly higher
1737 		 * than the next one, insert it before
1738 		 */
1739 		if (entry->priority > next->priority) {
1740 			list_add_tail(&entry->list, &next->list);
1741 			return;
1742 		}
1743 	}
1744 
1745 	/* lowest priority score: insert at the end */
1746 	list_add_tail(&entry->list, &report->field_entry_list);
1747 }
1748 
1749 static void hid_report_process_ordering(struct hid_device *hid,
1750 					struct hid_report *report)
1751 {
1752 	struct hid_field *field;
1753 	struct hid_field_entry *entries;
1754 	unsigned int a, u, usages;
1755 	unsigned int count = 0;
1756 
1757 	/* count the number of individual fields in the report */
1758 	for (a = 0; a < report->maxfield; a++) {
1759 		field = report->field[a];
1760 
1761 		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1762 			count += field->report_count;
1763 		else
1764 			count++;
1765 	}
1766 
1767 	/* allocate the memory to process the fields */
1768 	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1769 	if (!entries)
1770 		return;
1771 
1772 	report->field_entries = entries;
1773 
1774 	/*
1775 	 * walk through all fields in the report and
1776 	 * store them by priority order in report->field_entry_list
1777 	 *
1778 	 * - Var elements are individualized (field + usage_index)
1779 	 * - Arrays are taken as one, we can not chose an order for them
1780 	 */
1781 	usages = 0;
1782 	for (a = 0; a < report->maxfield; a++) {
1783 		field = report->field[a];
1784 
1785 		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1786 			for (u = 0; u < field->report_count; u++) {
1787 				__hid_insert_field_entry(hid, report,
1788 							 &entries[usages],
1789 							 field, u);
1790 				usages++;
1791 			}
1792 		} else {
1793 			__hid_insert_field_entry(hid, report, &entries[usages],
1794 						 field, 0);
1795 			usages++;
1796 		}
1797 	}
1798 }
1799 
1800 static void hid_process_ordering(struct hid_device *hid)
1801 {
1802 	struct hid_report *report;
1803 	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1804 
1805 	list_for_each_entry(report, &report_enum->report_list, list)
1806 		hid_report_process_ordering(hid, report);
1807 }
1808 
1809 /*
1810  * Output the field into the report.
1811  */
1812 
1813 static void hid_output_field(const struct hid_device *hid,
1814 			     struct hid_field *field, __u8 *data)
1815 {
1816 	unsigned count = field->report_count;
1817 	unsigned offset = field->report_offset;
1818 	unsigned size = field->report_size;
1819 	unsigned n;
1820 
1821 	for (n = 0; n < count; n++) {
1822 		if (field->logical_minimum < 0)	/* signed values */
1823 			implement(hid, data, offset + n * size, size,
1824 				  s32ton(field->value[n], size));
1825 		else				/* unsigned values */
1826 			implement(hid, data, offset + n * size, size,
1827 				  field->value[n]);
1828 	}
1829 }
1830 
1831 /*
1832  * Compute the size of a report.
1833  */
1834 static size_t hid_compute_report_size(struct hid_report *report)
1835 {
1836 	if (report->size)
1837 		return ((report->size - 1) >> 3) + 1;
1838 
1839 	return 0;
1840 }
1841 
1842 /*
1843  * Create a report. 'data' has to be allocated using
1844  * hid_alloc_report_buf() so that it has proper size.
1845  */
1846 
1847 void hid_output_report(struct hid_report *report, __u8 *data)
1848 {
1849 	unsigned n;
1850 
1851 	if (report->id > 0)
1852 		*data++ = report->id;
1853 
1854 	memset(data, 0, hid_compute_report_size(report));
1855 	for (n = 0; n < report->maxfield; n++)
1856 		hid_output_field(report->device, report->field[n], data);
1857 }
1858 EXPORT_SYMBOL_GPL(hid_output_report);
1859 
1860 /*
1861  * Allocator for buffer that is going to be passed to hid_output_report()
1862  */
1863 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1864 {
1865 	/*
1866 	 * 7 extra bytes are necessary to achieve proper functionality
1867 	 * of implement() working on 8 byte chunks
1868 	 */
1869 
1870 	u32 len = hid_report_len(report) + 7;
1871 
1872 	return kmalloc(len, flags);
1873 }
1874 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1875 
1876 /*
1877  * Set a field value. The report this field belongs to has to be
1878  * created and transferred to the device, to set this value in the
1879  * device.
1880  */
1881 
1882 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1883 {
1884 	unsigned size;
1885 
1886 	if (!field)
1887 		return -1;
1888 
1889 	size = field->report_size;
1890 
1891 	hid_dump_input(field->report->device, field->usage + offset, value);
1892 
1893 	if (offset >= field->report_count) {
1894 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1895 				offset, field->report_count);
1896 		return -1;
1897 	}
1898 	if (field->logical_minimum < 0) {
1899 		if (value != snto32(s32ton(value, size), size)) {
1900 			hid_err(field->report->device, "value %d is out of range\n", value);
1901 			return -1;
1902 		}
1903 	}
1904 	field->value[offset] = value;
1905 	return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(hid_set_field);
1908 
1909 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1910 		const u8 *data)
1911 {
1912 	struct hid_report *report;
1913 	unsigned int n = 0;	/* Normally report number is 0 */
1914 
1915 	/* Device uses numbered reports, data[0] is report number */
1916 	if (report_enum->numbered)
1917 		n = *data;
1918 
1919 	report = report_enum->report_id_hash[n];
1920 	if (report == NULL)
1921 		dbg_hid("undefined report_id %u received\n", n);
1922 
1923 	return report;
1924 }
1925 
1926 /*
1927  * Implement a generic .request() callback, using .raw_request()
1928  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1929  */
1930 int __hid_request(struct hid_device *hid, struct hid_report *report,
1931 		enum hid_class_request reqtype)
1932 {
1933 	char *buf;
1934 	int ret;
1935 	u32 len;
1936 
1937 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1938 	if (!buf)
1939 		return -ENOMEM;
1940 
1941 	len = hid_report_len(report);
1942 
1943 	if (reqtype == HID_REQ_SET_REPORT)
1944 		hid_output_report(report, buf);
1945 
1946 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1947 					  report->type, reqtype);
1948 	if (ret < 0) {
1949 		dbg_hid("unable to complete request: %d\n", ret);
1950 		goto out;
1951 	}
1952 
1953 	if (reqtype == HID_REQ_GET_REPORT)
1954 		hid_input_report(hid, report->type, buf, ret, 0);
1955 
1956 	ret = 0;
1957 
1958 out:
1959 	kfree(buf);
1960 	return ret;
1961 }
1962 EXPORT_SYMBOL_GPL(__hid_request);
1963 
1964 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1965 			 int interrupt)
1966 {
1967 	struct hid_report_enum *report_enum = hid->report_enum + type;
1968 	struct hid_report *report;
1969 	struct hid_driver *hdrv;
1970 	int max_buffer_size = HID_MAX_BUFFER_SIZE;
1971 	u32 rsize, csize = size;
1972 	u8 *cdata = data;
1973 	int ret = 0;
1974 
1975 	report = hid_get_report(report_enum, data);
1976 	if (!report)
1977 		goto out;
1978 
1979 	if (report_enum->numbered) {
1980 		cdata++;
1981 		csize--;
1982 	}
1983 
1984 	rsize = hid_compute_report_size(report);
1985 
1986 	if (hid->ll_driver->max_buffer_size)
1987 		max_buffer_size = hid->ll_driver->max_buffer_size;
1988 
1989 	if (report_enum->numbered && rsize >= max_buffer_size)
1990 		rsize = max_buffer_size - 1;
1991 	else if (rsize > max_buffer_size)
1992 		rsize = max_buffer_size;
1993 
1994 	if (csize < rsize) {
1995 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1996 				csize, rsize);
1997 		memset(cdata + csize, 0, rsize - csize);
1998 	}
1999 
2000 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2001 		hid->hiddev_report_event(hid, report);
2002 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
2003 		ret = hidraw_report_event(hid, data, size);
2004 		if (ret)
2005 			goto out;
2006 	}
2007 
2008 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2009 		hid_process_report(hid, report, cdata, interrupt);
2010 		hdrv = hid->driver;
2011 		if (hdrv && hdrv->report)
2012 			hdrv->report(hid, report);
2013 	}
2014 
2015 	if (hid->claimed & HID_CLAIMED_INPUT)
2016 		hidinput_report_event(hid, report);
2017 out:
2018 	return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2021 
2022 /**
2023  * hid_input_report - report data from lower layer (usb, bt...)
2024  *
2025  * @hid: hid device
2026  * @type: HID report type (HID_*_REPORT)
2027  * @data: report contents
2028  * @size: size of data parameter
2029  * @interrupt: distinguish between interrupt and control transfers
2030  *
2031  * This is data entry for lower layers.
2032  */
2033 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2034 		     int interrupt)
2035 {
2036 	struct hid_report_enum *report_enum;
2037 	struct hid_driver *hdrv;
2038 	struct hid_report *report;
2039 	int ret = 0;
2040 
2041 	if (!hid)
2042 		return -ENODEV;
2043 
2044 	if (down_trylock(&hid->driver_input_lock))
2045 		return -EBUSY;
2046 
2047 	if (!hid->driver) {
2048 		ret = -ENODEV;
2049 		goto unlock;
2050 	}
2051 	report_enum = hid->report_enum + type;
2052 	hdrv = hid->driver;
2053 
2054 	data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2055 	if (IS_ERR(data)) {
2056 		ret = PTR_ERR(data);
2057 		goto unlock;
2058 	}
2059 
2060 	if (!size) {
2061 		dbg_hid("empty report\n");
2062 		ret = -1;
2063 		goto unlock;
2064 	}
2065 
2066 	/* Avoid unnecessary overhead if debugfs is disabled */
2067 	if (!list_empty(&hid->debug_list))
2068 		hid_dump_report(hid, type, data, size);
2069 
2070 	report = hid_get_report(report_enum, data);
2071 
2072 	if (!report) {
2073 		ret = -1;
2074 		goto unlock;
2075 	}
2076 
2077 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2078 		ret = hdrv->raw_event(hid, report, data, size);
2079 		if (ret < 0)
2080 			goto unlock;
2081 	}
2082 
2083 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2084 
2085 unlock:
2086 	up(&hid->driver_input_lock);
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL_GPL(hid_input_report);
2090 
2091 bool hid_match_one_id(const struct hid_device *hdev,
2092 		      const struct hid_device_id *id)
2093 {
2094 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2095 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2096 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2097 		(id->product == HID_ANY_ID || id->product == hdev->product);
2098 }
2099 
2100 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2101 		const struct hid_device_id *id)
2102 {
2103 	for (; id->bus; id++)
2104 		if (hid_match_one_id(hdev, id))
2105 			return id;
2106 
2107 	return NULL;
2108 }
2109 EXPORT_SYMBOL_GPL(hid_match_id);
2110 
2111 static const struct hid_device_id hid_hiddev_list[] = {
2112 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2113 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2114 	{ }
2115 };
2116 
2117 static bool hid_hiddev(struct hid_device *hdev)
2118 {
2119 	return !!hid_match_id(hdev, hid_hiddev_list);
2120 }
2121 
2122 
2123 static ssize_t
2124 read_report_descriptor(struct file *filp, struct kobject *kobj,
2125 		struct bin_attribute *attr,
2126 		char *buf, loff_t off, size_t count)
2127 {
2128 	struct device *dev = kobj_to_dev(kobj);
2129 	struct hid_device *hdev = to_hid_device(dev);
2130 
2131 	if (off >= hdev->rsize)
2132 		return 0;
2133 
2134 	if (off + count > hdev->rsize)
2135 		count = hdev->rsize - off;
2136 
2137 	memcpy(buf, hdev->rdesc + off, count);
2138 
2139 	return count;
2140 }
2141 
2142 static ssize_t
2143 show_country(struct device *dev, struct device_attribute *attr,
2144 		char *buf)
2145 {
2146 	struct hid_device *hdev = to_hid_device(dev);
2147 
2148 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2149 }
2150 
2151 static struct bin_attribute dev_bin_attr_report_desc = {
2152 	.attr = { .name = "report_descriptor", .mode = 0444 },
2153 	.read = read_report_descriptor,
2154 	.size = HID_MAX_DESCRIPTOR_SIZE,
2155 };
2156 
2157 static const struct device_attribute dev_attr_country = {
2158 	.attr = { .name = "country", .mode = 0444 },
2159 	.show = show_country,
2160 };
2161 
2162 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2163 {
2164 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2165 		"Joystick", "Gamepad", "Keyboard", "Keypad",
2166 		"Multi-Axis Controller"
2167 	};
2168 	const char *type, *bus;
2169 	char buf[64] = "";
2170 	unsigned int i;
2171 	int len;
2172 	int ret;
2173 
2174 	ret = hid_bpf_connect_device(hdev);
2175 	if (ret)
2176 		return ret;
2177 
2178 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2179 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2180 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2181 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2182 	if (hdev->bus != BUS_USB)
2183 		connect_mask &= ~HID_CONNECT_HIDDEV;
2184 	if (hid_hiddev(hdev))
2185 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2186 
2187 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2188 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2189 		hdev->claimed |= HID_CLAIMED_INPUT;
2190 
2191 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2192 			!hdev->hiddev_connect(hdev,
2193 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2194 		hdev->claimed |= HID_CLAIMED_HIDDEV;
2195 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2196 		hdev->claimed |= HID_CLAIMED_HIDRAW;
2197 
2198 	if (connect_mask & HID_CONNECT_DRIVER)
2199 		hdev->claimed |= HID_CLAIMED_DRIVER;
2200 
2201 	/* Drivers with the ->raw_event callback set are not required to connect
2202 	 * to any other listener. */
2203 	if (!hdev->claimed && !hdev->driver->raw_event) {
2204 		hid_err(hdev, "device has no listeners, quitting\n");
2205 		return -ENODEV;
2206 	}
2207 
2208 	hid_process_ordering(hdev);
2209 
2210 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2211 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2212 		hdev->ff_init(hdev);
2213 
2214 	len = 0;
2215 	if (hdev->claimed & HID_CLAIMED_INPUT)
2216 		len += sprintf(buf + len, "input");
2217 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2218 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2219 				((struct hiddev *)hdev->hiddev)->minor);
2220 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2221 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2222 				((struct hidraw *)hdev->hidraw)->minor);
2223 
2224 	type = "Device";
2225 	for (i = 0; i < hdev->maxcollection; i++) {
2226 		struct hid_collection *col = &hdev->collection[i];
2227 		if (col->type == HID_COLLECTION_APPLICATION &&
2228 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2229 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2230 			type = types[col->usage & 0xffff];
2231 			break;
2232 		}
2233 	}
2234 
2235 	switch (hdev->bus) {
2236 	case BUS_USB:
2237 		bus = "USB";
2238 		break;
2239 	case BUS_BLUETOOTH:
2240 		bus = "BLUETOOTH";
2241 		break;
2242 	case BUS_I2C:
2243 		bus = "I2C";
2244 		break;
2245 	case BUS_VIRTUAL:
2246 		bus = "VIRTUAL";
2247 		break;
2248 	case BUS_INTEL_ISHTP:
2249 	case BUS_AMD_SFH:
2250 		bus = "SENSOR HUB";
2251 		break;
2252 	default:
2253 		bus = "<UNKNOWN>";
2254 	}
2255 
2256 	ret = device_create_file(&hdev->dev, &dev_attr_country);
2257 	if (ret)
2258 		hid_warn(hdev,
2259 			 "can't create sysfs country code attribute err: %d\n", ret);
2260 
2261 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2262 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2263 		 type, hdev->name, hdev->phys);
2264 
2265 	return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(hid_connect);
2268 
2269 void hid_disconnect(struct hid_device *hdev)
2270 {
2271 	device_remove_file(&hdev->dev, &dev_attr_country);
2272 	if (hdev->claimed & HID_CLAIMED_INPUT)
2273 		hidinput_disconnect(hdev);
2274 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2275 		hdev->hiddev_disconnect(hdev);
2276 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2277 		hidraw_disconnect(hdev);
2278 	hdev->claimed = 0;
2279 
2280 	hid_bpf_disconnect_device(hdev);
2281 }
2282 EXPORT_SYMBOL_GPL(hid_disconnect);
2283 
2284 /**
2285  * hid_hw_start - start underlying HW
2286  * @hdev: hid device
2287  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2288  *
2289  * Call this in probe function *after* hid_parse. This will setup HW
2290  * buffers and start the device (if not defeirred to device open).
2291  * hid_hw_stop must be called if this was successful.
2292  */
2293 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2294 {
2295 	int error;
2296 
2297 	error = hdev->ll_driver->start(hdev);
2298 	if (error)
2299 		return error;
2300 
2301 	if (connect_mask) {
2302 		error = hid_connect(hdev, connect_mask);
2303 		if (error) {
2304 			hdev->ll_driver->stop(hdev);
2305 			return error;
2306 		}
2307 	}
2308 
2309 	return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(hid_hw_start);
2312 
2313 /**
2314  * hid_hw_stop - stop underlying HW
2315  * @hdev: hid device
2316  *
2317  * This is usually called from remove function or from probe when something
2318  * failed and hid_hw_start was called already.
2319  */
2320 void hid_hw_stop(struct hid_device *hdev)
2321 {
2322 	hid_disconnect(hdev);
2323 	hdev->ll_driver->stop(hdev);
2324 }
2325 EXPORT_SYMBOL_GPL(hid_hw_stop);
2326 
2327 /**
2328  * hid_hw_open - signal underlying HW to start delivering events
2329  * @hdev: hid device
2330  *
2331  * Tell underlying HW to start delivering events from the device.
2332  * This function should be called sometime after successful call
2333  * to hid_hw_start().
2334  */
2335 int hid_hw_open(struct hid_device *hdev)
2336 {
2337 	int ret;
2338 
2339 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2340 	if (ret)
2341 		return ret;
2342 
2343 	if (!hdev->ll_open_count++) {
2344 		ret = hdev->ll_driver->open(hdev);
2345 		if (ret)
2346 			hdev->ll_open_count--;
2347 	}
2348 
2349 	mutex_unlock(&hdev->ll_open_lock);
2350 	return ret;
2351 }
2352 EXPORT_SYMBOL_GPL(hid_hw_open);
2353 
2354 /**
2355  * hid_hw_close - signal underlaying HW to stop delivering events
2356  *
2357  * @hdev: hid device
2358  *
2359  * This function indicates that we are not interested in the events
2360  * from this device anymore. Delivery of events may or may not stop,
2361  * depending on the number of users still outstanding.
2362  */
2363 void hid_hw_close(struct hid_device *hdev)
2364 {
2365 	mutex_lock(&hdev->ll_open_lock);
2366 	if (!--hdev->ll_open_count)
2367 		hdev->ll_driver->close(hdev);
2368 	mutex_unlock(&hdev->ll_open_lock);
2369 }
2370 EXPORT_SYMBOL_GPL(hid_hw_close);
2371 
2372 /**
2373  * hid_hw_request - send report request to device
2374  *
2375  * @hdev: hid device
2376  * @report: report to send
2377  * @reqtype: hid request type
2378  */
2379 void hid_hw_request(struct hid_device *hdev,
2380 		    struct hid_report *report, enum hid_class_request reqtype)
2381 {
2382 	if (hdev->ll_driver->request)
2383 		return hdev->ll_driver->request(hdev, report, reqtype);
2384 
2385 	__hid_request(hdev, report, reqtype);
2386 }
2387 EXPORT_SYMBOL_GPL(hid_hw_request);
2388 
2389 /**
2390  * hid_hw_raw_request - send report request to device
2391  *
2392  * @hdev: hid device
2393  * @reportnum: report ID
2394  * @buf: in/out data to transfer
2395  * @len: length of buf
2396  * @rtype: HID report type
2397  * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2398  *
2399  * Return: count of data transferred, negative if error
2400  *
2401  * Same behavior as hid_hw_request, but with raw buffers instead.
2402  */
2403 int hid_hw_raw_request(struct hid_device *hdev,
2404 		       unsigned char reportnum, __u8 *buf,
2405 		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2406 {
2407 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2408 
2409 	if (hdev->ll_driver->max_buffer_size)
2410 		max_buffer_size = hdev->ll_driver->max_buffer_size;
2411 
2412 	if (len < 1 || len > max_buffer_size || !buf)
2413 		return -EINVAL;
2414 
2415 	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2416 					    rtype, reqtype);
2417 }
2418 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2419 
2420 /**
2421  * hid_hw_output_report - send output report to device
2422  *
2423  * @hdev: hid device
2424  * @buf: raw data to transfer
2425  * @len: length of buf
2426  *
2427  * Return: count of data transferred, negative if error
2428  */
2429 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2430 {
2431 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2432 
2433 	if (hdev->ll_driver->max_buffer_size)
2434 		max_buffer_size = hdev->ll_driver->max_buffer_size;
2435 
2436 	if (len < 1 || len > max_buffer_size || !buf)
2437 		return -EINVAL;
2438 
2439 	if (hdev->ll_driver->output_report)
2440 		return hdev->ll_driver->output_report(hdev, buf, len);
2441 
2442 	return -ENOSYS;
2443 }
2444 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2445 
2446 #ifdef CONFIG_PM
2447 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2448 {
2449 	if (hdev->driver && hdev->driver->suspend)
2450 		return hdev->driver->suspend(hdev, state);
2451 
2452 	return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2455 
2456 int hid_driver_reset_resume(struct hid_device *hdev)
2457 {
2458 	if (hdev->driver && hdev->driver->reset_resume)
2459 		return hdev->driver->reset_resume(hdev);
2460 
2461 	return 0;
2462 }
2463 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2464 
2465 int hid_driver_resume(struct hid_device *hdev)
2466 {
2467 	if (hdev->driver && hdev->driver->resume)
2468 		return hdev->driver->resume(hdev);
2469 
2470 	return 0;
2471 }
2472 EXPORT_SYMBOL_GPL(hid_driver_resume);
2473 #endif /* CONFIG_PM */
2474 
2475 struct hid_dynid {
2476 	struct list_head list;
2477 	struct hid_device_id id;
2478 };
2479 
2480 /**
2481  * new_id_store - add a new HID device ID to this driver and re-probe devices
2482  * @drv: target device driver
2483  * @buf: buffer for scanning device ID data
2484  * @count: input size
2485  *
2486  * Adds a new dynamic hid device ID to this driver,
2487  * and causes the driver to probe for all devices again.
2488  */
2489 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2490 		size_t count)
2491 {
2492 	struct hid_driver *hdrv = to_hid_driver(drv);
2493 	struct hid_dynid *dynid;
2494 	__u32 bus, vendor, product;
2495 	unsigned long driver_data = 0;
2496 	int ret;
2497 
2498 	ret = sscanf(buf, "%x %x %x %lx",
2499 			&bus, &vendor, &product, &driver_data);
2500 	if (ret < 3)
2501 		return -EINVAL;
2502 
2503 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2504 	if (!dynid)
2505 		return -ENOMEM;
2506 
2507 	dynid->id.bus = bus;
2508 	dynid->id.group = HID_GROUP_ANY;
2509 	dynid->id.vendor = vendor;
2510 	dynid->id.product = product;
2511 	dynid->id.driver_data = driver_data;
2512 
2513 	spin_lock(&hdrv->dyn_lock);
2514 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2515 	spin_unlock(&hdrv->dyn_lock);
2516 
2517 	ret = driver_attach(&hdrv->driver);
2518 
2519 	return ret ? : count;
2520 }
2521 static DRIVER_ATTR_WO(new_id);
2522 
2523 static struct attribute *hid_drv_attrs[] = {
2524 	&driver_attr_new_id.attr,
2525 	NULL,
2526 };
2527 ATTRIBUTE_GROUPS(hid_drv);
2528 
2529 static void hid_free_dynids(struct hid_driver *hdrv)
2530 {
2531 	struct hid_dynid *dynid, *n;
2532 
2533 	spin_lock(&hdrv->dyn_lock);
2534 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2535 		list_del(&dynid->list);
2536 		kfree(dynid);
2537 	}
2538 	spin_unlock(&hdrv->dyn_lock);
2539 }
2540 
2541 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2542 					     struct hid_driver *hdrv)
2543 {
2544 	struct hid_dynid *dynid;
2545 
2546 	spin_lock(&hdrv->dyn_lock);
2547 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2548 		if (hid_match_one_id(hdev, &dynid->id)) {
2549 			spin_unlock(&hdrv->dyn_lock);
2550 			return &dynid->id;
2551 		}
2552 	}
2553 	spin_unlock(&hdrv->dyn_lock);
2554 
2555 	return hid_match_id(hdev, hdrv->id_table);
2556 }
2557 EXPORT_SYMBOL_GPL(hid_match_device);
2558 
2559 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2560 {
2561 	struct hid_driver *hdrv = to_hid_driver(drv);
2562 	struct hid_device *hdev = to_hid_device(dev);
2563 
2564 	return hid_match_device(hdev, hdrv) != NULL;
2565 }
2566 
2567 /**
2568  * hid_compare_device_paths - check if both devices share the same path
2569  * @hdev_a: hid device
2570  * @hdev_b: hid device
2571  * @separator: char to use as separator
2572  *
2573  * Check if two devices share the same path up to the last occurrence of
2574  * the separator char. Both paths must exist (i.e., zero-length paths
2575  * don't match).
2576  */
2577 bool hid_compare_device_paths(struct hid_device *hdev_a,
2578 			      struct hid_device *hdev_b, char separator)
2579 {
2580 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2581 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2582 
2583 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2584 		return false;
2585 
2586 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2587 }
2588 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2589 
2590 static bool hid_check_device_match(struct hid_device *hdev,
2591 				   struct hid_driver *hdrv,
2592 				   const struct hid_device_id **id)
2593 {
2594 	*id = hid_match_device(hdev, hdrv);
2595 	if (!*id)
2596 		return false;
2597 
2598 	if (hdrv->match)
2599 		return hdrv->match(hdev, hid_ignore_special_drivers);
2600 
2601 	/*
2602 	 * hid-generic implements .match(), so we must be dealing with a
2603 	 * different HID driver here, and can simply check if
2604 	 * hid_ignore_special_drivers is set or not.
2605 	 */
2606 	return !hid_ignore_special_drivers;
2607 }
2608 
2609 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2610 {
2611 	const struct hid_device_id *id;
2612 	int ret;
2613 
2614 	if (!hid_check_device_match(hdev, hdrv, &id))
2615 		return -ENODEV;
2616 
2617 	hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2618 	if (!hdev->devres_group_id)
2619 		return -ENOMEM;
2620 
2621 	/* reset the quirks that has been previously set */
2622 	hdev->quirks = hid_lookup_quirk(hdev);
2623 	hdev->driver = hdrv;
2624 
2625 	if (hdrv->probe) {
2626 		ret = hdrv->probe(hdev, id);
2627 	} else { /* default probe */
2628 		ret = hid_open_report(hdev);
2629 		if (!ret)
2630 			ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2631 	}
2632 
2633 	/*
2634 	 * Note that we are not closing the devres group opened above so
2635 	 * even resources that were attached to the device after probe is
2636 	 * run are released when hid_device_remove() is executed. This is
2637 	 * needed as some drivers would allocate additional resources,
2638 	 * for example when updating firmware.
2639 	 */
2640 
2641 	if (ret) {
2642 		devres_release_group(&hdev->dev, hdev->devres_group_id);
2643 		hid_close_report(hdev);
2644 		hdev->driver = NULL;
2645 	}
2646 
2647 	return ret;
2648 }
2649 
2650 static int hid_device_probe(struct device *dev)
2651 {
2652 	struct hid_device *hdev = to_hid_device(dev);
2653 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2654 	int ret = 0;
2655 
2656 	if (down_interruptible(&hdev->driver_input_lock))
2657 		return -EINTR;
2658 
2659 	hdev->io_started = false;
2660 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2661 
2662 	if (!hdev->driver)
2663 		ret = __hid_device_probe(hdev, hdrv);
2664 
2665 	if (!hdev->io_started)
2666 		up(&hdev->driver_input_lock);
2667 
2668 	return ret;
2669 }
2670 
2671 static void hid_device_remove(struct device *dev)
2672 {
2673 	struct hid_device *hdev = to_hid_device(dev);
2674 	struct hid_driver *hdrv;
2675 
2676 	down(&hdev->driver_input_lock);
2677 	hdev->io_started = false;
2678 
2679 	hdrv = hdev->driver;
2680 	if (hdrv) {
2681 		if (hdrv->remove)
2682 			hdrv->remove(hdev);
2683 		else /* default remove */
2684 			hid_hw_stop(hdev);
2685 
2686 		/* Release all devres resources allocated by the driver */
2687 		devres_release_group(&hdev->dev, hdev->devres_group_id);
2688 
2689 		hid_close_report(hdev);
2690 		hdev->driver = NULL;
2691 	}
2692 
2693 	if (!hdev->io_started)
2694 		up(&hdev->driver_input_lock);
2695 }
2696 
2697 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2698 			     char *buf)
2699 {
2700 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2701 
2702 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2703 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2704 }
2705 static DEVICE_ATTR_RO(modalias);
2706 
2707 static struct attribute *hid_dev_attrs[] = {
2708 	&dev_attr_modalias.attr,
2709 	NULL,
2710 };
2711 static struct bin_attribute *hid_dev_bin_attrs[] = {
2712 	&dev_bin_attr_report_desc,
2713 	NULL
2714 };
2715 static const struct attribute_group hid_dev_group = {
2716 	.attrs = hid_dev_attrs,
2717 	.bin_attrs = hid_dev_bin_attrs,
2718 };
2719 __ATTRIBUTE_GROUPS(hid_dev);
2720 
2721 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2722 {
2723 	const struct hid_device *hdev = to_hid_device(dev);
2724 
2725 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2726 			hdev->bus, hdev->vendor, hdev->product))
2727 		return -ENOMEM;
2728 
2729 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2730 		return -ENOMEM;
2731 
2732 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2733 		return -ENOMEM;
2734 
2735 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2736 		return -ENOMEM;
2737 
2738 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2739 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2740 		return -ENOMEM;
2741 
2742 	return 0;
2743 }
2744 
2745 struct bus_type hid_bus_type = {
2746 	.name		= "hid",
2747 	.dev_groups	= hid_dev_groups,
2748 	.drv_groups	= hid_drv_groups,
2749 	.match		= hid_bus_match,
2750 	.probe		= hid_device_probe,
2751 	.remove		= hid_device_remove,
2752 	.uevent		= hid_uevent,
2753 };
2754 EXPORT_SYMBOL(hid_bus_type);
2755 
2756 int hid_add_device(struct hid_device *hdev)
2757 {
2758 	static atomic_t id = ATOMIC_INIT(0);
2759 	int ret;
2760 
2761 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2762 		return -EBUSY;
2763 
2764 	hdev->quirks = hid_lookup_quirk(hdev);
2765 
2766 	/* we need to kill them here, otherwise they will stay allocated to
2767 	 * wait for coming driver */
2768 	if (hid_ignore(hdev))
2769 		return -ENODEV;
2770 
2771 	/*
2772 	 * Check for the mandatory transport channel.
2773 	 */
2774 	 if (!hdev->ll_driver->raw_request) {
2775 		hid_err(hdev, "transport driver missing .raw_request()\n");
2776 		return -EINVAL;
2777 	 }
2778 
2779 	/*
2780 	 * Read the device report descriptor once and use as template
2781 	 * for the driver-specific modifications.
2782 	 */
2783 	ret = hdev->ll_driver->parse(hdev);
2784 	if (ret)
2785 		return ret;
2786 	if (!hdev->dev_rdesc)
2787 		return -ENODEV;
2788 
2789 	/*
2790 	 * Scan generic devices for group information
2791 	 */
2792 	if (hid_ignore_special_drivers) {
2793 		hdev->group = HID_GROUP_GENERIC;
2794 	} else if (!hdev->group &&
2795 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2796 		ret = hid_scan_report(hdev);
2797 		if (ret)
2798 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2799 	}
2800 
2801 	hdev->id = atomic_inc_return(&id);
2802 
2803 	/* XXX hack, any other cleaner solution after the driver core
2804 	 * is converted to allow more than 20 bytes as the device name? */
2805 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2806 		     hdev->vendor, hdev->product, hdev->id);
2807 
2808 	hid_debug_register(hdev, dev_name(&hdev->dev));
2809 	ret = device_add(&hdev->dev);
2810 	if (!ret)
2811 		hdev->status |= HID_STAT_ADDED;
2812 	else
2813 		hid_debug_unregister(hdev);
2814 
2815 	return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(hid_add_device);
2818 
2819 /**
2820  * hid_allocate_device - allocate new hid device descriptor
2821  *
2822  * Allocate and initialize hid device, so that hid_destroy_device might be
2823  * used to free it.
2824  *
2825  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2826  * error value.
2827  */
2828 struct hid_device *hid_allocate_device(void)
2829 {
2830 	struct hid_device *hdev;
2831 	int ret = -ENOMEM;
2832 
2833 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2834 	if (hdev == NULL)
2835 		return ERR_PTR(ret);
2836 
2837 	device_initialize(&hdev->dev);
2838 	hdev->dev.release = hid_device_release;
2839 	hdev->dev.bus = &hid_bus_type;
2840 	device_enable_async_suspend(&hdev->dev);
2841 
2842 	hid_close_report(hdev);
2843 
2844 	init_waitqueue_head(&hdev->debug_wait);
2845 	INIT_LIST_HEAD(&hdev->debug_list);
2846 	spin_lock_init(&hdev->debug_list_lock);
2847 	sema_init(&hdev->driver_input_lock, 1);
2848 	mutex_init(&hdev->ll_open_lock);
2849 
2850 	hid_bpf_device_init(hdev);
2851 
2852 	return hdev;
2853 }
2854 EXPORT_SYMBOL_GPL(hid_allocate_device);
2855 
2856 static void hid_remove_device(struct hid_device *hdev)
2857 {
2858 	if (hdev->status & HID_STAT_ADDED) {
2859 		device_del(&hdev->dev);
2860 		hid_debug_unregister(hdev);
2861 		hdev->status &= ~HID_STAT_ADDED;
2862 	}
2863 	kfree(hdev->dev_rdesc);
2864 	hdev->dev_rdesc = NULL;
2865 	hdev->dev_rsize = 0;
2866 }
2867 
2868 /**
2869  * hid_destroy_device - free previously allocated device
2870  *
2871  * @hdev: hid device
2872  *
2873  * If you allocate hid_device through hid_allocate_device, you should ever
2874  * free by this function.
2875  */
2876 void hid_destroy_device(struct hid_device *hdev)
2877 {
2878 	hid_bpf_destroy_device(hdev);
2879 	hid_remove_device(hdev);
2880 	put_device(&hdev->dev);
2881 }
2882 EXPORT_SYMBOL_GPL(hid_destroy_device);
2883 
2884 
2885 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2886 {
2887 	struct hid_driver *hdrv = data;
2888 	struct hid_device *hdev = to_hid_device(dev);
2889 
2890 	if (hdev->driver == hdrv &&
2891 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2892 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2893 		return device_reprobe(dev);
2894 
2895 	return 0;
2896 }
2897 
2898 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2899 {
2900 	struct hid_driver *hdrv = to_hid_driver(drv);
2901 
2902 	if (hdrv->match) {
2903 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2904 				 __hid_bus_reprobe_drivers);
2905 	}
2906 
2907 	return 0;
2908 }
2909 
2910 static int __bus_removed_driver(struct device_driver *drv, void *data)
2911 {
2912 	return bus_rescan_devices(&hid_bus_type);
2913 }
2914 
2915 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2916 		const char *mod_name)
2917 {
2918 	int ret;
2919 
2920 	hdrv->driver.name = hdrv->name;
2921 	hdrv->driver.bus = &hid_bus_type;
2922 	hdrv->driver.owner = owner;
2923 	hdrv->driver.mod_name = mod_name;
2924 
2925 	INIT_LIST_HEAD(&hdrv->dyn_list);
2926 	spin_lock_init(&hdrv->dyn_lock);
2927 
2928 	ret = driver_register(&hdrv->driver);
2929 
2930 	if (ret == 0)
2931 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2932 				 __hid_bus_driver_added);
2933 
2934 	return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(__hid_register_driver);
2937 
2938 void hid_unregister_driver(struct hid_driver *hdrv)
2939 {
2940 	driver_unregister(&hdrv->driver);
2941 	hid_free_dynids(hdrv);
2942 
2943 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2944 }
2945 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2946 
2947 int hid_check_keys_pressed(struct hid_device *hid)
2948 {
2949 	struct hid_input *hidinput;
2950 	int i;
2951 
2952 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2953 		return 0;
2954 
2955 	list_for_each_entry(hidinput, &hid->inputs, list) {
2956 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2957 			if (hidinput->input->key[i])
2958 				return 1;
2959 	}
2960 
2961 	return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2964 
2965 #ifdef CONFIG_HID_BPF
2966 static struct hid_bpf_ops hid_ops = {
2967 	.hid_get_report = hid_get_report,
2968 	.hid_hw_raw_request = hid_hw_raw_request,
2969 	.owner = THIS_MODULE,
2970 	.bus_type = &hid_bus_type,
2971 };
2972 #endif
2973 
2974 static int __init hid_init(void)
2975 {
2976 	int ret;
2977 
2978 	ret = bus_register(&hid_bus_type);
2979 	if (ret) {
2980 		pr_err("can't register hid bus\n");
2981 		goto err;
2982 	}
2983 
2984 #ifdef CONFIG_HID_BPF
2985 	hid_bpf_ops = &hid_ops;
2986 #endif
2987 
2988 	ret = hidraw_init();
2989 	if (ret)
2990 		goto err_bus;
2991 
2992 	hid_debug_init();
2993 
2994 	return 0;
2995 err_bus:
2996 	bus_unregister(&hid_bus_type);
2997 err:
2998 	return ret;
2999 }
3000 
3001 static void __exit hid_exit(void)
3002 {
3003 #ifdef CONFIG_HID_BPF
3004 	hid_bpf_ops = NULL;
3005 #endif
3006 	hid_debug_exit();
3007 	hidraw_exit();
3008 	bus_unregister(&hid_bus_type);
3009 	hid_quirks_exit(HID_BUS_ANY);
3010 }
3011 
3012 module_init(hid_init);
3013 module_exit(hid_exit);
3014 
3015 MODULE_AUTHOR("Andreas Gal");
3016 MODULE_AUTHOR("Vojtech Pavlik");
3017 MODULE_AUTHOR("Jiri Kosina");
3018 MODULE_LICENSE("GPL");
3019