xref: /linux/drivers/hid/hid-core.c (revision d6296cb65320be16dbf20f2fd584ddc25f3437cd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47 
48 /*
49  * Register a new report for a device.
50  */
51 
52 struct hid_report *hid_register_report(struct hid_device *device,
53 				       enum hid_report_type type, unsigned int id,
54 				       unsigned int application)
55 {
56 	struct hid_report_enum *report_enum = device->report_enum + type;
57 	struct hid_report *report;
58 
59 	if (id >= HID_MAX_IDS)
60 		return NULL;
61 	if (report_enum->report_id_hash[id])
62 		return report_enum->report_id_hash[id];
63 
64 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 	if (!report)
66 		return NULL;
67 
68 	if (id != 0)
69 		report_enum->numbered = 1;
70 
71 	report->id = id;
72 	report->type = type;
73 	report->size = 0;
74 	report->device = device;
75 	report->application = application;
76 	report_enum->report_id_hash[id] = report;
77 
78 	list_add_tail(&report->list, &report_enum->report_list);
79 	INIT_LIST_HEAD(&report->field_entry_list);
80 
81 	return report;
82 }
83 EXPORT_SYMBOL_GPL(hid_register_report);
84 
85 /*
86  * Register a new field for this report.
87  */
88 
89 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90 {
91 	struct hid_field *field;
92 
93 	if (report->maxfield == HID_MAX_FIELDS) {
94 		hid_err(report->device, "too many fields in report\n");
95 		return NULL;
96 	}
97 
98 	field = kzalloc((sizeof(struct hid_field) +
99 			 usages * sizeof(struct hid_usage) +
100 			 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101 	if (!field)
102 		return NULL;
103 
104 	field->index = report->maxfield++;
105 	report->field[field->index] = field;
106 	field->usage = (struct hid_usage *)(field + 1);
107 	field->value = (s32 *)(field->usage + usages);
108 	field->new_value = (s32 *)(field->value + usages);
109 	field->usages_priorities = (s32 *)(field->new_value + usages);
110 	field->report = report;
111 
112 	return field;
113 }
114 
115 /*
116  * Open a collection. The type/usage is pushed on the stack.
117  */
118 
119 static int open_collection(struct hid_parser *parser, unsigned type)
120 {
121 	struct hid_collection *collection;
122 	unsigned usage;
123 	int collection_index;
124 
125 	usage = parser->local.usage[0];
126 
127 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
128 		unsigned int *collection_stack;
129 		unsigned int new_size = parser->collection_stack_size +
130 					HID_COLLECTION_STACK_SIZE;
131 
132 		collection_stack = krealloc(parser->collection_stack,
133 					    new_size * sizeof(unsigned int),
134 					    GFP_KERNEL);
135 		if (!collection_stack)
136 			return -ENOMEM;
137 
138 		parser->collection_stack = collection_stack;
139 		parser->collection_stack_size = new_size;
140 	}
141 
142 	if (parser->device->maxcollection == parser->device->collection_size) {
143 		collection = kmalloc(
144 				array3_size(sizeof(struct hid_collection),
145 					    parser->device->collection_size,
146 					    2),
147 				GFP_KERNEL);
148 		if (collection == NULL) {
149 			hid_err(parser->device, "failed to reallocate collection array\n");
150 			return -ENOMEM;
151 		}
152 		memcpy(collection, parser->device->collection,
153 			sizeof(struct hid_collection) *
154 			parser->device->collection_size);
155 		memset(collection + parser->device->collection_size, 0,
156 			sizeof(struct hid_collection) *
157 			parser->device->collection_size);
158 		kfree(parser->device->collection);
159 		parser->device->collection = collection;
160 		parser->device->collection_size *= 2;
161 	}
162 
163 	parser->collection_stack[parser->collection_stack_ptr++] =
164 		parser->device->maxcollection;
165 
166 	collection_index = parser->device->maxcollection++;
167 	collection = parser->device->collection + collection_index;
168 	collection->type = type;
169 	collection->usage = usage;
170 	collection->level = parser->collection_stack_ptr - 1;
171 	collection->parent_idx = (collection->level == 0) ? -1 :
172 		parser->collection_stack[collection->level - 1];
173 
174 	if (type == HID_COLLECTION_APPLICATION)
175 		parser->device->maxapplication++;
176 
177 	return 0;
178 }
179 
180 /*
181  * Close a collection.
182  */
183 
184 static int close_collection(struct hid_parser *parser)
185 {
186 	if (!parser->collection_stack_ptr) {
187 		hid_err(parser->device, "collection stack underflow\n");
188 		return -EINVAL;
189 	}
190 	parser->collection_stack_ptr--;
191 	return 0;
192 }
193 
194 /*
195  * Climb up the stack, search for the specified collection type
196  * and return the usage.
197  */
198 
199 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200 {
201 	struct hid_collection *collection = parser->device->collection;
202 	int n;
203 
204 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205 		unsigned index = parser->collection_stack[n];
206 		if (collection[index].type == type)
207 			return collection[index].usage;
208 	}
209 	return 0; /* we know nothing about this usage type */
210 }
211 
212 /*
213  * Concatenate usage which defines 16 bits or less with the
214  * currently defined usage page to form a 32 bit usage
215  */
216 
217 static void complete_usage(struct hid_parser *parser, unsigned int index)
218 {
219 	parser->local.usage[index] &= 0xFFFF;
220 	parser->local.usage[index] |=
221 		(parser->global.usage_page & 0xFFFF) << 16;
222 }
223 
224 /*
225  * Add a usage to the temporary parser table.
226  */
227 
228 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229 {
230 	if (parser->local.usage_index >= HID_MAX_USAGES) {
231 		hid_err(parser->device, "usage index exceeded\n");
232 		return -1;
233 	}
234 	parser->local.usage[parser->local.usage_index] = usage;
235 
236 	/*
237 	 * If Usage item only includes usage id, concatenate it with
238 	 * currently defined usage page
239 	 */
240 	if (size <= 2)
241 		complete_usage(parser, parser->local.usage_index);
242 
243 	parser->local.usage_size[parser->local.usage_index] = size;
244 	parser->local.collection_index[parser->local.usage_index] =
245 		parser->collection_stack_ptr ?
246 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247 	parser->local.usage_index++;
248 	return 0;
249 }
250 
251 /*
252  * Register a new field for this report.
253  */
254 
255 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256 {
257 	struct hid_report *report;
258 	struct hid_field *field;
259 	unsigned int usages;
260 	unsigned int offset;
261 	unsigned int i;
262 	unsigned int application;
263 
264 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
265 
266 	report = hid_register_report(parser->device, report_type,
267 				     parser->global.report_id, application);
268 	if (!report) {
269 		hid_err(parser->device, "hid_register_report failed\n");
270 		return -1;
271 	}
272 
273 	/* Handle both signed and unsigned cases properly */
274 	if ((parser->global.logical_minimum < 0 &&
275 		parser->global.logical_maximum <
276 		parser->global.logical_minimum) ||
277 		(parser->global.logical_minimum >= 0 &&
278 		(__u32)parser->global.logical_maximum <
279 		(__u32)parser->global.logical_minimum)) {
280 		dbg_hid("logical range invalid 0x%x 0x%x\n",
281 			parser->global.logical_minimum,
282 			parser->global.logical_maximum);
283 		return -1;
284 	}
285 
286 	offset = report->size;
287 	report->size += parser->global.report_size * parser->global.report_count;
288 
289 	/* Total size check: Allow for possible report index byte */
290 	if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) {
291 		hid_err(parser->device, "report is too long\n");
292 		return -1;
293 	}
294 
295 	if (!parser->local.usage_index) /* Ignore padding fields */
296 		return 0;
297 
298 	usages = max_t(unsigned, parser->local.usage_index,
299 				 parser->global.report_count);
300 
301 	field = hid_register_field(report, usages);
302 	if (!field)
303 		return 0;
304 
305 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
306 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
307 	field->application = application;
308 
309 	for (i = 0; i < usages; i++) {
310 		unsigned j = i;
311 		/* Duplicate the last usage we parsed if we have excess values */
312 		if (i >= parser->local.usage_index)
313 			j = parser->local.usage_index - 1;
314 		field->usage[i].hid = parser->local.usage[j];
315 		field->usage[i].collection_index =
316 			parser->local.collection_index[j];
317 		field->usage[i].usage_index = i;
318 		field->usage[i].resolution_multiplier = 1;
319 	}
320 
321 	field->maxusage = usages;
322 	field->flags = flags;
323 	field->report_offset = offset;
324 	field->report_type = report_type;
325 	field->report_size = parser->global.report_size;
326 	field->report_count = parser->global.report_count;
327 	field->logical_minimum = parser->global.logical_minimum;
328 	field->logical_maximum = parser->global.logical_maximum;
329 	field->physical_minimum = parser->global.physical_minimum;
330 	field->physical_maximum = parser->global.physical_maximum;
331 	field->unit_exponent = parser->global.unit_exponent;
332 	field->unit = parser->global.unit;
333 
334 	return 0;
335 }
336 
337 /*
338  * Read data value from item.
339  */
340 
341 static u32 item_udata(struct hid_item *item)
342 {
343 	switch (item->size) {
344 	case 1: return item->data.u8;
345 	case 2: return item->data.u16;
346 	case 4: return item->data.u32;
347 	}
348 	return 0;
349 }
350 
351 static s32 item_sdata(struct hid_item *item)
352 {
353 	switch (item->size) {
354 	case 1: return item->data.s8;
355 	case 2: return item->data.s16;
356 	case 4: return item->data.s32;
357 	}
358 	return 0;
359 }
360 
361 /*
362  * Process a global item.
363  */
364 
365 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
366 {
367 	__s32 raw_value;
368 	switch (item->tag) {
369 	case HID_GLOBAL_ITEM_TAG_PUSH:
370 
371 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
372 			hid_err(parser->device, "global environment stack overflow\n");
373 			return -1;
374 		}
375 
376 		memcpy(parser->global_stack + parser->global_stack_ptr++,
377 			&parser->global, sizeof(struct hid_global));
378 		return 0;
379 
380 	case HID_GLOBAL_ITEM_TAG_POP:
381 
382 		if (!parser->global_stack_ptr) {
383 			hid_err(parser->device, "global environment stack underflow\n");
384 			return -1;
385 		}
386 
387 		memcpy(&parser->global, parser->global_stack +
388 			--parser->global_stack_ptr, sizeof(struct hid_global));
389 		return 0;
390 
391 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
392 		parser->global.usage_page = item_udata(item);
393 		return 0;
394 
395 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
396 		parser->global.logical_minimum = item_sdata(item);
397 		return 0;
398 
399 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
400 		if (parser->global.logical_minimum < 0)
401 			parser->global.logical_maximum = item_sdata(item);
402 		else
403 			parser->global.logical_maximum = item_udata(item);
404 		return 0;
405 
406 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
407 		parser->global.physical_minimum = item_sdata(item);
408 		return 0;
409 
410 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
411 		if (parser->global.physical_minimum < 0)
412 			parser->global.physical_maximum = item_sdata(item);
413 		else
414 			parser->global.physical_maximum = item_udata(item);
415 		return 0;
416 
417 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
418 		/* Many devices provide unit exponent as a two's complement
419 		 * nibble due to the common misunderstanding of HID
420 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
421 		 * both this and the standard encoding. */
422 		raw_value = item_sdata(item);
423 		if (!(raw_value & 0xfffffff0))
424 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
425 		else
426 			parser->global.unit_exponent = raw_value;
427 		return 0;
428 
429 	case HID_GLOBAL_ITEM_TAG_UNIT:
430 		parser->global.unit = item_udata(item);
431 		return 0;
432 
433 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
434 		parser->global.report_size = item_udata(item);
435 		if (parser->global.report_size > 256) {
436 			hid_err(parser->device, "invalid report_size %d\n",
437 					parser->global.report_size);
438 			return -1;
439 		}
440 		return 0;
441 
442 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
443 		parser->global.report_count = item_udata(item);
444 		if (parser->global.report_count > HID_MAX_USAGES) {
445 			hid_err(parser->device, "invalid report_count %d\n",
446 					parser->global.report_count);
447 			return -1;
448 		}
449 		return 0;
450 
451 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
452 		parser->global.report_id = item_udata(item);
453 		if (parser->global.report_id == 0 ||
454 		    parser->global.report_id >= HID_MAX_IDS) {
455 			hid_err(parser->device, "report_id %u is invalid\n",
456 				parser->global.report_id);
457 			return -1;
458 		}
459 		return 0;
460 
461 	default:
462 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
463 		return -1;
464 	}
465 }
466 
467 /*
468  * Process a local item.
469  */
470 
471 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
472 {
473 	__u32 data;
474 	unsigned n;
475 	__u32 count;
476 
477 	data = item_udata(item);
478 
479 	switch (item->tag) {
480 	case HID_LOCAL_ITEM_TAG_DELIMITER:
481 
482 		if (data) {
483 			/*
484 			 * We treat items before the first delimiter
485 			 * as global to all usage sets (branch 0).
486 			 * In the moment we process only these global
487 			 * items and the first delimiter set.
488 			 */
489 			if (parser->local.delimiter_depth != 0) {
490 				hid_err(parser->device, "nested delimiters\n");
491 				return -1;
492 			}
493 			parser->local.delimiter_depth++;
494 			parser->local.delimiter_branch++;
495 		} else {
496 			if (parser->local.delimiter_depth < 1) {
497 				hid_err(parser->device, "bogus close delimiter\n");
498 				return -1;
499 			}
500 			parser->local.delimiter_depth--;
501 		}
502 		return 0;
503 
504 	case HID_LOCAL_ITEM_TAG_USAGE:
505 
506 		if (parser->local.delimiter_branch > 1) {
507 			dbg_hid("alternative usage ignored\n");
508 			return 0;
509 		}
510 
511 		return hid_add_usage(parser, data, item->size);
512 
513 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
514 
515 		if (parser->local.delimiter_branch > 1) {
516 			dbg_hid("alternative usage ignored\n");
517 			return 0;
518 		}
519 
520 		parser->local.usage_minimum = data;
521 		return 0;
522 
523 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
524 
525 		if (parser->local.delimiter_branch > 1) {
526 			dbg_hid("alternative usage ignored\n");
527 			return 0;
528 		}
529 
530 		count = data - parser->local.usage_minimum;
531 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
532 			/*
533 			 * We do not warn if the name is not set, we are
534 			 * actually pre-scanning the device.
535 			 */
536 			if (dev_name(&parser->device->dev))
537 				hid_warn(parser->device,
538 					 "ignoring exceeding usage max\n");
539 			data = HID_MAX_USAGES - parser->local.usage_index +
540 				parser->local.usage_minimum - 1;
541 			if (data <= 0) {
542 				hid_err(parser->device,
543 					"no more usage index available\n");
544 				return -1;
545 			}
546 		}
547 
548 		for (n = parser->local.usage_minimum; n <= data; n++)
549 			if (hid_add_usage(parser, n, item->size)) {
550 				dbg_hid("hid_add_usage failed\n");
551 				return -1;
552 			}
553 		return 0;
554 
555 	default:
556 
557 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
558 		return 0;
559 	}
560 	return 0;
561 }
562 
563 /*
564  * Concatenate Usage Pages into Usages where relevant:
565  * As per specification, 6.2.2.8: "When the parser encounters a main item it
566  * concatenates the last declared Usage Page with a Usage to form a complete
567  * usage value."
568  */
569 
570 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
571 {
572 	int i;
573 	unsigned int usage_page;
574 	unsigned int current_page;
575 
576 	if (!parser->local.usage_index)
577 		return;
578 
579 	usage_page = parser->global.usage_page;
580 
581 	/*
582 	 * Concatenate usage page again only if last declared Usage Page
583 	 * has not been already used in previous usages concatenation
584 	 */
585 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
586 		if (parser->local.usage_size[i] > 2)
587 			/* Ignore extended usages */
588 			continue;
589 
590 		current_page = parser->local.usage[i] >> 16;
591 		if (current_page == usage_page)
592 			break;
593 
594 		complete_usage(parser, i);
595 	}
596 }
597 
598 /*
599  * Process a main item.
600  */
601 
602 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
603 {
604 	__u32 data;
605 	int ret;
606 
607 	hid_concatenate_last_usage_page(parser);
608 
609 	data = item_udata(item);
610 
611 	switch (item->tag) {
612 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
613 		ret = open_collection(parser, data & 0xff);
614 		break;
615 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
616 		ret = close_collection(parser);
617 		break;
618 	case HID_MAIN_ITEM_TAG_INPUT:
619 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
620 		break;
621 	case HID_MAIN_ITEM_TAG_OUTPUT:
622 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
623 		break;
624 	case HID_MAIN_ITEM_TAG_FEATURE:
625 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
626 		break;
627 	default:
628 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
629 		ret = 0;
630 	}
631 
632 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
633 
634 	return ret;
635 }
636 
637 /*
638  * Process a reserved item.
639  */
640 
641 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
642 {
643 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
644 	return 0;
645 }
646 
647 /*
648  * Free a report and all registered fields. The field->usage and
649  * field->value table's are allocated behind the field, so we need
650  * only to free(field) itself.
651  */
652 
653 static void hid_free_report(struct hid_report *report)
654 {
655 	unsigned n;
656 
657 	kfree(report->field_entries);
658 
659 	for (n = 0; n < report->maxfield; n++)
660 		kfree(report->field[n]);
661 	kfree(report);
662 }
663 
664 /*
665  * Close report. This function returns the device
666  * state to the point prior to hid_open_report().
667  */
668 static void hid_close_report(struct hid_device *device)
669 {
670 	unsigned i, j;
671 
672 	for (i = 0; i < HID_REPORT_TYPES; i++) {
673 		struct hid_report_enum *report_enum = device->report_enum + i;
674 
675 		for (j = 0; j < HID_MAX_IDS; j++) {
676 			struct hid_report *report = report_enum->report_id_hash[j];
677 			if (report)
678 				hid_free_report(report);
679 		}
680 		memset(report_enum, 0, sizeof(*report_enum));
681 		INIT_LIST_HEAD(&report_enum->report_list);
682 	}
683 
684 	kfree(device->rdesc);
685 	device->rdesc = NULL;
686 	device->rsize = 0;
687 
688 	kfree(device->collection);
689 	device->collection = NULL;
690 	device->collection_size = 0;
691 	device->maxcollection = 0;
692 	device->maxapplication = 0;
693 
694 	device->status &= ~HID_STAT_PARSED;
695 }
696 
697 /*
698  * Free a device structure, all reports, and all fields.
699  */
700 
701 static void hid_device_release(struct device *dev)
702 {
703 	struct hid_device *hid = to_hid_device(dev);
704 
705 	hid_close_report(hid);
706 	kfree(hid->dev_rdesc);
707 	kfree(hid);
708 }
709 
710 /*
711  * Fetch a report description item from the data stream. We support long
712  * items, though they are not used yet.
713  */
714 
715 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
716 {
717 	u8 b;
718 
719 	if ((end - start) <= 0)
720 		return NULL;
721 
722 	b = *start++;
723 
724 	item->type = (b >> 2) & 3;
725 	item->tag  = (b >> 4) & 15;
726 
727 	if (item->tag == HID_ITEM_TAG_LONG) {
728 
729 		item->format = HID_ITEM_FORMAT_LONG;
730 
731 		if ((end - start) < 2)
732 			return NULL;
733 
734 		item->size = *start++;
735 		item->tag  = *start++;
736 
737 		if ((end - start) < item->size)
738 			return NULL;
739 
740 		item->data.longdata = start;
741 		start += item->size;
742 		return start;
743 	}
744 
745 	item->format = HID_ITEM_FORMAT_SHORT;
746 	item->size = b & 3;
747 
748 	switch (item->size) {
749 	case 0:
750 		return start;
751 
752 	case 1:
753 		if ((end - start) < 1)
754 			return NULL;
755 		item->data.u8 = *start++;
756 		return start;
757 
758 	case 2:
759 		if ((end - start) < 2)
760 			return NULL;
761 		item->data.u16 = get_unaligned_le16(start);
762 		start = (__u8 *)((__le16 *)start + 1);
763 		return start;
764 
765 	case 3:
766 		item->size++;
767 		if ((end - start) < 4)
768 			return NULL;
769 		item->data.u32 = get_unaligned_le32(start);
770 		start = (__u8 *)((__le32 *)start + 1);
771 		return start;
772 	}
773 
774 	return NULL;
775 }
776 
777 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
778 {
779 	struct hid_device *hid = parser->device;
780 
781 	if (usage == HID_DG_CONTACTID)
782 		hid->group = HID_GROUP_MULTITOUCH;
783 }
784 
785 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
786 {
787 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
788 	    parser->global.report_size == 8)
789 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
790 
791 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
792 	    parser->global.report_size == 8)
793 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794 }
795 
796 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
797 {
798 	struct hid_device *hid = parser->device;
799 	int i;
800 
801 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
802 	    (type == HID_COLLECTION_PHYSICAL ||
803 	     type == HID_COLLECTION_APPLICATION))
804 		hid->group = HID_GROUP_SENSOR_HUB;
805 
806 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
807 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
808 	    hid->group == HID_GROUP_MULTITOUCH)
809 		hid->group = HID_GROUP_GENERIC;
810 
811 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
812 		for (i = 0; i < parser->local.usage_index; i++)
813 			if (parser->local.usage[i] == HID_GD_POINTER)
814 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
815 
816 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
817 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
818 
819 	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
820 		for (i = 0; i < parser->local.usage_index; i++)
821 			if (parser->local.usage[i] ==
822 					(HID_UP_GOOGLEVENDOR | 0x0001))
823 				parser->device->group =
824 					HID_GROUP_VIVALDI;
825 }
826 
827 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
828 {
829 	__u32 data;
830 	int i;
831 
832 	hid_concatenate_last_usage_page(parser);
833 
834 	data = item_udata(item);
835 
836 	switch (item->tag) {
837 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
838 		hid_scan_collection(parser, data & 0xff);
839 		break;
840 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
841 		break;
842 	case HID_MAIN_ITEM_TAG_INPUT:
843 		/* ignore constant inputs, they will be ignored by hid-input */
844 		if (data & HID_MAIN_ITEM_CONSTANT)
845 			break;
846 		for (i = 0; i < parser->local.usage_index; i++)
847 			hid_scan_input_usage(parser, parser->local.usage[i]);
848 		break;
849 	case HID_MAIN_ITEM_TAG_OUTPUT:
850 		break;
851 	case HID_MAIN_ITEM_TAG_FEATURE:
852 		for (i = 0; i < parser->local.usage_index; i++)
853 			hid_scan_feature_usage(parser, parser->local.usage[i]);
854 		break;
855 	}
856 
857 	/* Reset the local parser environment */
858 	memset(&parser->local, 0, sizeof(parser->local));
859 
860 	return 0;
861 }
862 
863 /*
864  * Scan a report descriptor before the device is added to the bus.
865  * Sets device groups and other properties that determine what driver
866  * to load.
867  */
868 static int hid_scan_report(struct hid_device *hid)
869 {
870 	struct hid_parser *parser;
871 	struct hid_item item;
872 	__u8 *start = hid->dev_rdesc;
873 	__u8 *end = start + hid->dev_rsize;
874 	static int (*dispatch_type[])(struct hid_parser *parser,
875 				      struct hid_item *item) = {
876 		hid_scan_main,
877 		hid_parser_global,
878 		hid_parser_local,
879 		hid_parser_reserved
880 	};
881 
882 	parser = vzalloc(sizeof(struct hid_parser));
883 	if (!parser)
884 		return -ENOMEM;
885 
886 	parser->device = hid;
887 	hid->group = HID_GROUP_GENERIC;
888 
889 	/*
890 	 * The parsing is simpler than the one in hid_open_report() as we should
891 	 * be robust against hid errors. Those errors will be raised by
892 	 * hid_open_report() anyway.
893 	 */
894 	while ((start = fetch_item(start, end, &item)) != NULL)
895 		dispatch_type[item.type](parser, &item);
896 
897 	/*
898 	 * Handle special flags set during scanning.
899 	 */
900 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
901 	    (hid->group == HID_GROUP_MULTITOUCH))
902 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
903 
904 	/*
905 	 * Vendor specific handlings
906 	 */
907 	switch (hid->vendor) {
908 	case USB_VENDOR_ID_WACOM:
909 		hid->group = HID_GROUP_WACOM;
910 		break;
911 	case USB_VENDOR_ID_SYNAPTICS:
912 		if (hid->group == HID_GROUP_GENERIC)
913 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
914 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
915 				/*
916 				 * hid-rmi should take care of them,
917 				 * not hid-generic
918 				 */
919 				hid->group = HID_GROUP_RMI;
920 		break;
921 	}
922 
923 	kfree(parser->collection_stack);
924 	vfree(parser);
925 	return 0;
926 }
927 
928 /**
929  * hid_parse_report - parse device report
930  *
931  * @hid: hid device
932  * @start: report start
933  * @size: report size
934  *
935  * Allocate the device report as read by the bus driver. This function should
936  * only be called from parse() in ll drivers.
937  */
938 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
939 {
940 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
941 	if (!hid->dev_rdesc)
942 		return -ENOMEM;
943 	hid->dev_rsize = size;
944 	return 0;
945 }
946 EXPORT_SYMBOL_GPL(hid_parse_report);
947 
948 static const char * const hid_report_names[] = {
949 	"HID_INPUT_REPORT",
950 	"HID_OUTPUT_REPORT",
951 	"HID_FEATURE_REPORT",
952 };
953 /**
954  * hid_validate_values - validate existing device report's value indexes
955  *
956  * @hid: hid device
957  * @type: which report type to examine
958  * @id: which report ID to examine (0 for first)
959  * @field_index: which report field to examine
960  * @report_counts: expected number of values
961  *
962  * Validate the number of values in a given field of a given report, after
963  * parsing.
964  */
965 struct hid_report *hid_validate_values(struct hid_device *hid,
966 				       enum hid_report_type type, unsigned int id,
967 				       unsigned int field_index,
968 				       unsigned int report_counts)
969 {
970 	struct hid_report *report;
971 
972 	if (type > HID_FEATURE_REPORT) {
973 		hid_err(hid, "invalid HID report type %u\n", type);
974 		return NULL;
975 	}
976 
977 	if (id >= HID_MAX_IDS) {
978 		hid_err(hid, "invalid HID report id %u\n", id);
979 		return NULL;
980 	}
981 
982 	/*
983 	 * Explicitly not using hid_get_report() here since it depends on
984 	 * ->numbered being checked, which may not always be the case when
985 	 * drivers go to access report values.
986 	 */
987 	if (id == 0) {
988 		/*
989 		 * Validating on id 0 means we should examine the first
990 		 * report in the list.
991 		 */
992 		report = list_first_entry_or_null(
993 				&hid->report_enum[type].report_list,
994 				struct hid_report, list);
995 	} else {
996 		report = hid->report_enum[type].report_id_hash[id];
997 	}
998 	if (!report) {
999 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1000 		return NULL;
1001 	}
1002 	if (report->maxfield <= field_index) {
1003 		hid_err(hid, "not enough fields in %s %u\n",
1004 			hid_report_names[type], id);
1005 		return NULL;
1006 	}
1007 	if (report->field[field_index]->report_count < report_counts) {
1008 		hid_err(hid, "not enough values in %s %u field %u\n",
1009 			hid_report_names[type], id, field_index);
1010 		return NULL;
1011 	}
1012 	return report;
1013 }
1014 EXPORT_SYMBOL_GPL(hid_validate_values);
1015 
1016 static int hid_calculate_multiplier(struct hid_device *hid,
1017 				     struct hid_field *multiplier)
1018 {
1019 	int m;
1020 	__s32 v = *multiplier->value;
1021 	__s32 lmin = multiplier->logical_minimum;
1022 	__s32 lmax = multiplier->logical_maximum;
1023 	__s32 pmin = multiplier->physical_minimum;
1024 	__s32 pmax = multiplier->physical_maximum;
1025 
1026 	/*
1027 	 * "Because OS implementations will generally divide the control's
1028 	 * reported count by the Effective Resolution Multiplier, designers
1029 	 * should take care not to establish a potential Effective
1030 	 * Resolution Multiplier of zero."
1031 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1032 	 */
1033 	if (lmax - lmin == 0)
1034 		return 1;
1035 	/*
1036 	 * Handling the unit exponent is left as an exercise to whoever
1037 	 * finds a device where that exponent is not 0.
1038 	 */
1039 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1040 	if (unlikely(multiplier->unit_exponent != 0)) {
1041 		hid_warn(hid,
1042 			 "unsupported Resolution Multiplier unit exponent %d\n",
1043 			 multiplier->unit_exponent);
1044 	}
1045 
1046 	/* There are no devices with an effective multiplier > 255 */
1047 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1048 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1049 		m = 1;
1050 	}
1051 
1052 	return m;
1053 }
1054 
1055 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1056 					  struct hid_field *field,
1057 					  struct hid_collection *multiplier_collection,
1058 					  int effective_multiplier)
1059 {
1060 	struct hid_collection *collection;
1061 	struct hid_usage *usage;
1062 	int i;
1063 
1064 	/*
1065 	 * If multiplier_collection is NULL, the multiplier applies
1066 	 * to all fields in the report.
1067 	 * Otherwise, it is the Logical Collection the multiplier applies to
1068 	 * but our field may be in a subcollection of that collection.
1069 	 */
1070 	for (i = 0; i < field->maxusage; i++) {
1071 		usage = &field->usage[i];
1072 
1073 		collection = &hid->collection[usage->collection_index];
1074 		while (collection->parent_idx != -1 &&
1075 		       collection != multiplier_collection)
1076 			collection = &hid->collection[collection->parent_idx];
1077 
1078 		if (collection->parent_idx != -1 ||
1079 		    multiplier_collection == NULL)
1080 			usage->resolution_multiplier = effective_multiplier;
1081 
1082 	}
1083 }
1084 
1085 static void hid_apply_multiplier(struct hid_device *hid,
1086 				 struct hid_field *multiplier)
1087 {
1088 	struct hid_report_enum *rep_enum;
1089 	struct hid_report *rep;
1090 	struct hid_field *field;
1091 	struct hid_collection *multiplier_collection;
1092 	int effective_multiplier;
1093 	int i;
1094 
1095 	/*
1096 	 * "The Resolution Multiplier control must be contained in the same
1097 	 * Logical Collection as the control(s) to which it is to be applied.
1098 	 * If no Resolution Multiplier is defined, then the Resolution
1099 	 * Multiplier defaults to 1.  If more than one control exists in a
1100 	 * Logical Collection, the Resolution Multiplier is associated with
1101 	 * all controls in the collection. If no Logical Collection is
1102 	 * defined, the Resolution Multiplier is associated with all
1103 	 * controls in the report."
1104 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1105 	 *
1106 	 * Thus, search from the current collection upwards until we find a
1107 	 * logical collection. Then search all fields for that same parent
1108 	 * collection. Those are the fields the multiplier applies to.
1109 	 *
1110 	 * If we have more than one multiplier, it will overwrite the
1111 	 * applicable fields later.
1112 	 */
1113 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1114 	while (multiplier_collection->parent_idx != -1 &&
1115 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1116 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1117 
1118 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1119 
1120 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1121 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1122 		for (i = 0; i < rep->maxfield; i++) {
1123 			field = rep->field[i];
1124 			hid_apply_multiplier_to_field(hid, field,
1125 						      multiplier_collection,
1126 						      effective_multiplier);
1127 		}
1128 	}
1129 }
1130 
1131 /*
1132  * hid_setup_resolution_multiplier - set up all resolution multipliers
1133  *
1134  * @device: hid device
1135  *
1136  * Search for all Resolution Multiplier Feature Reports and apply their
1137  * value to all matching Input items. This only updates the internal struct
1138  * fields.
1139  *
1140  * The Resolution Multiplier is applied by the hardware. If the multiplier
1141  * is anything other than 1, the hardware will send pre-multiplied events
1142  * so that the same physical interaction generates an accumulated
1143  *	accumulated_value = value * * multiplier
1144  * This may be achieved by sending
1145  * - "value * multiplier" for each event, or
1146  * - "value" but "multiplier" times as frequently, or
1147  * - a combination of the above
1148  * The only guarantee is that the same physical interaction always generates
1149  * an accumulated 'value * multiplier'.
1150  *
1151  * This function must be called before any event processing and after
1152  * any SetRequest to the Resolution Multiplier.
1153  */
1154 void hid_setup_resolution_multiplier(struct hid_device *hid)
1155 {
1156 	struct hid_report_enum *rep_enum;
1157 	struct hid_report *rep;
1158 	struct hid_usage *usage;
1159 	int i, j;
1160 
1161 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1162 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1163 		for (i = 0; i < rep->maxfield; i++) {
1164 			/* Ignore if report count is out of bounds. */
1165 			if (rep->field[i]->report_count < 1)
1166 				continue;
1167 
1168 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1169 				usage = &rep->field[i]->usage[j];
1170 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1171 					hid_apply_multiplier(hid,
1172 							     rep->field[i]);
1173 			}
1174 		}
1175 	}
1176 }
1177 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1178 
1179 /**
1180  * hid_open_report - open a driver-specific device report
1181  *
1182  * @device: hid device
1183  *
1184  * Parse a report description into a hid_device structure. Reports are
1185  * enumerated, fields are attached to these reports.
1186  * 0 returned on success, otherwise nonzero error value.
1187  *
1188  * This function (or the equivalent hid_parse() macro) should only be
1189  * called from probe() in drivers, before starting the device.
1190  */
1191 int hid_open_report(struct hid_device *device)
1192 {
1193 	struct hid_parser *parser;
1194 	struct hid_item item;
1195 	unsigned int size;
1196 	__u8 *start;
1197 	__u8 *buf;
1198 	__u8 *end;
1199 	__u8 *next;
1200 	int ret;
1201 	int i;
1202 	static int (*dispatch_type[])(struct hid_parser *parser,
1203 				      struct hid_item *item) = {
1204 		hid_parser_main,
1205 		hid_parser_global,
1206 		hid_parser_local,
1207 		hid_parser_reserved
1208 	};
1209 
1210 	if (WARN_ON(device->status & HID_STAT_PARSED))
1211 		return -EBUSY;
1212 
1213 	start = device->dev_rdesc;
1214 	if (WARN_ON(!start))
1215 		return -ENODEV;
1216 	size = device->dev_rsize;
1217 
1218 	/* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1219 	buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1220 	if (buf == NULL)
1221 		return -ENOMEM;
1222 
1223 	if (device->driver->report_fixup)
1224 		start = device->driver->report_fixup(device, buf, &size);
1225 	else
1226 		start = buf;
1227 
1228 	start = kmemdup(start, size, GFP_KERNEL);
1229 	kfree(buf);
1230 	if (start == NULL)
1231 		return -ENOMEM;
1232 
1233 	device->rdesc = start;
1234 	device->rsize = size;
1235 
1236 	parser = vzalloc(sizeof(struct hid_parser));
1237 	if (!parser) {
1238 		ret = -ENOMEM;
1239 		goto alloc_err;
1240 	}
1241 
1242 	parser->device = device;
1243 
1244 	end = start + size;
1245 
1246 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1247 				     sizeof(struct hid_collection), GFP_KERNEL);
1248 	if (!device->collection) {
1249 		ret = -ENOMEM;
1250 		goto err;
1251 	}
1252 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1253 	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1254 		device->collection[i].parent_idx = -1;
1255 
1256 	ret = -EINVAL;
1257 	while ((next = fetch_item(start, end, &item)) != NULL) {
1258 		start = next;
1259 
1260 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1261 			hid_err(device, "unexpected long global item\n");
1262 			goto err;
1263 		}
1264 
1265 		if (dispatch_type[item.type](parser, &item)) {
1266 			hid_err(device, "item %u %u %u %u parsing failed\n",
1267 				item.format, (unsigned)item.size,
1268 				(unsigned)item.type, (unsigned)item.tag);
1269 			goto err;
1270 		}
1271 
1272 		if (start == end) {
1273 			if (parser->collection_stack_ptr) {
1274 				hid_err(device, "unbalanced collection at end of report description\n");
1275 				goto err;
1276 			}
1277 			if (parser->local.delimiter_depth) {
1278 				hid_err(device, "unbalanced delimiter at end of report description\n");
1279 				goto err;
1280 			}
1281 
1282 			/*
1283 			 * fetch initial values in case the device's
1284 			 * default multiplier isn't the recommended 1
1285 			 */
1286 			hid_setup_resolution_multiplier(device);
1287 
1288 			kfree(parser->collection_stack);
1289 			vfree(parser);
1290 			device->status |= HID_STAT_PARSED;
1291 
1292 			return 0;
1293 		}
1294 	}
1295 
1296 	hid_err(device, "item fetching failed at offset %u/%u\n",
1297 		size - (unsigned int)(end - start), size);
1298 err:
1299 	kfree(parser->collection_stack);
1300 alloc_err:
1301 	vfree(parser);
1302 	hid_close_report(device);
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(hid_open_report);
1306 
1307 /*
1308  * Convert a signed n-bit integer to signed 32-bit integer. Common
1309  * cases are done through the compiler, the screwed things has to be
1310  * done by hand.
1311  */
1312 
1313 static s32 snto32(__u32 value, unsigned n)
1314 {
1315 	if (!value || !n)
1316 		return 0;
1317 
1318 	if (n > 32)
1319 		n = 32;
1320 
1321 	switch (n) {
1322 	case 8:  return ((__s8)value);
1323 	case 16: return ((__s16)value);
1324 	case 32: return ((__s32)value);
1325 	}
1326 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1327 }
1328 
1329 s32 hid_snto32(__u32 value, unsigned n)
1330 {
1331 	return snto32(value, n);
1332 }
1333 EXPORT_SYMBOL_GPL(hid_snto32);
1334 
1335 /*
1336  * Convert a signed 32-bit integer to a signed n-bit integer.
1337  */
1338 
1339 static u32 s32ton(__s32 value, unsigned n)
1340 {
1341 	s32 a = value >> (n - 1);
1342 	if (a && a != -1)
1343 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1344 	return value & ((1 << n) - 1);
1345 }
1346 
1347 /*
1348  * Extract/implement a data field from/to a little endian report (bit array).
1349  *
1350  * Code sort-of follows HID spec:
1351  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1352  *
1353  * While the USB HID spec allows unlimited length bit fields in "report
1354  * descriptors", most devices never use more than 16 bits.
1355  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1356  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1357  */
1358 
1359 static u32 __extract(u8 *report, unsigned offset, int n)
1360 {
1361 	unsigned int idx = offset / 8;
1362 	unsigned int bit_nr = 0;
1363 	unsigned int bit_shift = offset % 8;
1364 	int bits_to_copy = 8 - bit_shift;
1365 	u32 value = 0;
1366 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1367 
1368 	while (n > 0) {
1369 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1370 		n -= bits_to_copy;
1371 		bit_nr += bits_to_copy;
1372 		bits_to_copy = 8;
1373 		bit_shift = 0;
1374 		idx++;
1375 	}
1376 
1377 	return value & mask;
1378 }
1379 
1380 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1381 			unsigned offset, unsigned n)
1382 {
1383 	if (n > 32) {
1384 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1385 			      __func__, n, current->comm);
1386 		n = 32;
1387 	}
1388 
1389 	return __extract(report, offset, n);
1390 }
1391 EXPORT_SYMBOL_GPL(hid_field_extract);
1392 
1393 /*
1394  * "implement" : set bits in a little endian bit stream.
1395  * Same concepts as "extract" (see comments above).
1396  * The data mangled in the bit stream remains in little endian
1397  * order the whole time. It make more sense to talk about
1398  * endianness of register values by considering a register
1399  * a "cached" copy of the little endian bit stream.
1400  */
1401 
1402 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1403 {
1404 	unsigned int idx = offset / 8;
1405 	unsigned int bit_shift = offset % 8;
1406 	int bits_to_set = 8 - bit_shift;
1407 
1408 	while (n - bits_to_set >= 0) {
1409 		report[idx] &= ~(0xff << bit_shift);
1410 		report[idx] |= value << bit_shift;
1411 		value >>= bits_to_set;
1412 		n -= bits_to_set;
1413 		bits_to_set = 8;
1414 		bit_shift = 0;
1415 		idx++;
1416 	}
1417 
1418 	/* last nibble */
1419 	if (n) {
1420 		u8 bit_mask = ((1U << n) - 1);
1421 		report[idx] &= ~(bit_mask << bit_shift);
1422 		report[idx] |= value << bit_shift;
1423 	}
1424 }
1425 
1426 static void implement(const struct hid_device *hid, u8 *report,
1427 		      unsigned offset, unsigned n, u32 value)
1428 {
1429 	if (unlikely(n > 32)) {
1430 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1431 			 __func__, n, current->comm);
1432 		n = 32;
1433 	} else if (n < 32) {
1434 		u32 m = (1U << n) - 1;
1435 
1436 		if (unlikely(value > m)) {
1437 			hid_warn(hid,
1438 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1439 				 __func__, value, n, current->comm);
1440 			WARN_ON(1);
1441 			value &= m;
1442 		}
1443 	}
1444 
1445 	__implement(report, offset, n, value);
1446 }
1447 
1448 /*
1449  * Search an array for a value.
1450  */
1451 
1452 static int search(__s32 *array, __s32 value, unsigned n)
1453 {
1454 	while (n--) {
1455 		if (*array++ == value)
1456 			return 0;
1457 	}
1458 	return -1;
1459 }
1460 
1461 /**
1462  * hid_match_report - check if driver's raw_event should be called
1463  *
1464  * @hid: hid device
1465  * @report: hid report to match against
1466  *
1467  * compare hid->driver->report_table->report_type to report->type
1468  */
1469 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1470 {
1471 	const struct hid_report_id *id = hid->driver->report_table;
1472 
1473 	if (!id) /* NULL means all */
1474 		return 1;
1475 
1476 	for (; id->report_type != HID_TERMINATOR; id++)
1477 		if (id->report_type == HID_ANY_ID ||
1478 				id->report_type == report->type)
1479 			return 1;
1480 	return 0;
1481 }
1482 
1483 /**
1484  * hid_match_usage - check if driver's event should be called
1485  *
1486  * @hid: hid device
1487  * @usage: usage to match against
1488  *
1489  * compare hid->driver->usage_table->usage_{type,code} to
1490  * usage->usage_{type,code}
1491  */
1492 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1493 {
1494 	const struct hid_usage_id *id = hid->driver->usage_table;
1495 
1496 	if (!id) /* NULL means all */
1497 		return 1;
1498 
1499 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1500 		if ((id->usage_hid == HID_ANY_ID ||
1501 				id->usage_hid == usage->hid) &&
1502 				(id->usage_type == HID_ANY_ID ||
1503 				id->usage_type == usage->type) &&
1504 				(id->usage_code == HID_ANY_ID ||
1505 				 id->usage_code == usage->code))
1506 			return 1;
1507 	return 0;
1508 }
1509 
1510 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1511 		struct hid_usage *usage, __s32 value, int interrupt)
1512 {
1513 	struct hid_driver *hdrv = hid->driver;
1514 	int ret;
1515 
1516 	if (!list_empty(&hid->debug_list))
1517 		hid_dump_input(hid, usage, value);
1518 
1519 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1520 		ret = hdrv->event(hid, field, usage, value);
1521 		if (ret != 0) {
1522 			if (ret < 0)
1523 				hid_err(hid, "%s's event failed with %d\n",
1524 						hdrv->name, ret);
1525 			return;
1526 		}
1527 	}
1528 
1529 	if (hid->claimed & HID_CLAIMED_INPUT)
1530 		hidinput_hid_event(hid, field, usage, value);
1531 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1532 		hid->hiddev_hid_event(hid, field, usage, value);
1533 }
1534 
1535 /*
1536  * Checks if the given value is valid within this field
1537  */
1538 static inline int hid_array_value_is_valid(struct hid_field *field,
1539 					   __s32 value)
1540 {
1541 	__s32 min = field->logical_minimum;
1542 
1543 	/*
1544 	 * Value needs to be between logical min and max, and
1545 	 * (value - min) is used as an index in the usage array.
1546 	 * This array is of size field->maxusage
1547 	 */
1548 	return value >= min &&
1549 	       value <= field->logical_maximum &&
1550 	       value - min < field->maxusage;
1551 }
1552 
1553 /*
1554  * Fetch the field from the data. The field content is stored for next
1555  * report processing (we do differential reporting to the layer).
1556  */
1557 static void hid_input_fetch_field(struct hid_device *hid,
1558 				  struct hid_field *field,
1559 				  __u8 *data)
1560 {
1561 	unsigned n;
1562 	unsigned count = field->report_count;
1563 	unsigned offset = field->report_offset;
1564 	unsigned size = field->report_size;
1565 	__s32 min = field->logical_minimum;
1566 	__s32 *value;
1567 
1568 	value = field->new_value;
1569 	memset(value, 0, count * sizeof(__s32));
1570 	field->ignored = false;
1571 
1572 	for (n = 0; n < count; n++) {
1573 
1574 		value[n] = min < 0 ?
1575 			snto32(hid_field_extract(hid, data, offset + n * size,
1576 			       size), size) :
1577 			hid_field_extract(hid, data, offset + n * size, size);
1578 
1579 		/* Ignore report if ErrorRollOver */
1580 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1581 		    hid_array_value_is_valid(field, value[n]) &&
1582 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1583 			field->ignored = true;
1584 			return;
1585 		}
1586 	}
1587 }
1588 
1589 /*
1590  * Process a received variable field.
1591  */
1592 
1593 static void hid_input_var_field(struct hid_device *hid,
1594 				struct hid_field *field,
1595 				int interrupt)
1596 {
1597 	unsigned int count = field->report_count;
1598 	__s32 *value = field->new_value;
1599 	unsigned int n;
1600 
1601 	for (n = 0; n < count; n++)
1602 		hid_process_event(hid,
1603 				  field,
1604 				  &field->usage[n],
1605 				  value[n],
1606 				  interrupt);
1607 
1608 	memcpy(field->value, value, count * sizeof(__s32));
1609 }
1610 
1611 /*
1612  * Process a received array field. The field content is stored for
1613  * next report processing (we do differential reporting to the layer).
1614  */
1615 
1616 static void hid_input_array_field(struct hid_device *hid,
1617 				  struct hid_field *field,
1618 				  int interrupt)
1619 {
1620 	unsigned int n;
1621 	unsigned int count = field->report_count;
1622 	__s32 min = field->logical_minimum;
1623 	__s32 *value;
1624 
1625 	value = field->new_value;
1626 
1627 	/* ErrorRollOver */
1628 	if (field->ignored)
1629 		return;
1630 
1631 	for (n = 0; n < count; n++) {
1632 		if (hid_array_value_is_valid(field, field->value[n]) &&
1633 		    search(value, field->value[n], count))
1634 			hid_process_event(hid,
1635 					  field,
1636 					  &field->usage[field->value[n] - min],
1637 					  0,
1638 					  interrupt);
1639 
1640 		if (hid_array_value_is_valid(field, value[n]) &&
1641 		    search(field->value, value[n], count))
1642 			hid_process_event(hid,
1643 					  field,
1644 					  &field->usage[value[n] - min],
1645 					  1,
1646 					  interrupt);
1647 	}
1648 
1649 	memcpy(field->value, value, count * sizeof(__s32));
1650 }
1651 
1652 /*
1653  * Analyse a received report, and fetch the data from it. The field
1654  * content is stored for next report processing (we do differential
1655  * reporting to the layer).
1656  */
1657 static void hid_process_report(struct hid_device *hid,
1658 			       struct hid_report *report,
1659 			       __u8 *data,
1660 			       int interrupt)
1661 {
1662 	unsigned int a;
1663 	struct hid_field_entry *entry;
1664 	struct hid_field *field;
1665 
1666 	/* first retrieve all incoming values in data */
1667 	for (a = 0; a < report->maxfield; a++)
1668 		hid_input_fetch_field(hid, report->field[a], data);
1669 
1670 	if (!list_empty(&report->field_entry_list)) {
1671 		/* INPUT_REPORT, we have a priority list of fields */
1672 		list_for_each_entry(entry,
1673 				    &report->field_entry_list,
1674 				    list) {
1675 			field = entry->field;
1676 
1677 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1678 				hid_process_event(hid,
1679 						  field,
1680 						  &field->usage[entry->index],
1681 						  field->new_value[entry->index],
1682 						  interrupt);
1683 			else
1684 				hid_input_array_field(hid, field, interrupt);
1685 		}
1686 
1687 		/* we need to do the memcpy at the end for var items */
1688 		for (a = 0; a < report->maxfield; a++) {
1689 			field = report->field[a];
1690 
1691 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1692 				memcpy(field->value, field->new_value,
1693 				       field->report_count * sizeof(__s32));
1694 		}
1695 	} else {
1696 		/* FEATURE_REPORT, regular processing */
1697 		for (a = 0; a < report->maxfield; a++) {
1698 			field = report->field[a];
1699 
1700 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1701 				hid_input_var_field(hid, field, interrupt);
1702 			else
1703 				hid_input_array_field(hid, field, interrupt);
1704 		}
1705 	}
1706 }
1707 
1708 /*
1709  * Insert a given usage_index in a field in the list
1710  * of processed usages in the report.
1711  *
1712  * The elements of lower priority score are processed
1713  * first.
1714  */
1715 static void __hid_insert_field_entry(struct hid_device *hid,
1716 				     struct hid_report *report,
1717 				     struct hid_field_entry *entry,
1718 				     struct hid_field *field,
1719 				     unsigned int usage_index)
1720 {
1721 	struct hid_field_entry *next;
1722 
1723 	entry->field = field;
1724 	entry->index = usage_index;
1725 	entry->priority = field->usages_priorities[usage_index];
1726 
1727 	/* insert the element at the correct position */
1728 	list_for_each_entry(next,
1729 			    &report->field_entry_list,
1730 			    list) {
1731 		/*
1732 		 * the priority of our element is strictly higher
1733 		 * than the next one, insert it before
1734 		 */
1735 		if (entry->priority > next->priority) {
1736 			list_add_tail(&entry->list, &next->list);
1737 			return;
1738 		}
1739 	}
1740 
1741 	/* lowest priority score: insert at the end */
1742 	list_add_tail(&entry->list, &report->field_entry_list);
1743 }
1744 
1745 static void hid_report_process_ordering(struct hid_device *hid,
1746 					struct hid_report *report)
1747 {
1748 	struct hid_field *field;
1749 	struct hid_field_entry *entries;
1750 	unsigned int a, u, usages;
1751 	unsigned int count = 0;
1752 
1753 	/* count the number of individual fields in the report */
1754 	for (a = 0; a < report->maxfield; a++) {
1755 		field = report->field[a];
1756 
1757 		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1758 			count += field->report_count;
1759 		else
1760 			count++;
1761 	}
1762 
1763 	/* allocate the memory to process the fields */
1764 	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1765 	if (!entries)
1766 		return;
1767 
1768 	report->field_entries = entries;
1769 
1770 	/*
1771 	 * walk through all fields in the report and
1772 	 * store them by priority order in report->field_entry_list
1773 	 *
1774 	 * - Var elements are individualized (field + usage_index)
1775 	 * - Arrays are taken as one, we can not chose an order for them
1776 	 */
1777 	usages = 0;
1778 	for (a = 0; a < report->maxfield; a++) {
1779 		field = report->field[a];
1780 
1781 		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1782 			for (u = 0; u < field->report_count; u++) {
1783 				__hid_insert_field_entry(hid, report,
1784 							 &entries[usages],
1785 							 field, u);
1786 				usages++;
1787 			}
1788 		} else {
1789 			__hid_insert_field_entry(hid, report, &entries[usages],
1790 						 field, 0);
1791 			usages++;
1792 		}
1793 	}
1794 }
1795 
1796 static void hid_process_ordering(struct hid_device *hid)
1797 {
1798 	struct hid_report *report;
1799 	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1800 
1801 	list_for_each_entry(report, &report_enum->report_list, list)
1802 		hid_report_process_ordering(hid, report);
1803 }
1804 
1805 /*
1806  * Output the field into the report.
1807  */
1808 
1809 static void hid_output_field(const struct hid_device *hid,
1810 			     struct hid_field *field, __u8 *data)
1811 {
1812 	unsigned count = field->report_count;
1813 	unsigned offset = field->report_offset;
1814 	unsigned size = field->report_size;
1815 	unsigned n;
1816 
1817 	for (n = 0; n < count; n++) {
1818 		if (field->logical_minimum < 0)	/* signed values */
1819 			implement(hid, data, offset + n * size, size,
1820 				  s32ton(field->value[n], size));
1821 		else				/* unsigned values */
1822 			implement(hid, data, offset + n * size, size,
1823 				  field->value[n]);
1824 	}
1825 }
1826 
1827 /*
1828  * Compute the size of a report.
1829  */
1830 static size_t hid_compute_report_size(struct hid_report *report)
1831 {
1832 	if (report->size)
1833 		return ((report->size - 1) >> 3) + 1;
1834 
1835 	return 0;
1836 }
1837 
1838 /*
1839  * Create a report. 'data' has to be allocated using
1840  * hid_alloc_report_buf() so that it has proper size.
1841  */
1842 
1843 void hid_output_report(struct hid_report *report, __u8 *data)
1844 {
1845 	unsigned n;
1846 
1847 	if (report->id > 0)
1848 		*data++ = report->id;
1849 
1850 	memset(data, 0, hid_compute_report_size(report));
1851 	for (n = 0; n < report->maxfield; n++)
1852 		hid_output_field(report->device, report->field[n], data);
1853 }
1854 EXPORT_SYMBOL_GPL(hid_output_report);
1855 
1856 /*
1857  * Allocator for buffer that is going to be passed to hid_output_report()
1858  */
1859 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1860 {
1861 	/*
1862 	 * 7 extra bytes are necessary to achieve proper functionality
1863 	 * of implement() working on 8 byte chunks
1864 	 */
1865 
1866 	u32 len = hid_report_len(report) + 7;
1867 
1868 	return kmalloc(len, flags);
1869 }
1870 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1871 
1872 /*
1873  * Set a field value. The report this field belongs to has to be
1874  * created and transferred to the device, to set this value in the
1875  * device.
1876  */
1877 
1878 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1879 {
1880 	unsigned size;
1881 
1882 	if (!field)
1883 		return -1;
1884 
1885 	size = field->report_size;
1886 
1887 	hid_dump_input(field->report->device, field->usage + offset, value);
1888 
1889 	if (offset >= field->report_count) {
1890 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1891 				offset, field->report_count);
1892 		return -1;
1893 	}
1894 	if (field->logical_minimum < 0) {
1895 		if (value != snto32(s32ton(value, size), size)) {
1896 			hid_err(field->report->device, "value %d is out of range\n", value);
1897 			return -1;
1898 		}
1899 	}
1900 	field->value[offset] = value;
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL_GPL(hid_set_field);
1904 
1905 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1906 		const u8 *data)
1907 {
1908 	struct hid_report *report;
1909 	unsigned int n = 0;	/* Normally report number is 0 */
1910 
1911 	/* Device uses numbered reports, data[0] is report number */
1912 	if (report_enum->numbered)
1913 		n = *data;
1914 
1915 	report = report_enum->report_id_hash[n];
1916 	if (report == NULL)
1917 		dbg_hid("undefined report_id %u received\n", n);
1918 
1919 	return report;
1920 }
1921 
1922 /*
1923  * Implement a generic .request() callback, using .raw_request()
1924  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1925  */
1926 int __hid_request(struct hid_device *hid, struct hid_report *report,
1927 		enum hid_class_request reqtype)
1928 {
1929 	char *buf;
1930 	int ret;
1931 	u32 len;
1932 
1933 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1934 	if (!buf)
1935 		return -ENOMEM;
1936 
1937 	len = hid_report_len(report);
1938 
1939 	if (reqtype == HID_REQ_SET_REPORT)
1940 		hid_output_report(report, buf);
1941 
1942 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1943 					  report->type, reqtype);
1944 	if (ret < 0) {
1945 		dbg_hid("unable to complete request: %d\n", ret);
1946 		goto out;
1947 	}
1948 
1949 	if (reqtype == HID_REQ_GET_REPORT)
1950 		hid_input_report(hid, report->type, buf, ret, 0);
1951 
1952 	ret = 0;
1953 
1954 out:
1955 	kfree(buf);
1956 	return ret;
1957 }
1958 EXPORT_SYMBOL_GPL(__hid_request);
1959 
1960 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1961 			 int interrupt)
1962 {
1963 	struct hid_report_enum *report_enum = hid->report_enum + type;
1964 	struct hid_report *report;
1965 	struct hid_driver *hdrv;
1966 	u32 rsize, csize = size;
1967 	u8 *cdata = data;
1968 	int ret = 0;
1969 
1970 	report = hid_get_report(report_enum, data);
1971 	if (!report)
1972 		goto out;
1973 
1974 	if (report_enum->numbered) {
1975 		cdata++;
1976 		csize--;
1977 	}
1978 
1979 	rsize = hid_compute_report_size(report);
1980 
1981 	if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE)
1982 		rsize = HID_MAX_BUFFER_SIZE - 1;
1983 	else if (rsize > HID_MAX_BUFFER_SIZE)
1984 		rsize = HID_MAX_BUFFER_SIZE;
1985 
1986 	if (csize < rsize) {
1987 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1988 				csize, rsize);
1989 		memset(cdata + csize, 0, rsize - csize);
1990 	}
1991 
1992 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1993 		hid->hiddev_report_event(hid, report);
1994 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1995 		ret = hidraw_report_event(hid, data, size);
1996 		if (ret)
1997 			goto out;
1998 	}
1999 
2000 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2001 		hid_process_report(hid, report, cdata, interrupt);
2002 		hdrv = hid->driver;
2003 		if (hdrv && hdrv->report)
2004 			hdrv->report(hid, report);
2005 	}
2006 
2007 	if (hid->claimed & HID_CLAIMED_INPUT)
2008 		hidinput_report_event(hid, report);
2009 out:
2010 	return ret;
2011 }
2012 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2013 
2014 /**
2015  * hid_input_report - report data from lower layer (usb, bt...)
2016  *
2017  * @hid: hid device
2018  * @type: HID report type (HID_*_REPORT)
2019  * @data: report contents
2020  * @size: size of data parameter
2021  * @interrupt: distinguish between interrupt and control transfers
2022  *
2023  * This is data entry for lower layers.
2024  */
2025 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2026 		     int interrupt)
2027 {
2028 	struct hid_report_enum *report_enum;
2029 	struct hid_driver *hdrv;
2030 	struct hid_report *report;
2031 	int ret = 0;
2032 
2033 	if (!hid)
2034 		return -ENODEV;
2035 
2036 	if (down_trylock(&hid->driver_input_lock))
2037 		return -EBUSY;
2038 
2039 	if (!hid->driver) {
2040 		ret = -ENODEV;
2041 		goto unlock;
2042 	}
2043 	report_enum = hid->report_enum + type;
2044 	hdrv = hid->driver;
2045 
2046 	data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2047 	if (IS_ERR(data)) {
2048 		ret = PTR_ERR(data);
2049 		goto unlock;
2050 	}
2051 
2052 	if (!size) {
2053 		dbg_hid("empty report\n");
2054 		ret = -1;
2055 		goto unlock;
2056 	}
2057 
2058 	/* Avoid unnecessary overhead if debugfs is disabled */
2059 	if (!list_empty(&hid->debug_list))
2060 		hid_dump_report(hid, type, data, size);
2061 
2062 	report = hid_get_report(report_enum, data);
2063 
2064 	if (!report) {
2065 		ret = -1;
2066 		goto unlock;
2067 	}
2068 
2069 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2070 		ret = hdrv->raw_event(hid, report, data, size);
2071 		if (ret < 0)
2072 			goto unlock;
2073 	}
2074 
2075 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2076 
2077 unlock:
2078 	up(&hid->driver_input_lock);
2079 	return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(hid_input_report);
2082 
2083 bool hid_match_one_id(const struct hid_device *hdev,
2084 		      const struct hid_device_id *id)
2085 {
2086 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2087 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2088 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2089 		(id->product == HID_ANY_ID || id->product == hdev->product);
2090 }
2091 
2092 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2093 		const struct hid_device_id *id)
2094 {
2095 	for (; id->bus; id++)
2096 		if (hid_match_one_id(hdev, id))
2097 			return id;
2098 
2099 	return NULL;
2100 }
2101 EXPORT_SYMBOL_GPL(hid_match_id);
2102 
2103 static const struct hid_device_id hid_hiddev_list[] = {
2104 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2105 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2106 	{ }
2107 };
2108 
2109 static bool hid_hiddev(struct hid_device *hdev)
2110 {
2111 	return !!hid_match_id(hdev, hid_hiddev_list);
2112 }
2113 
2114 
2115 static ssize_t
2116 read_report_descriptor(struct file *filp, struct kobject *kobj,
2117 		struct bin_attribute *attr,
2118 		char *buf, loff_t off, size_t count)
2119 {
2120 	struct device *dev = kobj_to_dev(kobj);
2121 	struct hid_device *hdev = to_hid_device(dev);
2122 
2123 	if (off >= hdev->rsize)
2124 		return 0;
2125 
2126 	if (off + count > hdev->rsize)
2127 		count = hdev->rsize - off;
2128 
2129 	memcpy(buf, hdev->rdesc + off, count);
2130 
2131 	return count;
2132 }
2133 
2134 static ssize_t
2135 show_country(struct device *dev, struct device_attribute *attr,
2136 		char *buf)
2137 {
2138 	struct hid_device *hdev = to_hid_device(dev);
2139 
2140 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2141 }
2142 
2143 static struct bin_attribute dev_bin_attr_report_desc = {
2144 	.attr = { .name = "report_descriptor", .mode = 0444 },
2145 	.read = read_report_descriptor,
2146 	.size = HID_MAX_DESCRIPTOR_SIZE,
2147 };
2148 
2149 static const struct device_attribute dev_attr_country = {
2150 	.attr = { .name = "country", .mode = 0444 },
2151 	.show = show_country,
2152 };
2153 
2154 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2155 {
2156 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2157 		"Joystick", "Gamepad", "Keyboard", "Keypad",
2158 		"Multi-Axis Controller"
2159 	};
2160 	const char *type, *bus;
2161 	char buf[64] = "";
2162 	unsigned int i;
2163 	int len;
2164 	int ret;
2165 
2166 	ret = hid_bpf_connect_device(hdev);
2167 	if (ret)
2168 		return ret;
2169 
2170 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2171 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2172 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2173 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2174 	if (hdev->bus != BUS_USB)
2175 		connect_mask &= ~HID_CONNECT_HIDDEV;
2176 	if (hid_hiddev(hdev))
2177 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2178 
2179 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2180 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2181 		hdev->claimed |= HID_CLAIMED_INPUT;
2182 
2183 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2184 			!hdev->hiddev_connect(hdev,
2185 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2186 		hdev->claimed |= HID_CLAIMED_HIDDEV;
2187 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2188 		hdev->claimed |= HID_CLAIMED_HIDRAW;
2189 
2190 	if (connect_mask & HID_CONNECT_DRIVER)
2191 		hdev->claimed |= HID_CLAIMED_DRIVER;
2192 
2193 	/* Drivers with the ->raw_event callback set are not required to connect
2194 	 * to any other listener. */
2195 	if (!hdev->claimed && !hdev->driver->raw_event) {
2196 		hid_err(hdev, "device has no listeners, quitting\n");
2197 		return -ENODEV;
2198 	}
2199 
2200 	hid_process_ordering(hdev);
2201 
2202 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2203 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2204 		hdev->ff_init(hdev);
2205 
2206 	len = 0;
2207 	if (hdev->claimed & HID_CLAIMED_INPUT)
2208 		len += sprintf(buf + len, "input");
2209 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2210 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2211 				((struct hiddev *)hdev->hiddev)->minor);
2212 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2213 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2214 				((struct hidraw *)hdev->hidraw)->minor);
2215 
2216 	type = "Device";
2217 	for (i = 0; i < hdev->maxcollection; i++) {
2218 		struct hid_collection *col = &hdev->collection[i];
2219 		if (col->type == HID_COLLECTION_APPLICATION &&
2220 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2221 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2222 			type = types[col->usage & 0xffff];
2223 			break;
2224 		}
2225 	}
2226 
2227 	switch (hdev->bus) {
2228 	case BUS_USB:
2229 		bus = "USB";
2230 		break;
2231 	case BUS_BLUETOOTH:
2232 		bus = "BLUETOOTH";
2233 		break;
2234 	case BUS_I2C:
2235 		bus = "I2C";
2236 		break;
2237 	case BUS_VIRTUAL:
2238 		bus = "VIRTUAL";
2239 		break;
2240 	case BUS_INTEL_ISHTP:
2241 	case BUS_AMD_SFH:
2242 		bus = "SENSOR HUB";
2243 		break;
2244 	default:
2245 		bus = "<UNKNOWN>";
2246 	}
2247 
2248 	ret = device_create_file(&hdev->dev, &dev_attr_country);
2249 	if (ret)
2250 		hid_warn(hdev,
2251 			 "can't create sysfs country code attribute err: %d\n", ret);
2252 
2253 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2254 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2255 		 type, hdev->name, hdev->phys);
2256 
2257 	return 0;
2258 }
2259 EXPORT_SYMBOL_GPL(hid_connect);
2260 
2261 void hid_disconnect(struct hid_device *hdev)
2262 {
2263 	device_remove_file(&hdev->dev, &dev_attr_country);
2264 	if (hdev->claimed & HID_CLAIMED_INPUT)
2265 		hidinput_disconnect(hdev);
2266 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2267 		hdev->hiddev_disconnect(hdev);
2268 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2269 		hidraw_disconnect(hdev);
2270 	hdev->claimed = 0;
2271 
2272 	hid_bpf_disconnect_device(hdev);
2273 }
2274 EXPORT_SYMBOL_GPL(hid_disconnect);
2275 
2276 /**
2277  * hid_hw_start - start underlying HW
2278  * @hdev: hid device
2279  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2280  *
2281  * Call this in probe function *after* hid_parse. This will setup HW
2282  * buffers and start the device (if not defeirred to device open).
2283  * hid_hw_stop must be called if this was successful.
2284  */
2285 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2286 {
2287 	int error;
2288 
2289 	error = hdev->ll_driver->start(hdev);
2290 	if (error)
2291 		return error;
2292 
2293 	if (connect_mask) {
2294 		error = hid_connect(hdev, connect_mask);
2295 		if (error) {
2296 			hdev->ll_driver->stop(hdev);
2297 			return error;
2298 		}
2299 	}
2300 
2301 	return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(hid_hw_start);
2304 
2305 /**
2306  * hid_hw_stop - stop underlying HW
2307  * @hdev: hid device
2308  *
2309  * This is usually called from remove function or from probe when something
2310  * failed and hid_hw_start was called already.
2311  */
2312 void hid_hw_stop(struct hid_device *hdev)
2313 {
2314 	hid_disconnect(hdev);
2315 	hdev->ll_driver->stop(hdev);
2316 }
2317 EXPORT_SYMBOL_GPL(hid_hw_stop);
2318 
2319 /**
2320  * hid_hw_open - signal underlying HW to start delivering events
2321  * @hdev: hid device
2322  *
2323  * Tell underlying HW to start delivering events from the device.
2324  * This function should be called sometime after successful call
2325  * to hid_hw_start().
2326  */
2327 int hid_hw_open(struct hid_device *hdev)
2328 {
2329 	int ret;
2330 
2331 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2332 	if (ret)
2333 		return ret;
2334 
2335 	if (!hdev->ll_open_count++) {
2336 		ret = hdev->ll_driver->open(hdev);
2337 		if (ret)
2338 			hdev->ll_open_count--;
2339 	}
2340 
2341 	mutex_unlock(&hdev->ll_open_lock);
2342 	return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(hid_hw_open);
2345 
2346 /**
2347  * hid_hw_close - signal underlaying HW to stop delivering events
2348  *
2349  * @hdev: hid device
2350  *
2351  * This function indicates that we are not interested in the events
2352  * from this device anymore. Delivery of events may or may not stop,
2353  * depending on the number of users still outstanding.
2354  */
2355 void hid_hw_close(struct hid_device *hdev)
2356 {
2357 	mutex_lock(&hdev->ll_open_lock);
2358 	if (!--hdev->ll_open_count)
2359 		hdev->ll_driver->close(hdev);
2360 	mutex_unlock(&hdev->ll_open_lock);
2361 }
2362 EXPORT_SYMBOL_GPL(hid_hw_close);
2363 
2364 /**
2365  * hid_hw_request - send report request to device
2366  *
2367  * @hdev: hid device
2368  * @report: report to send
2369  * @reqtype: hid request type
2370  */
2371 void hid_hw_request(struct hid_device *hdev,
2372 		    struct hid_report *report, enum hid_class_request reqtype)
2373 {
2374 	if (hdev->ll_driver->request)
2375 		return hdev->ll_driver->request(hdev, report, reqtype);
2376 
2377 	__hid_request(hdev, report, reqtype);
2378 }
2379 EXPORT_SYMBOL_GPL(hid_hw_request);
2380 
2381 /**
2382  * hid_hw_raw_request - send report request to device
2383  *
2384  * @hdev: hid device
2385  * @reportnum: report ID
2386  * @buf: in/out data to transfer
2387  * @len: length of buf
2388  * @rtype: HID report type
2389  * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2390  *
2391  * Return: count of data transferred, negative if error
2392  *
2393  * Same behavior as hid_hw_request, but with raw buffers instead.
2394  */
2395 int hid_hw_raw_request(struct hid_device *hdev,
2396 		       unsigned char reportnum, __u8 *buf,
2397 		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2398 {
2399 	if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2400 		return -EINVAL;
2401 
2402 	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2403 					    rtype, reqtype);
2404 }
2405 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2406 
2407 /**
2408  * hid_hw_output_report - send output report to device
2409  *
2410  * @hdev: hid device
2411  * @buf: raw data to transfer
2412  * @len: length of buf
2413  *
2414  * Return: count of data transferred, negative if error
2415  */
2416 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2417 {
2418 	if (len < 1 || len > HID_MAX_BUFFER_SIZE || !buf)
2419 		return -EINVAL;
2420 
2421 	if (hdev->ll_driver->output_report)
2422 		return hdev->ll_driver->output_report(hdev, buf, len);
2423 
2424 	return -ENOSYS;
2425 }
2426 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2427 
2428 #ifdef CONFIG_PM
2429 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2430 {
2431 	if (hdev->driver && hdev->driver->suspend)
2432 		return hdev->driver->suspend(hdev, state);
2433 
2434 	return 0;
2435 }
2436 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2437 
2438 int hid_driver_reset_resume(struct hid_device *hdev)
2439 {
2440 	if (hdev->driver && hdev->driver->reset_resume)
2441 		return hdev->driver->reset_resume(hdev);
2442 
2443 	return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2446 
2447 int hid_driver_resume(struct hid_device *hdev)
2448 {
2449 	if (hdev->driver && hdev->driver->resume)
2450 		return hdev->driver->resume(hdev);
2451 
2452 	return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(hid_driver_resume);
2455 #endif /* CONFIG_PM */
2456 
2457 struct hid_dynid {
2458 	struct list_head list;
2459 	struct hid_device_id id;
2460 };
2461 
2462 /**
2463  * new_id_store - add a new HID device ID to this driver and re-probe devices
2464  * @drv: target device driver
2465  * @buf: buffer for scanning device ID data
2466  * @count: input size
2467  *
2468  * Adds a new dynamic hid device ID to this driver,
2469  * and causes the driver to probe for all devices again.
2470  */
2471 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2472 		size_t count)
2473 {
2474 	struct hid_driver *hdrv = to_hid_driver(drv);
2475 	struct hid_dynid *dynid;
2476 	__u32 bus, vendor, product;
2477 	unsigned long driver_data = 0;
2478 	int ret;
2479 
2480 	ret = sscanf(buf, "%x %x %x %lx",
2481 			&bus, &vendor, &product, &driver_data);
2482 	if (ret < 3)
2483 		return -EINVAL;
2484 
2485 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2486 	if (!dynid)
2487 		return -ENOMEM;
2488 
2489 	dynid->id.bus = bus;
2490 	dynid->id.group = HID_GROUP_ANY;
2491 	dynid->id.vendor = vendor;
2492 	dynid->id.product = product;
2493 	dynid->id.driver_data = driver_data;
2494 
2495 	spin_lock(&hdrv->dyn_lock);
2496 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2497 	spin_unlock(&hdrv->dyn_lock);
2498 
2499 	ret = driver_attach(&hdrv->driver);
2500 
2501 	return ret ? : count;
2502 }
2503 static DRIVER_ATTR_WO(new_id);
2504 
2505 static struct attribute *hid_drv_attrs[] = {
2506 	&driver_attr_new_id.attr,
2507 	NULL,
2508 };
2509 ATTRIBUTE_GROUPS(hid_drv);
2510 
2511 static void hid_free_dynids(struct hid_driver *hdrv)
2512 {
2513 	struct hid_dynid *dynid, *n;
2514 
2515 	spin_lock(&hdrv->dyn_lock);
2516 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2517 		list_del(&dynid->list);
2518 		kfree(dynid);
2519 	}
2520 	spin_unlock(&hdrv->dyn_lock);
2521 }
2522 
2523 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2524 					     struct hid_driver *hdrv)
2525 {
2526 	struct hid_dynid *dynid;
2527 
2528 	spin_lock(&hdrv->dyn_lock);
2529 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2530 		if (hid_match_one_id(hdev, &dynid->id)) {
2531 			spin_unlock(&hdrv->dyn_lock);
2532 			return &dynid->id;
2533 		}
2534 	}
2535 	spin_unlock(&hdrv->dyn_lock);
2536 
2537 	return hid_match_id(hdev, hdrv->id_table);
2538 }
2539 EXPORT_SYMBOL_GPL(hid_match_device);
2540 
2541 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2542 {
2543 	struct hid_driver *hdrv = to_hid_driver(drv);
2544 	struct hid_device *hdev = to_hid_device(dev);
2545 
2546 	return hid_match_device(hdev, hdrv) != NULL;
2547 }
2548 
2549 /**
2550  * hid_compare_device_paths - check if both devices share the same path
2551  * @hdev_a: hid device
2552  * @hdev_b: hid device
2553  * @separator: char to use as separator
2554  *
2555  * Check if two devices share the same path up to the last occurrence of
2556  * the separator char. Both paths must exist (i.e., zero-length paths
2557  * don't match).
2558  */
2559 bool hid_compare_device_paths(struct hid_device *hdev_a,
2560 			      struct hid_device *hdev_b, char separator)
2561 {
2562 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2563 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2564 
2565 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2566 		return false;
2567 
2568 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2569 }
2570 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2571 
2572 static int hid_device_probe(struct device *dev)
2573 {
2574 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2575 	struct hid_device *hdev = to_hid_device(dev);
2576 	const struct hid_device_id *id;
2577 	int ret = 0;
2578 
2579 	if (down_interruptible(&hdev->driver_input_lock)) {
2580 		ret = -EINTR;
2581 		goto end;
2582 	}
2583 	hdev->io_started = false;
2584 
2585 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2586 
2587 	if (!hdev->driver) {
2588 		id = hid_match_device(hdev, hdrv);
2589 		if (id == NULL) {
2590 			ret = -ENODEV;
2591 			goto unlock;
2592 		}
2593 
2594 		if (hdrv->match) {
2595 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2596 				ret = -ENODEV;
2597 				goto unlock;
2598 			}
2599 		} else {
2600 			/*
2601 			 * hid-generic implements .match(), so if
2602 			 * hid_ignore_special_drivers is set, we can safely
2603 			 * return.
2604 			 */
2605 			if (hid_ignore_special_drivers) {
2606 				ret = -ENODEV;
2607 				goto unlock;
2608 			}
2609 		}
2610 
2611 		/* reset the quirks that has been previously set */
2612 		hdev->quirks = hid_lookup_quirk(hdev);
2613 		hdev->driver = hdrv;
2614 		if (hdrv->probe) {
2615 			ret = hdrv->probe(hdev, id);
2616 		} else { /* default probe */
2617 			ret = hid_open_report(hdev);
2618 			if (!ret)
2619 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2620 		}
2621 		if (ret) {
2622 			hid_close_report(hdev);
2623 			hdev->driver = NULL;
2624 		}
2625 	}
2626 unlock:
2627 	if (!hdev->io_started)
2628 		up(&hdev->driver_input_lock);
2629 end:
2630 	return ret;
2631 }
2632 
2633 static void hid_device_remove(struct device *dev)
2634 {
2635 	struct hid_device *hdev = to_hid_device(dev);
2636 	struct hid_driver *hdrv;
2637 
2638 	down(&hdev->driver_input_lock);
2639 	hdev->io_started = false;
2640 
2641 	hdrv = hdev->driver;
2642 	if (hdrv) {
2643 		if (hdrv->remove)
2644 			hdrv->remove(hdev);
2645 		else /* default remove */
2646 			hid_hw_stop(hdev);
2647 		hid_close_report(hdev);
2648 		hdev->driver = NULL;
2649 	}
2650 
2651 	if (!hdev->io_started)
2652 		up(&hdev->driver_input_lock);
2653 }
2654 
2655 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2656 			     char *buf)
2657 {
2658 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2659 
2660 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2661 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2662 }
2663 static DEVICE_ATTR_RO(modalias);
2664 
2665 static struct attribute *hid_dev_attrs[] = {
2666 	&dev_attr_modalias.attr,
2667 	NULL,
2668 };
2669 static struct bin_attribute *hid_dev_bin_attrs[] = {
2670 	&dev_bin_attr_report_desc,
2671 	NULL
2672 };
2673 static const struct attribute_group hid_dev_group = {
2674 	.attrs = hid_dev_attrs,
2675 	.bin_attrs = hid_dev_bin_attrs,
2676 };
2677 __ATTRIBUTE_GROUPS(hid_dev);
2678 
2679 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2680 {
2681 	struct hid_device *hdev = to_hid_device(dev);
2682 
2683 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2684 			hdev->bus, hdev->vendor, hdev->product))
2685 		return -ENOMEM;
2686 
2687 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2688 		return -ENOMEM;
2689 
2690 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2691 		return -ENOMEM;
2692 
2693 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2694 		return -ENOMEM;
2695 
2696 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2697 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2698 		return -ENOMEM;
2699 
2700 	return 0;
2701 }
2702 
2703 struct bus_type hid_bus_type = {
2704 	.name		= "hid",
2705 	.dev_groups	= hid_dev_groups,
2706 	.drv_groups	= hid_drv_groups,
2707 	.match		= hid_bus_match,
2708 	.probe		= hid_device_probe,
2709 	.remove		= hid_device_remove,
2710 	.uevent		= hid_uevent,
2711 };
2712 EXPORT_SYMBOL(hid_bus_type);
2713 
2714 int hid_add_device(struct hid_device *hdev)
2715 {
2716 	static atomic_t id = ATOMIC_INIT(0);
2717 	int ret;
2718 
2719 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2720 		return -EBUSY;
2721 
2722 	hdev->quirks = hid_lookup_quirk(hdev);
2723 
2724 	/* we need to kill them here, otherwise they will stay allocated to
2725 	 * wait for coming driver */
2726 	if (hid_ignore(hdev))
2727 		return -ENODEV;
2728 
2729 	/*
2730 	 * Check for the mandatory transport channel.
2731 	 */
2732 	 if (!hdev->ll_driver->raw_request) {
2733 		hid_err(hdev, "transport driver missing .raw_request()\n");
2734 		return -EINVAL;
2735 	 }
2736 
2737 	/*
2738 	 * Read the device report descriptor once and use as template
2739 	 * for the driver-specific modifications.
2740 	 */
2741 	ret = hdev->ll_driver->parse(hdev);
2742 	if (ret)
2743 		return ret;
2744 	if (!hdev->dev_rdesc)
2745 		return -ENODEV;
2746 
2747 	/*
2748 	 * Scan generic devices for group information
2749 	 */
2750 	if (hid_ignore_special_drivers) {
2751 		hdev->group = HID_GROUP_GENERIC;
2752 	} else if (!hdev->group &&
2753 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2754 		ret = hid_scan_report(hdev);
2755 		if (ret)
2756 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2757 	}
2758 
2759 	hdev->id = atomic_inc_return(&id);
2760 
2761 	/* XXX hack, any other cleaner solution after the driver core
2762 	 * is converted to allow more than 20 bytes as the device name? */
2763 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2764 		     hdev->vendor, hdev->product, hdev->id);
2765 
2766 	hid_debug_register(hdev, dev_name(&hdev->dev));
2767 	ret = device_add(&hdev->dev);
2768 	if (!ret)
2769 		hdev->status |= HID_STAT_ADDED;
2770 	else
2771 		hid_debug_unregister(hdev);
2772 
2773 	return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(hid_add_device);
2776 
2777 /**
2778  * hid_allocate_device - allocate new hid device descriptor
2779  *
2780  * Allocate and initialize hid device, so that hid_destroy_device might be
2781  * used to free it.
2782  *
2783  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2784  * error value.
2785  */
2786 struct hid_device *hid_allocate_device(void)
2787 {
2788 	struct hid_device *hdev;
2789 	int ret = -ENOMEM;
2790 
2791 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2792 	if (hdev == NULL)
2793 		return ERR_PTR(ret);
2794 
2795 	device_initialize(&hdev->dev);
2796 	hdev->dev.release = hid_device_release;
2797 	hdev->dev.bus = &hid_bus_type;
2798 	device_enable_async_suspend(&hdev->dev);
2799 
2800 	hid_close_report(hdev);
2801 
2802 	init_waitqueue_head(&hdev->debug_wait);
2803 	INIT_LIST_HEAD(&hdev->debug_list);
2804 	spin_lock_init(&hdev->debug_list_lock);
2805 	sema_init(&hdev->driver_input_lock, 1);
2806 	mutex_init(&hdev->ll_open_lock);
2807 
2808 	hid_bpf_device_init(hdev);
2809 
2810 	return hdev;
2811 }
2812 EXPORT_SYMBOL_GPL(hid_allocate_device);
2813 
2814 static void hid_remove_device(struct hid_device *hdev)
2815 {
2816 	if (hdev->status & HID_STAT_ADDED) {
2817 		device_del(&hdev->dev);
2818 		hid_debug_unregister(hdev);
2819 		hdev->status &= ~HID_STAT_ADDED;
2820 	}
2821 	kfree(hdev->dev_rdesc);
2822 	hdev->dev_rdesc = NULL;
2823 	hdev->dev_rsize = 0;
2824 }
2825 
2826 /**
2827  * hid_destroy_device - free previously allocated device
2828  *
2829  * @hdev: hid device
2830  *
2831  * If you allocate hid_device through hid_allocate_device, you should ever
2832  * free by this function.
2833  */
2834 void hid_destroy_device(struct hid_device *hdev)
2835 {
2836 	hid_bpf_destroy_device(hdev);
2837 	hid_remove_device(hdev);
2838 	put_device(&hdev->dev);
2839 }
2840 EXPORT_SYMBOL_GPL(hid_destroy_device);
2841 
2842 
2843 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2844 {
2845 	struct hid_driver *hdrv = data;
2846 	struct hid_device *hdev = to_hid_device(dev);
2847 
2848 	if (hdev->driver == hdrv &&
2849 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2850 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2851 		return device_reprobe(dev);
2852 
2853 	return 0;
2854 }
2855 
2856 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2857 {
2858 	struct hid_driver *hdrv = to_hid_driver(drv);
2859 
2860 	if (hdrv->match) {
2861 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2862 				 __hid_bus_reprobe_drivers);
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 static int __bus_removed_driver(struct device_driver *drv, void *data)
2869 {
2870 	return bus_rescan_devices(&hid_bus_type);
2871 }
2872 
2873 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2874 		const char *mod_name)
2875 {
2876 	int ret;
2877 
2878 	hdrv->driver.name = hdrv->name;
2879 	hdrv->driver.bus = &hid_bus_type;
2880 	hdrv->driver.owner = owner;
2881 	hdrv->driver.mod_name = mod_name;
2882 
2883 	INIT_LIST_HEAD(&hdrv->dyn_list);
2884 	spin_lock_init(&hdrv->dyn_lock);
2885 
2886 	ret = driver_register(&hdrv->driver);
2887 
2888 	if (ret == 0)
2889 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2890 				 __hid_bus_driver_added);
2891 
2892 	return ret;
2893 }
2894 EXPORT_SYMBOL_GPL(__hid_register_driver);
2895 
2896 void hid_unregister_driver(struct hid_driver *hdrv)
2897 {
2898 	driver_unregister(&hdrv->driver);
2899 	hid_free_dynids(hdrv);
2900 
2901 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2902 }
2903 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2904 
2905 int hid_check_keys_pressed(struct hid_device *hid)
2906 {
2907 	struct hid_input *hidinput;
2908 	int i;
2909 
2910 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2911 		return 0;
2912 
2913 	list_for_each_entry(hidinput, &hid->inputs, list) {
2914 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2915 			if (hidinput->input->key[i])
2916 				return 1;
2917 	}
2918 
2919 	return 0;
2920 }
2921 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2922 
2923 #ifdef CONFIG_HID_BPF
2924 static struct hid_bpf_ops hid_ops = {
2925 	.hid_get_report = hid_get_report,
2926 	.hid_hw_raw_request = hid_hw_raw_request,
2927 	.owner = THIS_MODULE,
2928 	.bus_type = &hid_bus_type,
2929 };
2930 #endif
2931 
2932 static int __init hid_init(void)
2933 {
2934 	int ret;
2935 
2936 	ret = bus_register(&hid_bus_type);
2937 	if (ret) {
2938 		pr_err("can't register hid bus\n");
2939 		goto err;
2940 	}
2941 
2942 #ifdef CONFIG_HID_BPF
2943 	hid_bpf_ops = &hid_ops;
2944 #endif
2945 
2946 	ret = hidraw_init();
2947 	if (ret)
2948 		goto err_bus;
2949 
2950 	hid_debug_init();
2951 
2952 	return 0;
2953 err_bus:
2954 	bus_unregister(&hid_bus_type);
2955 err:
2956 	return ret;
2957 }
2958 
2959 static void __exit hid_exit(void)
2960 {
2961 #ifdef CONFIG_HID_BPF
2962 	hid_bpf_ops = NULL;
2963 #endif
2964 	hid_debug_exit();
2965 	hidraw_exit();
2966 	bus_unregister(&hid_bus_type);
2967 	hid_quirks_exit(HID_BUS_ANY);
2968 }
2969 
2970 module_init(hid_init);
2971 module_exit(hid_exit);
2972 
2973 MODULE_AUTHOR("Andreas Gal");
2974 MODULE_AUTHOR("Vojtech Pavlik");
2975 MODULE_AUTHOR("Jiri Kosina");
2976 MODULE_LICENSE("GPL");
2977