1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID support for Linux 4 * 5 * Copyright (c) 1999 Andreas Gal 6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 8 * Copyright (c) 2006-2012 Jiri Kosina 9 */ 10 11 /* 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/spinlock.h> 23 #include <linux/unaligned.h> 24 #include <asm/byteorder.h> 25 #include <linux/input.h> 26 #include <linux/wait.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sched.h> 29 #include <linux/semaphore.h> 30 31 #include <linux/hid.h> 32 #include <linux/hiddev.h> 33 #include <linux/hid-debug.h> 34 #include <linux/hidraw.h> 35 36 #include "hid-ids.h" 37 38 /* 39 * Version Information 40 */ 41 42 #define DRIVER_DESC "HID core driver" 43 44 static int hid_ignore_special_drivers = 0; 45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 47 48 /* 49 * Convert a signed n-bit integer to signed 32-bit integer. 50 */ 51 52 static s32 snto32(__u32 value, unsigned int n) 53 { 54 if (!value || !n) 55 return 0; 56 57 if (n > 32) 58 n = 32; 59 60 return sign_extend32(value, n - 1); 61 } 62 63 /* 64 * Convert a signed 32-bit integer to a signed n-bit integer. 65 */ 66 67 static u32 s32ton(__s32 value, unsigned int n) 68 { 69 s32 a = value >> (n - 1); 70 71 if (a && a != -1) 72 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 73 return value & ((1 << n) - 1); 74 } 75 76 /* 77 * Register a new report for a device. 78 */ 79 80 struct hid_report *hid_register_report(struct hid_device *device, 81 enum hid_report_type type, unsigned int id, 82 unsigned int application) 83 { 84 struct hid_report_enum *report_enum = device->report_enum + type; 85 struct hid_report *report; 86 87 if (id >= HID_MAX_IDS) 88 return NULL; 89 if (report_enum->report_id_hash[id]) 90 return report_enum->report_id_hash[id]; 91 92 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 93 if (!report) 94 return NULL; 95 96 if (id != 0) 97 report_enum->numbered = 1; 98 99 report->id = id; 100 report->type = type; 101 report->size = 0; 102 report->device = device; 103 report->application = application; 104 report_enum->report_id_hash[id] = report; 105 106 list_add_tail(&report->list, &report_enum->report_list); 107 INIT_LIST_HEAD(&report->field_entry_list); 108 109 return report; 110 } 111 EXPORT_SYMBOL_GPL(hid_register_report); 112 113 /* 114 * Register a new field for this report. 115 */ 116 117 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages) 118 { 119 struct hid_field *field; 120 121 if (report->maxfield == HID_MAX_FIELDS) { 122 hid_err(report->device, "too many fields in report\n"); 123 return NULL; 124 } 125 126 field = kvzalloc((sizeof(struct hid_field) + 127 usages * sizeof(struct hid_usage) + 128 3 * usages * sizeof(unsigned int)), GFP_KERNEL); 129 if (!field) 130 return NULL; 131 132 field->index = report->maxfield++; 133 report->field[field->index] = field; 134 field->usage = (struct hid_usage *)(field + 1); 135 field->value = (s32 *)(field->usage + usages); 136 field->new_value = (s32 *)(field->value + usages); 137 field->usages_priorities = (s32 *)(field->new_value + usages); 138 field->report = report; 139 140 return field; 141 } 142 143 /* 144 * Open a collection. The type/usage is pushed on the stack. 145 */ 146 147 static int open_collection(struct hid_parser *parser, unsigned type) 148 { 149 struct hid_collection *collection; 150 unsigned usage; 151 int collection_index; 152 153 usage = parser->local.usage[0]; 154 155 if (parser->collection_stack_ptr == parser->collection_stack_size) { 156 unsigned int *collection_stack; 157 unsigned int new_size = parser->collection_stack_size + 158 HID_COLLECTION_STACK_SIZE; 159 160 collection_stack = krealloc(parser->collection_stack, 161 new_size * sizeof(unsigned int), 162 GFP_KERNEL); 163 if (!collection_stack) 164 return -ENOMEM; 165 166 parser->collection_stack = collection_stack; 167 parser->collection_stack_size = new_size; 168 } 169 170 if (parser->device->maxcollection == parser->device->collection_size) { 171 collection = kmalloc( 172 array3_size(sizeof(struct hid_collection), 173 parser->device->collection_size, 174 2), 175 GFP_KERNEL); 176 if (collection == NULL) { 177 hid_err(parser->device, "failed to reallocate collection array\n"); 178 return -ENOMEM; 179 } 180 memcpy(collection, parser->device->collection, 181 sizeof(struct hid_collection) * 182 parser->device->collection_size); 183 memset(collection + parser->device->collection_size, 0, 184 sizeof(struct hid_collection) * 185 parser->device->collection_size); 186 kfree(parser->device->collection); 187 parser->device->collection = collection; 188 parser->device->collection_size *= 2; 189 } 190 191 parser->collection_stack[parser->collection_stack_ptr++] = 192 parser->device->maxcollection; 193 194 collection_index = parser->device->maxcollection++; 195 collection = parser->device->collection + collection_index; 196 collection->type = type; 197 collection->usage = usage; 198 collection->level = parser->collection_stack_ptr - 1; 199 collection->parent_idx = (collection->level == 0) ? -1 : 200 parser->collection_stack[collection->level - 1]; 201 202 if (type == HID_COLLECTION_APPLICATION) 203 parser->device->maxapplication++; 204 205 return 0; 206 } 207 208 /* 209 * Close a collection. 210 */ 211 212 static int close_collection(struct hid_parser *parser) 213 { 214 if (!parser->collection_stack_ptr) { 215 hid_err(parser->device, "collection stack underflow\n"); 216 return -EINVAL; 217 } 218 parser->collection_stack_ptr--; 219 return 0; 220 } 221 222 /* 223 * Climb up the stack, search for the specified collection type 224 * and return the usage. 225 */ 226 227 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 228 { 229 struct hid_collection *collection = parser->device->collection; 230 int n; 231 232 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 233 unsigned index = parser->collection_stack[n]; 234 if (collection[index].type == type) 235 return collection[index].usage; 236 } 237 return 0; /* we know nothing about this usage type */ 238 } 239 240 /* 241 * Concatenate usage which defines 16 bits or less with the 242 * currently defined usage page to form a 32 bit usage 243 */ 244 245 static void complete_usage(struct hid_parser *parser, unsigned int index) 246 { 247 parser->local.usage[index] &= 0xFFFF; 248 parser->local.usage[index] |= 249 (parser->global.usage_page & 0xFFFF) << 16; 250 } 251 252 /* 253 * Add a usage to the temporary parser table. 254 */ 255 256 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) 257 { 258 if (parser->local.usage_index >= HID_MAX_USAGES) { 259 hid_err(parser->device, "usage index exceeded\n"); 260 return -1; 261 } 262 parser->local.usage[parser->local.usage_index] = usage; 263 264 /* 265 * If Usage item only includes usage id, concatenate it with 266 * currently defined usage page 267 */ 268 if (size <= 2) 269 complete_usage(parser, parser->local.usage_index); 270 271 parser->local.usage_size[parser->local.usage_index] = size; 272 parser->local.collection_index[parser->local.usage_index] = 273 parser->collection_stack_ptr ? 274 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 275 parser->local.usage_index++; 276 return 0; 277 } 278 279 /* 280 * Register a new field for this report. 281 */ 282 283 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 284 { 285 struct hid_report *report; 286 struct hid_field *field; 287 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 288 unsigned int usages; 289 unsigned int offset; 290 unsigned int i; 291 unsigned int application; 292 293 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 294 295 report = hid_register_report(parser->device, report_type, 296 parser->global.report_id, application); 297 if (!report) { 298 hid_err(parser->device, "hid_register_report failed\n"); 299 return -1; 300 } 301 302 /* Handle both signed and unsigned cases properly */ 303 if ((parser->global.logical_minimum < 0 && 304 parser->global.logical_maximum < 305 parser->global.logical_minimum) || 306 (parser->global.logical_minimum >= 0 && 307 (__u32)parser->global.logical_maximum < 308 (__u32)parser->global.logical_minimum)) { 309 dbg_hid("logical range invalid 0x%x 0x%x\n", 310 parser->global.logical_minimum, 311 parser->global.logical_maximum); 312 return -1; 313 } 314 315 offset = report->size; 316 report->size += parser->global.report_size * parser->global.report_count; 317 318 if (parser->device->ll_driver->max_buffer_size) 319 max_buffer_size = parser->device->ll_driver->max_buffer_size; 320 321 /* Total size check: Allow for possible report index byte */ 322 if (report->size > (max_buffer_size - 1) << 3) { 323 hid_err(parser->device, "report is too long\n"); 324 return -1; 325 } 326 327 if (!parser->local.usage_index) /* Ignore padding fields */ 328 return 0; 329 330 usages = max_t(unsigned, parser->local.usage_index, 331 parser->global.report_count); 332 333 field = hid_register_field(report, usages); 334 if (!field) 335 return 0; 336 337 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 338 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 339 field->application = application; 340 341 for (i = 0; i < usages; i++) { 342 unsigned j = i; 343 /* Duplicate the last usage we parsed if we have excess values */ 344 if (i >= parser->local.usage_index) 345 j = parser->local.usage_index - 1; 346 field->usage[i].hid = parser->local.usage[j]; 347 field->usage[i].collection_index = 348 parser->local.collection_index[j]; 349 field->usage[i].usage_index = i; 350 field->usage[i].resolution_multiplier = 1; 351 } 352 353 field->maxusage = usages; 354 field->flags = flags; 355 field->report_offset = offset; 356 field->report_type = report_type; 357 field->report_size = parser->global.report_size; 358 field->report_count = parser->global.report_count; 359 field->logical_minimum = parser->global.logical_minimum; 360 field->logical_maximum = parser->global.logical_maximum; 361 field->physical_minimum = parser->global.physical_minimum; 362 field->physical_maximum = parser->global.physical_maximum; 363 field->unit_exponent = parser->global.unit_exponent; 364 field->unit = parser->global.unit; 365 366 return 0; 367 } 368 369 /* 370 * Read data value from item. 371 */ 372 373 static u32 item_udata(struct hid_item *item) 374 { 375 switch (item->size) { 376 case 1: return item->data.u8; 377 case 2: return item->data.u16; 378 case 4: return item->data.u32; 379 } 380 return 0; 381 } 382 383 static s32 item_sdata(struct hid_item *item) 384 { 385 switch (item->size) { 386 case 1: return item->data.s8; 387 case 2: return item->data.s16; 388 case 4: return item->data.s32; 389 } 390 return 0; 391 } 392 393 /* 394 * Process a global item. 395 */ 396 397 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 398 { 399 __s32 raw_value; 400 switch (item->tag) { 401 case HID_GLOBAL_ITEM_TAG_PUSH: 402 403 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 404 hid_err(parser->device, "global environment stack overflow\n"); 405 return -1; 406 } 407 408 memcpy(parser->global_stack + parser->global_stack_ptr++, 409 &parser->global, sizeof(struct hid_global)); 410 return 0; 411 412 case HID_GLOBAL_ITEM_TAG_POP: 413 414 if (!parser->global_stack_ptr) { 415 hid_err(parser->device, "global environment stack underflow\n"); 416 return -1; 417 } 418 419 memcpy(&parser->global, parser->global_stack + 420 --parser->global_stack_ptr, sizeof(struct hid_global)); 421 return 0; 422 423 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 424 parser->global.usage_page = item_udata(item); 425 return 0; 426 427 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 428 parser->global.logical_minimum = item_sdata(item); 429 return 0; 430 431 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 432 if (parser->global.logical_minimum < 0) 433 parser->global.logical_maximum = item_sdata(item); 434 else 435 parser->global.logical_maximum = item_udata(item); 436 return 0; 437 438 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 439 parser->global.physical_minimum = item_sdata(item); 440 return 0; 441 442 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 443 if (parser->global.physical_minimum < 0) 444 parser->global.physical_maximum = item_sdata(item); 445 else 446 parser->global.physical_maximum = item_udata(item); 447 return 0; 448 449 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 450 /* Many devices provide unit exponent as a two's complement 451 * nibble due to the common misunderstanding of HID 452 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 453 * both this and the standard encoding. */ 454 raw_value = item_sdata(item); 455 if (!(raw_value & 0xfffffff0)) 456 parser->global.unit_exponent = snto32(raw_value, 4); 457 else 458 parser->global.unit_exponent = raw_value; 459 return 0; 460 461 case HID_GLOBAL_ITEM_TAG_UNIT: 462 parser->global.unit = item_udata(item); 463 return 0; 464 465 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 466 parser->global.report_size = item_udata(item); 467 if (parser->global.report_size > 256) { 468 hid_err(parser->device, "invalid report_size %d\n", 469 parser->global.report_size); 470 return -1; 471 } 472 return 0; 473 474 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 475 parser->global.report_count = item_udata(item); 476 if (parser->global.report_count > HID_MAX_USAGES) { 477 hid_err(parser->device, "invalid report_count %d\n", 478 parser->global.report_count); 479 return -1; 480 } 481 return 0; 482 483 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 484 parser->global.report_id = item_udata(item); 485 if (parser->global.report_id == 0 || 486 parser->global.report_id >= HID_MAX_IDS) { 487 hid_err(parser->device, "report_id %u is invalid\n", 488 parser->global.report_id); 489 return -1; 490 } 491 return 0; 492 493 default: 494 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 495 return -1; 496 } 497 } 498 499 /* 500 * Process a local item. 501 */ 502 503 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 504 { 505 __u32 data; 506 unsigned n; 507 __u32 count; 508 509 data = item_udata(item); 510 511 switch (item->tag) { 512 case HID_LOCAL_ITEM_TAG_DELIMITER: 513 514 if (data) { 515 /* 516 * We treat items before the first delimiter 517 * as global to all usage sets (branch 0). 518 * In the moment we process only these global 519 * items and the first delimiter set. 520 */ 521 if (parser->local.delimiter_depth != 0) { 522 hid_err(parser->device, "nested delimiters\n"); 523 return -1; 524 } 525 parser->local.delimiter_depth++; 526 parser->local.delimiter_branch++; 527 } else { 528 if (parser->local.delimiter_depth < 1) { 529 hid_err(parser->device, "bogus close delimiter\n"); 530 return -1; 531 } 532 parser->local.delimiter_depth--; 533 } 534 return 0; 535 536 case HID_LOCAL_ITEM_TAG_USAGE: 537 538 if (parser->local.delimiter_branch > 1) { 539 dbg_hid("alternative usage ignored\n"); 540 return 0; 541 } 542 543 return hid_add_usage(parser, data, item->size); 544 545 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 546 547 if (parser->local.delimiter_branch > 1) { 548 dbg_hid("alternative usage ignored\n"); 549 return 0; 550 } 551 552 parser->local.usage_minimum = data; 553 return 0; 554 555 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 556 557 if (parser->local.delimiter_branch > 1) { 558 dbg_hid("alternative usage ignored\n"); 559 return 0; 560 } 561 562 count = data - parser->local.usage_minimum; 563 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 564 /* 565 * We do not warn if the name is not set, we are 566 * actually pre-scanning the device. 567 */ 568 if (dev_name(&parser->device->dev)) 569 hid_warn(parser->device, 570 "ignoring exceeding usage max\n"); 571 data = HID_MAX_USAGES - parser->local.usage_index + 572 parser->local.usage_minimum - 1; 573 if (data <= 0) { 574 hid_err(parser->device, 575 "no more usage index available\n"); 576 return -1; 577 } 578 } 579 580 for (n = parser->local.usage_minimum; n <= data; n++) 581 if (hid_add_usage(parser, n, item->size)) { 582 dbg_hid("hid_add_usage failed\n"); 583 return -1; 584 } 585 return 0; 586 587 default: 588 589 dbg_hid("unknown local item tag 0x%x\n", item->tag); 590 return 0; 591 } 592 return 0; 593 } 594 595 /* 596 * Concatenate Usage Pages into Usages where relevant: 597 * As per specification, 6.2.2.8: "When the parser encounters a main item it 598 * concatenates the last declared Usage Page with a Usage to form a complete 599 * usage value." 600 */ 601 602 static void hid_concatenate_last_usage_page(struct hid_parser *parser) 603 { 604 int i; 605 unsigned int usage_page; 606 unsigned int current_page; 607 608 if (!parser->local.usage_index) 609 return; 610 611 usage_page = parser->global.usage_page; 612 613 /* 614 * Concatenate usage page again only if last declared Usage Page 615 * has not been already used in previous usages concatenation 616 */ 617 for (i = parser->local.usage_index - 1; i >= 0; i--) { 618 if (parser->local.usage_size[i] > 2) 619 /* Ignore extended usages */ 620 continue; 621 622 current_page = parser->local.usage[i] >> 16; 623 if (current_page == usage_page) 624 break; 625 626 complete_usage(parser, i); 627 } 628 } 629 630 /* 631 * Process a main item. 632 */ 633 634 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 635 { 636 __u32 data; 637 int ret; 638 639 hid_concatenate_last_usage_page(parser); 640 641 data = item_udata(item); 642 643 switch (item->tag) { 644 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 645 ret = open_collection(parser, data & 0xff); 646 break; 647 case HID_MAIN_ITEM_TAG_END_COLLECTION: 648 ret = close_collection(parser); 649 break; 650 case HID_MAIN_ITEM_TAG_INPUT: 651 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 652 break; 653 case HID_MAIN_ITEM_TAG_OUTPUT: 654 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 655 break; 656 case HID_MAIN_ITEM_TAG_FEATURE: 657 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 658 break; 659 default: 660 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 661 ret = 0; 662 } 663 664 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 665 666 return ret; 667 } 668 669 /* 670 * Process a reserved item. 671 */ 672 673 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 674 { 675 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 676 return 0; 677 } 678 679 /* 680 * Free a report and all registered fields. The field->usage and 681 * field->value table's are allocated behind the field, so we need 682 * only to free(field) itself. 683 */ 684 685 static void hid_free_report(struct hid_report *report) 686 { 687 unsigned n; 688 689 kfree(report->field_entries); 690 691 for (n = 0; n < report->maxfield; n++) 692 kvfree(report->field[n]); 693 kfree(report); 694 } 695 696 /* 697 * Close report. This function returns the device 698 * state to the point prior to hid_open_report(). 699 */ 700 static void hid_close_report(struct hid_device *device) 701 { 702 unsigned i, j; 703 704 for (i = 0; i < HID_REPORT_TYPES; i++) { 705 struct hid_report_enum *report_enum = device->report_enum + i; 706 707 for (j = 0; j < HID_MAX_IDS; j++) { 708 struct hid_report *report = report_enum->report_id_hash[j]; 709 if (report) 710 hid_free_report(report); 711 } 712 memset(report_enum, 0, sizeof(*report_enum)); 713 INIT_LIST_HEAD(&report_enum->report_list); 714 } 715 716 /* 717 * If the HID driver had a rdesc_fixup() callback, dev->rdesc 718 * will be allocated by hid-core and needs to be freed. 719 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in 720 * which cases it'll be freed later on device removal or destroy. 721 */ 722 if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc) 723 kfree(device->rdesc); 724 device->rdesc = NULL; 725 device->rsize = 0; 726 727 kfree(device->collection); 728 device->collection = NULL; 729 device->collection_size = 0; 730 device->maxcollection = 0; 731 device->maxapplication = 0; 732 733 device->status &= ~HID_STAT_PARSED; 734 } 735 736 static inline void hid_free_bpf_rdesc(struct hid_device *hdev) 737 { 738 /* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */ 739 if (hdev->bpf_rdesc != hdev->dev_rdesc) 740 kfree(hdev->bpf_rdesc); 741 hdev->bpf_rdesc = NULL; 742 } 743 744 /* 745 * Free a device structure, all reports, and all fields. 746 */ 747 748 void hiddev_free(struct kref *ref) 749 { 750 struct hid_device *hid = container_of(ref, struct hid_device, ref); 751 752 hid_close_report(hid); 753 hid_free_bpf_rdesc(hid); 754 kfree(hid->dev_rdesc); 755 kfree(hid); 756 } 757 758 static void hid_device_release(struct device *dev) 759 { 760 struct hid_device *hid = to_hid_device(dev); 761 762 kref_put(&hid->ref, hiddev_free); 763 } 764 765 /* 766 * Fetch a report description item from the data stream. We support long 767 * items, though they are not used yet. 768 */ 769 770 static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item) 771 { 772 u8 b; 773 774 if ((end - start) <= 0) 775 return NULL; 776 777 b = *start++; 778 779 item->type = (b >> 2) & 3; 780 item->tag = (b >> 4) & 15; 781 782 if (item->tag == HID_ITEM_TAG_LONG) { 783 784 item->format = HID_ITEM_FORMAT_LONG; 785 786 if ((end - start) < 2) 787 return NULL; 788 789 item->size = *start++; 790 item->tag = *start++; 791 792 if ((end - start) < item->size) 793 return NULL; 794 795 item->data.longdata = start; 796 start += item->size; 797 return start; 798 } 799 800 item->format = HID_ITEM_FORMAT_SHORT; 801 item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */ 802 803 if (end - start < item->size) 804 return NULL; 805 806 switch (item->size) { 807 case 0: 808 break; 809 810 case 1: 811 item->data.u8 = *start; 812 break; 813 814 case 2: 815 item->data.u16 = get_unaligned_le16(start); 816 break; 817 818 case 4: 819 item->data.u32 = get_unaligned_le32(start); 820 break; 821 } 822 823 return start + item->size; 824 } 825 826 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 827 { 828 struct hid_device *hid = parser->device; 829 830 if (usage == HID_DG_CONTACTID) 831 hid->group = HID_GROUP_MULTITOUCH; 832 } 833 834 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 835 { 836 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 837 parser->global.report_size == 8) 838 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 839 840 if (usage == 0xff0000c6 && parser->global.report_count == 1 && 841 parser->global.report_size == 8) 842 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 843 } 844 845 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 846 { 847 struct hid_device *hid = parser->device; 848 int i; 849 850 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 851 (type == HID_COLLECTION_PHYSICAL || 852 type == HID_COLLECTION_APPLICATION)) 853 hid->group = HID_GROUP_SENSOR_HUB; 854 855 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 856 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 857 hid->group == HID_GROUP_MULTITOUCH) 858 hid->group = HID_GROUP_GENERIC; 859 860 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 861 for (i = 0; i < parser->local.usage_index; i++) 862 if (parser->local.usage[i] == HID_GD_POINTER) 863 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 864 865 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 866 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 867 868 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR) 869 for (i = 0; i < parser->local.usage_index; i++) 870 if (parser->local.usage[i] == 871 (HID_UP_GOOGLEVENDOR | 0x0001)) 872 parser->device->group = 873 HID_GROUP_VIVALDI; 874 } 875 876 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 877 { 878 __u32 data; 879 int i; 880 881 hid_concatenate_last_usage_page(parser); 882 883 data = item_udata(item); 884 885 switch (item->tag) { 886 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 887 hid_scan_collection(parser, data & 0xff); 888 break; 889 case HID_MAIN_ITEM_TAG_END_COLLECTION: 890 break; 891 case HID_MAIN_ITEM_TAG_INPUT: 892 /* ignore constant inputs, they will be ignored by hid-input */ 893 if (data & HID_MAIN_ITEM_CONSTANT) 894 break; 895 for (i = 0; i < parser->local.usage_index; i++) 896 hid_scan_input_usage(parser, parser->local.usage[i]); 897 break; 898 case HID_MAIN_ITEM_TAG_OUTPUT: 899 break; 900 case HID_MAIN_ITEM_TAG_FEATURE: 901 for (i = 0; i < parser->local.usage_index; i++) 902 hid_scan_feature_usage(parser, parser->local.usage[i]); 903 break; 904 } 905 906 /* Reset the local parser environment */ 907 memset(&parser->local, 0, sizeof(parser->local)); 908 909 return 0; 910 } 911 912 /* 913 * Scan a report descriptor before the device is added to the bus. 914 * Sets device groups and other properties that determine what driver 915 * to load. 916 */ 917 static int hid_scan_report(struct hid_device *hid) 918 { 919 struct hid_parser *parser; 920 struct hid_item item; 921 const __u8 *start = hid->dev_rdesc; 922 const __u8 *end = start + hid->dev_rsize; 923 static int (*dispatch_type[])(struct hid_parser *parser, 924 struct hid_item *item) = { 925 hid_scan_main, 926 hid_parser_global, 927 hid_parser_local, 928 hid_parser_reserved 929 }; 930 931 parser = vzalloc(sizeof(struct hid_parser)); 932 if (!parser) 933 return -ENOMEM; 934 935 parser->device = hid; 936 hid->group = HID_GROUP_GENERIC; 937 938 /* 939 * The parsing is simpler than the one in hid_open_report() as we should 940 * be robust against hid errors. Those errors will be raised by 941 * hid_open_report() anyway. 942 */ 943 while ((start = fetch_item(start, end, &item)) != NULL) 944 dispatch_type[item.type](parser, &item); 945 946 /* 947 * Handle special flags set during scanning. 948 */ 949 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 950 (hid->group == HID_GROUP_MULTITOUCH)) 951 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 952 953 /* 954 * Vendor specific handlings 955 */ 956 switch (hid->vendor) { 957 case USB_VENDOR_ID_WACOM: 958 hid->group = HID_GROUP_WACOM; 959 break; 960 case USB_VENDOR_ID_SYNAPTICS: 961 if (hid->group == HID_GROUP_GENERIC) 962 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 963 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 964 /* 965 * hid-rmi should take care of them, 966 * not hid-generic 967 */ 968 hid->group = HID_GROUP_RMI; 969 break; 970 } 971 972 kfree(parser->collection_stack); 973 vfree(parser); 974 return 0; 975 } 976 977 /** 978 * hid_parse_report - parse device report 979 * 980 * @hid: hid device 981 * @start: report start 982 * @size: report size 983 * 984 * Allocate the device report as read by the bus driver. This function should 985 * only be called from parse() in ll drivers. 986 */ 987 int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size) 988 { 989 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 990 if (!hid->dev_rdesc) 991 return -ENOMEM; 992 hid->dev_rsize = size; 993 return 0; 994 } 995 EXPORT_SYMBOL_GPL(hid_parse_report); 996 997 static const char * const hid_report_names[] = { 998 "HID_INPUT_REPORT", 999 "HID_OUTPUT_REPORT", 1000 "HID_FEATURE_REPORT", 1001 }; 1002 /** 1003 * hid_validate_values - validate existing device report's value indexes 1004 * 1005 * @hid: hid device 1006 * @type: which report type to examine 1007 * @id: which report ID to examine (0 for first) 1008 * @field_index: which report field to examine 1009 * @report_counts: expected number of values 1010 * 1011 * Validate the number of values in a given field of a given report, after 1012 * parsing. 1013 */ 1014 struct hid_report *hid_validate_values(struct hid_device *hid, 1015 enum hid_report_type type, unsigned int id, 1016 unsigned int field_index, 1017 unsigned int report_counts) 1018 { 1019 struct hid_report *report; 1020 1021 if (type > HID_FEATURE_REPORT) { 1022 hid_err(hid, "invalid HID report type %u\n", type); 1023 return NULL; 1024 } 1025 1026 if (id >= HID_MAX_IDS) { 1027 hid_err(hid, "invalid HID report id %u\n", id); 1028 return NULL; 1029 } 1030 1031 /* 1032 * Explicitly not using hid_get_report() here since it depends on 1033 * ->numbered being checked, which may not always be the case when 1034 * drivers go to access report values. 1035 */ 1036 if (id == 0) { 1037 /* 1038 * Validating on id 0 means we should examine the first 1039 * report in the list. 1040 */ 1041 report = list_first_entry_or_null( 1042 &hid->report_enum[type].report_list, 1043 struct hid_report, list); 1044 } else { 1045 report = hid->report_enum[type].report_id_hash[id]; 1046 } 1047 if (!report) { 1048 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 1049 return NULL; 1050 } 1051 if (report->maxfield <= field_index) { 1052 hid_err(hid, "not enough fields in %s %u\n", 1053 hid_report_names[type], id); 1054 return NULL; 1055 } 1056 if (report->field[field_index]->report_count < report_counts) { 1057 hid_err(hid, "not enough values in %s %u field %u\n", 1058 hid_report_names[type], id, field_index); 1059 return NULL; 1060 } 1061 return report; 1062 } 1063 EXPORT_SYMBOL_GPL(hid_validate_values); 1064 1065 static int hid_calculate_multiplier(struct hid_device *hid, 1066 struct hid_field *multiplier) 1067 { 1068 int m; 1069 __s32 v = *multiplier->value; 1070 __s32 lmin = multiplier->logical_minimum; 1071 __s32 lmax = multiplier->logical_maximum; 1072 __s32 pmin = multiplier->physical_minimum; 1073 __s32 pmax = multiplier->physical_maximum; 1074 1075 /* 1076 * "Because OS implementations will generally divide the control's 1077 * reported count by the Effective Resolution Multiplier, designers 1078 * should take care not to establish a potential Effective 1079 * Resolution Multiplier of zero." 1080 * HID Usage Table, v1.12, Section 4.3.1, p31 1081 */ 1082 if (lmax - lmin == 0) 1083 return 1; 1084 /* 1085 * Handling the unit exponent is left as an exercise to whoever 1086 * finds a device where that exponent is not 0. 1087 */ 1088 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 1089 if (unlikely(multiplier->unit_exponent != 0)) { 1090 hid_warn(hid, 1091 "unsupported Resolution Multiplier unit exponent %d\n", 1092 multiplier->unit_exponent); 1093 } 1094 1095 /* There are no devices with an effective multiplier > 255 */ 1096 if (unlikely(m == 0 || m > 255 || m < -255)) { 1097 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 1098 m = 1; 1099 } 1100 1101 return m; 1102 } 1103 1104 static void hid_apply_multiplier_to_field(struct hid_device *hid, 1105 struct hid_field *field, 1106 struct hid_collection *multiplier_collection, 1107 int effective_multiplier) 1108 { 1109 struct hid_collection *collection; 1110 struct hid_usage *usage; 1111 int i; 1112 1113 /* 1114 * If multiplier_collection is NULL, the multiplier applies 1115 * to all fields in the report. 1116 * Otherwise, it is the Logical Collection the multiplier applies to 1117 * but our field may be in a subcollection of that collection. 1118 */ 1119 for (i = 0; i < field->maxusage; i++) { 1120 usage = &field->usage[i]; 1121 1122 collection = &hid->collection[usage->collection_index]; 1123 while (collection->parent_idx != -1 && 1124 collection != multiplier_collection) 1125 collection = &hid->collection[collection->parent_idx]; 1126 1127 if (collection->parent_idx != -1 || 1128 multiplier_collection == NULL) 1129 usage->resolution_multiplier = effective_multiplier; 1130 1131 } 1132 } 1133 1134 static void hid_apply_multiplier(struct hid_device *hid, 1135 struct hid_field *multiplier) 1136 { 1137 struct hid_report_enum *rep_enum; 1138 struct hid_report *rep; 1139 struct hid_field *field; 1140 struct hid_collection *multiplier_collection; 1141 int effective_multiplier; 1142 int i; 1143 1144 /* 1145 * "The Resolution Multiplier control must be contained in the same 1146 * Logical Collection as the control(s) to which it is to be applied. 1147 * If no Resolution Multiplier is defined, then the Resolution 1148 * Multiplier defaults to 1. If more than one control exists in a 1149 * Logical Collection, the Resolution Multiplier is associated with 1150 * all controls in the collection. If no Logical Collection is 1151 * defined, the Resolution Multiplier is associated with all 1152 * controls in the report." 1153 * HID Usage Table, v1.12, Section 4.3.1, p30 1154 * 1155 * Thus, search from the current collection upwards until we find a 1156 * logical collection. Then search all fields for that same parent 1157 * collection. Those are the fields the multiplier applies to. 1158 * 1159 * If we have more than one multiplier, it will overwrite the 1160 * applicable fields later. 1161 */ 1162 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1163 while (multiplier_collection->parent_idx != -1 && 1164 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1165 multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; 1166 if (multiplier_collection->type != HID_COLLECTION_LOGICAL) 1167 multiplier_collection = NULL; 1168 1169 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1170 1171 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1172 list_for_each_entry(rep, &rep_enum->report_list, list) { 1173 for (i = 0; i < rep->maxfield; i++) { 1174 field = rep->field[i]; 1175 hid_apply_multiplier_to_field(hid, field, 1176 multiplier_collection, 1177 effective_multiplier); 1178 } 1179 } 1180 } 1181 1182 /* 1183 * hid_setup_resolution_multiplier - set up all resolution multipliers 1184 * 1185 * @device: hid device 1186 * 1187 * Search for all Resolution Multiplier Feature Reports and apply their 1188 * value to all matching Input items. This only updates the internal struct 1189 * fields. 1190 * 1191 * The Resolution Multiplier is applied by the hardware. If the multiplier 1192 * is anything other than 1, the hardware will send pre-multiplied events 1193 * so that the same physical interaction generates an accumulated 1194 * accumulated_value = value * * multiplier 1195 * This may be achieved by sending 1196 * - "value * multiplier" for each event, or 1197 * - "value" but "multiplier" times as frequently, or 1198 * - a combination of the above 1199 * The only guarantee is that the same physical interaction always generates 1200 * an accumulated 'value * multiplier'. 1201 * 1202 * This function must be called before any event processing and after 1203 * any SetRequest to the Resolution Multiplier. 1204 */ 1205 void hid_setup_resolution_multiplier(struct hid_device *hid) 1206 { 1207 struct hid_report_enum *rep_enum; 1208 struct hid_report *rep; 1209 struct hid_usage *usage; 1210 int i, j; 1211 1212 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1213 list_for_each_entry(rep, &rep_enum->report_list, list) { 1214 for (i = 0; i < rep->maxfield; i++) { 1215 /* Ignore if report count is out of bounds. */ 1216 if (rep->field[i]->report_count < 1) 1217 continue; 1218 1219 for (j = 0; j < rep->field[i]->maxusage; j++) { 1220 usage = &rep->field[i]->usage[j]; 1221 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1222 hid_apply_multiplier(hid, 1223 rep->field[i]); 1224 } 1225 } 1226 } 1227 } 1228 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1229 1230 /** 1231 * hid_open_report - open a driver-specific device report 1232 * 1233 * @device: hid device 1234 * 1235 * Parse a report description into a hid_device structure. Reports are 1236 * enumerated, fields are attached to these reports. 1237 * 0 returned on success, otherwise nonzero error value. 1238 * 1239 * This function (or the equivalent hid_parse() macro) should only be 1240 * called from probe() in drivers, before starting the device. 1241 */ 1242 int hid_open_report(struct hid_device *device) 1243 { 1244 struct hid_parser *parser; 1245 struct hid_item item; 1246 unsigned int size; 1247 const __u8 *start; 1248 const __u8 *end; 1249 const __u8 *next; 1250 int ret; 1251 int i; 1252 static int (*dispatch_type[])(struct hid_parser *parser, 1253 struct hid_item *item) = { 1254 hid_parser_main, 1255 hid_parser_global, 1256 hid_parser_local, 1257 hid_parser_reserved 1258 }; 1259 1260 if (WARN_ON(device->status & HID_STAT_PARSED)) 1261 return -EBUSY; 1262 1263 start = device->bpf_rdesc; 1264 if (WARN_ON(!start)) 1265 return -ENODEV; 1266 size = device->bpf_rsize; 1267 1268 if (device->driver->report_fixup) { 1269 /* 1270 * device->driver->report_fixup() needs to work 1271 * on a copy of our report descriptor so it can 1272 * change it. 1273 */ 1274 __u8 *buf = kmemdup(start, size, GFP_KERNEL); 1275 1276 if (buf == NULL) 1277 return -ENOMEM; 1278 1279 start = device->driver->report_fixup(device, buf, &size); 1280 1281 /* 1282 * The second kmemdup is required in case report_fixup() returns 1283 * a static read-only memory, but we have no idea if that memory 1284 * needs to be cleaned up or not at the end. 1285 */ 1286 start = kmemdup(start, size, GFP_KERNEL); 1287 kfree(buf); 1288 if (start == NULL) 1289 return -ENOMEM; 1290 } 1291 1292 device->rdesc = start; 1293 device->rsize = size; 1294 1295 parser = vzalloc(sizeof(struct hid_parser)); 1296 if (!parser) { 1297 ret = -ENOMEM; 1298 goto alloc_err; 1299 } 1300 1301 parser->device = device; 1302 1303 end = start + size; 1304 1305 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1306 sizeof(struct hid_collection), GFP_KERNEL); 1307 if (!device->collection) { 1308 ret = -ENOMEM; 1309 goto err; 1310 } 1311 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1312 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++) 1313 device->collection[i].parent_idx = -1; 1314 1315 ret = -EINVAL; 1316 while ((next = fetch_item(start, end, &item)) != NULL) { 1317 start = next; 1318 1319 if (item.format != HID_ITEM_FORMAT_SHORT) { 1320 hid_err(device, "unexpected long global item\n"); 1321 goto err; 1322 } 1323 1324 if (dispatch_type[item.type](parser, &item)) { 1325 hid_err(device, "item %u %u %u %u parsing failed\n", 1326 item.format, (unsigned)item.size, 1327 (unsigned)item.type, (unsigned)item.tag); 1328 goto err; 1329 } 1330 1331 if (start == end) { 1332 if (parser->collection_stack_ptr) { 1333 hid_err(device, "unbalanced collection at end of report description\n"); 1334 goto err; 1335 } 1336 if (parser->local.delimiter_depth) { 1337 hid_err(device, "unbalanced delimiter at end of report description\n"); 1338 goto err; 1339 } 1340 1341 /* 1342 * fetch initial values in case the device's 1343 * default multiplier isn't the recommended 1 1344 */ 1345 hid_setup_resolution_multiplier(device); 1346 1347 kfree(parser->collection_stack); 1348 vfree(parser); 1349 device->status |= HID_STAT_PARSED; 1350 1351 return 0; 1352 } 1353 } 1354 1355 hid_err(device, "item fetching failed at offset %u/%u\n", 1356 size - (unsigned int)(end - start), size); 1357 err: 1358 kfree(parser->collection_stack); 1359 alloc_err: 1360 vfree(parser); 1361 hid_close_report(device); 1362 return ret; 1363 } 1364 EXPORT_SYMBOL_GPL(hid_open_report); 1365 1366 /* 1367 * Extract/implement a data field from/to a little endian report (bit array). 1368 * 1369 * Code sort-of follows HID spec: 1370 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1371 * 1372 * While the USB HID spec allows unlimited length bit fields in "report 1373 * descriptors", most devices never use more than 16 bits. 1374 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1375 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1376 */ 1377 1378 static u32 __extract(u8 *report, unsigned offset, int n) 1379 { 1380 unsigned int idx = offset / 8; 1381 unsigned int bit_nr = 0; 1382 unsigned int bit_shift = offset % 8; 1383 int bits_to_copy = 8 - bit_shift; 1384 u32 value = 0; 1385 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1386 1387 while (n > 0) { 1388 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1389 n -= bits_to_copy; 1390 bit_nr += bits_to_copy; 1391 bits_to_copy = 8; 1392 bit_shift = 0; 1393 idx++; 1394 } 1395 1396 return value & mask; 1397 } 1398 1399 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1400 unsigned offset, unsigned n) 1401 { 1402 if (n > 32) { 1403 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n", 1404 __func__, n, current->comm); 1405 n = 32; 1406 } 1407 1408 return __extract(report, offset, n); 1409 } 1410 EXPORT_SYMBOL_GPL(hid_field_extract); 1411 1412 /* 1413 * "implement" : set bits in a little endian bit stream. 1414 * Same concepts as "extract" (see comments above). 1415 * The data mangled in the bit stream remains in little endian 1416 * order the whole time. It make more sense to talk about 1417 * endianness of register values by considering a register 1418 * a "cached" copy of the little endian bit stream. 1419 */ 1420 1421 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1422 { 1423 unsigned int idx = offset / 8; 1424 unsigned int bit_shift = offset % 8; 1425 int bits_to_set = 8 - bit_shift; 1426 1427 while (n - bits_to_set >= 0) { 1428 report[idx] &= ~(0xff << bit_shift); 1429 report[idx] |= value << bit_shift; 1430 value >>= bits_to_set; 1431 n -= bits_to_set; 1432 bits_to_set = 8; 1433 bit_shift = 0; 1434 idx++; 1435 } 1436 1437 /* last nibble */ 1438 if (n) { 1439 u8 bit_mask = ((1U << n) - 1); 1440 report[idx] &= ~(bit_mask << bit_shift); 1441 report[idx] |= value << bit_shift; 1442 } 1443 } 1444 1445 static void implement(const struct hid_device *hid, u8 *report, 1446 unsigned offset, unsigned n, u32 value) 1447 { 1448 if (unlikely(n > 32)) { 1449 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1450 __func__, n, current->comm); 1451 n = 32; 1452 } else if (n < 32) { 1453 u32 m = (1U << n) - 1; 1454 1455 if (unlikely(value > m)) { 1456 hid_warn(hid, 1457 "%s() called with too large value %d (n: %d)! (%s)\n", 1458 __func__, value, n, current->comm); 1459 value &= m; 1460 } 1461 } 1462 1463 __implement(report, offset, n, value); 1464 } 1465 1466 /* 1467 * Search an array for a value. 1468 */ 1469 1470 static int search(__s32 *array, __s32 value, unsigned n) 1471 { 1472 while (n--) { 1473 if (*array++ == value) 1474 return 0; 1475 } 1476 return -1; 1477 } 1478 1479 /** 1480 * hid_match_report - check if driver's raw_event should be called 1481 * 1482 * @hid: hid device 1483 * @report: hid report to match against 1484 * 1485 * compare hid->driver->report_table->report_type to report->type 1486 */ 1487 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1488 { 1489 const struct hid_report_id *id = hid->driver->report_table; 1490 1491 if (!id) /* NULL means all */ 1492 return 1; 1493 1494 for (; id->report_type != HID_TERMINATOR; id++) 1495 if (id->report_type == HID_ANY_ID || 1496 id->report_type == report->type) 1497 return 1; 1498 return 0; 1499 } 1500 1501 /** 1502 * hid_match_usage - check if driver's event should be called 1503 * 1504 * @hid: hid device 1505 * @usage: usage to match against 1506 * 1507 * compare hid->driver->usage_table->usage_{type,code} to 1508 * usage->usage_{type,code} 1509 */ 1510 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1511 { 1512 const struct hid_usage_id *id = hid->driver->usage_table; 1513 1514 if (!id) /* NULL means all */ 1515 return 1; 1516 1517 for (; id->usage_type != HID_ANY_ID - 1; id++) 1518 if ((id->usage_hid == HID_ANY_ID || 1519 id->usage_hid == usage->hid) && 1520 (id->usage_type == HID_ANY_ID || 1521 id->usage_type == usage->type) && 1522 (id->usage_code == HID_ANY_ID || 1523 id->usage_code == usage->code)) 1524 return 1; 1525 return 0; 1526 } 1527 1528 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1529 struct hid_usage *usage, __s32 value, int interrupt) 1530 { 1531 struct hid_driver *hdrv = hid->driver; 1532 int ret; 1533 1534 if (!list_empty(&hid->debug_list)) 1535 hid_dump_input(hid, usage, value); 1536 1537 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1538 ret = hdrv->event(hid, field, usage, value); 1539 if (ret != 0) { 1540 if (ret < 0) 1541 hid_err(hid, "%s's event failed with %d\n", 1542 hdrv->name, ret); 1543 return; 1544 } 1545 } 1546 1547 if (hid->claimed & HID_CLAIMED_INPUT) 1548 hidinput_hid_event(hid, field, usage, value); 1549 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1550 hid->hiddev_hid_event(hid, field, usage, value); 1551 } 1552 1553 /* 1554 * Checks if the given value is valid within this field 1555 */ 1556 static inline int hid_array_value_is_valid(struct hid_field *field, 1557 __s32 value) 1558 { 1559 __s32 min = field->logical_minimum; 1560 1561 /* 1562 * Value needs to be between logical min and max, and 1563 * (value - min) is used as an index in the usage array. 1564 * This array is of size field->maxusage 1565 */ 1566 return value >= min && 1567 value <= field->logical_maximum && 1568 value - min < field->maxusage; 1569 } 1570 1571 /* 1572 * Fetch the field from the data. The field content is stored for next 1573 * report processing (we do differential reporting to the layer). 1574 */ 1575 static void hid_input_fetch_field(struct hid_device *hid, 1576 struct hid_field *field, 1577 __u8 *data) 1578 { 1579 unsigned n; 1580 unsigned count = field->report_count; 1581 unsigned offset = field->report_offset; 1582 unsigned size = field->report_size; 1583 __s32 min = field->logical_minimum; 1584 __s32 *value; 1585 1586 value = field->new_value; 1587 memset(value, 0, count * sizeof(__s32)); 1588 field->ignored = false; 1589 1590 for (n = 0; n < count; n++) { 1591 1592 value[n] = min < 0 ? 1593 snto32(hid_field_extract(hid, data, offset + n * size, 1594 size), size) : 1595 hid_field_extract(hid, data, offset + n * size, size); 1596 1597 /* Ignore report if ErrorRollOver */ 1598 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1599 hid_array_value_is_valid(field, value[n]) && 1600 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) { 1601 field->ignored = true; 1602 return; 1603 } 1604 } 1605 } 1606 1607 /* 1608 * Process a received variable field. 1609 */ 1610 1611 static void hid_input_var_field(struct hid_device *hid, 1612 struct hid_field *field, 1613 int interrupt) 1614 { 1615 unsigned int count = field->report_count; 1616 __s32 *value = field->new_value; 1617 unsigned int n; 1618 1619 for (n = 0; n < count; n++) 1620 hid_process_event(hid, 1621 field, 1622 &field->usage[n], 1623 value[n], 1624 interrupt); 1625 1626 memcpy(field->value, value, count * sizeof(__s32)); 1627 } 1628 1629 /* 1630 * Process a received array field. The field content is stored for 1631 * next report processing (we do differential reporting to the layer). 1632 */ 1633 1634 static void hid_input_array_field(struct hid_device *hid, 1635 struct hid_field *field, 1636 int interrupt) 1637 { 1638 unsigned int n; 1639 unsigned int count = field->report_count; 1640 __s32 min = field->logical_minimum; 1641 __s32 *value; 1642 1643 value = field->new_value; 1644 1645 /* ErrorRollOver */ 1646 if (field->ignored) 1647 return; 1648 1649 for (n = 0; n < count; n++) { 1650 if (hid_array_value_is_valid(field, field->value[n]) && 1651 search(value, field->value[n], count)) 1652 hid_process_event(hid, 1653 field, 1654 &field->usage[field->value[n] - min], 1655 0, 1656 interrupt); 1657 1658 if (hid_array_value_is_valid(field, value[n]) && 1659 search(field->value, value[n], count)) 1660 hid_process_event(hid, 1661 field, 1662 &field->usage[value[n] - min], 1663 1, 1664 interrupt); 1665 } 1666 1667 memcpy(field->value, value, count * sizeof(__s32)); 1668 } 1669 1670 /* 1671 * Analyse a received report, and fetch the data from it. The field 1672 * content is stored for next report processing (we do differential 1673 * reporting to the layer). 1674 */ 1675 static void hid_process_report(struct hid_device *hid, 1676 struct hid_report *report, 1677 __u8 *data, 1678 int interrupt) 1679 { 1680 unsigned int a; 1681 struct hid_field_entry *entry; 1682 struct hid_field *field; 1683 1684 /* first retrieve all incoming values in data */ 1685 for (a = 0; a < report->maxfield; a++) 1686 hid_input_fetch_field(hid, report->field[a], data); 1687 1688 if (!list_empty(&report->field_entry_list)) { 1689 /* INPUT_REPORT, we have a priority list of fields */ 1690 list_for_each_entry(entry, 1691 &report->field_entry_list, 1692 list) { 1693 field = entry->field; 1694 1695 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1696 hid_process_event(hid, 1697 field, 1698 &field->usage[entry->index], 1699 field->new_value[entry->index], 1700 interrupt); 1701 else 1702 hid_input_array_field(hid, field, interrupt); 1703 } 1704 1705 /* we need to do the memcpy at the end for var items */ 1706 for (a = 0; a < report->maxfield; a++) { 1707 field = report->field[a]; 1708 1709 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1710 memcpy(field->value, field->new_value, 1711 field->report_count * sizeof(__s32)); 1712 } 1713 } else { 1714 /* FEATURE_REPORT, regular processing */ 1715 for (a = 0; a < report->maxfield; a++) { 1716 field = report->field[a]; 1717 1718 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1719 hid_input_var_field(hid, field, interrupt); 1720 else 1721 hid_input_array_field(hid, field, interrupt); 1722 } 1723 } 1724 } 1725 1726 /* 1727 * Insert a given usage_index in a field in the list 1728 * of processed usages in the report. 1729 * 1730 * The elements of lower priority score are processed 1731 * first. 1732 */ 1733 static void __hid_insert_field_entry(struct hid_device *hid, 1734 struct hid_report *report, 1735 struct hid_field_entry *entry, 1736 struct hid_field *field, 1737 unsigned int usage_index) 1738 { 1739 struct hid_field_entry *next; 1740 1741 entry->field = field; 1742 entry->index = usage_index; 1743 entry->priority = field->usages_priorities[usage_index]; 1744 1745 /* insert the element at the correct position */ 1746 list_for_each_entry(next, 1747 &report->field_entry_list, 1748 list) { 1749 /* 1750 * the priority of our element is strictly higher 1751 * than the next one, insert it before 1752 */ 1753 if (entry->priority > next->priority) { 1754 list_add_tail(&entry->list, &next->list); 1755 return; 1756 } 1757 } 1758 1759 /* lowest priority score: insert at the end */ 1760 list_add_tail(&entry->list, &report->field_entry_list); 1761 } 1762 1763 static void hid_report_process_ordering(struct hid_device *hid, 1764 struct hid_report *report) 1765 { 1766 struct hid_field *field; 1767 struct hid_field_entry *entries; 1768 unsigned int a, u, usages; 1769 unsigned int count = 0; 1770 1771 /* count the number of individual fields in the report */ 1772 for (a = 0; a < report->maxfield; a++) { 1773 field = report->field[a]; 1774 1775 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1776 count += field->report_count; 1777 else 1778 count++; 1779 } 1780 1781 /* allocate the memory to process the fields */ 1782 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL); 1783 if (!entries) 1784 return; 1785 1786 report->field_entries = entries; 1787 1788 /* 1789 * walk through all fields in the report and 1790 * store them by priority order in report->field_entry_list 1791 * 1792 * - Var elements are individualized (field + usage_index) 1793 * - Arrays are taken as one, we can not chose an order for them 1794 */ 1795 usages = 0; 1796 for (a = 0; a < report->maxfield; a++) { 1797 field = report->field[a]; 1798 1799 if (field->flags & HID_MAIN_ITEM_VARIABLE) { 1800 for (u = 0; u < field->report_count; u++) { 1801 __hid_insert_field_entry(hid, report, 1802 &entries[usages], 1803 field, u); 1804 usages++; 1805 } 1806 } else { 1807 __hid_insert_field_entry(hid, report, &entries[usages], 1808 field, 0); 1809 usages++; 1810 } 1811 } 1812 } 1813 1814 static void hid_process_ordering(struct hid_device *hid) 1815 { 1816 struct hid_report *report; 1817 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT]; 1818 1819 list_for_each_entry(report, &report_enum->report_list, list) 1820 hid_report_process_ordering(hid, report); 1821 } 1822 1823 /* 1824 * Output the field into the report. 1825 */ 1826 1827 static void hid_output_field(const struct hid_device *hid, 1828 struct hid_field *field, __u8 *data) 1829 { 1830 unsigned count = field->report_count; 1831 unsigned offset = field->report_offset; 1832 unsigned size = field->report_size; 1833 unsigned n; 1834 1835 for (n = 0; n < count; n++) { 1836 if (field->logical_minimum < 0) /* signed values */ 1837 implement(hid, data, offset + n * size, size, 1838 s32ton(field->value[n], size)); 1839 else /* unsigned values */ 1840 implement(hid, data, offset + n * size, size, 1841 field->value[n]); 1842 } 1843 } 1844 1845 /* 1846 * Compute the size of a report. 1847 */ 1848 static size_t hid_compute_report_size(struct hid_report *report) 1849 { 1850 if (report->size) 1851 return ((report->size - 1) >> 3) + 1; 1852 1853 return 0; 1854 } 1855 1856 /* 1857 * Create a report. 'data' has to be allocated using 1858 * hid_alloc_report_buf() so that it has proper size. 1859 */ 1860 1861 void hid_output_report(struct hid_report *report, __u8 *data) 1862 { 1863 unsigned n; 1864 1865 if (report->id > 0) 1866 *data++ = report->id; 1867 1868 memset(data, 0, hid_compute_report_size(report)); 1869 for (n = 0; n < report->maxfield; n++) 1870 hid_output_field(report->device, report->field[n], data); 1871 } 1872 EXPORT_SYMBOL_GPL(hid_output_report); 1873 1874 /* 1875 * Allocator for buffer that is going to be passed to hid_output_report() 1876 */ 1877 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1878 { 1879 /* 1880 * 7 extra bytes are necessary to achieve proper functionality 1881 * of implement() working on 8 byte chunks 1882 */ 1883 1884 u32 len = hid_report_len(report) + 7; 1885 1886 return kzalloc(len, flags); 1887 } 1888 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1889 1890 /* 1891 * Set a field value. The report this field belongs to has to be 1892 * created and transferred to the device, to set this value in the 1893 * device. 1894 */ 1895 1896 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1897 { 1898 unsigned size; 1899 1900 if (!field) 1901 return -1; 1902 1903 size = field->report_size; 1904 1905 hid_dump_input(field->report->device, field->usage + offset, value); 1906 1907 if (offset >= field->report_count) { 1908 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1909 offset, field->report_count); 1910 return -1; 1911 } 1912 if (field->logical_minimum < 0) { 1913 if (value != snto32(s32ton(value, size), size)) { 1914 hid_err(field->report->device, "value %d is out of range\n", value); 1915 return -1; 1916 } 1917 } 1918 field->value[offset] = value; 1919 return 0; 1920 } 1921 EXPORT_SYMBOL_GPL(hid_set_field); 1922 1923 struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type, 1924 unsigned int application, unsigned int usage) 1925 { 1926 struct list_head *report_list = &hdev->report_enum[report_type].report_list; 1927 struct hid_report *report; 1928 int i, j; 1929 1930 list_for_each_entry(report, report_list, list) { 1931 if (report->application != application) 1932 continue; 1933 1934 for (i = 0; i < report->maxfield; i++) { 1935 struct hid_field *field = report->field[i]; 1936 1937 for (j = 0; j < field->maxusage; j++) { 1938 if (field->usage[j].hid == usage) 1939 return field; 1940 } 1941 } 1942 } 1943 1944 return NULL; 1945 } 1946 EXPORT_SYMBOL_GPL(hid_find_field); 1947 1948 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1949 const u8 *data) 1950 { 1951 struct hid_report *report; 1952 unsigned int n = 0; /* Normally report number is 0 */ 1953 1954 /* Device uses numbered reports, data[0] is report number */ 1955 if (report_enum->numbered) 1956 n = *data; 1957 1958 report = report_enum->report_id_hash[n]; 1959 if (report == NULL) 1960 dbg_hid("undefined report_id %u received\n", n); 1961 1962 return report; 1963 } 1964 1965 /* 1966 * Implement a generic .request() callback, using .raw_request() 1967 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1968 */ 1969 int __hid_request(struct hid_device *hid, struct hid_report *report, 1970 enum hid_class_request reqtype) 1971 { 1972 char *buf; 1973 int ret; 1974 u32 len; 1975 1976 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1977 if (!buf) 1978 return -ENOMEM; 1979 1980 len = hid_report_len(report); 1981 1982 if (reqtype == HID_REQ_SET_REPORT) 1983 hid_output_report(report, buf); 1984 1985 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1986 report->type, reqtype); 1987 if (ret < 0) { 1988 dbg_hid("unable to complete request: %d\n", ret); 1989 goto out; 1990 } 1991 1992 if (reqtype == HID_REQ_GET_REPORT) 1993 hid_input_report(hid, report->type, buf, ret, 0); 1994 1995 ret = 0; 1996 1997 out: 1998 kfree(buf); 1999 return ret; 2000 } 2001 EXPORT_SYMBOL_GPL(__hid_request); 2002 2003 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, 2004 int interrupt) 2005 { 2006 struct hid_report_enum *report_enum = hid->report_enum + type; 2007 struct hid_report *report; 2008 struct hid_driver *hdrv; 2009 int max_buffer_size = HID_MAX_BUFFER_SIZE; 2010 u32 rsize, csize = size; 2011 u8 *cdata = data; 2012 int ret = 0; 2013 2014 report = hid_get_report(report_enum, data); 2015 if (!report) 2016 goto out; 2017 2018 if (report_enum->numbered) { 2019 cdata++; 2020 csize--; 2021 } 2022 2023 rsize = hid_compute_report_size(report); 2024 2025 if (hid->ll_driver->max_buffer_size) 2026 max_buffer_size = hid->ll_driver->max_buffer_size; 2027 2028 if (report_enum->numbered && rsize >= max_buffer_size) 2029 rsize = max_buffer_size - 1; 2030 else if (rsize > max_buffer_size) 2031 rsize = max_buffer_size; 2032 2033 if (csize < rsize) { 2034 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 2035 csize, rsize); 2036 memset(cdata + csize, 0, rsize - csize); 2037 } 2038 2039 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 2040 hid->hiddev_report_event(hid, report); 2041 if (hid->claimed & HID_CLAIMED_HIDRAW) { 2042 ret = hidraw_report_event(hid, data, size); 2043 if (ret) 2044 goto out; 2045 } 2046 2047 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 2048 hid_process_report(hid, report, cdata, interrupt); 2049 hdrv = hid->driver; 2050 if (hdrv && hdrv->report) 2051 hdrv->report(hid, report); 2052 } 2053 2054 if (hid->claimed & HID_CLAIMED_INPUT) 2055 hidinput_report_event(hid, report); 2056 out: 2057 return ret; 2058 } 2059 EXPORT_SYMBOL_GPL(hid_report_raw_event); 2060 2061 2062 static int __hid_input_report(struct hid_device *hid, enum hid_report_type type, 2063 u8 *data, u32 size, int interrupt, u64 source, bool from_bpf, 2064 bool lock_already_taken) 2065 { 2066 struct hid_report_enum *report_enum; 2067 struct hid_driver *hdrv; 2068 struct hid_report *report; 2069 int ret = 0; 2070 2071 if (!hid) 2072 return -ENODEV; 2073 2074 ret = down_trylock(&hid->driver_input_lock); 2075 if (lock_already_taken && !ret) { 2076 up(&hid->driver_input_lock); 2077 return -EINVAL; 2078 } else if (!lock_already_taken && ret) { 2079 return -EBUSY; 2080 } 2081 2082 if (!hid->driver) { 2083 ret = -ENODEV; 2084 goto unlock; 2085 } 2086 report_enum = hid->report_enum + type; 2087 hdrv = hid->driver; 2088 2089 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf); 2090 if (IS_ERR(data)) { 2091 ret = PTR_ERR(data); 2092 goto unlock; 2093 } 2094 2095 if (!size) { 2096 dbg_hid("empty report\n"); 2097 ret = -1; 2098 goto unlock; 2099 } 2100 2101 /* Avoid unnecessary overhead if debugfs is disabled */ 2102 if (!list_empty(&hid->debug_list)) 2103 hid_dump_report(hid, type, data, size); 2104 2105 report = hid_get_report(report_enum, data); 2106 2107 if (!report) { 2108 ret = -1; 2109 goto unlock; 2110 } 2111 2112 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 2113 ret = hdrv->raw_event(hid, report, data, size); 2114 if (ret < 0) 2115 goto unlock; 2116 } 2117 2118 ret = hid_report_raw_event(hid, type, data, size, interrupt); 2119 2120 unlock: 2121 if (!lock_already_taken) 2122 up(&hid->driver_input_lock); 2123 return ret; 2124 } 2125 2126 /** 2127 * hid_input_report - report data from lower layer (usb, bt...) 2128 * 2129 * @hid: hid device 2130 * @type: HID report type (HID_*_REPORT) 2131 * @data: report contents 2132 * @size: size of data parameter 2133 * @interrupt: distinguish between interrupt and control transfers 2134 * 2135 * This is data entry for lower layers. 2136 */ 2137 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, 2138 int interrupt) 2139 { 2140 return __hid_input_report(hid, type, data, size, interrupt, 0, 2141 false, /* from_bpf */ 2142 false /* lock_already_taken */); 2143 } 2144 EXPORT_SYMBOL_GPL(hid_input_report); 2145 2146 bool hid_match_one_id(const struct hid_device *hdev, 2147 const struct hid_device_id *id) 2148 { 2149 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 2150 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 2151 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 2152 (id->product == HID_ANY_ID || id->product == hdev->product); 2153 } 2154 2155 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 2156 const struct hid_device_id *id) 2157 { 2158 for (; id->bus; id++) 2159 if (hid_match_one_id(hdev, id)) 2160 return id; 2161 2162 return NULL; 2163 } 2164 EXPORT_SYMBOL_GPL(hid_match_id); 2165 2166 static const struct hid_device_id hid_hiddev_list[] = { 2167 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 2168 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 2169 { } 2170 }; 2171 2172 static bool hid_hiddev(struct hid_device *hdev) 2173 { 2174 return !!hid_match_id(hdev, hid_hiddev_list); 2175 } 2176 2177 2178 static ssize_t 2179 report_descriptor_read(struct file *filp, struct kobject *kobj, 2180 const struct bin_attribute *attr, 2181 char *buf, loff_t off, size_t count) 2182 { 2183 struct device *dev = kobj_to_dev(kobj); 2184 struct hid_device *hdev = to_hid_device(dev); 2185 2186 if (off >= hdev->rsize) 2187 return 0; 2188 2189 if (off + count > hdev->rsize) 2190 count = hdev->rsize - off; 2191 2192 memcpy(buf, hdev->rdesc + off, count); 2193 2194 return count; 2195 } 2196 2197 static ssize_t 2198 country_show(struct device *dev, struct device_attribute *attr, 2199 char *buf) 2200 { 2201 struct hid_device *hdev = to_hid_device(dev); 2202 2203 return sprintf(buf, "%02x\n", hdev->country & 0xff); 2204 } 2205 2206 static const BIN_ATTR_RO(report_descriptor, HID_MAX_DESCRIPTOR_SIZE); 2207 2208 static const DEVICE_ATTR_RO(country); 2209 2210 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 2211 { 2212 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 2213 "Joystick", "Gamepad", "Keyboard", "Keypad", 2214 "Multi-Axis Controller" 2215 }; 2216 const char *type, *bus; 2217 char buf[64] = ""; 2218 unsigned int i; 2219 int len; 2220 int ret; 2221 2222 ret = hid_bpf_connect_device(hdev); 2223 if (ret) 2224 return ret; 2225 2226 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 2227 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 2228 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 2229 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 2230 if (hdev->bus != BUS_USB) 2231 connect_mask &= ~HID_CONNECT_HIDDEV; 2232 if (hid_hiddev(hdev)) 2233 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 2234 2235 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 2236 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 2237 hdev->claimed |= HID_CLAIMED_INPUT; 2238 2239 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 2240 !hdev->hiddev_connect(hdev, 2241 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 2242 hdev->claimed |= HID_CLAIMED_HIDDEV; 2243 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 2244 hdev->claimed |= HID_CLAIMED_HIDRAW; 2245 2246 if (connect_mask & HID_CONNECT_DRIVER) 2247 hdev->claimed |= HID_CLAIMED_DRIVER; 2248 2249 /* Drivers with the ->raw_event callback set are not required to connect 2250 * to any other listener. */ 2251 if (!hdev->claimed && !hdev->driver->raw_event) { 2252 hid_err(hdev, "device has no listeners, quitting\n"); 2253 return -ENODEV; 2254 } 2255 2256 hid_process_ordering(hdev); 2257 2258 if ((hdev->claimed & HID_CLAIMED_INPUT) && 2259 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 2260 hdev->ff_init(hdev); 2261 2262 len = 0; 2263 if (hdev->claimed & HID_CLAIMED_INPUT) 2264 len += sprintf(buf + len, "input"); 2265 if (hdev->claimed & HID_CLAIMED_HIDDEV) 2266 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 2267 ((struct hiddev *)hdev->hiddev)->minor); 2268 if (hdev->claimed & HID_CLAIMED_HIDRAW) 2269 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 2270 ((struct hidraw *)hdev->hidraw)->minor); 2271 2272 type = "Device"; 2273 for (i = 0; i < hdev->maxcollection; i++) { 2274 struct hid_collection *col = &hdev->collection[i]; 2275 if (col->type == HID_COLLECTION_APPLICATION && 2276 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 2277 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 2278 type = types[col->usage & 0xffff]; 2279 break; 2280 } 2281 } 2282 2283 switch (hdev->bus) { 2284 case BUS_USB: 2285 bus = "USB"; 2286 break; 2287 case BUS_BLUETOOTH: 2288 bus = "BLUETOOTH"; 2289 break; 2290 case BUS_I2C: 2291 bus = "I2C"; 2292 break; 2293 case BUS_VIRTUAL: 2294 bus = "VIRTUAL"; 2295 break; 2296 case BUS_INTEL_ISHTP: 2297 case BUS_AMD_SFH: 2298 bus = "SENSOR HUB"; 2299 break; 2300 default: 2301 bus = "<UNKNOWN>"; 2302 } 2303 2304 ret = device_create_file(&hdev->dev, &dev_attr_country); 2305 if (ret) 2306 hid_warn(hdev, 2307 "can't create sysfs country code attribute err: %d\n", ret); 2308 2309 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 2310 buf, bus, hdev->version >> 8, hdev->version & 0xff, 2311 type, hdev->name, hdev->phys); 2312 2313 return 0; 2314 } 2315 EXPORT_SYMBOL_GPL(hid_connect); 2316 2317 void hid_disconnect(struct hid_device *hdev) 2318 { 2319 device_remove_file(&hdev->dev, &dev_attr_country); 2320 if (hdev->claimed & HID_CLAIMED_INPUT) 2321 hidinput_disconnect(hdev); 2322 if (hdev->claimed & HID_CLAIMED_HIDDEV) 2323 hdev->hiddev_disconnect(hdev); 2324 if (hdev->claimed & HID_CLAIMED_HIDRAW) 2325 hidraw_disconnect(hdev); 2326 hdev->claimed = 0; 2327 2328 hid_bpf_disconnect_device(hdev); 2329 } 2330 EXPORT_SYMBOL_GPL(hid_disconnect); 2331 2332 /** 2333 * hid_hw_start - start underlying HW 2334 * @hdev: hid device 2335 * @connect_mask: which outputs to connect, see HID_CONNECT_* 2336 * 2337 * Call this in probe function *after* hid_parse. This will setup HW 2338 * buffers and start the device (if not defeirred to device open). 2339 * hid_hw_stop must be called if this was successful. 2340 */ 2341 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 2342 { 2343 int error; 2344 2345 error = hdev->ll_driver->start(hdev); 2346 if (error) 2347 return error; 2348 2349 if (connect_mask) { 2350 error = hid_connect(hdev, connect_mask); 2351 if (error) { 2352 hdev->ll_driver->stop(hdev); 2353 return error; 2354 } 2355 } 2356 2357 return 0; 2358 } 2359 EXPORT_SYMBOL_GPL(hid_hw_start); 2360 2361 /** 2362 * hid_hw_stop - stop underlying HW 2363 * @hdev: hid device 2364 * 2365 * This is usually called from remove function or from probe when something 2366 * failed and hid_hw_start was called already. 2367 */ 2368 void hid_hw_stop(struct hid_device *hdev) 2369 { 2370 hid_disconnect(hdev); 2371 hdev->ll_driver->stop(hdev); 2372 } 2373 EXPORT_SYMBOL_GPL(hid_hw_stop); 2374 2375 /** 2376 * hid_hw_open - signal underlying HW to start delivering events 2377 * @hdev: hid device 2378 * 2379 * Tell underlying HW to start delivering events from the device. 2380 * This function should be called sometime after successful call 2381 * to hid_hw_start(). 2382 */ 2383 int hid_hw_open(struct hid_device *hdev) 2384 { 2385 int ret; 2386 2387 ret = mutex_lock_killable(&hdev->ll_open_lock); 2388 if (ret) 2389 return ret; 2390 2391 if (!hdev->ll_open_count++) { 2392 ret = hdev->ll_driver->open(hdev); 2393 if (ret) 2394 hdev->ll_open_count--; 2395 } 2396 2397 mutex_unlock(&hdev->ll_open_lock); 2398 return ret; 2399 } 2400 EXPORT_SYMBOL_GPL(hid_hw_open); 2401 2402 /** 2403 * hid_hw_close - signal underlaying HW to stop delivering events 2404 * 2405 * @hdev: hid device 2406 * 2407 * This function indicates that we are not interested in the events 2408 * from this device anymore. Delivery of events may or may not stop, 2409 * depending on the number of users still outstanding. 2410 */ 2411 void hid_hw_close(struct hid_device *hdev) 2412 { 2413 mutex_lock(&hdev->ll_open_lock); 2414 if (!--hdev->ll_open_count) 2415 hdev->ll_driver->close(hdev); 2416 mutex_unlock(&hdev->ll_open_lock); 2417 } 2418 EXPORT_SYMBOL_GPL(hid_hw_close); 2419 2420 /** 2421 * hid_hw_request - send report request to device 2422 * 2423 * @hdev: hid device 2424 * @report: report to send 2425 * @reqtype: hid request type 2426 */ 2427 void hid_hw_request(struct hid_device *hdev, 2428 struct hid_report *report, enum hid_class_request reqtype) 2429 { 2430 if (hdev->ll_driver->request) 2431 return hdev->ll_driver->request(hdev, report, reqtype); 2432 2433 __hid_request(hdev, report, reqtype); 2434 } 2435 EXPORT_SYMBOL_GPL(hid_hw_request); 2436 2437 int __hid_hw_raw_request(struct hid_device *hdev, 2438 unsigned char reportnum, __u8 *buf, 2439 size_t len, enum hid_report_type rtype, 2440 enum hid_class_request reqtype, 2441 u64 source, bool from_bpf) 2442 { 2443 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 2444 int ret; 2445 2446 if (hdev->ll_driver->max_buffer_size) 2447 max_buffer_size = hdev->ll_driver->max_buffer_size; 2448 2449 if (len < 1 || len > max_buffer_size || !buf) 2450 return -EINVAL; 2451 2452 ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype, 2453 reqtype, source, from_bpf); 2454 if (ret) 2455 return ret; 2456 2457 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len, 2458 rtype, reqtype); 2459 } 2460 2461 /** 2462 * hid_hw_raw_request - send report request to device 2463 * 2464 * @hdev: hid device 2465 * @reportnum: report ID 2466 * @buf: in/out data to transfer 2467 * @len: length of buf 2468 * @rtype: HID report type 2469 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT 2470 * 2471 * Return: count of data transferred, negative if error 2472 * 2473 * Same behavior as hid_hw_request, but with raw buffers instead. 2474 */ 2475 int hid_hw_raw_request(struct hid_device *hdev, 2476 unsigned char reportnum, __u8 *buf, 2477 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype) 2478 { 2479 return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false); 2480 } 2481 EXPORT_SYMBOL_GPL(hid_hw_raw_request); 2482 2483 int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source, 2484 bool from_bpf) 2485 { 2486 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 2487 int ret; 2488 2489 if (hdev->ll_driver->max_buffer_size) 2490 max_buffer_size = hdev->ll_driver->max_buffer_size; 2491 2492 if (len < 1 || len > max_buffer_size || !buf) 2493 return -EINVAL; 2494 2495 ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf); 2496 if (ret) 2497 return ret; 2498 2499 if (hdev->ll_driver->output_report) 2500 return hdev->ll_driver->output_report(hdev, buf, len); 2501 2502 return -ENOSYS; 2503 } 2504 2505 /** 2506 * hid_hw_output_report - send output report to device 2507 * 2508 * @hdev: hid device 2509 * @buf: raw data to transfer 2510 * @len: length of buf 2511 * 2512 * Return: count of data transferred, negative if error 2513 */ 2514 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len) 2515 { 2516 return __hid_hw_output_report(hdev, buf, len, 0, false); 2517 } 2518 EXPORT_SYMBOL_GPL(hid_hw_output_report); 2519 2520 #ifdef CONFIG_PM 2521 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state) 2522 { 2523 if (hdev->driver && hdev->driver->suspend) 2524 return hdev->driver->suspend(hdev, state); 2525 2526 return 0; 2527 } 2528 EXPORT_SYMBOL_GPL(hid_driver_suspend); 2529 2530 int hid_driver_reset_resume(struct hid_device *hdev) 2531 { 2532 if (hdev->driver && hdev->driver->reset_resume) 2533 return hdev->driver->reset_resume(hdev); 2534 2535 return 0; 2536 } 2537 EXPORT_SYMBOL_GPL(hid_driver_reset_resume); 2538 2539 int hid_driver_resume(struct hid_device *hdev) 2540 { 2541 if (hdev->driver && hdev->driver->resume) 2542 return hdev->driver->resume(hdev); 2543 2544 return 0; 2545 } 2546 EXPORT_SYMBOL_GPL(hid_driver_resume); 2547 #endif /* CONFIG_PM */ 2548 2549 struct hid_dynid { 2550 struct list_head list; 2551 struct hid_device_id id; 2552 }; 2553 2554 /** 2555 * new_id_store - add a new HID device ID to this driver and re-probe devices 2556 * @drv: target device driver 2557 * @buf: buffer for scanning device ID data 2558 * @count: input size 2559 * 2560 * Adds a new dynamic hid device ID to this driver, 2561 * and causes the driver to probe for all devices again. 2562 */ 2563 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2564 size_t count) 2565 { 2566 struct hid_driver *hdrv = to_hid_driver(drv); 2567 struct hid_dynid *dynid; 2568 __u32 bus, vendor, product; 2569 unsigned long driver_data = 0; 2570 int ret; 2571 2572 ret = sscanf(buf, "%x %x %x %lx", 2573 &bus, &vendor, &product, &driver_data); 2574 if (ret < 3) 2575 return -EINVAL; 2576 2577 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2578 if (!dynid) 2579 return -ENOMEM; 2580 2581 dynid->id.bus = bus; 2582 dynid->id.group = HID_GROUP_ANY; 2583 dynid->id.vendor = vendor; 2584 dynid->id.product = product; 2585 dynid->id.driver_data = driver_data; 2586 2587 spin_lock(&hdrv->dyn_lock); 2588 list_add_tail(&dynid->list, &hdrv->dyn_list); 2589 spin_unlock(&hdrv->dyn_lock); 2590 2591 ret = driver_attach(&hdrv->driver); 2592 2593 return ret ? : count; 2594 } 2595 static DRIVER_ATTR_WO(new_id); 2596 2597 static struct attribute *hid_drv_attrs[] = { 2598 &driver_attr_new_id.attr, 2599 NULL, 2600 }; 2601 ATTRIBUTE_GROUPS(hid_drv); 2602 2603 static void hid_free_dynids(struct hid_driver *hdrv) 2604 { 2605 struct hid_dynid *dynid, *n; 2606 2607 spin_lock(&hdrv->dyn_lock); 2608 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2609 list_del(&dynid->list); 2610 kfree(dynid); 2611 } 2612 spin_unlock(&hdrv->dyn_lock); 2613 } 2614 2615 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2616 struct hid_driver *hdrv) 2617 { 2618 struct hid_dynid *dynid; 2619 2620 spin_lock(&hdrv->dyn_lock); 2621 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2622 if (hid_match_one_id(hdev, &dynid->id)) { 2623 spin_unlock(&hdrv->dyn_lock); 2624 return &dynid->id; 2625 } 2626 } 2627 spin_unlock(&hdrv->dyn_lock); 2628 2629 return hid_match_id(hdev, hdrv->id_table); 2630 } 2631 EXPORT_SYMBOL_GPL(hid_match_device); 2632 2633 static int hid_bus_match(struct device *dev, const struct device_driver *drv) 2634 { 2635 struct hid_driver *hdrv = to_hid_driver(drv); 2636 struct hid_device *hdev = to_hid_device(dev); 2637 2638 return hid_match_device(hdev, hdrv) != NULL; 2639 } 2640 2641 /** 2642 * hid_compare_device_paths - check if both devices share the same path 2643 * @hdev_a: hid device 2644 * @hdev_b: hid device 2645 * @separator: char to use as separator 2646 * 2647 * Check if two devices share the same path up to the last occurrence of 2648 * the separator char. Both paths must exist (i.e., zero-length paths 2649 * don't match). 2650 */ 2651 bool hid_compare_device_paths(struct hid_device *hdev_a, 2652 struct hid_device *hdev_b, char separator) 2653 { 2654 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2655 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2656 2657 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2658 return false; 2659 2660 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2661 } 2662 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2663 2664 static bool hid_check_device_match(struct hid_device *hdev, 2665 struct hid_driver *hdrv, 2666 const struct hid_device_id **id) 2667 { 2668 *id = hid_match_device(hdev, hdrv); 2669 if (!*id) 2670 return false; 2671 2672 if (hdrv->match) 2673 return hdrv->match(hdev, hid_ignore_special_drivers); 2674 2675 /* 2676 * hid-generic implements .match(), so we must be dealing with a 2677 * different HID driver here, and can simply check if 2678 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER 2679 * are set or not. 2680 */ 2681 return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER); 2682 } 2683 2684 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv) 2685 { 2686 const struct hid_device_id *id; 2687 int ret; 2688 2689 if (!hdev->bpf_rsize) { 2690 /* in case a bpf program gets detached, we need to free the old one */ 2691 hid_free_bpf_rdesc(hdev); 2692 2693 /* keep this around so we know we called it once */ 2694 hdev->bpf_rsize = hdev->dev_rsize; 2695 2696 /* call_hid_bpf_rdesc_fixup will always return a valid pointer */ 2697 hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc, 2698 &hdev->bpf_rsize); 2699 } 2700 2701 if (!hid_check_device_match(hdev, hdrv, &id)) 2702 return -ENODEV; 2703 2704 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL); 2705 if (!hdev->devres_group_id) 2706 return -ENOMEM; 2707 2708 /* reset the quirks that has been previously set */ 2709 hdev->quirks = hid_lookup_quirk(hdev); 2710 hdev->driver = hdrv; 2711 2712 if (hdrv->probe) { 2713 ret = hdrv->probe(hdev, id); 2714 } else { /* default probe */ 2715 ret = hid_open_report(hdev); 2716 if (!ret) 2717 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2718 } 2719 2720 /* 2721 * Note that we are not closing the devres group opened above so 2722 * even resources that were attached to the device after probe is 2723 * run are released when hid_device_remove() is executed. This is 2724 * needed as some drivers would allocate additional resources, 2725 * for example when updating firmware. 2726 */ 2727 2728 if (ret) { 2729 devres_release_group(&hdev->dev, hdev->devres_group_id); 2730 hid_close_report(hdev); 2731 hdev->driver = NULL; 2732 } 2733 2734 return ret; 2735 } 2736 2737 static int hid_device_probe(struct device *dev) 2738 { 2739 struct hid_device *hdev = to_hid_device(dev); 2740 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2741 int ret = 0; 2742 2743 if (down_interruptible(&hdev->driver_input_lock)) 2744 return -EINTR; 2745 2746 hdev->io_started = false; 2747 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2748 2749 if (!hdev->driver) 2750 ret = __hid_device_probe(hdev, hdrv); 2751 2752 if (!hdev->io_started) 2753 up(&hdev->driver_input_lock); 2754 2755 return ret; 2756 } 2757 2758 static void hid_device_remove(struct device *dev) 2759 { 2760 struct hid_device *hdev = to_hid_device(dev); 2761 struct hid_driver *hdrv; 2762 2763 down(&hdev->driver_input_lock); 2764 hdev->io_started = false; 2765 2766 hdrv = hdev->driver; 2767 if (hdrv) { 2768 if (hdrv->remove) 2769 hdrv->remove(hdev); 2770 else /* default remove */ 2771 hid_hw_stop(hdev); 2772 2773 /* Release all devres resources allocated by the driver */ 2774 devres_release_group(&hdev->dev, hdev->devres_group_id); 2775 2776 hid_close_report(hdev); 2777 hdev->driver = NULL; 2778 } 2779 2780 if (!hdev->io_started) 2781 up(&hdev->driver_input_lock); 2782 } 2783 2784 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2785 char *buf) 2786 { 2787 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2788 2789 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2790 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2791 } 2792 static DEVICE_ATTR_RO(modalias); 2793 2794 static struct attribute *hid_dev_attrs[] = { 2795 &dev_attr_modalias.attr, 2796 NULL, 2797 }; 2798 static const struct bin_attribute *hid_dev_bin_attrs[] = { 2799 &bin_attr_report_descriptor, 2800 NULL 2801 }; 2802 static const struct attribute_group hid_dev_group = { 2803 .attrs = hid_dev_attrs, 2804 .bin_attrs_new = hid_dev_bin_attrs, 2805 }; 2806 __ATTRIBUTE_GROUPS(hid_dev); 2807 2808 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env) 2809 { 2810 const struct hid_device *hdev = to_hid_device(dev); 2811 2812 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2813 hdev->bus, hdev->vendor, hdev->product)) 2814 return -ENOMEM; 2815 2816 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2817 return -ENOMEM; 2818 2819 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2820 return -ENOMEM; 2821 2822 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2823 return -ENOMEM; 2824 2825 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2826 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2827 return -ENOMEM; 2828 2829 return 0; 2830 } 2831 2832 const struct bus_type hid_bus_type = { 2833 .name = "hid", 2834 .dev_groups = hid_dev_groups, 2835 .drv_groups = hid_drv_groups, 2836 .match = hid_bus_match, 2837 .probe = hid_device_probe, 2838 .remove = hid_device_remove, 2839 .uevent = hid_uevent, 2840 }; 2841 EXPORT_SYMBOL(hid_bus_type); 2842 2843 int hid_add_device(struct hid_device *hdev) 2844 { 2845 static atomic_t id = ATOMIC_INIT(0); 2846 int ret; 2847 2848 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2849 return -EBUSY; 2850 2851 hdev->quirks = hid_lookup_quirk(hdev); 2852 2853 /* we need to kill them here, otherwise they will stay allocated to 2854 * wait for coming driver */ 2855 if (hid_ignore(hdev)) 2856 return -ENODEV; 2857 2858 /* 2859 * Check for the mandatory transport channel. 2860 */ 2861 if (!hdev->ll_driver->raw_request) { 2862 hid_err(hdev, "transport driver missing .raw_request()\n"); 2863 return -EINVAL; 2864 } 2865 2866 /* 2867 * Read the device report descriptor once and use as template 2868 * for the driver-specific modifications. 2869 */ 2870 ret = hdev->ll_driver->parse(hdev); 2871 if (ret) 2872 return ret; 2873 if (!hdev->dev_rdesc) 2874 return -ENODEV; 2875 2876 /* 2877 * Scan generic devices for group information 2878 */ 2879 if (hid_ignore_special_drivers) { 2880 hdev->group = HID_GROUP_GENERIC; 2881 } else if (!hdev->group && 2882 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2883 ret = hid_scan_report(hdev); 2884 if (ret) 2885 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2886 } 2887 2888 hdev->id = atomic_inc_return(&id); 2889 2890 /* XXX hack, any other cleaner solution after the driver core 2891 * is converted to allow more than 20 bytes as the device name? */ 2892 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2893 hdev->vendor, hdev->product, hdev->id); 2894 2895 hid_debug_register(hdev, dev_name(&hdev->dev)); 2896 ret = device_add(&hdev->dev); 2897 if (!ret) 2898 hdev->status |= HID_STAT_ADDED; 2899 else 2900 hid_debug_unregister(hdev); 2901 2902 return ret; 2903 } 2904 EXPORT_SYMBOL_GPL(hid_add_device); 2905 2906 /** 2907 * hid_allocate_device - allocate new hid device descriptor 2908 * 2909 * Allocate and initialize hid device, so that hid_destroy_device might be 2910 * used to free it. 2911 * 2912 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2913 * error value. 2914 */ 2915 struct hid_device *hid_allocate_device(void) 2916 { 2917 struct hid_device *hdev; 2918 int ret = -ENOMEM; 2919 2920 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2921 if (hdev == NULL) 2922 return ERR_PTR(ret); 2923 2924 device_initialize(&hdev->dev); 2925 hdev->dev.release = hid_device_release; 2926 hdev->dev.bus = &hid_bus_type; 2927 device_enable_async_suspend(&hdev->dev); 2928 2929 hid_close_report(hdev); 2930 2931 init_waitqueue_head(&hdev->debug_wait); 2932 INIT_LIST_HEAD(&hdev->debug_list); 2933 spin_lock_init(&hdev->debug_list_lock); 2934 sema_init(&hdev->driver_input_lock, 1); 2935 mutex_init(&hdev->ll_open_lock); 2936 kref_init(&hdev->ref); 2937 2938 ret = hid_bpf_device_init(hdev); 2939 if (ret) 2940 goto out_err; 2941 2942 return hdev; 2943 2944 out_err: 2945 hid_destroy_device(hdev); 2946 return ERR_PTR(ret); 2947 } 2948 EXPORT_SYMBOL_GPL(hid_allocate_device); 2949 2950 static void hid_remove_device(struct hid_device *hdev) 2951 { 2952 if (hdev->status & HID_STAT_ADDED) { 2953 device_del(&hdev->dev); 2954 hid_debug_unregister(hdev); 2955 hdev->status &= ~HID_STAT_ADDED; 2956 } 2957 hid_free_bpf_rdesc(hdev); 2958 kfree(hdev->dev_rdesc); 2959 hdev->dev_rdesc = NULL; 2960 hdev->dev_rsize = 0; 2961 hdev->bpf_rsize = 0; 2962 } 2963 2964 /** 2965 * hid_destroy_device - free previously allocated device 2966 * 2967 * @hdev: hid device 2968 * 2969 * If you allocate hid_device through hid_allocate_device, you should ever 2970 * free by this function. 2971 */ 2972 void hid_destroy_device(struct hid_device *hdev) 2973 { 2974 hid_bpf_destroy_device(hdev); 2975 hid_remove_device(hdev); 2976 put_device(&hdev->dev); 2977 } 2978 EXPORT_SYMBOL_GPL(hid_destroy_device); 2979 2980 2981 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2982 { 2983 struct hid_driver *hdrv = data; 2984 struct hid_device *hdev = to_hid_device(dev); 2985 2986 if (hdev->driver == hdrv && 2987 !hdrv->match(hdev, hid_ignore_special_drivers) && 2988 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2989 return device_reprobe(dev); 2990 2991 return 0; 2992 } 2993 2994 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2995 { 2996 struct hid_driver *hdrv = to_hid_driver(drv); 2997 2998 if (hdrv->match) { 2999 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 3000 __hid_bus_reprobe_drivers); 3001 } 3002 3003 return 0; 3004 } 3005 3006 static int __bus_removed_driver(struct device_driver *drv, void *data) 3007 { 3008 return bus_rescan_devices(&hid_bus_type); 3009 } 3010 3011 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 3012 const char *mod_name) 3013 { 3014 int ret; 3015 3016 hdrv->driver.name = hdrv->name; 3017 hdrv->driver.bus = &hid_bus_type; 3018 hdrv->driver.owner = owner; 3019 hdrv->driver.mod_name = mod_name; 3020 3021 INIT_LIST_HEAD(&hdrv->dyn_list); 3022 spin_lock_init(&hdrv->dyn_lock); 3023 3024 ret = driver_register(&hdrv->driver); 3025 3026 if (ret == 0) 3027 bus_for_each_drv(&hid_bus_type, NULL, NULL, 3028 __hid_bus_driver_added); 3029 3030 return ret; 3031 } 3032 EXPORT_SYMBOL_GPL(__hid_register_driver); 3033 3034 void hid_unregister_driver(struct hid_driver *hdrv) 3035 { 3036 driver_unregister(&hdrv->driver); 3037 hid_free_dynids(hdrv); 3038 3039 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 3040 } 3041 EXPORT_SYMBOL_GPL(hid_unregister_driver); 3042 3043 int hid_check_keys_pressed(struct hid_device *hid) 3044 { 3045 struct hid_input *hidinput; 3046 int i; 3047 3048 if (!(hid->claimed & HID_CLAIMED_INPUT)) 3049 return 0; 3050 3051 list_for_each_entry(hidinput, &hid->inputs, list) { 3052 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 3053 if (hidinput->input->key[i]) 3054 return 1; 3055 } 3056 3057 return 0; 3058 } 3059 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 3060 3061 #ifdef CONFIG_HID_BPF 3062 static const struct hid_ops __hid_ops = { 3063 .hid_get_report = hid_get_report, 3064 .hid_hw_raw_request = __hid_hw_raw_request, 3065 .hid_hw_output_report = __hid_hw_output_report, 3066 .hid_input_report = __hid_input_report, 3067 .owner = THIS_MODULE, 3068 .bus_type = &hid_bus_type, 3069 }; 3070 #endif 3071 3072 static int __init hid_init(void) 3073 { 3074 int ret; 3075 3076 ret = bus_register(&hid_bus_type); 3077 if (ret) { 3078 pr_err("can't register hid bus\n"); 3079 goto err; 3080 } 3081 3082 #ifdef CONFIG_HID_BPF 3083 hid_ops = &__hid_ops; 3084 #endif 3085 3086 ret = hidraw_init(); 3087 if (ret) 3088 goto err_bus; 3089 3090 hid_debug_init(); 3091 3092 return 0; 3093 err_bus: 3094 bus_unregister(&hid_bus_type); 3095 err: 3096 return ret; 3097 } 3098 3099 static void __exit hid_exit(void) 3100 { 3101 #ifdef CONFIG_HID_BPF 3102 hid_ops = NULL; 3103 #endif 3104 hid_debug_exit(); 3105 hidraw_exit(); 3106 bus_unregister(&hid_bus_type); 3107 hid_quirks_exit(HID_BUS_ANY); 3108 } 3109 3110 module_init(hid_init); 3111 module_exit(hid_exit); 3112 3113 MODULE_AUTHOR("Andreas Gal"); 3114 MODULE_AUTHOR("Vojtech Pavlik"); 3115 MODULE_AUTHOR("Jiri Kosina"); 3116 MODULE_DESCRIPTION("HID support for Linux"); 3117 MODULE_LICENSE("GPL"); 3118