xref: /linux/drivers/hid/hid-core.c (revision ba6e8564f459211117ce300eae2c7fdd23befe34)
1 /*
2  *  HID support for Linux
3  *
4  *  Copyright (c) 1999 Andreas Gal
5  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
6  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
7  *  Copyright (c) 2006 Jiri Kosina
8  */
9 
10 /*
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the Free
13  * Software Foundation; either version 2 of the License, or (at your option)
14  * any later version.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/list.h>
22 #include <linux/mm.h>
23 #include <linux/smp_lock.h>
24 #include <linux/spinlock.h>
25 #include <asm/unaligned.h>
26 #include <asm/byteorder.h>
27 #include <linux/input.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 
35 /*
36  * Version Information
37  */
38 
39 #define DRIVER_VERSION "v2.6"
40 #define DRIVER_AUTHOR "Andreas Gal, Vojtech Pavlik"
41 #define DRIVER_DESC "HID core driver"
42 #define DRIVER_LICENSE "GPL"
43 
44 /*
45  * Register a new report for a device.
46  */
47 
48 static struct hid_report *hid_register_report(struct hid_device *device, unsigned type, unsigned id)
49 {
50 	struct hid_report_enum *report_enum = device->report_enum + type;
51 	struct hid_report *report;
52 
53 	if (report_enum->report_id_hash[id])
54 		return report_enum->report_id_hash[id];
55 
56 	if (!(report = kzalloc(sizeof(struct hid_report), GFP_KERNEL)))
57 		return NULL;
58 
59 	if (id != 0)
60 		report_enum->numbered = 1;
61 
62 	report->id = id;
63 	report->type = type;
64 	report->size = 0;
65 	report->device = device;
66 	report_enum->report_id_hash[id] = report;
67 
68 	list_add_tail(&report->list, &report_enum->report_list);
69 
70 	return report;
71 }
72 
73 /*
74  * Register a new field for this report.
75  */
76 
77 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
78 {
79 	struct hid_field *field;
80 
81 	if (report->maxfield == HID_MAX_FIELDS) {
82 		dbg("too many fields in report");
83 		return NULL;
84 	}
85 
86 	if (!(field = kzalloc(sizeof(struct hid_field) + usages * sizeof(struct hid_usage)
87 		+ values * sizeof(unsigned), GFP_KERNEL))) return NULL;
88 
89 	field->index = report->maxfield++;
90 	report->field[field->index] = field;
91 	field->usage = (struct hid_usage *)(field + 1);
92 	field->value = (unsigned *)(field->usage + usages);
93 	field->report = report;
94 
95 	return field;
96 }
97 
98 /*
99  * Open a collection. The type/usage is pushed on the stack.
100  */
101 
102 static int open_collection(struct hid_parser *parser, unsigned type)
103 {
104 	struct hid_collection *collection;
105 	unsigned usage;
106 
107 	usage = parser->local.usage[0];
108 
109 	if (parser->collection_stack_ptr == HID_COLLECTION_STACK_SIZE) {
110 		dbg("collection stack overflow");
111 		return -1;
112 	}
113 
114 	if (parser->device->maxcollection == parser->device->collection_size) {
115 		collection = kmalloc(sizeof(struct hid_collection) *
116 				parser->device->collection_size * 2, GFP_KERNEL);
117 		if (collection == NULL) {
118 			dbg("failed to reallocate collection array");
119 			return -1;
120 		}
121 		memcpy(collection, parser->device->collection,
122 			sizeof(struct hid_collection) *
123 			parser->device->collection_size);
124 		memset(collection + parser->device->collection_size, 0,
125 			sizeof(struct hid_collection) *
126 			parser->device->collection_size);
127 		kfree(parser->device->collection);
128 		parser->device->collection = collection;
129 		parser->device->collection_size *= 2;
130 	}
131 
132 	parser->collection_stack[parser->collection_stack_ptr++] =
133 		parser->device->maxcollection;
134 
135 	collection = parser->device->collection +
136 		parser->device->maxcollection++;
137 	collection->type = type;
138 	collection->usage = usage;
139 	collection->level = parser->collection_stack_ptr - 1;
140 
141 	if (type == HID_COLLECTION_APPLICATION)
142 		parser->device->maxapplication++;
143 
144 	return 0;
145 }
146 
147 /*
148  * Close a collection.
149  */
150 
151 static int close_collection(struct hid_parser *parser)
152 {
153 	if (!parser->collection_stack_ptr) {
154 		dbg("collection stack underflow");
155 		return -1;
156 	}
157 	parser->collection_stack_ptr--;
158 	return 0;
159 }
160 
161 /*
162  * Climb up the stack, search for the specified collection type
163  * and return the usage.
164  */
165 
166 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
167 {
168 	int n;
169 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--)
170 		if (parser->device->collection[parser->collection_stack[n]].type == type)
171 			return parser->device->collection[parser->collection_stack[n]].usage;
172 	return 0; /* we know nothing about this usage type */
173 }
174 
175 /*
176  * Add a usage to the temporary parser table.
177  */
178 
179 static int hid_add_usage(struct hid_parser *parser, unsigned usage)
180 {
181 	if (parser->local.usage_index >= HID_MAX_USAGES) {
182 		dbg("usage index exceeded");
183 		return -1;
184 	}
185 	parser->local.usage[parser->local.usage_index] = usage;
186 	parser->local.collection_index[parser->local.usage_index] =
187 		parser->collection_stack_ptr ?
188 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
189 	parser->local.usage_index++;
190 	return 0;
191 }
192 
193 /*
194  * Register a new field for this report.
195  */
196 
197 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
198 {
199 	struct hid_report *report;
200 	struct hid_field *field;
201 	int usages;
202 	unsigned offset;
203 	int i;
204 
205 	if (!(report = hid_register_report(parser->device, report_type, parser->global.report_id))) {
206 		dbg("hid_register_report failed");
207 		return -1;
208 	}
209 
210 	if (parser->global.logical_maximum < parser->global.logical_minimum) {
211 		dbg("logical range invalid %d %d", parser->global.logical_minimum, parser->global.logical_maximum);
212 		return -1;
213 	}
214 
215 	offset = report->size;
216 	report->size += parser->global.report_size * parser->global.report_count;
217 
218 	if (!parser->local.usage_index) /* Ignore padding fields */
219 		return 0;
220 
221 	usages = max_t(int, parser->local.usage_index, parser->global.report_count);
222 
223 	if ((field = hid_register_field(report, usages, parser->global.report_count)) == NULL)
224 		return 0;
225 
226 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
227 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
228 	field->application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
229 
230 	for (i = 0; i < usages; i++) {
231 		int j = i;
232 		/* Duplicate the last usage we parsed if we have excess values */
233 		if (i >= parser->local.usage_index)
234 			j = parser->local.usage_index - 1;
235 		field->usage[i].hid = parser->local.usage[j];
236 		field->usage[i].collection_index =
237 			parser->local.collection_index[j];
238 	}
239 
240 	field->maxusage = usages;
241 	field->flags = flags;
242 	field->report_offset = offset;
243 	field->report_type = report_type;
244 	field->report_size = parser->global.report_size;
245 	field->report_count = parser->global.report_count;
246 	field->logical_minimum = parser->global.logical_minimum;
247 	field->logical_maximum = parser->global.logical_maximum;
248 	field->physical_minimum = parser->global.physical_minimum;
249 	field->physical_maximum = parser->global.physical_maximum;
250 	field->unit_exponent = parser->global.unit_exponent;
251 	field->unit = parser->global.unit;
252 
253 	return 0;
254 }
255 
256 /*
257  * Read data value from item.
258  */
259 
260 static u32 item_udata(struct hid_item *item)
261 {
262 	switch (item->size) {
263 		case 1: return item->data.u8;
264 		case 2: return item->data.u16;
265 		case 4: return item->data.u32;
266 	}
267 	return 0;
268 }
269 
270 static s32 item_sdata(struct hid_item *item)
271 {
272 	switch (item->size) {
273 		case 1: return item->data.s8;
274 		case 2: return item->data.s16;
275 		case 4: return item->data.s32;
276 	}
277 	return 0;
278 }
279 
280 /*
281  * Process a global item.
282  */
283 
284 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
285 {
286 	switch (item->tag) {
287 
288 		case HID_GLOBAL_ITEM_TAG_PUSH:
289 
290 			if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
291 				dbg("global enviroment stack overflow");
292 				return -1;
293 			}
294 
295 			memcpy(parser->global_stack + parser->global_stack_ptr++,
296 				&parser->global, sizeof(struct hid_global));
297 			return 0;
298 
299 		case HID_GLOBAL_ITEM_TAG_POP:
300 
301 			if (!parser->global_stack_ptr) {
302 				dbg("global enviroment stack underflow");
303 				return -1;
304 			}
305 
306 			memcpy(&parser->global, parser->global_stack + --parser->global_stack_ptr,
307 				sizeof(struct hid_global));
308 			return 0;
309 
310 		case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
311 			parser->global.usage_page = item_udata(item);
312 			return 0;
313 
314 		case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
315 			parser->global.logical_minimum = item_sdata(item);
316 			return 0;
317 
318 		case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
319 			if (parser->global.logical_minimum < 0)
320 				parser->global.logical_maximum = item_sdata(item);
321 			else
322 				parser->global.logical_maximum = item_udata(item);
323 			return 0;
324 
325 		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
326 			parser->global.physical_minimum = item_sdata(item);
327 			return 0;
328 
329 		case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
330 			if (parser->global.physical_minimum < 0)
331 				parser->global.physical_maximum = item_sdata(item);
332 			else
333 				parser->global.physical_maximum = item_udata(item);
334 			return 0;
335 
336 		case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
337 			parser->global.unit_exponent = item_sdata(item);
338 			return 0;
339 
340 		case HID_GLOBAL_ITEM_TAG_UNIT:
341 			parser->global.unit = item_udata(item);
342 			return 0;
343 
344 		case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
345 			if ((parser->global.report_size = item_udata(item)) > 32) {
346 				dbg("invalid report_size %d", parser->global.report_size);
347 				return -1;
348 			}
349 			return 0;
350 
351 		case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
352 			if ((parser->global.report_count = item_udata(item)) > HID_MAX_USAGES) {
353 				dbg("invalid report_count %d", parser->global.report_count);
354 				return -1;
355 			}
356 			return 0;
357 
358 		case HID_GLOBAL_ITEM_TAG_REPORT_ID:
359 			if ((parser->global.report_id = item_udata(item)) == 0) {
360 				dbg("report_id 0 is invalid");
361 				return -1;
362 			}
363 			return 0;
364 
365 		default:
366 			dbg("unknown global tag 0x%x", item->tag);
367 			return -1;
368 	}
369 }
370 
371 /*
372  * Process a local item.
373  */
374 
375 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
376 {
377 	__u32 data;
378 	unsigned n;
379 
380 	if (item->size == 0) {
381 		dbg("item data expected for local item");
382 		return -1;
383 	}
384 
385 	data = item_udata(item);
386 
387 	switch (item->tag) {
388 
389 		case HID_LOCAL_ITEM_TAG_DELIMITER:
390 
391 			if (data) {
392 				/*
393 				 * We treat items before the first delimiter
394 				 * as global to all usage sets (branch 0).
395 				 * In the moment we process only these global
396 				 * items and the first delimiter set.
397 				 */
398 				if (parser->local.delimiter_depth != 0) {
399 					dbg("nested delimiters");
400 					return -1;
401 				}
402 				parser->local.delimiter_depth++;
403 				parser->local.delimiter_branch++;
404 			} else {
405 				if (parser->local.delimiter_depth < 1) {
406 					dbg("bogus close delimiter");
407 					return -1;
408 				}
409 				parser->local.delimiter_depth--;
410 			}
411 			return 1;
412 
413 		case HID_LOCAL_ITEM_TAG_USAGE:
414 
415 			if (parser->local.delimiter_branch > 1) {
416 				dbg("alternative usage ignored");
417 				return 0;
418 			}
419 
420 			if (item->size <= 2)
421 				data = (parser->global.usage_page << 16) + data;
422 
423 			return hid_add_usage(parser, data);
424 
425 		case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
426 
427 			if (parser->local.delimiter_branch > 1) {
428 				dbg("alternative usage ignored");
429 				return 0;
430 			}
431 
432 			if (item->size <= 2)
433 				data = (parser->global.usage_page << 16) + data;
434 
435 			parser->local.usage_minimum = data;
436 			return 0;
437 
438 		case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
439 
440 			if (parser->local.delimiter_branch > 1) {
441 				dbg("alternative usage ignored");
442 				return 0;
443 			}
444 
445 			if (item->size <= 2)
446 				data = (parser->global.usage_page << 16) + data;
447 
448 			for (n = parser->local.usage_minimum; n <= data; n++)
449 				if (hid_add_usage(parser, n)) {
450 					dbg("hid_add_usage failed\n");
451 					return -1;
452 				}
453 			return 0;
454 
455 		default:
456 
457 			dbg("unknown local item tag 0x%x", item->tag);
458 			return 0;
459 	}
460 	return 0;
461 }
462 
463 /*
464  * Process a main item.
465  */
466 
467 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
468 {
469 	__u32 data;
470 	int ret;
471 
472 	data = item_udata(item);
473 
474 	switch (item->tag) {
475 		case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
476 			ret = open_collection(parser, data & 0xff);
477 			break;
478 		case HID_MAIN_ITEM_TAG_END_COLLECTION:
479 			ret = close_collection(parser);
480 			break;
481 		case HID_MAIN_ITEM_TAG_INPUT:
482 			ret = hid_add_field(parser, HID_INPUT_REPORT, data);
483 			break;
484 		case HID_MAIN_ITEM_TAG_OUTPUT:
485 			ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
486 			break;
487 		case HID_MAIN_ITEM_TAG_FEATURE:
488 			ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
489 			break;
490 		default:
491 			dbg("unknown main item tag 0x%x", item->tag);
492 			ret = 0;
493 	}
494 
495 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
496 
497 	return ret;
498 }
499 
500 /*
501  * Process a reserved item.
502  */
503 
504 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
505 {
506 	dbg("reserved item type, tag 0x%x", item->tag);
507 	return 0;
508 }
509 
510 /*
511  * Free a report and all registered fields. The field->usage and
512  * field->value table's are allocated behind the field, so we need
513  * only to free(field) itself.
514  */
515 
516 static void hid_free_report(struct hid_report *report)
517 {
518 	unsigned n;
519 
520 	for (n = 0; n < report->maxfield; n++)
521 		kfree(report->field[n]);
522 	kfree(report);
523 }
524 
525 /*
526  * Free a device structure, all reports, and all fields.
527  */
528 
529 void hid_free_device(struct hid_device *device)
530 {
531 	unsigned i,j;
532 
533 	for (i = 0; i < HID_REPORT_TYPES; i++) {
534 		struct hid_report_enum *report_enum = device->report_enum + i;
535 
536 		for (j = 0; j < 256; j++) {
537 			struct hid_report *report = report_enum->report_id_hash[j];
538 			if (report)
539 				hid_free_report(report);
540 		}
541 	}
542 
543 	kfree(device->rdesc);
544 	kfree(device->collection);
545 	kfree(device);
546 }
547 EXPORT_SYMBOL_GPL(hid_free_device);
548 
549 /*
550  * Fetch a report description item from the data stream. We support long
551  * items, though they are not used yet.
552  */
553 
554 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
555 {
556 	u8 b;
557 
558 	if ((end - start) <= 0)
559 		return NULL;
560 
561 	b = *start++;
562 
563 	item->type = (b >> 2) & 3;
564 	item->tag  = (b >> 4) & 15;
565 
566 	if (item->tag == HID_ITEM_TAG_LONG) {
567 
568 		item->format = HID_ITEM_FORMAT_LONG;
569 
570 		if ((end - start) < 2)
571 			return NULL;
572 
573 		item->size = *start++;
574 		item->tag  = *start++;
575 
576 		if ((end - start) < item->size)
577 			return NULL;
578 
579 		item->data.longdata = start;
580 		start += item->size;
581 		return start;
582 	}
583 
584 	item->format = HID_ITEM_FORMAT_SHORT;
585 	item->size = b & 3;
586 
587 	switch (item->size) {
588 
589 		case 0:
590 			return start;
591 
592 		case 1:
593 			if ((end - start) < 1)
594 				return NULL;
595 			item->data.u8 = *start++;
596 			return start;
597 
598 		case 2:
599 			if ((end - start) < 2)
600 				return NULL;
601 			item->data.u16 = le16_to_cpu(get_unaligned((__le16*)start));
602 			start = (__u8 *)((__le16 *)start + 1);
603 			return start;
604 
605 		case 3:
606 			item->size++;
607 			if ((end - start) < 4)
608 				return NULL;
609 			item->data.u32 = le32_to_cpu(get_unaligned((__le32*)start));
610 			start = (__u8 *)((__le32 *)start + 1);
611 			return start;
612 	}
613 
614 	return NULL;
615 }
616 
617 /*
618  * Parse a report description into a hid_device structure. Reports are
619  * enumerated, fields are attached to these reports.
620  */
621 
622 struct hid_device *hid_parse_report(__u8 *start, unsigned size)
623 {
624 	struct hid_device *device;
625 	struct hid_parser *parser;
626 	struct hid_item item;
627 	__u8 *end;
628 	unsigned i;
629 	static int (*dispatch_type[])(struct hid_parser *parser,
630 				      struct hid_item *item) = {
631 		hid_parser_main,
632 		hid_parser_global,
633 		hid_parser_local,
634 		hid_parser_reserved
635 	};
636 
637 	if (!(device = kzalloc(sizeof(struct hid_device), GFP_KERNEL)))
638 		return NULL;
639 
640 	if (!(device->collection = kzalloc(sizeof(struct hid_collection) *
641 				   HID_DEFAULT_NUM_COLLECTIONS, GFP_KERNEL))) {
642 		kfree(device);
643 		return NULL;
644 	}
645 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
646 
647 	for (i = 0; i < HID_REPORT_TYPES; i++)
648 		INIT_LIST_HEAD(&device->report_enum[i].report_list);
649 
650 	if (!(device->rdesc = kmalloc(size, GFP_KERNEL))) {
651 		kfree(device->collection);
652 		kfree(device);
653 		return NULL;
654 	}
655 	memcpy(device->rdesc, start, size);
656 	device->rsize = size;
657 
658 	if (!(parser = vmalloc(sizeof(struct hid_parser)))) {
659 		kfree(device->rdesc);
660 		kfree(device->collection);
661 		kfree(device);
662 		return NULL;
663 	}
664 	memset(parser, 0, sizeof(struct hid_parser));
665 	parser->device = device;
666 
667 	end = start + size;
668 	while ((start = fetch_item(start, end, &item)) != NULL) {
669 
670 		if (item.format != HID_ITEM_FORMAT_SHORT) {
671 			dbg("unexpected long global item");
672 			hid_free_device(device);
673 			vfree(parser);
674 			return NULL;
675 		}
676 
677 		if (dispatch_type[item.type](parser, &item)) {
678 			dbg("item %u %u %u %u parsing failed\n",
679 				item.format, (unsigned)item.size, (unsigned)item.type, (unsigned)item.tag);
680 			hid_free_device(device);
681 			vfree(parser);
682 			return NULL;
683 		}
684 
685 		if (start == end) {
686 			if (parser->collection_stack_ptr) {
687 				dbg("unbalanced collection at end of report description");
688 				hid_free_device(device);
689 				vfree(parser);
690 				return NULL;
691 			}
692 			if (parser->local.delimiter_depth) {
693 				dbg("unbalanced delimiter at end of report description");
694 				hid_free_device(device);
695 				vfree(parser);
696 				return NULL;
697 			}
698 			vfree(parser);
699 			return device;
700 		}
701 	}
702 
703 	dbg("item fetching failed at offset %d\n", (int)(end - start));
704 	hid_free_device(device);
705 	vfree(parser);
706 	return NULL;
707 }
708 EXPORT_SYMBOL_GPL(hid_parse_report);
709 
710 /*
711  * Convert a signed n-bit integer to signed 32-bit integer. Common
712  * cases are done through the compiler, the screwed things has to be
713  * done by hand.
714  */
715 
716 static s32 snto32(__u32 value, unsigned n)
717 {
718 	switch (n) {
719 		case 8:  return ((__s8)value);
720 		case 16: return ((__s16)value);
721 		case 32: return ((__s32)value);
722 	}
723 	return value & (1 << (n - 1)) ? value | (-1 << n) : value;
724 }
725 
726 /*
727  * Convert a signed 32-bit integer to a signed n-bit integer.
728  */
729 
730 static u32 s32ton(__s32 value, unsigned n)
731 {
732 	s32 a = value >> (n - 1);
733 	if (a && a != -1)
734 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
735 	return value & ((1 << n) - 1);
736 }
737 
738 /*
739  * Extract/implement a data field from/to a little endian report (bit array).
740  *
741  * Code sort-of follows HID spec:
742  *     http://www.usb.org/developers/devclass_docs/HID1_11.pdf
743  *
744  * While the USB HID spec allows unlimited length bit fields in "report
745  * descriptors", most devices never use more than 16 bits.
746  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
747  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
748  */
749 
750 static __inline__ __u32 extract(__u8 *report, unsigned offset, unsigned n)
751 {
752 	u64 x;
753 
754 	WARN_ON(n > 32);
755 
756 	report += offset >> 3;  /* adjust byte index */
757 	offset &= 7;            /* now only need bit offset into one byte */
758 	x = le64_to_cpu(get_unaligned((__le64 *) report));
759 	x = (x >> offset) & ((1ULL << n) - 1);  /* extract bit field */
760 	return (u32) x;
761 }
762 
763 /*
764  * "implement" : set bits in a little endian bit stream.
765  * Same concepts as "extract" (see comments above).
766  * The data mangled in the bit stream remains in little endian
767  * order the whole time. It make more sense to talk about
768  * endianness of register values by considering a register
769  * a "cached" copy of the little endiad bit stream.
770  */
771 static __inline__ void implement(__u8 *report, unsigned offset, unsigned n, __u32 value)
772 {
773 	__le64 x;
774 	u64 m = (1ULL << n) - 1;
775 
776 	WARN_ON(n > 32);
777 
778 	WARN_ON(value > m);
779 	value &= m;
780 
781 	report += offset >> 3;
782 	offset &= 7;
783 
784 	x = get_unaligned((__le64 *)report);
785 	x &= cpu_to_le64(~(m << offset));
786 	x |= cpu_to_le64(((u64) value) << offset);
787 	put_unaligned(x, (__le64 *) report);
788 }
789 
790 /*
791  * Search an array for a value.
792  */
793 
794 static __inline__ int search(__s32 *array, __s32 value, unsigned n)
795 {
796 	while (n--) {
797 		if (*array++ == value)
798 			return 0;
799 	}
800 	return -1;
801 }
802 
803 static void hid_process_event(struct hid_device *hid, struct hid_field *field, struct hid_usage *usage, __s32 value, int interrupt)
804 {
805 	hid_dump_input(usage, value);
806 	if (hid->claimed & HID_CLAIMED_INPUT)
807 		hidinput_hid_event(hid, field, usage, value);
808 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
809 		hid->hiddev_hid_event(hid, field, usage, value);
810 }
811 
812 /*
813  * Analyse a received field, and fetch the data from it. The field
814  * content is stored for next report processing (we do differential
815  * reporting to the layer).
816  */
817 
818 void hid_input_field(struct hid_device *hid, struct hid_field *field, __u8 *data, int interrupt)
819 {
820 	unsigned n;
821 	unsigned count = field->report_count;
822 	unsigned offset = field->report_offset;
823 	unsigned size = field->report_size;
824 	__s32 min = field->logical_minimum;
825 	__s32 max = field->logical_maximum;
826 	__s32 *value;
827 
828 	if (!(value = kmalloc(sizeof(__s32) * count, GFP_ATOMIC)))
829 		return;
830 
831 	for (n = 0; n < count; n++) {
832 
833 			value[n] = min < 0 ? snto32(extract(data, offset + n * size, size), size) :
834 						    extract(data, offset + n * size, size);
835 
836 			if (!(field->flags & HID_MAIN_ITEM_VARIABLE) /* Ignore report if ErrorRollOver */
837 			    && value[n] >= min && value[n] <= max
838 			    && field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
839 				goto exit;
840 	}
841 
842 	for (n = 0; n < count; n++) {
843 
844 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
845 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
846 			continue;
847 		}
848 
849 		if (field->value[n] >= min && field->value[n] <= max
850 			&& field->usage[field->value[n] - min].hid
851 			&& search(value, field->value[n], count))
852 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
853 
854 		if (value[n] >= min && value[n] <= max
855 			&& field->usage[value[n] - min].hid
856 			&& search(field->value, value[n], count))
857 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
858 	}
859 
860 	memcpy(field->value, value, count * sizeof(__s32));
861 exit:
862 	kfree(value);
863 }
864 EXPORT_SYMBOL_GPL(hid_input_field);
865 
866 /*
867  * Output the field into the report.
868  */
869 
870 static void hid_output_field(struct hid_field *field, __u8 *data)
871 {
872 	unsigned count = field->report_count;
873 	unsigned offset = field->report_offset;
874 	unsigned size = field->report_size;
875 	unsigned n;
876 
877 	for (n = 0; n < count; n++) {
878 		if (field->logical_minimum < 0)	/* signed values */
879 			implement(data, offset + n * size, size, s32ton(field->value[n], size));
880 		else				/* unsigned values */
881 			implement(data, offset + n * size, size, field->value[n]);
882 	}
883 }
884 
885 /*
886  * Create a report.
887  */
888 
889 void hid_output_report(struct hid_report *report, __u8 *data)
890 {
891 	unsigned n;
892 
893 	if (report->id > 0)
894 		*data++ = report->id;
895 
896 	for (n = 0; n < report->maxfield; n++)
897 		hid_output_field(report->field[n], data);
898 }
899 EXPORT_SYMBOL_GPL(hid_output_report);
900 
901 /*
902  * Set a field value. The report this field belongs to has to be
903  * created and transferred to the device, to set this value in the
904  * device.
905  */
906 
907 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
908 {
909 	unsigned size = field->report_size;
910 
911 	hid_dump_input(field->usage + offset, value);
912 
913 	if (offset >= field->report_count) {
914 		dbg("offset (%d) exceeds report_count (%d)", offset, field->report_count);
915 		hid_dump_field(field, 8);
916 		return -1;
917 	}
918 	if (field->logical_minimum < 0) {
919 		if (value != snto32(s32ton(value, size), size)) {
920 			dbg("value %d is out of range", value);
921 			return -1;
922 		}
923 	}
924 	field->value[offset] = value;
925 	return 0;
926 }
927 EXPORT_SYMBOL_GPL(hid_set_field);
928 
929 int hid_input_report(struct hid_device *hid, int type, u8 *data, int size, int interrupt)
930 {
931 	struct hid_report_enum *report_enum = hid->report_enum + type;
932 	struct hid_report *report;
933 	int n, rsize;
934 
935 	if (!hid)
936 		return -ENODEV;
937 
938 	if (!size) {
939 		dbg("empty report");
940 		return -1;
941 	}
942 
943 #ifdef CONFIG_HID_DEBUG
944 	printk(KERN_DEBUG __FILE__ ": report (size %u) (%snumbered)\n", size, report_enum->numbered ? "" : "un");
945 #endif
946 
947 	n = 0;                          /* Normally report number is 0 */
948 	if (report_enum->numbered) {    /* Device uses numbered reports, data[0] is report number */
949 		n = *data++;
950 		size--;
951 	}
952 
953 #ifdef CONFIG_HID_DEBUG
954 	{
955 		int i;
956 		printk(KERN_DEBUG __FILE__ ": report %d (size %u) = ", n, size);
957 		for (i = 0; i < size; i++)
958 			printk(" %02x", data[i]);
959 		printk("\n");
960 	}
961 #endif
962 
963 	if (!(report = report_enum->report_id_hash[n])) {
964 		dbg("undefined report_id %d received", n);
965 		return -1;
966 	}
967 
968 	rsize = ((report->size - 1) >> 3) + 1;
969 
970 	if (size < rsize) {
971 		dbg("report %d is too short, (%d < %d)", report->id, size, rsize);
972 		return -1;
973 	}
974 
975 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
976 		hid->hiddev_report_event(hid, report);
977 
978 	for (n = 0; n < report->maxfield; n++)
979 		hid_input_field(hid, report->field[n], data, interrupt);
980 
981 	if (hid->claimed & HID_CLAIMED_INPUT)
982 		hidinput_report_event(hid, report);
983 
984 	return 0;
985 }
986 EXPORT_SYMBOL_GPL(hid_input_report);
987 
988 MODULE_LICENSE(DRIVER_LICENSE);
989 
990