1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID support for Linux 4 * 5 * Copyright (c) 1999 Andreas Gal 6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 8 * Copyright (c) 2006-2012 Jiri Kosina 9 */ 10 11 /* 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/spinlock.h> 23 #include <asm/unaligned.h> 24 #include <asm/byteorder.h> 25 #include <linux/input.h> 26 #include <linux/wait.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sched.h> 29 #include <linux/semaphore.h> 30 31 #include <linux/hid.h> 32 #include <linux/hiddev.h> 33 #include <linux/hid-debug.h> 34 #include <linux/hidraw.h> 35 36 #include "hid-ids.h" 37 38 /* 39 * Version Information 40 */ 41 42 #define DRIVER_DESC "HID core driver" 43 44 int hid_debug = 0; 45 module_param_named(debug, hid_debug, int, 0600); 46 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 47 EXPORT_SYMBOL_GPL(hid_debug); 48 49 static int hid_ignore_special_drivers = 0; 50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 52 53 /* 54 * Register a new report for a device. 55 */ 56 57 struct hid_report *hid_register_report(struct hid_device *device, 58 unsigned int type, unsigned int id, 59 unsigned int application) 60 { 61 struct hid_report_enum *report_enum = device->report_enum + type; 62 struct hid_report *report; 63 64 if (id >= HID_MAX_IDS) 65 return NULL; 66 if (report_enum->report_id_hash[id]) 67 return report_enum->report_id_hash[id]; 68 69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 70 if (!report) 71 return NULL; 72 73 if (id != 0) 74 report_enum->numbered = 1; 75 76 report->id = id; 77 report->type = type; 78 report->size = 0; 79 report->device = device; 80 report->application = application; 81 report_enum->report_id_hash[id] = report; 82 83 list_add_tail(&report->list, &report_enum->report_list); 84 85 return report; 86 } 87 EXPORT_SYMBOL_GPL(hid_register_report); 88 89 /* 90 * Register a new field for this report. 91 */ 92 93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 94 { 95 struct hid_field *field; 96 97 if (report->maxfield == HID_MAX_FIELDS) { 98 hid_err(report->device, "too many fields in report\n"); 99 return NULL; 100 } 101 102 field = kzalloc((sizeof(struct hid_field) + 103 usages * sizeof(struct hid_usage) + 104 values * sizeof(unsigned)), GFP_KERNEL); 105 if (!field) 106 return NULL; 107 108 field->index = report->maxfield++; 109 report->field[field->index] = field; 110 field->usage = (struct hid_usage *)(field + 1); 111 field->value = (s32 *)(field->usage + usages); 112 field->report = report; 113 114 return field; 115 } 116 117 /* 118 * Open a collection. The type/usage is pushed on the stack. 119 */ 120 121 static int open_collection(struct hid_parser *parser, unsigned type) 122 { 123 struct hid_collection *collection; 124 unsigned usage; 125 int collection_index; 126 127 usage = parser->local.usage[0]; 128 129 if (parser->collection_stack_ptr == parser->collection_stack_size) { 130 unsigned int *collection_stack; 131 unsigned int new_size = parser->collection_stack_size + 132 HID_COLLECTION_STACK_SIZE; 133 134 collection_stack = krealloc(parser->collection_stack, 135 new_size * sizeof(unsigned int), 136 GFP_KERNEL); 137 if (!collection_stack) 138 return -ENOMEM; 139 140 parser->collection_stack = collection_stack; 141 parser->collection_stack_size = new_size; 142 } 143 144 if (parser->device->maxcollection == parser->device->collection_size) { 145 collection = kmalloc( 146 array3_size(sizeof(struct hid_collection), 147 parser->device->collection_size, 148 2), 149 GFP_KERNEL); 150 if (collection == NULL) { 151 hid_err(parser->device, "failed to reallocate collection array\n"); 152 return -ENOMEM; 153 } 154 memcpy(collection, parser->device->collection, 155 sizeof(struct hid_collection) * 156 parser->device->collection_size); 157 memset(collection + parser->device->collection_size, 0, 158 sizeof(struct hid_collection) * 159 parser->device->collection_size); 160 kfree(parser->device->collection); 161 parser->device->collection = collection; 162 parser->device->collection_size *= 2; 163 } 164 165 parser->collection_stack[parser->collection_stack_ptr++] = 166 parser->device->maxcollection; 167 168 collection_index = parser->device->maxcollection++; 169 collection = parser->device->collection + collection_index; 170 collection->type = type; 171 collection->usage = usage; 172 collection->level = parser->collection_stack_ptr - 1; 173 collection->parent_idx = (collection->level == 0) ? -1 : 174 parser->collection_stack[collection->level - 1]; 175 176 if (type == HID_COLLECTION_APPLICATION) 177 parser->device->maxapplication++; 178 179 return 0; 180 } 181 182 /* 183 * Close a collection. 184 */ 185 186 static int close_collection(struct hid_parser *parser) 187 { 188 if (!parser->collection_stack_ptr) { 189 hid_err(parser->device, "collection stack underflow\n"); 190 return -EINVAL; 191 } 192 parser->collection_stack_ptr--; 193 return 0; 194 } 195 196 /* 197 * Climb up the stack, search for the specified collection type 198 * and return the usage. 199 */ 200 201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 202 { 203 struct hid_collection *collection = parser->device->collection; 204 int n; 205 206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 207 unsigned index = parser->collection_stack[n]; 208 if (collection[index].type == type) 209 return collection[index].usage; 210 } 211 return 0; /* we know nothing about this usage type */ 212 } 213 214 /* 215 * Concatenate usage which defines 16 bits or less with the 216 * currently defined usage page to form a 32 bit usage 217 */ 218 219 static void complete_usage(struct hid_parser *parser, unsigned int index) 220 { 221 parser->local.usage[index] &= 0xFFFF; 222 parser->local.usage[index] |= 223 (parser->global.usage_page & 0xFFFF) << 16; 224 } 225 226 /* 227 * Add a usage to the temporary parser table. 228 */ 229 230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) 231 { 232 if (parser->local.usage_index >= HID_MAX_USAGES) { 233 hid_err(parser->device, "usage index exceeded\n"); 234 return -1; 235 } 236 parser->local.usage[parser->local.usage_index] = usage; 237 238 /* 239 * If Usage item only includes usage id, concatenate it with 240 * currently defined usage page 241 */ 242 if (size <= 2) 243 complete_usage(parser, parser->local.usage_index); 244 245 parser->local.usage_size[parser->local.usage_index] = size; 246 parser->local.collection_index[parser->local.usage_index] = 247 parser->collection_stack_ptr ? 248 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 249 parser->local.usage_index++; 250 return 0; 251 } 252 253 /* 254 * Register a new field for this report. 255 */ 256 257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 258 { 259 struct hid_report *report; 260 struct hid_field *field; 261 unsigned int usages; 262 unsigned int offset; 263 unsigned int i; 264 unsigned int application; 265 266 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 267 268 report = hid_register_report(parser->device, report_type, 269 parser->global.report_id, application); 270 if (!report) { 271 hid_err(parser->device, "hid_register_report failed\n"); 272 return -1; 273 } 274 275 /* Handle both signed and unsigned cases properly */ 276 if ((parser->global.logical_minimum < 0 && 277 parser->global.logical_maximum < 278 parser->global.logical_minimum) || 279 (parser->global.logical_minimum >= 0 && 280 (__u32)parser->global.logical_maximum < 281 (__u32)parser->global.logical_minimum)) { 282 dbg_hid("logical range invalid 0x%x 0x%x\n", 283 parser->global.logical_minimum, 284 parser->global.logical_maximum); 285 return -1; 286 } 287 288 offset = report->size; 289 report->size += parser->global.report_size * parser->global.report_count; 290 291 /* Total size check: Allow for possible report index byte */ 292 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) { 293 hid_err(parser->device, "report is too long\n"); 294 return -1; 295 } 296 297 if (!parser->local.usage_index) /* Ignore padding fields */ 298 return 0; 299 300 usages = max_t(unsigned, parser->local.usage_index, 301 parser->global.report_count); 302 303 field = hid_register_field(report, usages, parser->global.report_count); 304 if (!field) 305 return 0; 306 307 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 308 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 309 field->application = application; 310 311 for (i = 0; i < usages; i++) { 312 unsigned j = i; 313 /* Duplicate the last usage we parsed if we have excess values */ 314 if (i >= parser->local.usage_index) 315 j = parser->local.usage_index - 1; 316 field->usage[i].hid = parser->local.usage[j]; 317 field->usage[i].collection_index = 318 parser->local.collection_index[j]; 319 field->usage[i].usage_index = i; 320 field->usage[i].resolution_multiplier = 1; 321 } 322 323 field->maxusage = usages; 324 field->flags = flags; 325 field->report_offset = offset; 326 field->report_type = report_type; 327 field->report_size = parser->global.report_size; 328 field->report_count = parser->global.report_count; 329 field->logical_minimum = parser->global.logical_minimum; 330 field->logical_maximum = parser->global.logical_maximum; 331 field->physical_minimum = parser->global.physical_minimum; 332 field->physical_maximum = parser->global.physical_maximum; 333 field->unit_exponent = parser->global.unit_exponent; 334 field->unit = parser->global.unit; 335 336 return 0; 337 } 338 339 /* 340 * Read data value from item. 341 */ 342 343 static u32 item_udata(struct hid_item *item) 344 { 345 switch (item->size) { 346 case 1: return item->data.u8; 347 case 2: return item->data.u16; 348 case 4: return item->data.u32; 349 } 350 return 0; 351 } 352 353 static s32 item_sdata(struct hid_item *item) 354 { 355 switch (item->size) { 356 case 1: return item->data.s8; 357 case 2: return item->data.s16; 358 case 4: return item->data.s32; 359 } 360 return 0; 361 } 362 363 /* 364 * Process a global item. 365 */ 366 367 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 368 { 369 __s32 raw_value; 370 switch (item->tag) { 371 case HID_GLOBAL_ITEM_TAG_PUSH: 372 373 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 374 hid_err(parser->device, "global environment stack overflow\n"); 375 return -1; 376 } 377 378 memcpy(parser->global_stack + parser->global_stack_ptr++, 379 &parser->global, sizeof(struct hid_global)); 380 return 0; 381 382 case HID_GLOBAL_ITEM_TAG_POP: 383 384 if (!parser->global_stack_ptr) { 385 hid_err(parser->device, "global environment stack underflow\n"); 386 return -1; 387 } 388 389 memcpy(&parser->global, parser->global_stack + 390 --parser->global_stack_ptr, sizeof(struct hid_global)); 391 return 0; 392 393 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 394 parser->global.usage_page = item_udata(item); 395 return 0; 396 397 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 398 parser->global.logical_minimum = item_sdata(item); 399 return 0; 400 401 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 402 if (parser->global.logical_minimum < 0) 403 parser->global.logical_maximum = item_sdata(item); 404 else 405 parser->global.logical_maximum = item_udata(item); 406 return 0; 407 408 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 409 parser->global.physical_minimum = item_sdata(item); 410 return 0; 411 412 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 413 if (parser->global.physical_minimum < 0) 414 parser->global.physical_maximum = item_sdata(item); 415 else 416 parser->global.physical_maximum = item_udata(item); 417 return 0; 418 419 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 420 /* Many devices provide unit exponent as a two's complement 421 * nibble due to the common misunderstanding of HID 422 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 423 * both this and the standard encoding. */ 424 raw_value = item_sdata(item); 425 if (!(raw_value & 0xfffffff0)) 426 parser->global.unit_exponent = hid_snto32(raw_value, 4); 427 else 428 parser->global.unit_exponent = raw_value; 429 return 0; 430 431 case HID_GLOBAL_ITEM_TAG_UNIT: 432 parser->global.unit = item_udata(item); 433 return 0; 434 435 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 436 parser->global.report_size = item_udata(item); 437 if (parser->global.report_size > 256) { 438 hid_err(parser->device, "invalid report_size %d\n", 439 parser->global.report_size); 440 return -1; 441 } 442 return 0; 443 444 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 445 parser->global.report_count = item_udata(item); 446 if (parser->global.report_count > HID_MAX_USAGES) { 447 hid_err(parser->device, "invalid report_count %d\n", 448 parser->global.report_count); 449 return -1; 450 } 451 return 0; 452 453 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 454 parser->global.report_id = item_udata(item); 455 if (parser->global.report_id == 0 || 456 parser->global.report_id >= HID_MAX_IDS) { 457 hid_err(parser->device, "report_id %u is invalid\n", 458 parser->global.report_id); 459 return -1; 460 } 461 return 0; 462 463 default: 464 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 465 return -1; 466 } 467 } 468 469 /* 470 * Process a local item. 471 */ 472 473 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 474 { 475 __u32 data; 476 unsigned n; 477 __u32 count; 478 479 data = item_udata(item); 480 481 switch (item->tag) { 482 case HID_LOCAL_ITEM_TAG_DELIMITER: 483 484 if (data) { 485 /* 486 * We treat items before the first delimiter 487 * as global to all usage sets (branch 0). 488 * In the moment we process only these global 489 * items and the first delimiter set. 490 */ 491 if (parser->local.delimiter_depth != 0) { 492 hid_err(parser->device, "nested delimiters\n"); 493 return -1; 494 } 495 parser->local.delimiter_depth++; 496 parser->local.delimiter_branch++; 497 } else { 498 if (parser->local.delimiter_depth < 1) { 499 hid_err(parser->device, "bogus close delimiter\n"); 500 return -1; 501 } 502 parser->local.delimiter_depth--; 503 } 504 return 0; 505 506 case HID_LOCAL_ITEM_TAG_USAGE: 507 508 if (parser->local.delimiter_branch > 1) { 509 dbg_hid("alternative usage ignored\n"); 510 return 0; 511 } 512 513 return hid_add_usage(parser, data, item->size); 514 515 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 516 517 if (parser->local.delimiter_branch > 1) { 518 dbg_hid("alternative usage ignored\n"); 519 return 0; 520 } 521 522 parser->local.usage_minimum = data; 523 return 0; 524 525 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 526 527 if (parser->local.delimiter_branch > 1) { 528 dbg_hid("alternative usage ignored\n"); 529 return 0; 530 } 531 532 count = data - parser->local.usage_minimum; 533 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 534 /* 535 * We do not warn if the name is not set, we are 536 * actually pre-scanning the device. 537 */ 538 if (dev_name(&parser->device->dev)) 539 hid_warn(parser->device, 540 "ignoring exceeding usage max\n"); 541 data = HID_MAX_USAGES - parser->local.usage_index + 542 parser->local.usage_minimum - 1; 543 if (data <= 0) { 544 hid_err(parser->device, 545 "no more usage index available\n"); 546 return -1; 547 } 548 } 549 550 for (n = parser->local.usage_minimum; n <= data; n++) 551 if (hid_add_usage(parser, n, item->size)) { 552 dbg_hid("hid_add_usage failed\n"); 553 return -1; 554 } 555 return 0; 556 557 default: 558 559 dbg_hid("unknown local item tag 0x%x\n", item->tag); 560 return 0; 561 } 562 return 0; 563 } 564 565 /* 566 * Concatenate Usage Pages into Usages where relevant: 567 * As per specification, 6.2.2.8: "When the parser encounters a main item it 568 * concatenates the last declared Usage Page with a Usage to form a complete 569 * usage value." 570 */ 571 572 static void hid_concatenate_last_usage_page(struct hid_parser *parser) 573 { 574 int i; 575 unsigned int usage_page; 576 unsigned int current_page; 577 578 if (!parser->local.usage_index) 579 return; 580 581 usage_page = parser->global.usage_page; 582 583 /* 584 * Concatenate usage page again only if last declared Usage Page 585 * has not been already used in previous usages concatenation 586 */ 587 for (i = parser->local.usage_index - 1; i >= 0; i--) { 588 if (parser->local.usage_size[i] > 2) 589 /* Ignore extended usages */ 590 continue; 591 592 current_page = parser->local.usage[i] >> 16; 593 if (current_page == usage_page) 594 break; 595 596 complete_usage(parser, i); 597 } 598 } 599 600 /* 601 * Process a main item. 602 */ 603 604 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 605 { 606 __u32 data; 607 int ret; 608 609 hid_concatenate_last_usage_page(parser); 610 611 data = item_udata(item); 612 613 switch (item->tag) { 614 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 615 ret = open_collection(parser, data & 0xff); 616 break; 617 case HID_MAIN_ITEM_TAG_END_COLLECTION: 618 ret = close_collection(parser); 619 break; 620 case HID_MAIN_ITEM_TAG_INPUT: 621 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 622 break; 623 case HID_MAIN_ITEM_TAG_OUTPUT: 624 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 625 break; 626 case HID_MAIN_ITEM_TAG_FEATURE: 627 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 628 break; 629 default: 630 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 631 ret = 0; 632 } 633 634 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 635 636 return ret; 637 } 638 639 /* 640 * Process a reserved item. 641 */ 642 643 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 644 { 645 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 646 return 0; 647 } 648 649 /* 650 * Free a report and all registered fields. The field->usage and 651 * field->value table's are allocated behind the field, so we need 652 * only to free(field) itself. 653 */ 654 655 static void hid_free_report(struct hid_report *report) 656 { 657 unsigned n; 658 659 for (n = 0; n < report->maxfield; n++) 660 kfree(report->field[n]); 661 kfree(report); 662 } 663 664 /* 665 * Close report. This function returns the device 666 * state to the point prior to hid_open_report(). 667 */ 668 static void hid_close_report(struct hid_device *device) 669 { 670 unsigned i, j; 671 672 for (i = 0; i < HID_REPORT_TYPES; i++) { 673 struct hid_report_enum *report_enum = device->report_enum + i; 674 675 for (j = 0; j < HID_MAX_IDS; j++) { 676 struct hid_report *report = report_enum->report_id_hash[j]; 677 if (report) 678 hid_free_report(report); 679 } 680 memset(report_enum, 0, sizeof(*report_enum)); 681 INIT_LIST_HEAD(&report_enum->report_list); 682 } 683 684 kfree(device->rdesc); 685 device->rdesc = NULL; 686 device->rsize = 0; 687 688 kfree(device->collection); 689 device->collection = NULL; 690 device->collection_size = 0; 691 device->maxcollection = 0; 692 device->maxapplication = 0; 693 694 device->status &= ~HID_STAT_PARSED; 695 } 696 697 /* 698 * Free a device structure, all reports, and all fields. 699 */ 700 701 static void hid_device_release(struct device *dev) 702 { 703 struct hid_device *hid = to_hid_device(dev); 704 705 hid_close_report(hid); 706 kfree(hid->dev_rdesc); 707 kfree(hid); 708 } 709 710 /* 711 * Fetch a report description item from the data stream. We support long 712 * items, though they are not used yet. 713 */ 714 715 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 716 { 717 u8 b; 718 719 if ((end - start) <= 0) 720 return NULL; 721 722 b = *start++; 723 724 item->type = (b >> 2) & 3; 725 item->tag = (b >> 4) & 15; 726 727 if (item->tag == HID_ITEM_TAG_LONG) { 728 729 item->format = HID_ITEM_FORMAT_LONG; 730 731 if ((end - start) < 2) 732 return NULL; 733 734 item->size = *start++; 735 item->tag = *start++; 736 737 if ((end - start) < item->size) 738 return NULL; 739 740 item->data.longdata = start; 741 start += item->size; 742 return start; 743 } 744 745 item->format = HID_ITEM_FORMAT_SHORT; 746 item->size = b & 3; 747 748 switch (item->size) { 749 case 0: 750 return start; 751 752 case 1: 753 if ((end - start) < 1) 754 return NULL; 755 item->data.u8 = *start++; 756 return start; 757 758 case 2: 759 if ((end - start) < 2) 760 return NULL; 761 item->data.u16 = get_unaligned_le16(start); 762 start = (__u8 *)((__le16 *)start + 1); 763 return start; 764 765 case 3: 766 item->size++; 767 if ((end - start) < 4) 768 return NULL; 769 item->data.u32 = get_unaligned_le32(start); 770 start = (__u8 *)((__le32 *)start + 1); 771 return start; 772 } 773 774 return NULL; 775 } 776 777 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 778 { 779 struct hid_device *hid = parser->device; 780 781 if (usage == HID_DG_CONTACTID) 782 hid->group = HID_GROUP_MULTITOUCH; 783 } 784 785 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 786 { 787 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 788 parser->global.report_size == 8) 789 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 790 791 if (usage == 0xff0000c6 && parser->global.report_count == 1 && 792 parser->global.report_size == 8) 793 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 794 } 795 796 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 797 { 798 struct hid_device *hid = parser->device; 799 int i; 800 801 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 802 type == HID_COLLECTION_PHYSICAL) 803 hid->group = HID_GROUP_SENSOR_HUB; 804 805 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 806 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 807 hid->group == HID_GROUP_MULTITOUCH) 808 hid->group = HID_GROUP_GENERIC; 809 810 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 811 for (i = 0; i < parser->local.usage_index; i++) 812 if (parser->local.usage[i] == HID_GD_POINTER) 813 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 814 815 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 816 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 817 } 818 819 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 820 { 821 __u32 data; 822 int i; 823 824 hid_concatenate_last_usage_page(parser); 825 826 data = item_udata(item); 827 828 switch (item->tag) { 829 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 830 hid_scan_collection(parser, data & 0xff); 831 break; 832 case HID_MAIN_ITEM_TAG_END_COLLECTION: 833 break; 834 case HID_MAIN_ITEM_TAG_INPUT: 835 /* ignore constant inputs, they will be ignored by hid-input */ 836 if (data & HID_MAIN_ITEM_CONSTANT) 837 break; 838 for (i = 0; i < parser->local.usage_index; i++) 839 hid_scan_input_usage(parser, parser->local.usage[i]); 840 break; 841 case HID_MAIN_ITEM_TAG_OUTPUT: 842 break; 843 case HID_MAIN_ITEM_TAG_FEATURE: 844 for (i = 0; i < parser->local.usage_index; i++) 845 hid_scan_feature_usage(parser, parser->local.usage[i]); 846 break; 847 } 848 849 /* Reset the local parser environment */ 850 memset(&parser->local, 0, sizeof(parser->local)); 851 852 return 0; 853 } 854 855 /* 856 * Scan a report descriptor before the device is added to the bus. 857 * Sets device groups and other properties that determine what driver 858 * to load. 859 */ 860 static int hid_scan_report(struct hid_device *hid) 861 { 862 struct hid_parser *parser; 863 struct hid_item item; 864 __u8 *start = hid->dev_rdesc; 865 __u8 *end = start + hid->dev_rsize; 866 static int (*dispatch_type[])(struct hid_parser *parser, 867 struct hid_item *item) = { 868 hid_scan_main, 869 hid_parser_global, 870 hid_parser_local, 871 hid_parser_reserved 872 }; 873 874 parser = vzalloc(sizeof(struct hid_parser)); 875 if (!parser) 876 return -ENOMEM; 877 878 parser->device = hid; 879 hid->group = HID_GROUP_GENERIC; 880 881 /* 882 * The parsing is simpler than the one in hid_open_report() as we should 883 * be robust against hid errors. Those errors will be raised by 884 * hid_open_report() anyway. 885 */ 886 while ((start = fetch_item(start, end, &item)) != NULL) 887 dispatch_type[item.type](parser, &item); 888 889 /* 890 * Handle special flags set during scanning. 891 */ 892 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 893 (hid->group == HID_GROUP_MULTITOUCH)) 894 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 895 896 /* 897 * Vendor specific handlings 898 */ 899 switch (hid->vendor) { 900 case USB_VENDOR_ID_WACOM: 901 hid->group = HID_GROUP_WACOM; 902 break; 903 case USB_VENDOR_ID_SYNAPTICS: 904 if (hid->group == HID_GROUP_GENERIC) 905 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 906 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 907 /* 908 * hid-rmi should take care of them, 909 * not hid-generic 910 */ 911 hid->group = HID_GROUP_RMI; 912 break; 913 } 914 915 kfree(parser->collection_stack); 916 vfree(parser); 917 return 0; 918 } 919 920 /** 921 * hid_parse_report - parse device report 922 * 923 * @device: hid device 924 * @start: report start 925 * @size: report size 926 * 927 * Allocate the device report as read by the bus driver. This function should 928 * only be called from parse() in ll drivers. 929 */ 930 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 931 { 932 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 933 if (!hid->dev_rdesc) 934 return -ENOMEM; 935 hid->dev_rsize = size; 936 return 0; 937 } 938 EXPORT_SYMBOL_GPL(hid_parse_report); 939 940 static const char * const hid_report_names[] = { 941 "HID_INPUT_REPORT", 942 "HID_OUTPUT_REPORT", 943 "HID_FEATURE_REPORT", 944 }; 945 /** 946 * hid_validate_values - validate existing device report's value indexes 947 * 948 * @device: hid device 949 * @type: which report type to examine 950 * @id: which report ID to examine (0 for first) 951 * @field_index: which report field to examine 952 * @report_counts: expected number of values 953 * 954 * Validate the number of values in a given field of a given report, after 955 * parsing. 956 */ 957 struct hid_report *hid_validate_values(struct hid_device *hid, 958 unsigned int type, unsigned int id, 959 unsigned int field_index, 960 unsigned int report_counts) 961 { 962 struct hid_report *report; 963 964 if (type > HID_FEATURE_REPORT) { 965 hid_err(hid, "invalid HID report type %u\n", type); 966 return NULL; 967 } 968 969 if (id >= HID_MAX_IDS) { 970 hid_err(hid, "invalid HID report id %u\n", id); 971 return NULL; 972 } 973 974 /* 975 * Explicitly not using hid_get_report() here since it depends on 976 * ->numbered being checked, which may not always be the case when 977 * drivers go to access report values. 978 */ 979 if (id == 0) { 980 /* 981 * Validating on id 0 means we should examine the first 982 * report in the list. 983 */ 984 report = list_entry( 985 hid->report_enum[type].report_list.next, 986 struct hid_report, list); 987 } else { 988 report = hid->report_enum[type].report_id_hash[id]; 989 } 990 if (!report) { 991 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 992 return NULL; 993 } 994 if (report->maxfield <= field_index) { 995 hid_err(hid, "not enough fields in %s %u\n", 996 hid_report_names[type], id); 997 return NULL; 998 } 999 if (report->field[field_index]->report_count < report_counts) { 1000 hid_err(hid, "not enough values in %s %u field %u\n", 1001 hid_report_names[type], id, field_index); 1002 return NULL; 1003 } 1004 return report; 1005 } 1006 EXPORT_SYMBOL_GPL(hid_validate_values); 1007 1008 static int hid_calculate_multiplier(struct hid_device *hid, 1009 struct hid_field *multiplier) 1010 { 1011 int m; 1012 __s32 v = *multiplier->value; 1013 __s32 lmin = multiplier->logical_minimum; 1014 __s32 lmax = multiplier->logical_maximum; 1015 __s32 pmin = multiplier->physical_minimum; 1016 __s32 pmax = multiplier->physical_maximum; 1017 1018 /* 1019 * "Because OS implementations will generally divide the control's 1020 * reported count by the Effective Resolution Multiplier, designers 1021 * should take care not to establish a potential Effective 1022 * Resolution Multiplier of zero." 1023 * HID Usage Table, v1.12, Section 4.3.1, p31 1024 */ 1025 if (lmax - lmin == 0) 1026 return 1; 1027 /* 1028 * Handling the unit exponent is left as an exercise to whoever 1029 * finds a device where that exponent is not 0. 1030 */ 1031 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 1032 if (unlikely(multiplier->unit_exponent != 0)) { 1033 hid_warn(hid, 1034 "unsupported Resolution Multiplier unit exponent %d\n", 1035 multiplier->unit_exponent); 1036 } 1037 1038 /* There are no devices with an effective multiplier > 255 */ 1039 if (unlikely(m == 0 || m > 255 || m < -255)) { 1040 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 1041 m = 1; 1042 } 1043 1044 return m; 1045 } 1046 1047 static void hid_apply_multiplier_to_field(struct hid_device *hid, 1048 struct hid_field *field, 1049 struct hid_collection *multiplier_collection, 1050 int effective_multiplier) 1051 { 1052 struct hid_collection *collection; 1053 struct hid_usage *usage; 1054 int i; 1055 1056 /* 1057 * If multiplier_collection is NULL, the multiplier applies 1058 * to all fields in the report. 1059 * Otherwise, it is the Logical Collection the multiplier applies to 1060 * but our field may be in a subcollection of that collection. 1061 */ 1062 for (i = 0; i < field->maxusage; i++) { 1063 usage = &field->usage[i]; 1064 1065 collection = &hid->collection[usage->collection_index]; 1066 while (collection->parent_idx != -1 && 1067 collection != multiplier_collection) 1068 collection = &hid->collection[collection->parent_idx]; 1069 1070 if (collection->parent_idx != -1 || 1071 multiplier_collection == NULL) 1072 usage->resolution_multiplier = effective_multiplier; 1073 1074 } 1075 } 1076 1077 static void hid_apply_multiplier(struct hid_device *hid, 1078 struct hid_field *multiplier) 1079 { 1080 struct hid_report_enum *rep_enum; 1081 struct hid_report *rep; 1082 struct hid_field *field; 1083 struct hid_collection *multiplier_collection; 1084 int effective_multiplier; 1085 int i; 1086 1087 /* 1088 * "The Resolution Multiplier control must be contained in the same 1089 * Logical Collection as the control(s) to which it is to be applied. 1090 * If no Resolution Multiplier is defined, then the Resolution 1091 * Multiplier defaults to 1. If more than one control exists in a 1092 * Logical Collection, the Resolution Multiplier is associated with 1093 * all controls in the collection. If no Logical Collection is 1094 * defined, the Resolution Multiplier is associated with all 1095 * controls in the report." 1096 * HID Usage Table, v1.12, Section 4.3.1, p30 1097 * 1098 * Thus, search from the current collection upwards until we find a 1099 * logical collection. Then search all fields for that same parent 1100 * collection. Those are the fields the multiplier applies to. 1101 * 1102 * If we have more than one multiplier, it will overwrite the 1103 * applicable fields later. 1104 */ 1105 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1106 while (multiplier_collection->parent_idx != -1 && 1107 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1108 multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; 1109 1110 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1111 1112 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1113 list_for_each_entry(rep, &rep_enum->report_list, list) { 1114 for (i = 0; i < rep->maxfield; i++) { 1115 field = rep->field[i]; 1116 hid_apply_multiplier_to_field(hid, field, 1117 multiplier_collection, 1118 effective_multiplier); 1119 } 1120 } 1121 } 1122 1123 /* 1124 * hid_setup_resolution_multiplier - set up all resolution multipliers 1125 * 1126 * @device: hid device 1127 * 1128 * Search for all Resolution Multiplier Feature Reports and apply their 1129 * value to all matching Input items. This only updates the internal struct 1130 * fields. 1131 * 1132 * The Resolution Multiplier is applied by the hardware. If the multiplier 1133 * is anything other than 1, the hardware will send pre-multiplied events 1134 * so that the same physical interaction generates an accumulated 1135 * accumulated_value = value * * multiplier 1136 * This may be achieved by sending 1137 * - "value * multiplier" for each event, or 1138 * - "value" but "multiplier" times as frequently, or 1139 * - a combination of the above 1140 * The only guarantee is that the same physical interaction always generates 1141 * an accumulated 'value * multiplier'. 1142 * 1143 * This function must be called before any event processing and after 1144 * any SetRequest to the Resolution Multiplier. 1145 */ 1146 void hid_setup_resolution_multiplier(struct hid_device *hid) 1147 { 1148 struct hid_report_enum *rep_enum; 1149 struct hid_report *rep; 1150 struct hid_usage *usage; 1151 int i, j; 1152 1153 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1154 list_for_each_entry(rep, &rep_enum->report_list, list) { 1155 for (i = 0; i < rep->maxfield; i++) { 1156 /* Ignore if report count is out of bounds. */ 1157 if (rep->field[i]->report_count < 1) 1158 continue; 1159 1160 for (j = 0; j < rep->field[i]->maxusage; j++) { 1161 usage = &rep->field[i]->usage[j]; 1162 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1163 hid_apply_multiplier(hid, 1164 rep->field[i]); 1165 } 1166 } 1167 } 1168 } 1169 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1170 1171 /** 1172 * hid_open_report - open a driver-specific device report 1173 * 1174 * @device: hid device 1175 * 1176 * Parse a report description into a hid_device structure. Reports are 1177 * enumerated, fields are attached to these reports. 1178 * 0 returned on success, otherwise nonzero error value. 1179 * 1180 * This function (or the equivalent hid_parse() macro) should only be 1181 * called from probe() in drivers, before starting the device. 1182 */ 1183 int hid_open_report(struct hid_device *device) 1184 { 1185 struct hid_parser *parser; 1186 struct hid_item item; 1187 unsigned int size; 1188 __u8 *start; 1189 __u8 *buf; 1190 __u8 *end; 1191 __u8 *next; 1192 int ret; 1193 static int (*dispatch_type[])(struct hid_parser *parser, 1194 struct hid_item *item) = { 1195 hid_parser_main, 1196 hid_parser_global, 1197 hid_parser_local, 1198 hid_parser_reserved 1199 }; 1200 1201 if (WARN_ON(device->status & HID_STAT_PARSED)) 1202 return -EBUSY; 1203 1204 start = device->dev_rdesc; 1205 if (WARN_ON(!start)) 1206 return -ENODEV; 1207 size = device->dev_rsize; 1208 1209 buf = kmemdup(start, size, GFP_KERNEL); 1210 if (buf == NULL) 1211 return -ENOMEM; 1212 1213 if (device->driver->report_fixup) 1214 start = device->driver->report_fixup(device, buf, &size); 1215 else 1216 start = buf; 1217 1218 start = kmemdup(start, size, GFP_KERNEL); 1219 kfree(buf); 1220 if (start == NULL) 1221 return -ENOMEM; 1222 1223 device->rdesc = start; 1224 device->rsize = size; 1225 1226 parser = vzalloc(sizeof(struct hid_parser)); 1227 if (!parser) { 1228 ret = -ENOMEM; 1229 goto alloc_err; 1230 } 1231 1232 parser->device = device; 1233 1234 end = start + size; 1235 1236 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1237 sizeof(struct hid_collection), GFP_KERNEL); 1238 if (!device->collection) { 1239 ret = -ENOMEM; 1240 goto err; 1241 } 1242 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1243 1244 ret = -EINVAL; 1245 while ((next = fetch_item(start, end, &item)) != NULL) { 1246 start = next; 1247 1248 if (item.format != HID_ITEM_FORMAT_SHORT) { 1249 hid_err(device, "unexpected long global item\n"); 1250 goto err; 1251 } 1252 1253 if (dispatch_type[item.type](parser, &item)) { 1254 hid_err(device, "item %u %u %u %u parsing failed\n", 1255 item.format, (unsigned)item.size, 1256 (unsigned)item.type, (unsigned)item.tag); 1257 goto err; 1258 } 1259 1260 if (start == end) { 1261 if (parser->collection_stack_ptr) { 1262 hid_err(device, "unbalanced collection at end of report description\n"); 1263 goto err; 1264 } 1265 if (parser->local.delimiter_depth) { 1266 hid_err(device, "unbalanced delimiter at end of report description\n"); 1267 goto err; 1268 } 1269 1270 /* 1271 * fetch initial values in case the device's 1272 * default multiplier isn't the recommended 1 1273 */ 1274 hid_setup_resolution_multiplier(device); 1275 1276 kfree(parser->collection_stack); 1277 vfree(parser); 1278 device->status |= HID_STAT_PARSED; 1279 1280 return 0; 1281 } 1282 } 1283 1284 hid_err(device, "item fetching failed at offset %u/%u\n", 1285 size - (unsigned int)(end - start), size); 1286 err: 1287 kfree(parser->collection_stack); 1288 alloc_err: 1289 vfree(parser); 1290 hid_close_report(device); 1291 return ret; 1292 } 1293 EXPORT_SYMBOL_GPL(hid_open_report); 1294 1295 /* 1296 * Convert a signed n-bit integer to signed 32-bit integer. Common 1297 * cases are done through the compiler, the screwed things has to be 1298 * done by hand. 1299 */ 1300 1301 static s32 snto32(__u32 value, unsigned n) 1302 { 1303 switch (n) { 1304 case 8: return ((__s8)value); 1305 case 16: return ((__s16)value); 1306 case 32: return ((__s32)value); 1307 } 1308 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1309 } 1310 1311 s32 hid_snto32(__u32 value, unsigned n) 1312 { 1313 return snto32(value, n); 1314 } 1315 EXPORT_SYMBOL_GPL(hid_snto32); 1316 1317 /* 1318 * Convert a signed 32-bit integer to a signed n-bit integer. 1319 */ 1320 1321 static u32 s32ton(__s32 value, unsigned n) 1322 { 1323 s32 a = value >> (n - 1); 1324 if (a && a != -1) 1325 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1326 return value & ((1 << n) - 1); 1327 } 1328 1329 /* 1330 * Extract/implement a data field from/to a little endian report (bit array). 1331 * 1332 * Code sort-of follows HID spec: 1333 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1334 * 1335 * While the USB HID spec allows unlimited length bit fields in "report 1336 * descriptors", most devices never use more than 16 bits. 1337 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1338 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1339 */ 1340 1341 static u32 __extract(u8 *report, unsigned offset, int n) 1342 { 1343 unsigned int idx = offset / 8; 1344 unsigned int bit_nr = 0; 1345 unsigned int bit_shift = offset % 8; 1346 int bits_to_copy = 8 - bit_shift; 1347 u32 value = 0; 1348 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1349 1350 while (n > 0) { 1351 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1352 n -= bits_to_copy; 1353 bit_nr += bits_to_copy; 1354 bits_to_copy = 8; 1355 bit_shift = 0; 1356 idx++; 1357 } 1358 1359 return value & mask; 1360 } 1361 1362 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1363 unsigned offset, unsigned n) 1364 { 1365 if (n > 32) { 1366 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n", 1367 __func__, n, current->comm); 1368 n = 32; 1369 } 1370 1371 return __extract(report, offset, n); 1372 } 1373 EXPORT_SYMBOL_GPL(hid_field_extract); 1374 1375 /* 1376 * "implement" : set bits in a little endian bit stream. 1377 * Same concepts as "extract" (see comments above). 1378 * The data mangled in the bit stream remains in little endian 1379 * order the whole time. It make more sense to talk about 1380 * endianness of register values by considering a register 1381 * a "cached" copy of the little endian bit stream. 1382 */ 1383 1384 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1385 { 1386 unsigned int idx = offset / 8; 1387 unsigned int bit_shift = offset % 8; 1388 int bits_to_set = 8 - bit_shift; 1389 1390 while (n - bits_to_set >= 0) { 1391 report[idx] &= ~(0xff << bit_shift); 1392 report[idx] |= value << bit_shift; 1393 value >>= bits_to_set; 1394 n -= bits_to_set; 1395 bits_to_set = 8; 1396 bit_shift = 0; 1397 idx++; 1398 } 1399 1400 /* last nibble */ 1401 if (n) { 1402 u8 bit_mask = ((1U << n) - 1); 1403 report[idx] &= ~(bit_mask << bit_shift); 1404 report[idx] |= value << bit_shift; 1405 } 1406 } 1407 1408 static void implement(const struct hid_device *hid, u8 *report, 1409 unsigned offset, unsigned n, u32 value) 1410 { 1411 if (unlikely(n > 32)) { 1412 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1413 __func__, n, current->comm); 1414 n = 32; 1415 } else if (n < 32) { 1416 u32 m = (1U << n) - 1; 1417 1418 if (unlikely(value > m)) { 1419 hid_warn(hid, 1420 "%s() called with too large value %d (n: %d)! (%s)\n", 1421 __func__, value, n, current->comm); 1422 WARN_ON(1); 1423 value &= m; 1424 } 1425 } 1426 1427 __implement(report, offset, n, value); 1428 } 1429 1430 /* 1431 * Search an array for a value. 1432 */ 1433 1434 static int search(__s32 *array, __s32 value, unsigned n) 1435 { 1436 while (n--) { 1437 if (*array++ == value) 1438 return 0; 1439 } 1440 return -1; 1441 } 1442 1443 /** 1444 * hid_match_report - check if driver's raw_event should be called 1445 * 1446 * @hid: hid device 1447 * @report_type: type to match against 1448 * 1449 * compare hid->driver->report_table->report_type to report->type 1450 */ 1451 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1452 { 1453 const struct hid_report_id *id = hid->driver->report_table; 1454 1455 if (!id) /* NULL means all */ 1456 return 1; 1457 1458 for (; id->report_type != HID_TERMINATOR; id++) 1459 if (id->report_type == HID_ANY_ID || 1460 id->report_type == report->type) 1461 return 1; 1462 return 0; 1463 } 1464 1465 /** 1466 * hid_match_usage - check if driver's event should be called 1467 * 1468 * @hid: hid device 1469 * @usage: usage to match against 1470 * 1471 * compare hid->driver->usage_table->usage_{type,code} to 1472 * usage->usage_{type,code} 1473 */ 1474 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1475 { 1476 const struct hid_usage_id *id = hid->driver->usage_table; 1477 1478 if (!id) /* NULL means all */ 1479 return 1; 1480 1481 for (; id->usage_type != HID_ANY_ID - 1; id++) 1482 if ((id->usage_hid == HID_ANY_ID || 1483 id->usage_hid == usage->hid) && 1484 (id->usage_type == HID_ANY_ID || 1485 id->usage_type == usage->type) && 1486 (id->usage_code == HID_ANY_ID || 1487 id->usage_code == usage->code)) 1488 return 1; 1489 return 0; 1490 } 1491 1492 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1493 struct hid_usage *usage, __s32 value, int interrupt) 1494 { 1495 struct hid_driver *hdrv = hid->driver; 1496 int ret; 1497 1498 if (!list_empty(&hid->debug_list)) 1499 hid_dump_input(hid, usage, value); 1500 1501 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1502 ret = hdrv->event(hid, field, usage, value); 1503 if (ret != 0) { 1504 if (ret < 0) 1505 hid_err(hid, "%s's event failed with %d\n", 1506 hdrv->name, ret); 1507 return; 1508 } 1509 } 1510 1511 if (hid->claimed & HID_CLAIMED_INPUT) 1512 hidinput_hid_event(hid, field, usage, value); 1513 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1514 hid->hiddev_hid_event(hid, field, usage, value); 1515 } 1516 1517 /* 1518 * Analyse a received field, and fetch the data from it. The field 1519 * content is stored for next report processing (we do differential 1520 * reporting to the layer). 1521 */ 1522 1523 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1524 __u8 *data, int interrupt) 1525 { 1526 unsigned n; 1527 unsigned count = field->report_count; 1528 unsigned offset = field->report_offset; 1529 unsigned size = field->report_size; 1530 __s32 min = field->logical_minimum; 1531 __s32 max = field->logical_maximum; 1532 __s32 *value; 1533 1534 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1535 if (!value) 1536 return; 1537 1538 for (n = 0; n < count; n++) { 1539 1540 value[n] = min < 0 ? 1541 snto32(hid_field_extract(hid, data, offset + n * size, 1542 size), size) : 1543 hid_field_extract(hid, data, offset + n * size, size); 1544 1545 /* Ignore report if ErrorRollOver */ 1546 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1547 value[n] >= min && value[n] <= max && 1548 value[n] - min < field->maxusage && 1549 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1550 goto exit; 1551 } 1552 1553 for (n = 0; n < count; n++) { 1554 1555 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1556 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1557 continue; 1558 } 1559 1560 if (field->value[n] >= min && field->value[n] <= max 1561 && field->value[n] - min < field->maxusage 1562 && field->usage[field->value[n] - min].hid 1563 && search(value, field->value[n], count)) 1564 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1565 1566 if (value[n] >= min && value[n] <= max 1567 && value[n] - min < field->maxusage 1568 && field->usage[value[n] - min].hid 1569 && search(field->value, value[n], count)) 1570 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1571 } 1572 1573 memcpy(field->value, value, count * sizeof(__s32)); 1574 exit: 1575 kfree(value); 1576 } 1577 1578 /* 1579 * Output the field into the report. 1580 */ 1581 1582 static void hid_output_field(const struct hid_device *hid, 1583 struct hid_field *field, __u8 *data) 1584 { 1585 unsigned count = field->report_count; 1586 unsigned offset = field->report_offset; 1587 unsigned size = field->report_size; 1588 unsigned n; 1589 1590 for (n = 0; n < count; n++) { 1591 if (field->logical_minimum < 0) /* signed values */ 1592 implement(hid, data, offset + n * size, size, 1593 s32ton(field->value[n], size)); 1594 else /* unsigned values */ 1595 implement(hid, data, offset + n * size, size, 1596 field->value[n]); 1597 } 1598 } 1599 1600 /* 1601 * Compute the size of a report. 1602 */ 1603 static size_t hid_compute_report_size(struct hid_report *report) 1604 { 1605 if (report->size) 1606 return ((report->size - 1) >> 3) + 1; 1607 1608 return 0; 1609 } 1610 1611 /* 1612 * Create a report. 'data' has to be allocated using 1613 * hid_alloc_report_buf() so that it has proper size. 1614 */ 1615 1616 void hid_output_report(struct hid_report *report, __u8 *data) 1617 { 1618 unsigned n; 1619 1620 if (report->id > 0) 1621 *data++ = report->id; 1622 1623 memset(data, 0, hid_compute_report_size(report)); 1624 for (n = 0; n < report->maxfield; n++) 1625 hid_output_field(report->device, report->field[n], data); 1626 } 1627 EXPORT_SYMBOL_GPL(hid_output_report); 1628 1629 /* 1630 * Allocator for buffer that is going to be passed to hid_output_report() 1631 */ 1632 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1633 { 1634 /* 1635 * 7 extra bytes are necessary to achieve proper functionality 1636 * of implement() working on 8 byte chunks 1637 */ 1638 1639 u32 len = hid_report_len(report) + 7; 1640 1641 return kmalloc(len, flags); 1642 } 1643 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1644 1645 /* 1646 * Set a field value. The report this field belongs to has to be 1647 * created and transferred to the device, to set this value in the 1648 * device. 1649 */ 1650 1651 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1652 { 1653 unsigned size; 1654 1655 if (!field) 1656 return -1; 1657 1658 size = field->report_size; 1659 1660 hid_dump_input(field->report->device, field->usage + offset, value); 1661 1662 if (offset >= field->report_count) { 1663 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1664 offset, field->report_count); 1665 return -1; 1666 } 1667 if (field->logical_minimum < 0) { 1668 if (value != snto32(s32ton(value, size), size)) { 1669 hid_err(field->report->device, "value %d is out of range\n", value); 1670 return -1; 1671 } 1672 } 1673 field->value[offset] = value; 1674 return 0; 1675 } 1676 EXPORT_SYMBOL_GPL(hid_set_field); 1677 1678 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1679 const u8 *data) 1680 { 1681 struct hid_report *report; 1682 unsigned int n = 0; /* Normally report number is 0 */ 1683 1684 /* Device uses numbered reports, data[0] is report number */ 1685 if (report_enum->numbered) 1686 n = *data; 1687 1688 report = report_enum->report_id_hash[n]; 1689 if (report == NULL) 1690 dbg_hid("undefined report_id %u received\n", n); 1691 1692 return report; 1693 } 1694 1695 /* 1696 * Implement a generic .request() callback, using .raw_request() 1697 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1698 */ 1699 int __hid_request(struct hid_device *hid, struct hid_report *report, 1700 int reqtype) 1701 { 1702 char *buf; 1703 int ret; 1704 u32 len; 1705 1706 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1707 if (!buf) 1708 return -ENOMEM; 1709 1710 len = hid_report_len(report); 1711 1712 if (reqtype == HID_REQ_SET_REPORT) 1713 hid_output_report(report, buf); 1714 1715 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1716 report->type, reqtype); 1717 if (ret < 0) { 1718 dbg_hid("unable to complete request: %d\n", ret); 1719 goto out; 1720 } 1721 1722 if (reqtype == HID_REQ_GET_REPORT) 1723 hid_input_report(hid, report->type, buf, ret, 0); 1724 1725 ret = 0; 1726 1727 out: 1728 kfree(buf); 1729 return ret; 1730 } 1731 EXPORT_SYMBOL_GPL(__hid_request); 1732 1733 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1734 int interrupt) 1735 { 1736 struct hid_report_enum *report_enum = hid->report_enum + type; 1737 struct hid_report *report; 1738 struct hid_driver *hdrv; 1739 unsigned int a; 1740 u32 rsize, csize = size; 1741 u8 *cdata = data; 1742 int ret = 0; 1743 1744 report = hid_get_report(report_enum, data); 1745 if (!report) 1746 goto out; 1747 1748 if (report_enum->numbered) { 1749 cdata++; 1750 csize--; 1751 } 1752 1753 rsize = hid_compute_report_size(report); 1754 1755 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE) 1756 rsize = HID_MAX_BUFFER_SIZE - 1; 1757 else if (rsize > HID_MAX_BUFFER_SIZE) 1758 rsize = HID_MAX_BUFFER_SIZE; 1759 1760 if (csize < rsize) { 1761 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1762 csize, rsize); 1763 memset(cdata + csize, 0, rsize - csize); 1764 } 1765 1766 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1767 hid->hiddev_report_event(hid, report); 1768 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1769 ret = hidraw_report_event(hid, data, size); 1770 if (ret) 1771 goto out; 1772 } 1773 1774 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1775 for (a = 0; a < report->maxfield; a++) 1776 hid_input_field(hid, report->field[a], cdata, interrupt); 1777 hdrv = hid->driver; 1778 if (hdrv && hdrv->report) 1779 hdrv->report(hid, report); 1780 } 1781 1782 if (hid->claimed & HID_CLAIMED_INPUT) 1783 hidinput_report_event(hid, report); 1784 out: 1785 return ret; 1786 } 1787 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1788 1789 /** 1790 * hid_input_report - report data from lower layer (usb, bt...) 1791 * 1792 * @hid: hid device 1793 * @type: HID report type (HID_*_REPORT) 1794 * @data: report contents 1795 * @size: size of data parameter 1796 * @interrupt: distinguish between interrupt and control transfers 1797 * 1798 * This is data entry for lower layers. 1799 */ 1800 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1801 { 1802 struct hid_report_enum *report_enum; 1803 struct hid_driver *hdrv; 1804 struct hid_report *report; 1805 int ret = 0; 1806 1807 if (!hid) 1808 return -ENODEV; 1809 1810 if (down_trylock(&hid->driver_input_lock)) 1811 return -EBUSY; 1812 1813 if (!hid->driver) { 1814 ret = -ENODEV; 1815 goto unlock; 1816 } 1817 report_enum = hid->report_enum + type; 1818 hdrv = hid->driver; 1819 1820 if (!size) { 1821 dbg_hid("empty report\n"); 1822 ret = -1; 1823 goto unlock; 1824 } 1825 1826 /* Avoid unnecessary overhead if debugfs is disabled */ 1827 if (!list_empty(&hid->debug_list)) 1828 hid_dump_report(hid, type, data, size); 1829 1830 report = hid_get_report(report_enum, data); 1831 1832 if (!report) { 1833 ret = -1; 1834 goto unlock; 1835 } 1836 1837 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1838 ret = hdrv->raw_event(hid, report, data, size); 1839 if (ret < 0) 1840 goto unlock; 1841 } 1842 1843 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1844 1845 unlock: 1846 up(&hid->driver_input_lock); 1847 return ret; 1848 } 1849 EXPORT_SYMBOL_GPL(hid_input_report); 1850 1851 bool hid_match_one_id(const struct hid_device *hdev, 1852 const struct hid_device_id *id) 1853 { 1854 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1855 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1856 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1857 (id->product == HID_ANY_ID || id->product == hdev->product); 1858 } 1859 1860 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1861 const struct hid_device_id *id) 1862 { 1863 for (; id->bus; id++) 1864 if (hid_match_one_id(hdev, id)) 1865 return id; 1866 1867 return NULL; 1868 } 1869 1870 static const struct hid_device_id hid_hiddev_list[] = { 1871 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1872 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1873 { } 1874 }; 1875 1876 static bool hid_hiddev(struct hid_device *hdev) 1877 { 1878 return !!hid_match_id(hdev, hid_hiddev_list); 1879 } 1880 1881 1882 static ssize_t 1883 read_report_descriptor(struct file *filp, struct kobject *kobj, 1884 struct bin_attribute *attr, 1885 char *buf, loff_t off, size_t count) 1886 { 1887 struct device *dev = kobj_to_dev(kobj); 1888 struct hid_device *hdev = to_hid_device(dev); 1889 1890 if (off >= hdev->rsize) 1891 return 0; 1892 1893 if (off + count > hdev->rsize) 1894 count = hdev->rsize - off; 1895 1896 memcpy(buf, hdev->rdesc + off, count); 1897 1898 return count; 1899 } 1900 1901 static ssize_t 1902 show_country(struct device *dev, struct device_attribute *attr, 1903 char *buf) 1904 { 1905 struct hid_device *hdev = to_hid_device(dev); 1906 1907 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1908 } 1909 1910 static struct bin_attribute dev_bin_attr_report_desc = { 1911 .attr = { .name = "report_descriptor", .mode = 0444 }, 1912 .read = read_report_descriptor, 1913 .size = HID_MAX_DESCRIPTOR_SIZE, 1914 }; 1915 1916 static const struct device_attribute dev_attr_country = { 1917 .attr = { .name = "country", .mode = 0444 }, 1918 .show = show_country, 1919 }; 1920 1921 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1922 { 1923 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1924 "Joystick", "Gamepad", "Keyboard", "Keypad", 1925 "Multi-Axis Controller" 1926 }; 1927 const char *type, *bus; 1928 char buf[64] = ""; 1929 unsigned int i; 1930 int len; 1931 int ret; 1932 1933 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1934 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1935 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1936 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1937 if (hdev->bus != BUS_USB) 1938 connect_mask &= ~HID_CONNECT_HIDDEV; 1939 if (hid_hiddev(hdev)) 1940 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1941 1942 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1943 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1944 hdev->claimed |= HID_CLAIMED_INPUT; 1945 1946 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1947 !hdev->hiddev_connect(hdev, 1948 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1949 hdev->claimed |= HID_CLAIMED_HIDDEV; 1950 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1951 hdev->claimed |= HID_CLAIMED_HIDRAW; 1952 1953 if (connect_mask & HID_CONNECT_DRIVER) 1954 hdev->claimed |= HID_CLAIMED_DRIVER; 1955 1956 /* Drivers with the ->raw_event callback set are not required to connect 1957 * to any other listener. */ 1958 if (!hdev->claimed && !hdev->driver->raw_event) { 1959 hid_err(hdev, "device has no listeners, quitting\n"); 1960 return -ENODEV; 1961 } 1962 1963 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1964 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1965 hdev->ff_init(hdev); 1966 1967 len = 0; 1968 if (hdev->claimed & HID_CLAIMED_INPUT) 1969 len += sprintf(buf + len, "input"); 1970 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1971 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1972 ((struct hiddev *)hdev->hiddev)->minor); 1973 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1974 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1975 ((struct hidraw *)hdev->hidraw)->minor); 1976 1977 type = "Device"; 1978 for (i = 0; i < hdev->maxcollection; i++) { 1979 struct hid_collection *col = &hdev->collection[i]; 1980 if (col->type == HID_COLLECTION_APPLICATION && 1981 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1982 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1983 type = types[col->usage & 0xffff]; 1984 break; 1985 } 1986 } 1987 1988 switch (hdev->bus) { 1989 case BUS_USB: 1990 bus = "USB"; 1991 break; 1992 case BUS_BLUETOOTH: 1993 bus = "BLUETOOTH"; 1994 break; 1995 case BUS_I2C: 1996 bus = "I2C"; 1997 break; 1998 default: 1999 bus = "<UNKNOWN>"; 2000 } 2001 2002 ret = device_create_file(&hdev->dev, &dev_attr_country); 2003 if (ret) 2004 hid_warn(hdev, 2005 "can't create sysfs country code attribute err: %d\n", ret); 2006 2007 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 2008 buf, bus, hdev->version >> 8, hdev->version & 0xff, 2009 type, hdev->name, hdev->phys); 2010 2011 return 0; 2012 } 2013 EXPORT_SYMBOL_GPL(hid_connect); 2014 2015 void hid_disconnect(struct hid_device *hdev) 2016 { 2017 device_remove_file(&hdev->dev, &dev_attr_country); 2018 if (hdev->claimed & HID_CLAIMED_INPUT) 2019 hidinput_disconnect(hdev); 2020 if (hdev->claimed & HID_CLAIMED_HIDDEV) 2021 hdev->hiddev_disconnect(hdev); 2022 if (hdev->claimed & HID_CLAIMED_HIDRAW) 2023 hidraw_disconnect(hdev); 2024 hdev->claimed = 0; 2025 } 2026 EXPORT_SYMBOL_GPL(hid_disconnect); 2027 2028 /** 2029 * hid_hw_start - start underlying HW 2030 * @hdev: hid device 2031 * @connect_mask: which outputs to connect, see HID_CONNECT_* 2032 * 2033 * Call this in probe function *after* hid_parse. This will setup HW 2034 * buffers and start the device (if not defeirred to device open). 2035 * hid_hw_stop must be called if this was successful. 2036 */ 2037 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 2038 { 2039 int error; 2040 2041 error = hdev->ll_driver->start(hdev); 2042 if (error) 2043 return error; 2044 2045 if (connect_mask) { 2046 error = hid_connect(hdev, connect_mask); 2047 if (error) { 2048 hdev->ll_driver->stop(hdev); 2049 return error; 2050 } 2051 } 2052 2053 return 0; 2054 } 2055 EXPORT_SYMBOL_GPL(hid_hw_start); 2056 2057 /** 2058 * hid_hw_stop - stop underlying HW 2059 * @hdev: hid device 2060 * 2061 * This is usually called from remove function or from probe when something 2062 * failed and hid_hw_start was called already. 2063 */ 2064 void hid_hw_stop(struct hid_device *hdev) 2065 { 2066 hid_disconnect(hdev); 2067 hdev->ll_driver->stop(hdev); 2068 } 2069 EXPORT_SYMBOL_GPL(hid_hw_stop); 2070 2071 /** 2072 * hid_hw_open - signal underlying HW to start delivering events 2073 * @hdev: hid device 2074 * 2075 * Tell underlying HW to start delivering events from the device. 2076 * This function should be called sometime after successful call 2077 * to hid_hw_start(). 2078 */ 2079 int hid_hw_open(struct hid_device *hdev) 2080 { 2081 int ret; 2082 2083 ret = mutex_lock_killable(&hdev->ll_open_lock); 2084 if (ret) 2085 return ret; 2086 2087 if (!hdev->ll_open_count++) { 2088 ret = hdev->ll_driver->open(hdev); 2089 if (ret) 2090 hdev->ll_open_count--; 2091 } 2092 2093 mutex_unlock(&hdev->ll_open_lock); 2094 return ret; 2095 } 2096 EXPORT_SYMBOL_GPL(hid_hw_open); 2097 2098 /** 2099 * hid_hw_close - signal underlaying HW to stop delivering events 2100 * 2101 * @hdev: hid device 2102 * 2103 * This function indicates that we are not interested in the events 2104 * from this device anymore. Delivery of events may or may not stop, 2105 * depending on the number of users still outstanding. 2106 */ 2107 void hid_hw_close(struct hid_device *hdev) 2108 { 2109 mutex_lock(&hdev->ll_open_lock); 2110 if (!--hdev->ll_open_count) 2111 hdev->ll_driver->close(hdev); 2112 mutex_unlock(&hdev->ll_open_lock); 2113 } 2114 EXPORT_SYMBOL_GPL(hid_hw_close); 2115 2116 struct hid_dynid { 2117 struct list_head list; 2118 struct hid_device_id id; 2119 }; 2120 2121 /** 2122 * store_new_id - add a new HID device ID to this driver and re-probe devices 2123 * @driver: target device driver 2124 * @buf: buffer for scanning device ID data 2125 * @count: input size 2126 * 2127 * Adds a new dynamic hid device ID to this driver, 2128 * and causes the driver to probe for all devices again. 2129 */ 2130 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2131 size_t count) 2132 { 2133 struct hid_driver *hdrv = to_hid_driver(drv); 2134 struct hid_dynid *dynid; 2135 __u32 bus, vendor, product; 2136 unsigned long driver_data = 0; 2137 int ret; 2138 2139 ret = sscanf(buf, "%x %x %x %lx", 2140 &bus, &vendor, &product, &driver_data); 2141 if (ret < 3) 2142 return -EINVAL; 2143 2144 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2145 if (!dynid) 2146 return -ENOMEM; 2147 2148 dynid->id.bus = bus; 2149 dynid->id.group = HID_GROUP_ANY; 2150 dynid->id.vendor = vendor; 2151 dynid->id.product = product; 2152 dynid->id.driver_data = driver_data; 2153 2154 spin_lock(&hdrv->dyn_lock); 2155 list_add_tail(&dynid->list, &hdrv->dyn_list); 2156 spin_unlock(&hdrv->dyn_lock); 2157 2158 ret = driver_attach(&hdrv->driver); 2159 2160 return ret ? : count; 2161 } 2162 static DRIVER_ATTR_WO(new_id); 2163 2164 static struct attribute *hid_drv_attrs[] = { 2165 &driver_attr_new_id.attr, 2166 NULL, 2167 }; 2168 ATTRIBUTE_GROUPS(hid_drv); 2169 2170 static void hid_free_dynids(struct hid_driver *hdrv) 2171 { 2172 struct hid_dynid *dynid, *n; 2173 2174 spin_lock(&hdrv->dyn_lock); 2175 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2176 list_del(&dynid->list); 2177 kfree(dynid); 2178 } 2179 spin_unlock(&hdrv->dyn_lock); 2180 } 2181 2182 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2183 struct hid_driver *hdrv) 2184 { 2185 struct hid_dynid *dynid; 2186 2187 spin_lock(&hdrv->dyn_lock); 2188 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2189 if (hid_match_one_id(hdev, &dynid->id)) { 2190 spin_unlock(&hdrv->dyn_lock); 2191 return &dynid->id; 2192 } 2193 } 2194 spin_unlock(&hdrv->dyn_lock); 2195 2196 return hid_match_id(hdev, hdrv->id_table); 2197 } 2198 EXPORT_SYMBOL_GPL(hid_match_device); 2199 2200 static int hid_bus_match(struct device *dev, struct device_driver *drv) 2201 { 2202 struct hid_driver *hdrv = to_hid_driver(drv); 2203 struct hid_device *hdev = to_hid_device(dev); 2204 2205 return hid_match_device(hdev, hdrv) != NULL; 2206 } 2207 2208 /** 2209 * hid_compare_device_paths - check if both devices share the same path 2210 * @hdev_a: hid device 2211 * @hdev_b: hid device 2212 * @separator: char to use as separator 2213 * 2214 * Check if two devices share the same path up to the last occurrence of 2215 * the separator char. Both paths must exist (i.e., zero-length paths 2216 * don't match). 2217 */ 2218 bool hid_compare_device_paths(struct hid_device *hdev_a, 2219 struct hid_device *hdev_b, char separator) 2220 { 2221 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2222 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2223 2224 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2225 return false; 2226 2227 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2228 } 2229 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2230 2231 static int hid_device_probe(struct device *dev) 2232 { 2233 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2234 struct hid_device *hdev = to_hid_device(dev); 2235 const struct hid_device_id *id; 2236 int ret = 0; 2237 2238 if (down_interruptible(&hdev->driver_input_lock)) { 2239 ret = -EINTR; 2240 goto end; 2241 } 2242 hdev->io_started = false; 2243 2244 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2245 2246 if (!hdev->driver) { 2247 id = hid_match_device(hdev, hdrv); 2248 if (id == NULL) { 2249 ret = -ENODEV; 2250 goto unlock; 2251 } 2252 2253 if (hdrv->match) { 2254 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 2255 ret = -ENODEV; 2256 goto unlock; 2257 } 2258 } else { 2259 /* 2260 * hid-generic implements .match(), so if 2261 * hid_ignore_special_drivers is set, we can safely 2262 * return. 2263 */ 2264 if (hid_ignore_special_drivers) { 2265 ret = -ENODEV; 2266 goto unlock; 2267 } 2268 } 2269 2270 /* reset the quirks that has been previously set */ 2271 hdev->quirks = hid_lookup_quirk(hdev); 2272 hdev->driver = hdrv; 2273 if (hdrv->probe) { 2274 ret = hdrv->probe(hdev, id); 2275 } else { /* default probe */ 2276 ret = hid_open_report(hdev); 2277 if (!ret) 2278 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2279 } 2280 if (ret) { 2281 hid_close_report(hdev); 2282 hdev->driver = NULL; 2283 } 2284 } 2285 unlock: 2286 if (!hdev->io_started) 2287 up(&hdev->driver_input_lock); 2288 end: 2289 return ret; 2290 } 2291 2292 static int hid_device_remove(struct device *dev) 2293 { 2294 struct hid_device *hdev = to_hid_device(dev); 2295 struct hid_driver *hdrv; 2296 int ret = 0; 2297 2298 if (down_interruptible(&hdev->driver_input_lock)) { 2299 ret = -EINTR; 2300 goto end; 2301 } 2302 hdev->io_started = false; 2303 2304 hdrv = hdev->driver; 2305 if (hdrv) { 2306 if (hdrv->remove) 2307 hdrv->remove(hdev); 2308 else /* default remove */ 2309 hid_hw_stop(hdev); 2310 hid_close_report(hdev); 2311 hdev->driver = NULL; 2312 } 2313 2314 if (!hdev->io_started) 2315 up(&hdev->driver_input_lock); 2316 end: 2317 return ret; 2318 } 2319 2320 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2321 char *buf) 2322 { 2323 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2324 2325 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2326 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2327 } 2328 static DEVICE_ATTR_RO(modalias); 2329 2330 static struct attribute *hid_dev_attrs[] = { 2331 &dev_attr_modalias.attr, 2332 NULL, 2333 }; 2334 static struct bin_attribute *hid_dev_bin_attrs[] = { 2335 &dev_bin_attr_report_desc, 2336 NULL 2337 }; 2338 static const struct attribute_group hid_dev_group = { 2339 .attrs = hid_dev_attrs, 2340 .bin_attrs = hid_dev_bin_attrs, 2341 }; 2342 __ATTRIBUTE_GROUPS(hid_dev); 2343 2344 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2345 { 2346 struct hid_device *hdev = to_hid_device(dev); 2347 2348 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2349 hdev->bus, hdev->vendor, hdev->product)) 2350 return -ENOMEM; 2351 2352 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2353 return -ENOMEM; 2354 2355 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2356 return -ENOMEM; 2357 2358 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2359 return -ENOMEM; 2360 2361 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2362 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2363 return -ENOMEM; 2364 2365 return 0; 2366 } 2367 2368 struct bus_type hid_bus_type = { 2369 .name = "hid", 2370 .dev_groups = hid_dev_groups, 2371 .drv_groups = hid_drv_groups, 2372 .match = hid_bus_match, 2373 .probe = hid_device_probe, 2374 .remove = hid_device_remove, 2375 .uevent = hid_uevent, 2376 }; 2377 EXPORT_SYMBOL(hid_bus_type); 2378 2379 int hid_add_device(struct hid_device *hdev) 2380 { 2381 static atomic_t id = ATOMIC_INIT(0); 2382 int ret; 2383 2384 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2385 return -EBUSY; 2386 2387 hdev->quirks = hid_lookup_quirk(hdev); 2388 2389 /* we need to kill them here, otherwise they will stay allocated to 2390 * wait for coming driver */ 2391 if (hid_ignore(hdev)) 2392 return -ENODEV; 2393 2394 /* 2395 * Check for the mandatory transport channel. 2396 */ 2397 if (!hdev->ll_driver->raw_request) { 2398 hid_err(hdev, "transport driver missing .raw_request()\n"); 2399 return -EINVAL; 2400 } 2401 2402 /* 2403 * Read the device report descriptor once and use as template 2404 * for the driver-specific modifications. 2405 */ 2406 ret = hdev->ll_driver->parse(hdev); 2407 if (ret) 2408 return ret; 2409 if (!hdev->dev_rdesc) 2410 return -ENODEV; 2411 2412 /* 2413 * Scan generic devices for group information 2414 */ 2415 if (hid_ignore_special_drivers) { 2416 hdev->group = HID_GROUP_GENERIC; 2417 } else if (!hdev->group && 2418 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2419 ret = hid_scan_report(hdev); 2420 if (ret) 2421 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2422 } 2423 2424 /* XXX hack, any other cleaner solution after the driver core 2425 * is converted to allow more than 20 bytes as the device name? */ 2426 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2427 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2428 2429 hid_debug_register(hdev, dev_name(&hdev->dev)); 2430 ret = device_add(&hdev->dev); 2431 if (!ret) 2432 hdev->status |= HID_STAT_ADDED; 2433 else 2434 hid_debug_unregister(hdev); 2435 2436 return ret; 2437 } 2438 EXPORT_SYMBOL_GPL(hid_add_device); 2439 2440 /** 2441 * hid_allocate_device - allocate new hid device descriptor 2442 * 2443 * Allocate and initialize hid device, so that hid_destroy_device might be 2444 * used to free it. 2445 * 2446 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2447 * error value. 2448 */ 2449 struct hid_device *hid_allocate_device(void) 2450 { 2451 struct hid_device *hdev; 2452 int ret = -ENOMEM; 2453 2454 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2455 if (hdev == NULL) 2456 return ERR_PTR(ret); 2457 2458 device_initialize(&hdev->dev); 2459 hdev->dev.release = hid_device_release; 2460 hdev->dev.bus = &hid_bus_type; 2461 device_enable_async_suspend(&hdev->dev); 2462 2463 hid_close_report(hdev); 2464 2465 init_waitqueue_head(&hdev->debug_wait); 2466 INIT_LIST_HEAD(&hdev->debug_list); 2467 spin_lock_init(&hdev->debug_list_lock); 2468 sema_init(&hdev->driver_input_lock, 1); 2469 mutex_init(&hdev->ll_open_lock); 2470 2471 return hdev; 2472 } 2473 EXPORT_SYMBOL_GPL(hid_allocate_device); 2474 2475 static void hid_remove_device(struct hid_device *hdev) 2476 { 2477 if (hdev->status & HID_STAT_ADDED) { 2478 device_del(&hdev->dev); 2479 hid_debug_unregister(hdev); 2480 hdev->status &= ~HID_STAT_ADDED; 2481 } 2482 kfree(hdev->dev_rdesc); 2483 hdev->dev_rdesc = NULL; 2484 hdev->dev_rsize = 0; 2485 } 2486 2487 /** 2488 * hid_destroy_device - free previously allocated device 2489 * 2490 * @hdev: hid device 2491 * 2492 * If you allocate hid_device through hid_allocate_device, you should ever 2493 * free by this function. 2494 */ 2495 void hid_destroy_device(struct hid_device *hdev) 2496 { 2497 hid_remove_device(hdev); 2498 put_device(&hdev->dev); 2499 } 2500 EXPORT_SYMBOL_GPL(hid_destroy_device); 2501 2502 2503 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2504 { 2505 struct hid_driver *hdrv = data; 2506 struct hid_device *hdev = to_hid_device(dev); 2507 2508 if (hdev->driver == hdrv && 2509 !hdrv->match(hdev, hid_ignore_special_drivers) && 2510 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2511 return device_reprobe(dev); 2512 2513 return 0; 2514 } 2515 2516 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2517 { 2518 struct hid_driver *hdrv = to_hid_driver(drv); 2519 2520 if (hdrv->match) { 2521 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2522 __hid_bus_reprobe_drivers); 2523 } 2524 2525 return 0; 2526 } 2527 2528 static int __bus_removed_driver(struct device_driver *drv, void *data) 2529 { 2530 return bus_rescan_devices(&hid_bus_type); 2531 } 2532 2533 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2534 const char *mod_name) 2535 { 2536 int ret; 2537 2538 hdrv->driver.name = hdrv->name; 2539 hdrv->driver.bus = &hid_bus_type; 2540 hdrv->driver.owner = owner; 2541 hdrv->driver.mod_name = mod_name; 2542 2543 INIT_LIST_HEAD(&hdrv->dyn_list); 2544 spin_lock_init(&hdrv->dyn_lock); 2545 2546 ret = driver_register(&hdrv->driver); 2547 2548 if (ret == 0) 2549 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2550 __hid_bus_driver_added); 2551 2552 return ret; 2553 } 2554 EXPORT_SYMBOL_GPL(__hid_register_driver); 2555 2556 void hid_unregister_driver(struct hid_driver *hdrv) 2557 { 2558 driver_unregister(&hdrv->driver); 2559 hid_free_dynids(hdrv); 2560 2561 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2562 } 2563 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2564 2565 int hid_check_keys_pressed(struct hid_device *hid) 2566 { 2567 struct hid_input *hidinput; 2568 int i; 2569 2570 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2571 return 0; 2572 2573 list_for_each_entry(hidinput, &hid->inputs, list) { 2574 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2575 if (hidinput->input->key[i]) 2576 return 1; 2577 } 2578 2579 return 0; 2580 } 2581 2582 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2583 2584 static int __init hid_init(void) 2585 { 2586 int ret; 2587 2588 if (hid_debug) 2589 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2590 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2591 2592 ret = bus_register(&hid_bus_type); 2593 if (ret) { 2594 pr_err("can't register hid bus\n"); 2595 goto err; 2596 } 2597 2598 ret = hidraw_init(); 2599 if (ret) 2600 goto err_bus; 2601 2602 hid_debug_init(); 2603 2604 return 0; 2605 err_bus: 2606 bus_unregister(&hid_bus_type); 2607 err: 2608 return ret; 2609 } 2610 2611 static void __exit hid_exit(void) 2612 { 2613 hid_debug_exit(); 2614 hidraw_exit(); 2615 bus_unregister(&hid_bus_type); 2616 hid_quirks_exit(HID_BUS_ANY); 2617 } 2618 2619 module_init(hid_init); 2620 module_exit(hid_exit); 2621 2622 MODULE_AUTHOR("Andreas Gal"); 2623 MODULE_AUTHOR("Vojtech Pavlik"); 2624 MODULE_AUTHOR("Jiri Kosina"); 2625 MODULE_LICENSE("GPL"); 2626