1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID support for Linux 4 * 5 * Copyright (c) 1999 Andreas Gal 6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 8 * Copyright (c) 2006-2012 Jiri Kosina 9 */ 10 11 /* 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/spinlock.h> 23 #include <linux/unaligned.h> 24 #include <asm/byteorder.h> 25 #include <linux/input.h> 26 #include <linux/wait.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sched.h> 29 #include <linux/semaphore.h> 30 31 #include <linux/hid.h> 32 #include <linux/hiddev.h> 33 #include <linux/hid-debug.h> 34 #include <linux/hidraw.h> 35 36 #include "hid-ids.h" 37 38 /* 39 * Version Information 40 */ 41 42 #define DRIVER_DESC "HID core driver" 43 44 static int hid_ignore_special_drivers = 0; 45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 47 48 /* 49 * Convert a signed n-bit integer to signed 32-bit integer. 50 */ 51 52 static s32 snto32(__u32 value, unsigned int n) 53 { 54 if (!value || !n) 55 return 0; 56 57 if (n > 32) 58 n = 32; 59 60 return sign_extend32(value, n - 1); 61 } 62 63 /* 64 * Convert a signed 32-bit integer to a signed n-bit integer. 65 */ 66 67 static u32 s32ton(__s32 value, unsigned int n) 68 { 69 s32 a = value >> (n - 1); 70 71 if (a && a != -1) 72 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 73 return value & ((1 << n) - 1); 74 } 75 76 /* 77 * Register a new report for a device. 78 */ 79 80 struct hid_report *hid_register_report(struct hid_device *device, 81 enum hid_report_type type, unsigned int id, 82 unsigned int application) 83 { 84 struct hid_report_enum *report_enum = device->report_enum + type; 85 struct hid_report *report; 86 87 if (id >= HID_MAX_IDS) 88 return NULL; 89 if (report_enum->report_id_hash[id]) 90 return report_enum->report_id_hash[id]; 91 92 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 93 if (!report) 94 return NULL; 95 96 if (id != 0) 97 report_enum->numbered = 1; 98 99 report->id = id; 100 report->type = type; 101 report->size = 0; 102 report->device = device; 103 report->application = application; 104 report_enum->report_id_hash[id] = report; 105 106 list_add_tail(&report->list, &report_enum->report_list); 107 INIT_LIST_HEAD(&report->field_entry_list); 108 109 return report; 110 } 111 EXPORT_SYMBOL_GPL(hid_register_report); 112 113 /* 114 * Register a new field for this report. 115 */ 116 117 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages) 118 { 119 struct hid_field *field; 120 121 if (report->maxfield == HID_MAX_FIELDS) { 122 hid_err(report->device, "too many fields in report\n"); 123 return NULL; 124 } 125 126 field = kvzalloc((sizeof(struct hid_field) + 127 usages * sizeof(struct hid_usage) + 128 3 * usages * sizeof(unsigned int)), GFP_KERNEL); 129 if (!field) 130 return NULL; 131 132 field->index = report->maxfield++; 133 report->field[field->index] = field; 134 field->usage = (struct hid_usage *)(field + 1); 135 field->value = (s32 *)(field->usage + usages); 136 field->new_value = (s32 *)(field->value + usages); 137 field->usages_priorities = (s32 *)(field->new_value + usages); 138 field->report = report; 139 140 return field; 141 } 142 143 /* 144 * Open a collection. The type/usage is pushed on the stack. 145 */ 146 147 static int open_collection(struct hid_parser *parser, unsigned type) 148 { 149 struct hid_collection *collection; 150 unsigned usage; 151 int collection_index; 152 153 usage = parser->local.usage[0]; 154 155 if (parser->collection_stack_ptr == parser->collection_stack_size) { 156 unsigned int *collection_stack; 157 unsigned int new_size = parser->collection_stack_size + 158 HID_COLLECTION_STACK_SIZE; 159 160 collection_stack = krealloc(parser->collection_stack, 161 new_size * sizeof(unsigned int), 162 GFP_KERNEL); 163 if (!collection_stack) 164 return -ENOMEM; 165 166 parser->collection_stack = collection_stack; 167 parser->collection_stack_size = new_size; 168 } 169 170 if (parser->device->maxcollection == parser->device->collection_size) { 171 collection = kmalloc( 172 array3_size(sizeof(struct hid_collection), 173 parser->device->collection_size, 174 2), 175 GFP_KERNEL); 176 if (collection == NULL) { 177 hid_err(parser->device, "failed to reallocate collection array\n"); 178 return -ENOMEM; 179 } 180 memcpy(collection, parser->device->collection, 181 sizeof(struct hid_collection) * 182 parser->device->collection_size); 183 memset(collection + parser->device->collection_size, 0, 184 sizeof(struct hid_collection) * 185 parser->device->collection_size); 186 kfree(parser->device->collection); 187 parser->device->collection = collection; 188 parser->device->collection_size *= 2; 189 } 190 191 parser->collection_stack[parser->collection_stack_ptr++] = 192 parser->device->maxcollection; 193 194 collection_index = parser->device->maxcollection++; 195 collection = parser->device->collection + collection_index; 196 collection->type = type; 197 collection->usage = usage; 198 collection->level = parser->collection_stack_ptr - 1; 199 collection->parent_idx = (collection->level == 0) ? -1 : 200 parser->collection_stack[collection->level - 1]; 201 202 if (type == HID_COLLECTION_APPLICATION) 203 parser->device->maxapplication++; 204 205 return 0; 206 } 207 208 /* 209 * Close a collection. 210 */ 211 212 static int close_collection(struct hid_parser *parser) 213 { 214 if (!parser->collection_stack_ptr) { 215 hid_err(parser->device, "collection stack underflow\n"); 216 return -EINVAL; 217 } 218 parser->collection_stack_ptr--; 219 return 0; 220 } 221 222 /* 223 * Climb up the stack, search for the specified collection type 224 * and return the usage. 225 */ 226 227 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 228 { 229 struct hid_collection *collection = parser->device->collection; 230 int n; 231 232 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 233 unsigned index = parser->collection_stack[n]; 234 if (collection[index].type == type) 235 return collection[index].usage; 236 } 237 return 0; /* we know nothing about this usage type */ 238 } 239 240 /* 241 * Concatenate usage which defines 16 bits or less with the 242 * currently defined usage page to form a 32 bit usage 243 */ 244 245 static void complete_usage(struct hid_parser *parser, unsigned int index) 246 { 247 parser->local.usage[index] &= 0xFFFF; 248 parser->local.usage[index] |= 249 (parser->global.usage_page & 0xFFFF) << 16; 250 } 251 252 /* 253 * Add a usage to the temporary parser table. 254 */ 255 256 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) 257 { 258 if (parser->local.usage_index >= HID_MAX_USAGES) { 259 hid_err(parser->device, "usage index exceeded\n"); 260 return -1; 261 } 262 parser->local.usage[parser->local.usage_index] = usage; 263 264 /* 265 * If Usage item only includes usage id, concatenate it with 266 * currently defined usage page 267 */ 268 if (size <= 2) 269 complete_usage(parser, parser->local.usage_index); 270 271 parser->local.usage_size[parser->local.usage_index] = size; 272 parser->local.collection_index[parser->local.usage_index] = 273 parser->collection_stack_ptr ? 274 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 275 parser->local.usage_index++; 276 return 0; 277 } 278 279 /* 280 * Register a new field for this report. 281 */ 282 283 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 284 { 285 struct hid_report *report; 286 struct hid_field *field; 287 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 288 unsigned int usages; 289 unsigned int offset; 290 unsigned int i; 291 unsigned int application; 292 293 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 294 295 report = hid_register_report(parser->device, report_type, 296 parser->global.report_id, application); 297 if (!report) { 298 hid_err(parser->device, "hid_register_report failed\n"); 299 return -1; 300 } 301 302 /* Handle both signed and unsigned cases properly */ 303 if ((parser->global.logical_minimum < 0 && 304 parser->global.logical_maximum < 305 parser->global.logical_minimum) || 306 (parser->global.logical_minimum >= 0 && 307 (__u32)parser->global.logical_maximum < 308 (__u32)parser->global.logical_minimum)) { 309 dbg_hid("logical range invalid 0x%x 0x%x\n", 310 parser->global.logical_minimum, 311 parser->global.logical_maximum); 312 return -1; 313 } 314 315 offset = report->size; 316 report->size += parser->global.report_size * parser->global.report_count; 317 318 if (parser->device->ll_driver->max_buffer_size) 319 max_buffer_size = parser->device->ll_driver->max_buffer_size; 320 321 /* Total size check: Allow for possible report index byte */ 322 if (report->size > (max_buffer_size - 1) << 3) { 323 hid_err(parser->device, "report is too long\n"); 324 return -1; 325 } 326 327 if (!parser->local.usage_index) /* Ignore padding fields */ 328 return 0; 329 330 usages = max_t(unsigned, parser->local.usage_index, 331 parser->global.report_count); 332 333 field = hid_register_field(report, usages); 334 if (!field) 335 return 0; 336 337 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 338 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 339 field->application = application; 340 341 for (i = 0; i < usages; i++) { 342 unsigned j = i; 343 /* Duplicate the last usage we parsed if we have excess values */ 344 if (i >= parser->local.usage_index) 345 j = parser->local.usage_index - 1; 346 field->usage[i].hid = parser->local.usage[j]; 347 field->usage[i].collection_index = 348 parser->local.collection_index[j]; 349 field->usage[i].usage_index = i; 350 field->usage[i].resolution_multiplier = 1; 351 } 352 353 field->maxusage = usages; 354 field->flags = flags; 355 field->report_offset = offset; 356 field->report_type = report_type; 357 field->report_size = parser->global.report_size; 358 field->report_count = parser->global.report_count; 359 field->logical_minimum = parser->global.logical_minimum; 360 field->logical_maximum = parser->global.logical_maximum; 361 field->physical_minimum = parser->global.physical_minimum; 362 field->physical_maximum = parser->global.physical_maximum; 363 field->unit_exponent = parser->global.unit_exponent; 364 field->unit = parser->global.unit; 365 366 return 0; 367 } 368 369 /* 370 * Read data value from item. 371 */ 372 373 static u32 item_udata(struct hid_item *item) 374 { 375 switch (item->size) { 376 case 1: return item->data.u8; 377 case 2: return item->data.u16; 378 case 4: return item->data.u32; 379 } 380 return 0; 381 } 382 383 static s32 item_sdata(struct hid_item *item) 384 { 385 switch (item->size) { 386 case 1: return item->data.s8; 387 case 2: return item->data.s16; 388 case 4: return item->data.s32; 389 } 390 return 0; 391 } 392 393 /* 394 * Process a global item. 395 */ 396 397 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 398 { 399 __s32 raw_value; 400 switch (item->tag) { 401 case HID_GLOBAL_ITEM_TAG_PUSH: 402 403 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 404 hid_err(parser->device, "global environment stack overflow\n"); 405 return -1; 406 } 407 408 memcpy(parser->global_stack + parser->global_stack_ptr++, 409 &parser->global, sizeof(struct hid_global)); 410 return 0; 411 412 case HID_GLOBAL_ITEM_TAG_POP: 413 414 if (!parser->global_stack_ptr) { 415 hid_err(parser->device, "global environment stack underflow\n"); 416 return -1; 417 } 418 419 memcpy(&parser->global, parser->global_stack + 420 --parser->global_stack_ptr, sizeof(struct hid_global)); 421 return 0; 422 423 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 424 parser->global.usage_page = item_udata(item); 425 return 0; 426 427 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 428 parser->global.logical_minimum = item_sdata(item); 429 return 0; 430 431 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 432 if (parser->global.logical_minimum < 0) 433 parser->global.logical_maximum = item_sdata(item); 434 else 435 parser->global.logical_maximum = item_udata(item); 436 return 0; 437 438 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 439 parser->global.physical_minimum = item_sdata(item); 440 return 0; 441 442 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 443 if (parser->global.physical_minimum < 0) 444 parser->global.physical_maximum = item_sdata(item); 445 else 446 parser->global.physical_maximum = item_udata(item); 447 return 0; 448 449 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 450 /* Many devices provide unit exponent as a two's complement 451 * nibble due to the common misunderstanding of HID 452 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 453 * both this and the standard encoding. */ 454 raw_value = item_sdata(item); 455 if (!(raw_value & 0xfffffff0)) 456 parser->global.unit_exponent = snto32(raw_value, 4); 457 else 458 parser->global.unit_exponent = raw_value; 459 return 0; 460 461 case HID_GLOBAL_ITEM_TAG_UNIT: 462 parser->global.unit = item_udata(item); 463 return 0; 464 465 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 466 parser->global.report_size = item_udata(item); 467 if (parser->global.report_size > 256) { 468 hid_err(parser->device, "invalid report_size %d\n", 469 parser->global.report_size); 470 return -1; 471 } 472 return 0; 473 474 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 475 parser->global.report_count = item_udata(item); 476 if (parser->global.report_count > HID_MAX_USAGES) { 477 hid_err(parser->device, "invalid report_count %d\n", 478 parser->global.report_count); 479 return -1; 480 } 481 return 0; 482 483 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 484 parser->global.report_id = item_udata(item); 485 if (parser->global.report_id == 0 || 486 parser->global.report_id >= HID_MAX_IDS) { 487 hid_err(parser->device, "report_id %u is invalid\n", 488 parser->global.report_id); 489 return -1; 490 } 491 return 0; 492 493 default: 494 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 495 return -1; 496 } 497 } 498 499 /* 500 * Process a local item. 501 */ 502 503 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 504 { 505 __u32 data; 506 unsigned n; 507 __u32 count; 508 509 data = item_udata(item); 510 511 switch (item->tag) { 512 case HID_LOCAL_ITEM_TAG_DELIMITER: 513 514 if (data) { 515 /* 516 * We treat items before the first delimiter 517 * as global to all usage sets (branch 0). 518 * In the moment we process only these global 519 * items and the first delimiter set. 520 */ 521 if (parser->local.delimiter_depth != 0) { 522 hid_err(parser->device, "nested delimiters\n"); 523 return -1; 524 } 525 parser->local.delimiter_depth++; 526 parser->local.delimiter_branch++; 527 } else { 528 if (parser->local.delimiter_depth < 1) { 529 hid_err(parser->device, "bogus close delimiter\n"); 530 return -1; 531 } 532 parser->local.delimiter_depth--; 533 } 534 return 0; 535 536 case HID_LOCAL_ITEM_TAG_USAGE: 537 538 if (parser->local.delimiter_branch > 1) { 539 dbg_hid("alternative usage ignored\n"); 540 return 0; 541 } 542 543 return hid_add_usage(parser, data, item->size); 544 545 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 546 547 if (parser->local.delimiter_branch > 1) { 548 dbg_hid("alternative usage ignored\n"); 549 return 0; 550 } 551 552 parser->local.usage_minimum = data; 553 return 0; 554 555 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 556 557 if (parser->local.delimiter_branch > 1) { 558 dbg_hid("alternative usage ignored\n"); 559 return 0; 560 } 561 562 count = data - parser->local.usage_minimum; 563 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 564 /* 565 * We do not warn if the name is not set, we are 566 * actually pre-scanning the device. 567 */ 568 if (dev_name(&parser->device->dev)) 569 hid_warn(parser->device, 570 "ignoring exceeding usage max\n"); 571 data = HID_MAX_USAGES - parser->local.usage_index + 572 parser->local.usage_minimum - 1; 573 if (data <= 0) { 574 hid_err(parser->device, 575 "no more usage index available\n"); 576 return -1; 577 } 578 } 579 580 for (n = parser->local.usage_minimum; n <= data; n++) 581 if (hid_add_usage(parser, n, item->size)) { 582 dbg_hid("hid_add_usage failed\n"); 583 return -1; 584 } 585 return 0; 586 587 default: 588 589 dbg_hid("unknown local item tag 0x%x\n", item->tag); 590 return 0; 591 } 592 return 0; 593 } 594 595 /* 596 * Concatenate Usage Pages into Usages where relevant: 597 * As per specification, 6.2.2.8: "When the parser encounters a main item it 598 * concatenates the last declared Usage Page with a Usage to form a complete 599 * usage value." 600 */ 601 602 static void hid_concatenate_last_usage_page(struct hid_parser *parser) 603 { 604 int i; 605 unsigned int usage_page; 606 unsigned int current_page; 607 608 if (!parser->local.usage_index) 609 return; 610 611 usage_page = parser->global.usage_page; 612 613 /* 614 * Concatenate usage page again only if last declared Usage Page 615 * has not been already used in previous usages concatenation 616 */ 617 for (i = parser->local.usage_index - 1; i >= 0; i--) { 618 if (parser->local.usage_size[i] > 2) 619 /* Ignore extended usages */ 620 continue; 621 622 current_page = parser->local.usage[i] >> 16; 623 if (current_page == usage_page) 624 break; 625 626 complete_usage(parser, i); 627 } 628 } 629 630 /* 631 * Process a main item. 632 */ 633 634 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 635 { 636 __u32 data; 637 int ret; 638 639 hid_concatenate_last_usage_page(parser); 640 641 data = item_udata(item); 642 643 switch (item->tag) { 644 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 645 ret = open_collection(parser, data & 0xff); 646 break; 647 case HID_MAIN_ITEM_TAG_END_COLLECTION: 648 ret = close_collection(parser); 649 break; 650 case HID_MAIN_ITEM_TAG_INPUT: 651 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 652 break; 653 case HID_MAIN_ITEM_TAG_OUTPUT: 654 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 655 break; 656 case HID_MAIN_ITEM_TAG_FEATURE: 657 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 658 break; 659 default: 660 if (item->tag >= HID_MAIN_ITEM_TAG_RESERVED_MIN && 661 item->tag <= HID_MAIN_ITEM_TAG_RESERVED_MAX) 662 hid_warn(parser->device, "reserved main item tag 0x%x\n", item->tag); 663 else 664 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 665 ret = 0; 666 } 667 668 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 669 670 return ret; 671 } 672 673 /* 674 * Process a reserved item. 675 */ 676 677 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 678 { 679 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 680 return 0; 681 } 682 683 /* 684 * Free a report and all registered fields. The field->usage and 685 * field->value table's are allocated behind the field, so we need 686 * only to free(field) itself. 687 */ 688 689 static void hid_free_report(struct hid_report *report) 690 { 691 unsigned n; 692 693 kfree(report->field_entries); 694 695 for (n = 0; n < report->maxfield; n++) 696 kvfree(report->field[n]); 697 kfree(report); 698 } 699 700 /* 701 * Close report. This function returns the device 702 * state to the point prior to hid_open_report(). 703 */ 704 static void hid_close_report(struct hid_device *device) 705 { 706 unsigned i, j; 707 708 for (i = 0; i < HID_REPORT_TYPES; i++) { 709 struct hid_report_enum *report_enum = device->report_enum + i; 710 711 for (j = 0; j < HID_MAX_IDS; j++) { 712 struct hid_report *report = report_enum->report_id_hash[j]; 713 if (report) 714 hid_free_report(report); 715 } 716 memset(report_enum, 0, sizeof(*report_enum)); 717 INIT_LIST_HEAD(&report_enum->report_list); 718 } 719 720 /* 721 * If the HID driver had a rdesc_fixup() callback, dev->rdesc 722 * will be allocated by hid-core and needs to be freed. 723 * Otherwise, it is either equal to dev_rdesc or bpf_rdesc, in 724 * which cases it'll be freed later on device removal or destroy. 725 */ 726 if (device->rdesc != device->dev_rdesc && device->rdesc != device->bpf_rdesc) 727 kfree(device->rdesc); 728 device->rdesc = NULL; 729 device->rsize = 0; 730 731 kfree(device->collection); 732 device->collection = NULL; 733 device->collection_size = 0; 734 device->maxcollection = 0; 735 device->maxapplication = 0; 736 737 device->status &= ~HID_STAT_PARSED; 738 } 739 740 static inline void hid_free_bpf_rdesc(struct hid_device *hdev) 741 { 742 /* bpf_rdesc is either equal to dev_rdesc or allocated by call_hid_bpf_rdesc_fixup() */ 743 if (hdev->bpf_rdesc != hdev->dev_rdesc) 744 kfree(hdev->bpf_rdesc); 745 hdev->bpf_rdesc = NULL; 746 } 747 748 /* 749 * Free a device structure, all reports, and all fields. 750 */ 751 752 void hiddev_free(struct kref *ref) 753 { 754 struct hid_device *hid = container_of(ref, struct hid_device, ref); 755 756 hid_close_report(hid); 757 hid_free_bpf_rdesc(hid); 758 kfree(hid->dev_rdesc); 759 kfree(hid); 760 } 761 762 static void hid_device_release(struct device *dev) 763 { 764 struct hid_device *hid = to_hid_device(dev); 765 766 kref_put(&hid->ref, hiddev_free); 767 } 768 769 /* 770 * Fetch a report description item from the data stream. We support long 771 * items, though they are not used yet. 772 */ 773 774 static const u8 *fetch_item(const __u8 *start, const __u8 *end, struct hid_item *item) 775 { 776 u8 b; 777 778 if ((end - start) <= 0) 779 return NULL; 780 781 b = *start++; 782 783 item->type = (b >> 2) & 3; 784 item->tag = (b >> 4) & 15; 785 786 if (item->tag == HID_ITEM_TAG_LONG) { 787 788 item->format = HID_ITEM_FORMAT_LONG; 789 790 if ((end - start) < 2) 791 return NULL; 792 793 item->size = *start++; 794 item->tag = *start++; 795 796 if ((end - start) < item->size) 797 return NULL; 798 799 item->data.longdata = start; 800 start += item->size; 801 return start; 802 } 803 804 item->format = HID_ITEM_FORMAT_SHORT; 805 item->size = BIT(b & 3) >> 1; /* 0, 1, 2, 3 -> 0, 1, 2, 4 */ 806 807 if (end - start < item->size) 808 return NULL; 809 810 switch (item->size) { 811 case 0: 812 break; 813 814 case 1: 815 item->data.u8 = *start; 816 break; 817 818 case 2: 819 item->data.u16 = get_unaligned_le16(start); 820 break; 821 822 case 4: 823 item->data.u32 = get_unaligned_le32(start); 824 break; 825 } 826 827 return start + item->size; 828 } 829 830 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 831 { 832 struct hid_device *hid = parser->device; 833 834 if (usage == HID_DG_CONTACTID) 835 hid->group = HID_GROUP_MULTITOUCH; 836 } 837 838 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 839 { 840 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 841 parser->global.report_size == 8) 842 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 843 844 if (usage == 0xff0000c6 && parser->global.report_count == 1 && 845 parser->global.report_size == 8) 846 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 847 } 848 849 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 850 { 851 struct hid_device *hid = parser->device; 852 int i; 853 854 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 855 (type == HID_COLLECTION_PHYSICAL || 856 type == HID_COLLECTION_APPLICATION)) 857 hid->group = HID_GROUP_SENSOR_HUB; 858 859 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 860 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 861 hid->group == HID_GROUP_MULTITOUCH) 862 hid->group = HID_GROUP_GENERIC; 863 864 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 865 for (i = 0; i < parser->local.usage_index; i++) 866 if (parser->local.usage[i] == HID_GD_POINTER) 867 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 868 869 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 870 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 871 872 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR) 873 for (i = 0; i < parser->local.usage_index; i++) 874 if (parser->local.usage[i] == 875 (HID_UP_GOOGLEVENDOR | 0x0001)) 876 parser->device->group = 877 HID_GROUP_VIVALDI; 878 } 879 880 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 881 { 882 __u32 data; 883 int i; 884 885 hid_concatenate_last_usage_page(parser); 886 887 data = item_udata(item); 888 889 switch (item->tag) { 890 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 891 hid_scan_collection(parser, data & 0xff); 892 break; 893 case HID_MAIN_ITEM_TAG_END_COLLECTION: 894 break; 895 case HID_MAIN_ITEM_TAG_INPUT: 896 /* ignore constant inputs, they will be ignored by hid-input */ 897 if (data & HID_MAIN_ITEM_CONSTANT) 898 break; 899 for (i = 0; i < parser->local.usage_index; i++) 900 hid_scan_input_usage(parser, parser->local.usage[i]); 901 break; 902 case HID_MAIN_ITEM_TAG_OUTPUT: 903 break; 904 case HID_MAIN_ITEM_TAG_FEATURE: 905 for (i = 0; i < parser->local.usage_index; i++) 906 hid_scan_feature_usage(parser, parser->local.usage[i]); 907 break; 908 } 909 910 /* Reset the local parser environment */ 911 memset(&parser->local, 0, sizeof(parser->local)); 912 913 return 0; 914 } 915 916 /* 917 * Scan a report descriptor before the device is added to the bus. 918 * Sets device groups and other properties that determine what driver 919 * to load. 920 */ 921 static int hid_scan_report(struct hid_device *hid) 922 { 923 struct hid_parser *parser; 924 struct hid_item item; 925 const __u8 *start = hid->dev_rdesc; 926 const __u8 *end = start + hid->dev_rsize; 927 static int (*dispatch_type[])(struct hid_parser *parser, 928 struct hid_item *item) = { 929 hid_scan_main, 930 hid_parser_global, 931 hid_parser_local, 932 hid_parser_reserved 933 }; 934 935 parser = vzalloc(sizeof(struct hid_parser)); 936 if (!parser) 937 return -ENOMEM; 938 939 parser->device = hid; 940 hid->group = HID_GROUP_GENERIC; 941 942 /* 943 * The parsing is simpler than the one in hid_open_report() as we should 944 * be robust against hid errors. Those errors will be raised by 945 * hid_open_report() anyway. 946 */ 947 while ((start = fetch_item(start, end, &item)) != NULL) 948 dispatch_type[item.type](parser, &item); 949 950 /* 951 * Handle special flags set during scanning. 952 */ 953 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 954 (hid->group == HID_GROUP_MULTITOUCH)) 955 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 956 957 /* 958 * Vendor specific handlings 959 */ 960 switch (hid->vendor) { 961 case USB_VENDOR_ID_WACOM: 962 hid->group = HID_GROUP_WACOM; 963 break; 964 case USB_VENDOR_ID_SYNAPTICS: 965 if (hid->group == HID_GROUP_GENERIC) 966 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 967 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 968 /* 969 * hid-rmi should take care of them, 970 * not hid-generic 971 */ 972 hid->group = HID_GROUP_RMI; 973 break; 974 } 975 976 kfree(parser->collection_stack); 977 vfree(parser); 978 return 0; 979 } 980 981 /** 982 * hid_parse_report - parse device report 983 * 984 * @hid: hid device 985 * @start: report start 986 * @size: report size 987 * 988 * Allocate the device report as read by the bus driver. This function should 989 * only be called from parse() in ll drivers. 990 */ 991 int hid_parse_report(struct hid_device *hid, const __u8 *start, unsigned size) 992 { 993 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 994 if (!hid->dev_rdesc) 995 return -ENOMEM; 996 hid->dev_rsize = size; 997 return 0; 998 } 999 EXPORT_SYMBOL_GPL(hid_parse_report); 1000 1001 static const char * const hid_report_names[] = { 1002 "HID_INPUT_REPORT", 1003 "HID_OUTPUT_REPORT", 1004 "HID_FEATURE_REPORT", 1005 }; 1006 /** 1007 * hid_validate_values - validate existing device report's value indexes 1008 * 1009 * @hid: hid device 1010 * @type: which report type to examine 1011 * @id: which report ID to examine (0 for first) 1012 * @field_index: which report field to examine 1013 * @report_counts: expected number of values 1014 * 1015 * Validate the number of values in a given field of a given report, after 1016 * parsing. 1017 */ 1018 struct hid_report *hid_validate_values(struct hid_device *hid, 1019 enum hid_report_type type, unsigned int id, 1020 unsigned int field_index, 1021 unsigned int report_counts) 1022 { 1023 struct hid_report *report; 1024 1025 if (type > HID_FEATURE_REPORT) { 1026 hid_err(hid, "invalid HID report type %u\n", type); 1027 return NULL; 1028 } 1029 1030 if (id >= HID_MAX_IDS) { 1031 hid_err(hid, "invalid HID report id %u\n", id); 1032 return NULL; 1033 } 1034 1035 /* 1036 * Explicitly not using hid_get_report() here since it depends on 1037 * ->numbered being checked, which may not always be the case when 1038 * drivers go to access report values. 1039 */ 1040 if (id == 0) { 1041 /* 1042 * Validating on id 0 means we should examine the first 1043 * report in the list. 1044 */ 1045 report = list_first_entry_or_null( 1046 &hid->report_enum[type].report_list, 1047 struct hid_report, list); 1048 } else { 1049 report = hid->report_enum[type].report_id_hash[id]; 1050 } 1051 if (!report) { 1052 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 1053 return NULL; 1054 } 1055 if (report->maxfield <= field_index) { 1056 hid_err(hid, "not enough fields in %s %u\n", 1057 hid_report_names[type], id); 1058 return NULL; 1059 } 1060 if (report->field[field_index]->report_count < report_counts) { 1061 hid_err(hid, "not enough values in %s %u field %u\n", 1062 hid_report_names[type], id, field_index); 1063 return NULL; 1064 } 1065 return report; 1066 } 1067 EXPORT_SYMBOL_GPL(hid_validate_values); 1068 1069 static int hid_calculate_multiplier(struct hid_device *hid, 1070 struct hid_field *multiplier) 1071 { 1072 int m; 1073 __s32 v = *multiplier->value; 1074 __s32 lmin = multiplier->logical_minimum; 1075 __s32 lmax = multiplier->logical_maximum; 1076 __s32 pmin = multiplier->physical_minimum; 1077 __s32 pmax = multiplier->physical_maximum; 1078 1079 /* 1080 * "Because OS implementations will generally divide the control's 1081 * reported count by the Effective Resolution Multiplier, designers 1082 * should take care not to establish a potential Effective 1083 * Resolution Multiplier of zero." 1084 * HID Usage Table, v1.12, Section 4.3.1, p31 1085 */ 1086 if (lmax - lmin == 0) 1087 return 1; 1088 /* 1089 * Handling the unit exponent is left as an exercise to whoever 1090 * finds a device where that exponent is not 0. 1091 */ 1092 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 1093 if (unlikely(multiplier->unit_exponent != 0)) { 1094 hid_warn(hid, 1095 "unsupported Resolution Multiplier unit exponent %d\n", 1096 multiplier->unit_exponent); 1097 } 1098 1099 /* There are no devices with an effective multiplier > 255 */ 1100 if (unlikely(m == 0 || m > 255 || m < -255)) { 1101 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 1102 m = 1; 1103 } 1104 1105 return m; 1106 } 1107 1108 static void hid_apply_multiplier_to_field(struct hid_device *hid, 1109 struct hid_field *field, 1110 struct hid_collection *multiplier_collection, 1111 int effective_multiplier) 1112 { 1113 struct hid_collection *collection; 1114 struct hid_usage *usage; 1115 int i; 1116 1117 /* 1118 * If multiplier_collection is NULL, the multiplier applies 1119 * to all fields in the report. 1120 * Otherwise, it is the Logical Collection the multiplier applies to 1121 * but our field may be in a subcollection of that collection. 1122 */ 1123 for (i = 0; i < field->maxusage; i++) { 1124 usage = &field->usage[i]; 1125 1126 collection = &hid->collection[usage->collection_index]; 1127 while (collection->parent_idx != -1 && 1128 collection != multiplier_collection) 1129 collection = &hid->collection[collection->parent_idx]; 1130 1131 if (collection->parent_idx != -1 || 1132 multiplier_collection == NULL) 1133 usage->resolution_multiplier = effective_multiplier; 1134 1135 } 1136 } 1137 1138 static void hid_apply_multiplier(struct hid_device *hid, 1139 struct hid_field *multiplier) 1140 { 1141 struct hid_report_enum *rep_enum; 1142 struct hid_report *rep; 1143 struct hid_field *field; 1144 struct hid_collection *multiplier_collection; 1145 int effective_multiplier; 1146 int i; 1147 1148 /* 1149 * "The Resolution Multiplier control must be contained in the same 1150 * Logical Collection as the control(s) to which it is to be applied. 1151 * If no Resolution Multiplier is defined, then the Resolution 1152 * Multiplier defaults to 1. If more than one control exists in a 1153 * Logical Collection, the Resolution Multiplier is associated with 1154 * all controls in the collection. If no Logical Collection is 1155 * defined, the Resolution Multiplier is associated with all 1156 * controls in the report." 1157 * HID Usage Table, v1.12, Section 4.3.1, p30 1158 * 1159 * Thus, search from the current collection upwards until we find a 1160 * logical collection. Then search all fields for that same parent 1161 * collection. Those are the fields the multiplier applies to. 1162 * 1163 * If we have more than one multiplier, it will overwrite the 1164 * applicable fields later. 1165 */ 1166 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1167 while (multiplier_collection->parent_idx != -1 && 1168 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1169 multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; 1170 if (multiplier_collection->type != HID_COLLECTION_LOGICAL) 1171 multiplier_collection = NULL; 1172 1173 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1174 1175 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1176 list_for_each_entry(rep, &rep_enum->report_list, list) { 1177 for (i = 0; i < rep->maxfield; i++) { 1178 field = rep->field[i]; 1179 hid_apply_multiplier_to_field(hid, field, 1180 multiplier_collection, 1181 effective_multiplier); 1182 } 1183 } 1184 } 1185 1186 /* 1187 * hid_setup_resolution_multiplier - set up all resolution multipliers 1188 * 1189 * @device: hid device 1190 * 1191 * Search for all Resolution Multiplier Feature Reports and apply their 1192 * value to all matching Input items. This only updates the internal struct 1193 * fields. 1194 * 1195 * The Resolution Multiplier is applied by the hardware. If the multiplier 1196 * is anything other than 1, the hardware will send pre-multiplied events 1197 * so that the same physical interaction generates an accumulated 1198 * accumulated_value = value * * multiplier 1199 * This may be achieved by sending 1200 * - "value * multiplier" for each event, or 1201 * - "value" but "multiplier" times as frequently, or 1202 * - a combination of the above 1203 * The only guarantee is that the same physical interaction always generates 1204 * an accumulated 'value * multiplier'. 1205 * 1206 * This function must be called before any event processing and after 1207 * any SetRequest to the Resolution Multiplier. 1208 */ 1209 void hid_setup_resolution_multiplier(struct hid_device *hid) 1210 { 1211 struct hid_report_enum *rep_enum; 1212 struct hid_report *rep; 1213 struct hid_usage *usage; 1214 int i, j; 1215 1216 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1217 list_for_each_entry(rep, &rep_enum->report_list, list) { 1218 for (i = 0; i < rep->maxfield; i++) { 1219 /* Ignore if report count is out of bounds. */ 1220 if (rep->field[i]->report_count < 1) 1221 continue; 1222 1223 for (j = 0; j < rep->field[i]->maxusage; j++) { 1224 usage = &rep->field[i]->usage[j]; 1225 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1226 hid_apply_multiplier(hid, 1227 rep->field[i]); 1228 } 1229 } 1230 } 1231 } 1232 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1233 1234 /** 1235 * hid_open_report - open a driver-specific device report 1236 * 1237 * @device: hid device 1238 * 1239 * Parse a report description into a hid_device structure. Reports are 1240 * enumerated, fields are attached to these reports. 1241 * 0 returned on success, otherwise nonzero error value. 1242 * 1243 * This function (or the equivalent hid_parse() macro) should only be 1244 * called from probe() in drivers, before starting the device. 1245 */ 1246 int hid_open_report(struct hid_device *device) 1247 { 1248 struct hid_parser *parser; 1249 struct hid_item item; 1250 unsigned int size; 1251 const __u8 *start; 1252 const __u8 *end; 1253 const __u8 *next; 1254 int ret; 1255 int i; 1256 static int (*dispatch_type[])(struct hid_parser *parser, 1257 struct hid_item *item) = { 1258 hid_parser_main, 1259 hid_parser_global, 1260 hid_parser_local, 1261 hid_parser_reserved 1262 }; 1263 1264 if (WARN_ON(device->status & HID_STAT_PARSED)) 1265 return -EBUSY; 1266 1267 start = device->bpf_rdesc; 1268 if (WARN_ON(!start)) 1269 return -ENODEV; 1270 size = device->bpf_rsize; 1271 1272 if (device->driver->report_fixup) { 1273 /* 1274 * device->driver->report_fixup() needs to work 1275 * on a copy of our report descriptor so it can 1276 * change it. 1277 */ 1278 __u8 *buf = kmemdup(start, size, GFP_KERNEL); 1279 1280 if (buf == NULL) 1281 return -ENOMEM; 1282 1283 start = device->driver->report_fixup(device, buf, &size); 1284 1285 /* 1286 * The second kmemdup is required in case report_fixup() returns 1287 * a static read-only memory, but we have no idea if that memory 1288 * needs to be cleaned up or not at the end. 1289 */ 1290 start = kmemdup(start, size, GFP_KERNEL); 1291 kfree(buf); 1292 if (start == NULL) 1293 return -ENOMEM; 1294 } 1295 1296 device->rdesc = start; 1297 device->rsize = size; 1298 1299 parser = vzalloc(sizeof(struct hid_parser)); 1300 if (!parser) { 1301 ret = -ENOMEM; 1302 goto alloc_err; 1303 } 1304 1305 parser->device = device; 1306 1307 end = start + size; 1308 1309 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1310 sizeof(struct hid_collection), GFP_KERNEL); 1311 if (!device->collection) { 1312 ret = -ENOMEM; 1313 goto err; 1314 } 1315 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1316 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++) 1317 device->collection[i].parent_idx = -1; 1318 1319 ret = -EINVAL; 1320 while ((next = fetch_item(start, end, &item)) != NULL) { 1321 start = next; 1322 1323 if (item.format != HID_ITEM_FORMAT_SHORT) { 1324 hid_err(device, "unexpected long global item\n"); 1325 goto err; 1326 } 1327 1328 if (dispatch_type[item.type](parser, &item)) { 1329 hid_err(device, "item %u %u %u %u parsing failed\n", 1330 item.format, (unsigned)item.size, 1331 (unsigned)item.type, (unsigned)item.tag); 1332 goto err; 1333 } 1334 1335 if (start == end) { 1336 if (parser->collection_stack_ptr) { 1337 hid_err(device, "unbalanced collection at end of report description\n"); 1338 goto err; 1339 } 1340 if (parser->local.delimiter_depth) { 1341 hid_err(device, "unbalanced delimiter at end of report description\n"); 1342 goto err; 1343 } 1344 1345 /* 1346 * fetch initial values in case the device's 1347 * default multiplier isn't the recommended 1 1348 */ 1349 hid_setup_resolution_multiplier(device); 1350 1351 kfree(parser->collection_stack); 1352 vfree(parser); 1353 device->status |= HID_STAT_PARSED; 1354 1355 return 0; 1356 } 1357 } 1358 1359 hid_err(device, "item fetching failed at offset %u/%u\n", 1360 size - (unsigned int)(end - start), size); 1361 err: 1362 kfree(parser->collection_stack); 1363 alloc_err: 1364 vfree(parser); 1365 hid_close_report(device); 1366 return ret; 1367 } 1368 EXPORT_SYMBOL_GPL(hid_open_report); 1369 1370 /* 1371 * Extract/implement a data field from/to a little endian report (bit array). 1372 * 1373 * Code sort-of follows HID spec: 1374 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1375 * 1376 * While the USB HID spec allows unlimited length bit fields in "report 1377 * descriptors", most devices never use more than 16 bits. 1378 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1379 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1380 */ 1381 1382 static u32 __extract(u8 *report, unsigned offset, int n) 1383 { 1384 unsigned int idx = offset / 8; 1385 unsigned int bit_nr = 0; 1386 unsigned int bit_shift = offset % 8; 1387 int bits_to_copy = 8 - bit_shift; 1388 u32 value = 0; 1389 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1390 1391 while (n > 0) { 1392 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1393 n -= bits_to_copy; 1394 bit_nr += bits_to_copy; 1395 bits_to_copy = 8; 1396 bit_shift = 0; 1397 idx++; 1398 } 1399 1400 return value & mask; 1401 } 1402 1403 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1404 unsigned offset, unsigned n) 1405 { 1406 if (n > 32) { 1407 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n", 1408 __func__, n, current->comm); 1409 n = 32; 1410 } 1411 1412 return __extract(report, offset, n); 1413 } 1414 EXPORT_SYMBOL_GPL(hid_field_extract); 1415 1416 /* 1417 * "implement" : set bits in a little endian bit stream. 1418 * Same concepts as "extract" (see comments above). 1419 * The data mangled in the bit stream remains in little endian 1420 * order the whole time. It make more sense to talk about 1421 * endianness of register values by considering a register 1422 * a "cached" copy of the little endian bit stream. 1423 */ 1424 1425 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1426 { 1427 unsigned int idx = offset / 8; 1428 unsigned int bit_shift = offset % 8; 1429 int bits_to_set = 8 - bit_shift; 1430 1431 while (n - bits_to_set >= 0) { 1432 report[idx] &= ~(0xff << bit_shift); 1433 report[idx] |= value << bit_shift; 1434 value >>= bits_to_set; 1435 n -= bits_to_set; 1436 bits_to_set = 8; 1437 bit_shift = 0; 1438 idx++; 1439 } 1440 1441 /* last nibble */ 1442 if (n) { 1443 u8 bit_mask = ((1U << n) - 1); 1444 report[idx] &= ~(bit_mask << bit_shift); 1445 report[idx] |= value << bit_shift; 1446 } 1447 } 1448 1449 static void implement(const struct hid_device *hid, u8 *report, 1450 unsigned offset, unsigned n, u32 value) 1451 { 1452 if (unlikely(n > 32)) { 1453 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1454 __func__, n, current->comm); 1455 n = 32; 1456 } else if (n < 32) { 1457 u32 m = (1U << n) - 1; 1458 1459 if (unlikely(value > m)) { 1460 hid_warn(hid, 1461 "%s() called with too large value %d (n: %d)! (%s)\n", 1462 __func__, value, n, current->comm); 1463 value &= m; 1464 } 1465 } 1466 1467 __implement(report, offset, n, value); 1468 } 1469 1470 /* 1471 * Search an array for a value. 1472 */ 1473 1474 static int search(__s32 *array, __s32 value, unsigned n) 1475 { 1476 while (n--) { 1477 if (*array++ == value) 1478 return 0; 1479 } 1480 return -1; 1481 } 1482 1483 /** 1484 * hid_match_report - check if driver's raw_event should be called 1485 * 1486 * @hid: hid device 1487 * @report: hid report to match against 1488 * 1489 * compare hid->driver->report_table->report_type to report->type 1490 */ 1491 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1492 { 1493 const struct hid_report_id *id = hid->driver->report_table; 1494 1495 if (!id) /* NULL means all */ 1496 return 1; 1497 1498 for (; id->report_type != HID_TERMINATOR; id++) 1499 if (id->report_type == HID_ANY_ID || 1500 id->report_type == report->type) 1501 return 1; 1502 return 0; 1503 } 1504 1505 /** 1506 * hid_match_usage - check if driver's event should be called 1507 * 1508 * @hid: hid device 1509 * @usage: usage to match against 1510 * 1511 * compare hid->driver->usage_table->usage_{type,code} to 1512 * usage->usage_{type,code} 1513 */ 1514 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1515 { 1516 const struct hid_usage_id *id = hid->driver->usage_table; 1517 1518 if (!id) /* NULL means all */ 1519 return 1; 1520 1521 for (; id->usage_type != HID_ANY_ID - 1; id++) 1522 if ((id->usage_hid == HID_ANY_ID || 1523 id->usage_hid == usage->hid) && 1524 (id->usage_type == HID_ANY_ID || 1525 id->usage_type == usage->type) && 1526 (id->usage_code == HID_ANY_ID || 1527 id->usage_code == usage->code)) 1528 return 1; 1529 return 0; 1530 } 1531 1532 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1533 struct hid_usage *usage, __s32 value, int interrupt) 1534 { 1535 struct hid_driver *hdrv = hid->driver; 1536 int ret; 1537 1538 if (!list_empty(&hid->debug_list)) 1539 hid_dump_input(hid, usage, value); 1540 1541 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1542 ret = hdrv->event(hid, field, usage, value); 1543 if (ret != 0) { 1544 if (ret < 0) 1545 hid_err(hid, "%s's event failed with %d\n", 1546 hdrv->name, ret); 1547 return; 1548 } 1549 } 1550 1551 if (hid->claimed & HID_CLAIMED_INPUT) 1552 hidinput_hid_event(hid, field, usage, value); 1553 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1554 hid->hiddev_hid_event(hid, field, usage, value); 1555 } 1556 1557 /* 1558 * Checks if the given value is valid within this field 1559 */ 1560 static inline int hid_array_value_is_valid(struct hid_field *field, 1561 __s32 value) 1562 { 1563 __s32 min = field->logical_minimum; 1564 1565 /* 1566 * Value needs to be between logical min and max, and 1567 * (value - min) is used as an index in the usage array. 1568 * This array is of size field->maxusage 1569 */ 1570 return value >= min && 1571 value <= field->logical_maximum && 1572 value - min < field->maxusage; 1573 } 1574 1575 /* 1576 * Fetch the field from the data. The field content is stored for next 1577 * report processing (we do differential reporting to the layer). 1578 */ 1579 static void hid_input_fetch_field(struct hid_device *hid, 1580 struct hid_field *field, 1581 __u8 *data) 1582 { 1583 unsigned n; 1584 unsigned count = field->report_count; 1585 unsigned offset = field->report_offset; 1586 unsigned size = field->report_size; 1587 __s32 min = field->logical_minimum; 1588 __s32 *value; 1589 1590 value = field->new_value; 1591 memset(value, 0, count * sizeof(__s32)); 1592 field->ignored = false; 1593 1594 for (n = 0; n < count; n++) { 1595 1596 value[n] = min < 0 ? 1597 snto32(hid_field_extract(hid, data, offset + n * size, 1598 size), size) : 1599 hid_field_extract(hid, data, offset + n * size, size); 1600 1601 /* Ignore report if ErrorRollOver */ 1602 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1603 hid_array_value_is_valid(field, value[n]) && 1604 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) { 1605 field->ignored = true; 1606 return; 1607 } 1608 } 1609 } 1610 1611 /* 1612 * Process a received variable field. 1613 */ 1614 1615 static void hid_input_var_field(struct hid_device *hid, 1616 struct hid_field *field, 1617 int interrupt) 1618 { 1619 unsigned int count = field->report_count; 1620 __s32 *value = field->new_value; 1621 unsigned int n; 1622 1623 for (n = 0; n < count; n++) 1624 hid_process_event(hid, 1625 field, 1626 &field->usage[n], 1627 value[n], 1628 interrupt); 1629 1630 memcpy(field->value, value, count * sizeof(__s32)); 1631 } 1632 1633 /* 1634 * Process a received array field. The field content is stored for 1635 * next report processing (we do differential reporting to the layer). 1636 */ 1637 1638 static void hid_input_array_field(struct hid_device *hid, 1639 struct hid_field *field, 1640 int interrupt) 1641 { 1642 unsigned int n; 1643 unsigned int count = field->report_count; 1644 __s32 min = field->logical_minimum; 1645 __s32 *value; 1646 1647 value = field->new_value; 1648 1649 /* ErrorRollOver */ 1650 if (field->ignored) 1651 return; 1652 1653 for (n = 0; n < count; n++) { 1654 if (hid_array_value_is_valid(field, field->value[n]) && 1655 search(value, field->value[n], count)) 1656 hid_process_event(hid, 1657 field, 1658 &field->usage[field->value[n] - min], 1659 0, 1660 interrupt); 1661 1662 if (hid_array_value_is_valid(field, value[n]) && 1663 search(field->value, value[n], count)) 1664 hid_process_event(hid, 1665 field, 1666 &field->usage[value[n] - min], 1667 1, 1668 interrupt); 1669 } 1670 1671 memcpy(field->value, value, count * sizeof(__s32)); 1672 } 1673 1674 /* 1675 * Analyse a received report, and fetch the data from it. The field 1676 * content is stored for next report processing (we do differential 1677 * reporting to the layer). 1678 */ 1679 static void hid_process_report(struct hid_device *hid, 1680 struct hid_report *report, 1681 __u8 *data, 1682 int interrupt) 1683 { 1684 unsigned int a; 1685 struct hid_field_entry *entry; 1686 struct hid_field *field; 1687 1688 /* first retrieve all incoming values in data */ 1689 for (a = 0; a < report->maxfield; a++) 1690 hid_input_fetch_field(hid, report->field[a], data); 1691 1692 if (!list_empty(&report->field_entry_list)) { 1693 /* INPUT_REPORT, we have a priority list of fields */ 1694 list_for_each_entry(entry, 1695 &report->field_entry_list, 1696 list) { 1697 field = entry->field; 1698 1699 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1700 hid_process_event(hid, 1701 field, 1702 &field->usage[entry->index], 1703 field->new_value[entry->index], 1704 interrupt); 1705 else 1706 hid_input_array_field(hid, field, interrupt); 1707 } 1708 1709 /* we need to do the memcpy at the end for var items */ 1710 for (a = 0; a < report->maxfield; a++) { 1711 field = report->field[a]; 1712 1713 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1714 memcpy(field->value, field->new_value, 1715 field->report_count * sizeof(__s32)); 1716 } 1717 } else { 1718 /* FEATURE_REPORT, regular processing */ 1719 for (a = 0; a < report->maxfield; a++) { 1720 field = report->field[a]; 1721 1722 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1723 hid_input_var_field(hid, field, interrupt); 1724 else 1725 hid_input_array_field(hid, field, interrupt); 1726 } 1727 } 1728 } 1729 1730 /* 1731 * Insert a given usage_index in a field in the list 1732 * of processed usages in the report. 1733 * 1734 * The elements of lower priority score are processed 1735 * first. 1736 */ 1737 static void __hid_insert_field_entry(struct hid_device *hid, 1738 struct hid_report *report, 1739 struct hid_field_entry *entry, 1740 struct hid_field *field, 1741 unsigned int usage_index) 1742 { 1743 struct hid_field_entry *next; 1744 1745 entry->field = field; 1746 entry->index = usage_index; 1747 entry->priority = field->usages_priorities[usage_index]; 1748 1749 /* insert the element at the correct position */ 1750 list_for_each_entry(next, 1751 &report->field_entry_list, 1752 list) { 1753 /* 1754 * the priority of our element is strictly higher 1755 * than the next one, insert it before 1756 */ 1757 if (entry->priority > next->priority) { 1758 list_add_tail(&entry->list, &next->list); 1759 return; 1760 } 1761 } 1762 1763 /* lowest priority score: insert at the end */ 1764 list_add_tail(&entry->list, &report->field_entry_list); 1765 } 1766 1767 static void hid_report_process_ordering(struct hid_device *hid, 1768 struct hid_report *report) 1769 { 1770 struct hid_field *field; 1771 struct hid_field_entry *entries; 1772 unsigned int a, u, usages; 1773 unsigned int count = 0; 1774 1775 /* count the number of individual fields in the report */ 1776 for (a = 0; a < report->maxfield; a++) { 1777 field = report->field[a]; 1778 1779 if (field->flags & HID_MAIN_ITEM_VARIABLE) 1780 count += field->report_count; 1781 else 1782 count++; 1783 } 1784 1785 /* allocate the memory to process the fields */ 1786 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL); 1787 if (!entries) 1788 return; 1789 1790 report->field_entries = entries; 1791 1792 /* 1793 * walk through all fields in the report and 1794 * store them by priority order in report->field_entry_list 1795 * 1796 * - Var elements are individualized (field + usage_index) 1797 * - Arrays are taken as one, we can not chose an order for them 1798 */ 1799 usages = 0; 1800 for (a = 0; a < report->maxfield; a++) { 1801 field = report->field[a]; 1802 1803 if (field->flags & HID_MAIN_ITEM_VARIABLE) { 1804 for (u = 0; u < field->report_count; u++) { 1805 __hid_insert_field_entry(hid, report, 1806 &entries[usages], 1807 field, u); 1808 usages++; 1809 } 1810 } else { 1811 __hid_insert_field_entry(hid, report, &entries[usages], 1812 field, 0); 1813 usages++; 1814 } 1815 } 1816 } 1817 1818 static void hid_process_ordering(struct hid_device *hid) 1819 { 1820 struct hid_report *report; 1821 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT]; 1822 1823 list_for_each_entry(report, &report_enum->report_list, list) 1824 hid_report_process_ordering(hid, report); 1825 } 1826 1827 /* 1828 * Output the field into the report. 1829 */ 1830 1831 static void hid_output_field(const struct hid_device *hid, 1832 struct hid_field *field, __u8 *data) 1833 { 1834 unsigned count = field->report_count; 1835 unsigned offset = field->report_offset; 1836 unsigned size = field->report_size; 1837 unsigned n; 1838 1839 for (n = 0; n < count; n++) { 1840 if (field->logical_minimum < 0) /* signed values */ 1841 implement(hid, data, offset + n * size, size, 1842 s32ton(field->value[n], size)); 1843 else /* unsigned values */ 1844 implement(hid, data, offset + n * size, size, 1845 field->value[n]); 1846 } 1847 } 1848 1849 /* 1850 * Compute the size of a report. 1851 */ 1852 static size_t hid_compute_report_size(struct hid_report *report) 1853 { 1854 if (report->size) 1855 return ((report->size - 1) >> 3) + 1; 1856 1857 return 0; 1858 } 1859 1860 /* 1861 * Create a report. 'data' has to be allocated using 1862 * hid_alloc_report_buf() so that it has proper size. 1863 */ 1864 1865 void hid_output_report(struct hid_report *report, __u8 *data) 1866 { 1867 unsigned n; 1868 1869 if (report->id > 0) 1870 *data++ = report->id; 1871 1872 memset(data, 0, hid_compute_report_size(report)); 1873 for (n = 0; n < report->maxfield; n++) 1874 hid_output_field(report->device, report->field[n], data); 1875 } 1876 EXPORT_SYMBOL_GPL(hid_output_report); 1877 1878 /* 1879 * Allocator for buffer that is going to be passed to hid_output_report() 1880 */ 1881 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1882 { 1883 /* 1884 * 7 extra bytes are necessary to achieve proper functionality 1885 * of implement() working on 8 byte chunks 1886 * 1 extra byte for the report ID if it is null (not used) so 1887 * we can reserve that extra byte in the first position of the buffer 1888 * when sending it to .raw_request() 1889 */ 1890 1891 u32 len = hid_report_len(report) + 7 + (report->id == 0); 1892 1893 return kzalloc(len, flags); 1894 } 1895 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1896 1897 /* 1898 * Set a field value. The report this field belongs to has to be 1899 * created and transferred to the device, to set this value in the 1900 * device. 1901 */ 1902 1903 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1904 { 1905 unsigned size; 1906 1907 if (!field) 1908 return -1; 1909 1910 size = field->report_size; 1911 1912 hid_dump_input(field->report->device, field->usage + offset, value); 1913 1914 if (offset >= field->report_count) { 1915 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1916 offset, field->report_count); 1917 return -1; 1918 } 1919 if (field->logical_minimum < 0) { 1920 if (value != snto32(s32ton(value, size), size)) { 1921 hid_err(field->report->device, "value %d is out of range\n", value); 1922 return -1; 1923 } 1924 } 1925 field->value[offset] = value; 1926 return 0; 1927 } 1928 EXPORT_SYMBOL_GPL(hid_set_field); 1929 1930 struct hid_field *hid_find_field(struct hid_device *hdev, unsigned int report_type, 1931 unsigned int application, unsigned int usage) 1932 { 1933 struct list_head *report_list = &hdev->report_enum[report_type].report_list; 1934 struct hid_report *report; 1935 int i, j; 1936 1937 list_for_each_entry(report, report_list, list) { 1938 if (report->application != application) 1939 continue; 1940 1941 for (i = 0; i < report->maxfield; i++) { 1942 struct hid_field *field = report->field[i]; 1943 1944 for (j = 0; j < field->maxusage; j++) { 1945 if (field->usage[j].hid == usage) 1946 return field; 1947 } 1948 } 1949 } 1950 1951 return NULL; 1952 } 1953 EXPORT_SYMBOL_GPL(hid_find_field); 1954 1955 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1956 const u8 *data) 1957 { 1958 struct hid_report *report; 1959 unsigned int n = 0; /* Normally report number is 0 */ 1960 1961 /* Device uses numbered reports, data[0] is report number */ 1962 if (report_enum->numbered) 1963 n = *data; 1964 1965 report = report_enum->report_id_hash[n]; 1966 if (report == NULL) 1967 dbg_hid("undefined report_id %u received\n", n); 1968 1969 return report; 1970 } 1971 1972 /* 1973 * Implement a generic .request() callback, using .raw_request() 1974 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1975 */ 1976 int __hid_request(struct hid_device *hid, struct hid_report *report, 1977 enum hid_class_request reqtype) 1978 { 1979 char *buf, *data_buf; 1980 int ret; 1981 u32 len; 1982 1983 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1984 if (!buf) 1985 return -ENOMEM; 1986 1987 data_buf = buf; 1988 len = hid_report_len(report); 1989 1990 if (report->id == 0) { 1991 /* reserve the first byte for the report ID */ 1992 data_buf++; 1993 len++; 1994 } 1995 1996 if (reqtype == HID_REQ_SET_REPORT) 1997 hid_output_report(report, data_buf); 1998 1999 ret = hid_hw_raw_request(hid, report->id, buf, len, report->type, reqtype); 2000 if (ret < 0) { 2001 dbg_hid("unable to complete request: %d\n", ret); 2002 goto out; 2003 } 2004 2005 if (reqtype == HID_REQ_GET_REPORT) 2006 hid_input_report(hid, report->type, buf, ret, 0); 2007 2008 ret = 0; 2009 2010 out: 2011 kfree(buf); 2012 return ret; 2013 } 2014 EXPORT_SYMBOL_GPL(__hid_request); 2015 2016 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, 2017 int interrupt) 2018 { 2019 struct hid_report_enum *report_enum = hid->report_enum + type; 2020 struct hid_report *report; 2021 struct hid_driver *hdrv; 2022 int max_buffer_size = HID_MAX_BUFFER_SIZE; 2023 u32 rsize, csize = size; 2024 u8 *cdata = data; 2025 int ret = 0; 2026 2027 report = hid_get_report(report_enum, data); 2028 if (!report) 2029 goto out; 2030 2031 if (report_enum->numbered) { 2032 cdata++; 2033 csize--; 2034 } 2035 2036 rsize = hid_compute_report_size(report); 2037 2038 if (hid->ll_driver->max_buffer_size) 2039 max_buffer_size = hid->ll_driver->max_buffer_size; 2040 2041 if (report_enum->numbered && rsize >= max_buffer_size) 2042 rsize = max_buffer_size - 1; 2043 else if (rsize > max_buffer_size) 2044 rsize = max_buffer_size; 2045 2046 if (csize < rsize) { 2047 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 2048 csize, rsize); 2049 memset(cdata + csize, 0, rsize - csize); 2050 } 2051 2052 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 2053 hid->hiddev_report_event(hid, report); 2054 if (hid->claimed & HID_CLAIMED_HIDRAW) { 2055 ret = hidraw_report_event(hid, data, size); 2056 if (ret) 2057 goto out; 2058 } 2059 2060 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 2061 hid_process_report(hid, report, cdata, interrupt); 2062 hdrv = hid->driver; 2063 if (hdrv && hdrv->report) 2064 hdrv->report(hid, report); 2065 } 2066 2067 if (hid->claimed & HID_CLAIMED_INPUT) 2068 hidinput_report_event(hid, report); 2069 out: 2070 return ret; 2071 } 2072 EXPORT_SYMBOL_GPL(hid_report_raw_event); 2073 2074 2075 static int __hid_input_report(struct hid_device *hid, enum hid_report_type type, 2076 u8 *data, u32 size, int interrupt, u64 source, bool from_bpf, 2077 bool lock_already_taken) 2078 { 2079 struct hid_report_enum *report_enum; 2080 struct hid_driver *hdrv; 2081 struct hid_report *report; 2082 int ret = 0; 2083 2084 if (!hid) 2085 return -ENODEV; 2086 2087 ret = down_trylock(&hid->driver_input_lock); 2088 if (lock_already_taken && !ret) { 2089 up(&hid->driver_input_lock); 2090 return -EINVAL; 2091 } else if (!lock_already_taken && ret) { 2092 return -EBUSY; 2093 } 2094 2095 if (!hid->driver) { 2096 ret = -ENODEV; 2097 goto unlock; 2098 } 2099 report_enum = hid->report_enum + type; 2100 hdrv = hid->driver; 2101 2102 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt, source, from_bpf); 2103 if (IS_ERR(data)) { 2104 ret = PTR_ERR(data); 2105 goto unlock; 2106 } 2107 2108 if (!size) { 2109 dbg_hid("empty report\n"); 2110 ret = -1; 2111 goto unlock; 2112 } 2113 2114 /* Avoid unnecessary overhead if debugfs is disabled */ 2115 if (!list_empty(&hid->debug_list)) 2116 hid_dump_report(hid, type, data, size); 2117 2118 report = hid_get_report(report_enum, data); 2119 2120 if (!report) { 2121 ret = -1; 2122 goto unlock; 2123 } 2124 2125 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 2126 ret = hdrv->raw_event(hid, report, data, size); 2127 if (ret < 0) 2128 goto unlock; 2129 } 2130 2131 ret = hid_report_raw_event(hid, type, data, size, interrupt); 2132 2133 unlock: 2134 if (!lock_already_taken) 2135 up(&hid->driver_input_lock); 2136 return ret; 2137 } 2138 2139 /** 2140 * hid_input_report - report data from lower layer (usb, bt...) 2141 * 2142 * @hid: hid device 2143 * @type: HID report type (HID_*_REPORT) 2144 * @data: report contents 2145 * @size: size of data parameter 2146 * @interrupt: distinguish between interrupt and control transfers 2147 * 2148 * This is data entry for lower layers. 2149 */ 2150 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size, 2151 int interrupt) 2152 { 2153 return __hid_input_report(hid, type, data, size, interrupt, 0, 2154 false, /* from_bpf */ 2155 false /* lock_already_taken */); 2156 } 2157 EXPORT_SYMBOL_GPL(hid_input_report); 2158 2159 bool hid_match_one_id(const struct hid_device *hdev, 2160 const struct hid_device_id *id) 2161 { 2162 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 2163 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 2164 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 2165 (id->product == HID_ANY_ID || id->product == hdev->product); 2166 } 2167 2168 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 2169 const struct hid_device_id *id) 2170 { 2171 for (; id->bus; id++) 2172 if (hid_match_one_id(hdev, id)) 2173 return id; 2174 2175 return NULL; 2176 } 2177 EXPORT_SYMBOL_GPL(hid_match_id); 2178 2179 static const struct hid_device_id hid_hiddev_list[] = { 2180 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 2181 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 2182 { } 2183 }; 2184 2185 static bool hid_hiddev(struct hid_device *hdev) 2186 { 2187 return !!hid_match_id(hdev, hid_hiddev_list); 2188 } 2189 2190 2191 static ssize_t 2192 report_descriptor_read(struct file *filp, struct kobject *kobj, 2193 const struct bin_attribute *attr, 2194 char *buf, loff_t off, size_t count) 2195 { 2196 struct device *dev = kobj_to_dev(kobj); 2197 struct hid_device *hdev = to_hid_device(dev); 2198 2199 if (off >= hdev->rsize) 2200 return 0; 2201 2202 if (off + count > hdev->rsize) 2203 count = hdev->rsize - off; 2204 2205 memcpy(buf, hdev->rdesc + off, count); 2206 2207 return count; 2208 } 2209 2210 static ssize_t 2211 country_show(struct device *dev, struct device_attribute *attr, 2212 char *buf) 2213 { 2214 struct hid_device *hdev = to_hid_device(dev); 2215 2216 return sprintf(buf, "%02x\n", hdev->country & 0xff); 2217 } 2218 2219 static const BIN_ATTR_RO(report_descriptor, HID_MAX_DESCRIPTOR_SIZE); 2220 2221 static const DEVICE_ATTR_RO(country); 2222 2223 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 2224 { 2225 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 2226 "Joystick", "Gamepad", "Keyboard", "Keypad", 2227 "Multi-Axis Controller" 2228 }; 2229 const char *type, *bus; 2230 char buf[64] = ""; 2231 unsigned int i; 2232 int len; 2233 int ret; 2234 2235 ret = hid_bpf_connect_device(hdev); 2236 if (ret) 2237 return ret; 2238 2239 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 2240 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 2241 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 2242 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 2243 if (hdev->bus != BUS_USB) 2244 connect_mask &= ~HID_CONNECT_HIDDEV; 2245 if (hid_hiddev(hdev)) 2246 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 2247 2248 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 2249 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 2250 hdev->claimed |= HID_CLAIMED_INPUT; 2251 2252 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 2253 !hdev->hiddev_connect(hdev, 2254 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 2255 hdev->claimed |= HID_CLAIMED_HIDDEV; 2256 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 2257 hdev->claimed |= HID_CLAIMED_HIDRAW; 2258 2259 if (connect_mask & HID_CONNECT_DRIVER) 2260 hdev->claimed |= HID_CLAIMED_DRIVER; 2261 2262 /* Drivers with the ->raw_event callback set are not required to connect 2263 * to any other listener. */ 2264 if (!hdev->claimed && !hdev->driver->raw_event) { 2265 hid_err(hdev, "device has no listeners, quitting\n"); 2266 return -ENODEV; 2267 } 2268 2269 hid_process_ordering(hdev); 2270 2271 if ((hdev->claimed & HID_CLAIMED_INPUT) && 2272 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 2273 hdev->ff_init(hdev); 2274 2275 len = 0; 2276 if (hdev->claimed & HID_CLAIMED_INPUT) 2277 len += sprintf(buf + len, "input"); 2278 if (hdev->claimed & HID_CLAIMED_HIDDEV) 2279 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 2280 ((struct hiddev *)hdev->hiddev)->minor); 2281 if (hdev->claimed & HID_CLAIMED_HIDRAW) 2282 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 2283 ((struct hidraw *)hdev->hidraw)->minor); 2284 2285 type = "Device"; 2286 for (i = 0; i < hdev->maxcollection; i++) { 2287 struct hid_collection *col = &hdev->collection[i]; 2288 if (col->type == HID_COLLECTION_APPLICATION && 2289 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 2290 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 2291 type = types[col->usage & 0xffff]; 2292 break; 2293 } 2294 } 2295 2296 switch (hdev->bus) { 2297 case BUS_USB: 2298 bus = "USB"; 2299 break; 2300 case BUS_BLUETOOTH: 2301 bus = "BLUETOOTH"; 2302 break; 2303 case BUS_I2C: 2304 bus = "I2C"; 2305 break; 2306 case BUS_VIRTUAL: 2307 bus = "VIRTUAL"; 2308 break; 2309 case BUS_INTEL_ISHTP: 2310 case BUS_AMD_SFH: 2311 bus = "SENSOR HUB"; 2312 break; 2313 default: 2314 bus = "<UNKNOWN>"; 2315 } 2316 2317 ret = device_create_file(&hdev->dev, &dev_attr_country); 2318 if (ret) 2319 hid_warn(hdev, 2320 "can't create sysfs country code attribute err: %d\n", ret); 2321 2322 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 2323 buf, bus, hdev->version >> 8, hdev->version & 0xff, 2324 type, hdev->name, hdev->phys); 2325 2326 return 0; 2327 } 2328 EXPORT_SYMBOL_GPL(hid_connect); 2329 2330 void hid_disconnect(struct hid_device *hdev) 2331 { 2332 device_remove_file(&hdev->dev, &dev_attr_country); 2333 if (hdev->claimed & HID_CLAIMED_INPUT) 2334 hidinput_disconnect(hdev); 2335 if (hdev->claimed & HID_CLAIMED_HIDDEV) 2336 hdev->hiddev_disconnect(hdev); 2337 if (hdev->claimed & HID_CLAIMED_HIDRAW) 2338 hidraw_disconnect(hdev); 2339 hdev->claimed = 0; 2340 2341 hid_bpf_disconnect_device(hdev); 2342 } 2343 EXPORT_SYMBOL_GPL(hid_disconnect); 2344 2345 /** 2346 * hid_hw_start - start underlying HW 2347 * @hdev: hid device 2348 * @connect_mask: which outputs to connect, see HID_CONNECT_* 2349 * 2350 * Call this in probe function *after* hid_parse. This will setup HW 2351 * buffers and start the device (if not defeirred to device open). 2352 * hid_hw_stop must be called if this was successful. 2353 */ 2354 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 2355 { 2356 int error; 2357 2358 error = hdev->ll_driver->start(hdev); 2359 if (error) 2360 return error; 2361 2362 if (connect_mask) { 2363 error = hid_connect(hdev, connect_mask); 2364 if (error) { 2365 hdev->ll_driver->stop(hdev); 2366 return error; 2367 } 2368 } 2369 2370 return 0; 2371 } 2372 EXPORT_SYMBOL_GPL(hid_hw_start); 2373 2374 /** 2375 * hid_hw_stop - stop underlying HW 2376 * @hdev: hid device 2377 * 2378 * This is usually called from remove function or from probe when something 2379 * failed and hid_hw_start was called already. 2380 */ 2381 void hid_hw_stop(struct hid_device *hdev) 2382 { 2383 hid_disconnect(hdev); 2384 hdev->ll_driver->stop(hdev); 2385 } 2386 EXPORT_SYMBOL_GPL(hid_hw_stop); 2387 2388 /** 2389 * hid_hw_open - signal underlying HW to start delivering events 2390 * @hdev: hid device 2391 * 2392 * Tell underlying HW to start delivering events from the device. 2393 * This function should be called sometime after successful call 2394 * to hid_hw_start(). 2395 */ 2396 int hid_hw_open(struct hid_device *hdev) 2397 { 2398 int ret; 2399 2400 ret = mutex_lock_killable(&hdev->ll_open_lock); 2401 if (ret) 2402 return ret; 2403 2404 if (!hdev->ll_open_count++) { 2405 ret = hdev->ll_driver->open(hdev); 2406 if (ret) 2407 hdev->ll_open_count--; 2408 2409 if (hdev->driver->on_hid_hw_open) 2410 hdev->driver->on_hid_hw_open(hdev); 2411 } 2412 2413 mutex_unlock(&hdev->ll_open_lock); 2414 return ret; 2415 } 2416 EXPORT_SYMBOL_GPL(hid_hw_open); 2417 2418 /** 2419 * hid_hw_close - signal underlaying HW to stop delivering events 2420 * 2421 * @hdev: hid device 2422 * 2423 * This function indicates that we are not interested in the events 2424 * from this device anymore. Delivery of events may or may not stop, 2425 * depending on the number of users still outstanding. 2426 */ 2427 void hid_hw_close(struct hid_device *hdev) 2428 { 2429 mutex_lock(&hdev->ll_open_lock); 2430 if (!--hdev->ll_open_count) { 2431 hdev->ll_driver->close(hdev); 2432 2433 if (hdev->driver->on_hid_hw_close) 2434 hdev->driver->on_hid_hw_close(hdev); 2435 } 2436 mutex_unlock(&hdev->ll_open_lock); 2437 } 2438 EXPORT_SYMBOL_GPL(hid_hw_close); 2439 2440 /** 2441 * hid_hw_request - send report request to device 2442 * 2443 * @hdev: hid device 2444 * @report: report to send 2445 * @reqtype: hid request type 2446 */ 2447 void hid_hw_request(struct hid_device *hdev, 2448 struct hid_report *report, enum hid_class_request reqtype) 2449 { 2450 if (hdev->ll_driver->request) 2451 return hdev->ll_driver->request(hdev, report, reqtype); 2452 2453 __hid_request(hdev, report, reqtype); 2454 } 2455 EXPORT_SYMBOL_GPL(hid_hw_request); 2456 2457 int __hid_hw_raw_request(struct hid_device *hdev, 2458 unsigned char reportnum, __u8 *buf, 2459 size_t len, enum hid_report_type rtype, 2460 enum hid_class_request reqtype, 2461 u64 source, bool from_bpf) 2462 { 2463 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 2464 int ret; 2465 2466 if (hdev->ll_driver->max_buffer_size) 2467 max_buffer_size = hdev->ll_driver->max_buffer_size; 2468 2469 if (len < 1 || len > max_buffer_size || !buf) 2470 return -EINVAL; 2471 2472 ret = dispatch_hid_bpf_raw_requests(hdev, reportnum, buf, len, rtype, 2473 reqtype, source, from_bpf); 2474 if (ret) 2475 return ret; 2476 2477 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len, 2478 rtype, reqtype); 2479 } 2480 2481 /** 2482 * hid_hw_raw_request - send report request to device 2483 * 2484 * @hdev: hid device 2485 * @reportnum: report ID 2486 * @buf: in/out data to transfer 2487 * @len: length of buf 2488 * @rtype: HID report type 2489 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT 2490 * 2491 * Return: count of data transferred, negative if error 2492 * 2493 * Same behavior as hid_hw_request, but with raw buffers instead. 2494 */ 2495 int hid_hw_raw_request(struct hid_device *hdev, 2496 unsigned char reportnum, __u8 *buf, 2497 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype) 2498 { 2499 return __hid_hw_raw_request(hdev, reportnum, buf, len, rtype, reqtype, 0, false); 2500 } 2501 EXPORT_SYMBOL_GPL(hid_hw_raw_request); 2502 2503 int __hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len, u64 source, 2504 bool from_bpf) 2505 { 2506 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE; 2507 int ret; 2508 2509 if (hdev->ll_driver->max_buffer_size) 2510 max_buffer_size = hdev->ll_driver->max_buffer_size; 2511 2512 if (len < 1 || len > max_buffer_size || !buf) 2513 return -EINVAL; 2514 2515 ret = dispatch_hid_bpf_output_report(hdev, buf, len, source, from_bpf); 2516 if (ret) 2517 return ret; 2518 2519 if (hdev->ll_driver->output_report) 2520 return hdev->ll_driver->output_report(hdev, buf, len); 2521 2522 return -ENOSYS; 2523 } 2524 2525 /** 2526 * hid_hw_output_report - send output report to device 2527 * 2528 * @hdev: hid device 2529 * @buf: raw data to transfer 2530 * @len: length of buf 2531 * 2532 * Return: count of data transferred, negative if error 2533 */ 2534 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len) 2535 { 2536 return __hid_hw_output_report(hdev, buf, len, 0, false); 2537 } 2538 EXPORT_SYMBOL_GPL(hid_hw_output_report); 2539 2540 #ifdef CONFIG_PM 2541 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state) 2542 { 2543 if (hdev->driver && hdev->driver->suspend) 2544 return hdev->driver->suspend(hdev, state); 2545 2546 return 0; 2547 } 2548 EXPORT_SYMBOL_GPL(hid_driver_suspend); 2549 2550 int hid_driver_reset_resume(struct hid_device *hdev) 2551 { 2552 if (hdev->driver && hdev->driver->reset_resume) 2553 return hdev->driver->reset_resume(hdev); 2554 2555 return 0; 2556 } 2557 EXPORT_SYMBOL_GPL(hid_driver_reset_resume); 2558 2559 int hid_driver_resume(struct hid_device *hdev) 2560 { 2561 if (hdev->driver && hdev->driver->resume) 2562 return hdev->driver->resume(hdev); 2563 2564 return 0; 2565 } 2566 EXPORT_SYMBOL_GPL(hid_driver_resume); 2567 #endif /* CONFIG_PM */ 2568 2569 struct hid_dynid { 2570 struct list_head list; 2571 struct hid_device_id id; 2572 }; 2573 2574 /** 2575 * new_id_store - add a new HID device ID to this driver and re-probe devices 2576 * @drv: target device driver 2577 * @buf: buffer for scanning device ID data 2578 * @count: input size 2579 * 2580 * Adds a new dynamic hid device ID to this driver, 2581 * and causes the driver to probe for all devices again. 2582 */ 2583 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2584 size_t count) 2585 { 2586 struct hid_driver *hdrv = to_hid_driver(drv); 2587 struct hid_dynid *dynid; 2588 __u32 bus, vendor, product; 2589 unsigned long driver_data = 0; 2590 int ret; 2591 2592 ret = sscanf(buf, "%x %x %x %lx", 2593 &bus, &vendor, &product, &driver_data); 2594 if (ret < 3) 2595 return -EINVAL; 2596 2597 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2598 if (!dynid) 2599 return -ENOMEM; 2600 2601 dynid->id.bus = bus; 2602 dynid->id.group = HID_GROUP_ANY; 2603 dynid->id.vendor = vendor; 2604 dynid->id.product = product; 2605 dynid->id.driver_data = driver_data; 2606 2607 spin_lock(&hdrv->dyn_lock); 2608 list_add_tail(&dynid->list, &hdrv->dyn_list); 2609 spin_unlock(&hdrv->dyn_lock); 2610 2611 ret = driver_attach(&hdrv->driver); 2612 2613 return ret ? : count; 2614 } 2615 static DRIVER_ATTR_WO(new_id); 2616 2617 static struct attribute *hid_drv_attrs[] = { 2618 &driver_attr_new_id.attr, 2619 NULL, 2620 }; 2621 ATTRIBUTE_GROUPS(hid_drv); 2622 2623 static void hid_free_dynids(struct hid_driver *hdrv) 2624 { 2625 struct hid_dynid *dynid, *n; 2626 2627 spin_lock(&hdrv->dyn_lock); 2628 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2629 list_del(&dynid->list); 2630 kfree(dynid); 2631 } 2632 spin_unlock(&hdrv->dyn_lock); 2633 } 2634 2635 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2636 struct hid_driver *hdrv) 2637 { 2638 struct hid_dynid *dynid; 2639 2640 spin_lock(&hdrv->dyn_lock); 2641 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2642 if (hid_match_one_id(hdev, &dynid->id)) { 2643 spin_unlock(&hdrv->dyn_lock); 2644 return &dynid->id; 2645 } 2646 } 2647 spin_unlock(&hdrv->dyn_lock); 2648 2649 return hid_match_id(hdev, hdrv->id_table); 2650 } 2651 EXPORT_SYMBOL_GPL(hid_match_device); 2652 2653 static int hid_bus_match(struct device *dev, const struct device_driver *drv) 2654 { 2655 struct hid_driver *hdrv = to_hid_driver(drv); 2656 struct hid_device *hdev = to_hid_device(dev); 2657 2658 return hid_match_device(hdev, hdrv) != NULL; 2659 } 2660 2661 /** 2662 * hid_compare_device_paths - check if both devices share the same path 2663 * @hdev_a: hid device 2664 * @hdev_b: hid device 2665 * @separator: char to use as separator 2666 * 2667 * Check if two devices share the same path up to the last occurrence of 2668 * the separator char. Both paths must exist (i.e., zero-length paths 2669 * don't match). 2670 */ 2671 bool hid_compare_device_paths(struct hid_device *hdev_a, 2672 struct hid_device *hdev_b, char separator) 2673 { 2674 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2675 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2676 2677 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2678 return false; 2679 2680 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2681 } 2682 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2683 2684 static bool hid_check_device_match(struct hid_device *hdev, 2685 struct hid_driver *hdrv, 2686 const struct hid_device_id **id) 2687 { 2688 *id = hid_match_device(hdev, hdrv); 2689 if (!*id) 2690 return false; 2691 2692 if (hdrv->match) 2693 return hdrv->match(hdev, hid_ignore_special_drivers); 2694 2695 /* 2696 * hid-generic implements .match(), so we must be dealing with a 2697 * different HID driver here, and can simply check if 2698 * hid_ignore_special_drivers or HID_QUIRK_IGNORE_SPECIAL_DRIVER 2699 * are set or not. 2700 */ 2701 return !hid_ignore_special_drivers && !(hdev->quirks & HID_QUIRK_IGNORE_SPECIAL_DRIVER); 2702 } 2703 2704 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv) 2705 { 2706 const struct hid_device_id *id; 2707 int ret; 2708 2709 if (!hdev->bpf_rsize) { 2710 /* in case a bpf program gets detached, we need to free the old one */ 2711 hid_free_bpf_rdesc(hdev); 2712 2713 /* keep this around so we know we called it once */ 2714 hdev->bpf_rsize = hdev->dev_rsize; 2715 2716 /* call_hid_bpf_rdesc_fixup will always return a valid pointer */ 2717 hdev->bpf_rdesc = call_hid_bpf_rdesc_fixup(hdev, hdev->dev_rdesc, 2718 &hdev->bpf_rsize); 2719 } 2720 2721 if (!hid_check_device_match(hdev, hdrv, &id)) 2722 return -ENODEV; 2723 2724 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL); 2725 if (!hdev->devres_group_id) 2726 return -ENOMEM; 2727 2728 /* reset the quirks that has been previously set */ 2729 hdev->quirks = hid_lookup_quirk(hdev); 2730 hdev->driver = hdrv; 2731 2732 if (hdrv->probe) { 2733 ret = hdrv->probe(hdev, id); 2734 } else { /* default probe */ 2735 ret = hid_open_report(hdev); 2736 if (!ret) 2737 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2738 } 2739 2740 /* 2741 * Note that we are not closing the devres group opened above so 2742 * even resources that were attached to the device after probe is 2743 * run are released when hid_device_remove() is executed. This is 2744 * needed as some drivers would allocate additional resources, 2745 * for example when updating firmware. 2746 */ 2747 2748 if (ret) { 2749 devres_release_group(&hdev->dev, hdev->devres_group_id); 2750 hid_close_report(hdev); 2751 hdev->driver = NULL; 2752 } 2753 2754 return ret; 2755 } 2756 2757 static int hid_device_probe(struct device *dev) 2758 { 2759 struct hid_device *hdev = to_hid_device(dev); 2760 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2761 int ret = 0; 2762 2763 if (down_interruptible(&hdev->driver_input_lock)) 2764 return -EINTR; 2765 2766 hdev->io_started = false; 2767 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2768 2769 if (!hdev->driver) 2770 ret = __hid_device_probe(hdev, hdrv); 2771 2772 if (!hdev->io_started) 2773 up(&hdev->driver_input_lock); 2774 2775 return ret; 2776 } 2777 2778 static void hid_device_remove(struct device *dev) 2779 { 2780 struct hid_device *hdev = to_hid_device(dev); 2781 struct hid_driver *hdrv; 2782 2783 down(&hdev->driver_input_lock); 2784 hdev->io_started = false; 2785 2786 hdrv = hdev->driver; 2787 if (hdrv) { 2788 if (hdrv->remove) 2789 hdrv->remove(hdev); 2790 else /* default remove */ 2791 hid_hw_stop(hdev); 2792 2793 /* Release all devres resources allocated by the driver */ 2794 devres_release_group(&hdev->dev, hdev->devres_group_id); 2795 2796 hid_close_report(hdev); 2797 hdev->driver = NULL; 2798 } 2799 2800 if (!hdev->io_started) 2801 up(&hdev->driver_input_lock); 2802 } 2803 2804 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2805 char *buf) 2806 { 2807 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2808 2809 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2810 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2811 } 2812 static DEVICE_ATTR_RO(modalias); 2813 2814 static struct attribute *hid_dev_attrs[] = { 2815 &dev_attr_modalias.attr, 2816 NULL, 2817 }; 2818 static const struct bin_attribute *hid_dev_bin_attrs[] = { 2819 &bin_attr_report_descriptor, 2820 NULL 2821 }; 2822 static const struct attribute_group hid_dev_group = { 2823 .attrs = hid_dev_attrs, 2824 .bin_attrs_new = hid_dev_bin_attrs, 2825 }; 2826 __ATTRIBUTE_GROUPS(hid_dev); 2827 2828 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env) 2829 { 2830 const struct hid_device *hdev = to_hid_device(dev); 2831 2832 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2833 hdev->bus, hdev->vendor, hdev->product)) 2834 return -ENOMEM; 2835 2836 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2837 return -ENOMEM; 2838 2839 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2840 return -ENOMEM; 2841 2842 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2843 return -ENOMEM; 2844 2845 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2846 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2847 return -ENOMEM; 2848 2849 return 0; 2850 } 2851 2852 const struct bus_type hid_bus_type = { 2853 .name = "hid", 2854 .dev_groups = hid_dev_groups, 2855 .drv_groups = hid_drv_groups, 2856 .match = hid_bus_match, 2857 .probe = hid_device_probe, 2858 .remove = hid_device_remove, 2859 .uevent = hid_uevent, 2860 }; 2861 EXPORT_SYMBOL(hid_bus_type); 2862 2863 int hid_add_device(struct hid_device *hdev) 2864 { 2865 static atomic_t id = ATOMIC_INIT(0); 2866 int ret; 2867 2868 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2869 return -EBUSY; 2870 2871 hdev->quirks = hid_lookup_quirk(hdev); 2872 2873 /* we need to kill them here, otherwise they will stay allocated to 2874 * wait for coming driver */ 2875 if (hid_ignore(hdev)) 2876 return -ENODEV; 2877 2878 /* 2879 * Check for the mandatory transport channel. 2880 */ 2881 if (!hdev->ll_driver->raw_request) { 2882 hid_err(hdev, "transport driver missing .raw_request()\n"); 2883 return -EINVAL; 2884 } 2885 2886 /* 2887 * Read the device report descriptor once and use as template 2888 * for the driver-specific modifications. 2889 */ 2890 ret = hdev->ll_driver->parse(hdev); 2891 if (ret) 2892 return ret; 2893 if (!hdev->dev_rdesc) 2894 return -ENODEV; 2895 2896 /* 2897 * Scan generic devices for group information 2898 */ 2899 if (hid_ignore_special_drivers) { 2900 hdev->group = HID_GROUP_GENERIC; 2901 } else if (!hdev->group && 2902 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2903 ret = hid_scan_report(hdev); 2904 if (ret) 2905 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2906 } 2907 2908 hdev->id = atomic_inc_return(&id); 2909 2910 /* XXX hack, any other cleaner solution after the driver core 2911 * is converted to allow more than 20 bytes as the device name? */ 2912 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2913 hdev->vendor, hdev->product, hdev->id); 2914 2915 hid_debug_register(hdev, dev_name(&hdev->dev)); 2916 ret = device_add(&hdev->dev); 2917 if (!ret) 2918 hdev->status |= HID_STAT_ADDED; 2919 else 2920 hid_debug_unregister(hdev); 2921 2922 return ret; 2923 } 2924 EXPORT_SYMBOL_GPL(hid_add_device); 2925 2926 /** 2927 * hid_allocate_device - allocate new hid device descriptor 2928 * 2929 * Allocate and initialize hid device, so that hid_destroy_device might be 2930 * used to free it. 2931 * 2932 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2933 * error value. 2934 */ 2935 struct hid_device *hid_allocate_device(void) 2936 { 2937 struct hid_device *hdev; 2938 int ret = -ENOMEM; 2939 2940 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2941 if (hdev == NULL) 2942 return ERR_PTR(ret); 2943 2944 device_initialize(&hdev->dev); 2945 hdev->dev.release = hid_device_release; 2946 hdev->dev.bus = &hid_bus_type; 2947 device_enable_async_suspend(&hdev->dev); 2948 2949 hid_close_report(hdev); 2950 2951 init_waitqueue_head(&hdev->debug_wait); 2952 INIT_LIST_HEAD(&hdev->debug_list); 2953 spin_lock_init(&hdev->debug_list_lock); 2954 sema_init(&hdev->driver_input_lock, 1); 2955 mutex_init(&hdev->ll_open_lock); 2956 kref_init(&hdev->ref); 2957 2958 ret = hid_bpf_device_init(hdev); 2959 if (ret) 2960 goto out_err; 2961 2962 return hdev; 2963 2964 out_err: 2965 hid_destroy_device(hdev); 2966 return ERR_PTR(ret); 2967 } 2968 EXPORT_SYMBOL_GPL(hid_allocate_device); 2969 2970 static void hid_remove_device(struct hid_device *hdev) 2971 { 2972 if (hdev->status & HID_STAT_ADDED) { 2973 device_del(&hdev->dev); 2974 hid_debug_unregister(hdev); 2975 hdev->status &= ~HID_STAT_ADDED; 2976 } 2977 hid_free_bpf_rdesc(hdev); 2978 kfree(hdev->dev_rdesc); 2979 hdev->dev_rdesc = NULL; 2980 hdev->dev_rsize = 0; 2981 hdev->bpf_rsize = 0; 2982 } 2983 2984 /** 2985 * hid_destroy_device - free previously allocated device 2986 * 2987 * @hdev: hid device 2988 * 2989 * If you allocate hid_device through hid_allocate_device, you should ever 2990 * free by this function. 2991 */ 2992 void hid_destroy_device(struct hid_device *hdev) 2993 { 2994 hid_bpf_destroy_device(hdev); 2995 hid_remove_device(hdev); 2996 put_device(&hdev->dev); 2997 } 2998 EXPORT_SYMBOL_GPL(hid_destroy_device); 2999 3000 3001 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 3002 { 3003 struct hid_driver *hdrv = data; 3004 struct hid_device *hdev = to_hid_device(dev); 3005 3006 if (hdev->driver == hdrv && 3007 !hdrv->match(hdev, hid_ignore_special_drivers) && 3008 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 3009 return device_reprobe(dev); 3010 3011 return 0; 3012 } 3013 3014 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 3015 { 3016 struct hid_driver *hdrv = to_hid_driver(drv); 3017 3018 if (hdrv->match) { 3019 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 3020 __hid_bus_reprobe_drivers); 3021 } 3022 3023 return 0; 3024 } 3025 3026 static int __bus_removed_driver(struct device_driver *drv, void *data) 3027 { 3028 return bus_rescan_devices(&hid_bus_type); 3029 } 3030 3031 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 3032 const char *mod_name) 3033 { 3034 int ret; 3035 3036 hdrv->driver.name = hdrv->name; 3037 hdrv->driver.bus = &hid_bus_type; 3038 hdrv->driver.owner = owner; 3039 hdrv->driver.mod_name = mod_name; 3040 3041 INIT_LIST_HEAD(&hdrv->dyn_list); 3042 spin_lock_init(&hdrv->dyn_lock); 3043 3044 ret = driver_register(&hdrv->driver); 3045 3046 if (ret == 0) 3047 bus_for_each_drv(&hid_bus_type, NULL, NULL, 3048 __hid_bus_driver_added); 3049 3050 return ret; 3051 } 3052 EXPORT_SYMBOL_GPL(__hid_register_driver); 3053 3054 void hid_unregister_driver(struct hid_driver *hdrv) 3055 { 3056 driver_unregister(&hdrv->driver); 3057 hid_free_dynids(hdrv); 3058 3059 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 3060 } 3061 EXPORT_SYMBOL_GPL(hid_unregister_driver); 3062 3063 int hid_check_keys_pressed(struct hid_device *hid) 3064 { 3065 struct hid_input *hidinput; 3066 int i; 3067 3068 if (!(hid->claimed & HID_CLAIMED_INPUT)) 3069 return 0; 3070 3071 list_for_each_entry(hidinput, &hid->inputs, list) { 3072 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 3073 if (hidinput->input->key[i]) 3074 return 1; 3075 } 3076 3077 return 0; 3078 } 3079 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 3080 3081 #ifdef CONFIG_HID_BPF 3082 static const struct hid_ops __hid_ops = { 3083 .hid_get_report = hid_get_report, 3084 .hid_hw_raw_request = __hid_hw_raw_request, 3085 .hid_hw_output_report = __hid_hw_output_report, 3086 .hid_input_report = __hid_input_report, 3087 .owner = THIS_MODULE, 3088 .bus_type = &hid_bus_type, 3089 }; 3090 #endif 3091 3092 static int __init hid_init(void) 3093 { 3094 int ret; 3095 3096 ret = bus_register(&hid_bus_type); 3097 if (ret) { 3098 pr_err("can't register hid bus\n"); 3099 goto err; 3100 } 3101 3102 #ifdef CONFIG_HID_BPF 3103 hid_ops = &__hid_ops; 3104 #endif 3105 3106 ret = hidraw_init(); 3107 if (ret) 3108 goto err_bus; 3109 3110 hid_debug_init(); 3111 3112 return 0; 3113 err_bus: 3114 bus_unregister(&hid_bus_type); 3115 err: 3116 return ret; 3117 } 3118 3119 static void __exit hid_exit(void) 3120 { 3121 #ifdef CONFIG_HID_BPF 3122 hid_ops = NULL; 3123 #endif 3124 hid_debug_exit(); 3125 hidraw_exit(); 3126 bus_unregister(&hid_bus_type); 3127 hid_quirks_exit(HID_BUS_ANY); 3128 } 3129 3130 module_init(hid_init); 3131 module_exit(hid_exit); 3132 3133 MODULE_AUTHOR("Andreas Gal"); 3134 MODULE_AUTHOR("Vojtech Pavlik"); 3135 MODULE_AUTHOR("Jiri Kosina"); 3136 MODULE_DESCRIPTION("HID support for Linux"); 3137 MODULE_LICENSE("GPL"); 3138