xref: /linux/drivers/hid/hid-core.c (revision 8a79db5e83a5d52c74e6f3c40d6f312cf899213e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 
36 #include "hid-ids.h"
37 
38 /*
39  * Version Information
40  */
41 
42 #define DRIVER_DESC "HID core driver"
43 
44 int hid_debug = 0;
45 module_param_named(debug, hid_debug, int, 0600);
46 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug);
48 
49 static int hid_ignore_special_drivers = 0;
50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
52 
53 /*
54  * Register a new report for a device.
55  */
56 
57 struct hid_report *hid_register_report(struct hid_device *device,
58 				       unsigned int type, unsigned int id,
59 				       unsigned int application)
60 {
61 	struct hid_report_enum *report_enum = device->report_enum + type;
62 	struct hid_report *report;
63 
64 	if (id >= HID_MAX_IDS)
65 		return NULL;
66 	if (report_enum->report_id_hash[id])
67 		return report_enum->report_id_hash[id];
68 
69 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
70 	if (!report)
71 		return NULL;
72 
73 	if (id != 0)
74 		report_enum->numbered = 1;
75 
76 	report->id = id;
77 	report->type = type;
78 	report->size = 0;
79 	report->device = device;
80 	report->application = application;
81 	report_enum->report_id_hash[id] = report;
82 
83 	list_add_tail(&report->list, &report_enum->report_list);
84 
85 	return report;
86 }
87 EXPORT_SYMBOL_GPL(hid_register_report);
88 
89 /*
90  * Register a new field for this report.
91  */
92 
93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values)
94 {
95 	struct hid_field *field;
96 
97 	if (report->maxfield == HID_MAX_FIELDS) {
98 		hid_err(report->device, "too many fields in report\n");
99 		return NULL;
100 	}
101 
102 	field = kzalloc((sizeof(struct hid_field) +
103 			 usages * sizeof(struct hid_usage) +
104 			 values * sizeof(unsigned)), GFP_KERNEL);
105 	if (!field)
106 		return NULL;
107 
108 	field->index = report->maxfield++;
109 	report->field[field->index] = field;
110 	field->usage = (struct hid_usage *)(field + 1);
111 	field->value = (s32 *)(field->usage + usages);
112 	field->report = report;
113 
114 	return field;
115 }
116 
117 /*
118  * Open a collection. The type/usage is pushed on the stack.
119  */
120 
121 static int open_collection(struct hid_parser *parser, unsigned type)
122 {
123 	struct hid_collection *collection;
124 	unsigned usage;
125 	int collection_index;
126 
127 	usage = parser->local.usage[0];
128 
129 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
130 		unsigned int *collection_stack;
131 		unsigned int new_size = parser->collection_stack_size +
132 					HID_COLLECTION_STACK_SIZE;
133 
134 		collection_stack = krealloc(parser->collection_stack,
135 					    new_size * sizeof(unsigned int),
136 					    GFP_KERNEL);
137 		if (!collection_stack)
138 			return -ENOMEM;
139 
140 		parser->collection_stack = collection_stack;
141 		parser->collection_stack_size = new_size;
142 	}
143 
144 	if (parser->device->maxcollection == parser->device->collection_size) {
145 		collection = kmalloc(
146 				array3_size(sizeof(struct hid_collection),
147 					    parser->device->collection_size,
148 					    2),
149 				GFP_KERNEL);
150 		if (collection == NULL) {
151 			hid_err(parser->device, "failed to reallocate collection array\n");
152 			return -ENOMEM;
153 		}
154 		memcpy(collection, parser->device->collection,
155 			sizeof(struct hid_collection) *
156 			parser->device->collection_size);
157 		memset(collection + parser->device->collection_size, 0,
158 			sizeof(struct hid_collection) *
159 			parser->device->collection_size);
160 		kfree(parser->device->collection);
161 		parser->device->collection = collection;
162 		parser->device->collection_size *= 2;
163 	}
164 
165 	parser->collection_stack[parser->collection_stack_ptr++] =
166 		parser->device->maxcollection;
167 
168 	collection_index = parser->device->maxcollection++;
169 	collection = parser->device->collection + collection_index;
170 	collection->type = type;
171 	collection->usage = usage;
172 	collection->level = parser->collection_stack_ptr - 1;
173 	collection->parent_idx = (collection->level == 0) ? -1 :
174 		parser->collection_stack[collection->level - 1];
175 
176 	if (type == HID_COLLECTION_APPLICATION)
177 		parser->device->maxapplication++;
178 
179 	return 0;
180 }
181 
182 /*
183  * Close a collection.
184  */
185 
186 static int close_collection(struct hid_parser *parser)
187 {
188 	if (!parser->collection_stack_ptr) {
189 		hid_err(parser->device, "collection stack underflow\n");
190 		return -EINVAL;
191 	}
192 	parser->collection_stack_ptr--;
193 	return 0;
194 }
195 
196 /*
197  * Climb up the stack, search for the specified collection type
198  * and return the usage.
199  */
200 
201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
202 {
203 	struct hid_collection *collection = parser->device->collection;
204 	int n;
205 
206 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
207 		unsigned index = parser->collection_stack[n];
208 		if (collection[index].type == type)
209 			return collection[index].usage;
210 	}
211 	return 0; /* we know nothing about this usage type */
212 }
213 
214 /*
215  * Concatenate usage which defines 16 bits or less with the
216  * currently defined usage page to form a 32 bit usage
217  */
218 
219 static void complete_usage(struct hid_parser *parser, unsigned int index)
220 {
221 	parser->local.usage[index] &= 0xFFFF;
222 	parser->local.usage[index] |=
223 		(parser->global.usage_page & 0xFFFF) << 16;
224 }
225 
226 /*
227  * Add a usage to the temporary parser table.
228  */
229 
230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
231 {
232 	if (parser->local.usage_index >= HID_MAX_USAGES) {
233 		hid_err(parser->device, "usage index exceeded\n");
234 		return -1;
235 	}
236 	parser->local.usage[parser->local.usage_index] = usage;
237 
238 	/*
239 	 * If Usage item only includes usage id, concatenate it with
240 	 * currently defined usage page
241 	 */
242 	if (size <= 2)
243 		complete_usage(parser, parser->local.usage_index);
244 
245 	parser->local.usage_size[parser->local.usage_index] = size;
246 	parser->local.collection_index[parser->local.usage_index] =
247 		parser->collection_stack_ptr ?
248 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
249 	parser->local.usage_index++;
250 	return 0;
251 }
252 
253 /*
254  * Register a new field for this report.
255  */
256 
257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
258 {
259 	struct hid_report *report;
260 	struct hid_field *field;
261 	unsigned int usages;
262 	unsigned int offset;
263 	unsigned int i;
264 	unsigned int application;
265 
266 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
267 
268 	report = hid_register_report(parser->device, report_type,
269 				     parser->global.report_id, application);
270 	if (!report) {
271 		hid_err(parser->device, "hid_register_report failed\n");
272 		return -1;
273 	}
274 
275 	/* Handle both signed and unsigned cases properly */
276 	if ((parser->global.logical_minimum < 0 &&
277 		parser->global.logical_maximum <
278 		parser->global.logical_minimum) ||
279 		(parser->global.logical_minimum >= 0 &&
280 		(__u32)parser->global.logical_maximum <
281 		(__u32)parser->global.logical_minimum)) {
282 		dbg_hid("logical range invalid 0x%x 0x%x\n",
283 			parser->global.logical_minimum,
284 			parser->global.logical_maximum);
285 		return -1;
286 	}
287 
288 	offset = report->size;
289 	report->size += parser->global.report_size * parser->global.report_count;
290 
291 	if (!parser->local.usage_index) /* Ignore padding fields */
292 		return 0;
293 
294 	usages = max_t(unsigned, parser->local.usage_index,
295 				 parser->global.report_count);
296 
297 	field = hid_register_field(report, usages, parser->global.report_count);
298 	if (!field)
299 		return 0;
300 
301 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
302 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
303 	field->application = application;
304 
305 	for (i = 0; i < usages; i++) {
306 		unsigned j = i;
307 		/* Duplicate the last usage we parsed if we have excess values */
308 		if (i >= parser->local.usage_index)
309 			j = parser->local.usage_index - 1;
310 		field->usage[i].hid = parser->local.usage[j];
311 		field->usage[i].collection_index =
312 			parser->local.collection_index[j];
313 		field->usage[i].usage_index = i;
314 		field->usage[i].resolution_multiplier = 1;
315 	}
316 
317 	field->maxusage = usages;
318 	field->flags = flags;
319 	field->report_offset = offset;
320 	field->report_type = report_type;
321 	field->report_size = parser->global.report_size;
322 	field->report_count = parser->global.report_count;
323 	field->logical_minimum = parser->global.logical_minimum;
324 	field->logical_maximum = parser->global.logical_maximum;
325 	field->physical_minimum = parser->global.physical_minimum;
326 	field->physical_maximum = parser->global.physical_maximum;
327 	field->unit_exponent = parser->global.unit_exponent;
328 	field->unit = parser->global.unit;
329 
330 	return 0;
331 }
332 
333 /*
334  * Read data value from item.
335  */
336 
337 static u32 item_udata(struct hid_item *item)
338 {
339 	switch (item->size) {
340 	case 1: return item->data.u8;
341 	case 2: return item->data.u16;
342 	case 4: return item->data.u32;
343 	}
344 	return 0;
345 }
346 
347 static s32 item_sdata(struct hid_item *item)
348 {
349 	switch (item->size) {
350 	case 1: return item->data.s8;
351 	case 2: return item->data.s16;
352 	case 4: return item->data.s32;
353 	}
354 	return 0;
355 }
356 
357 /*
358  * Process a global item.
359  */
360 
361 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
362 {
363 	__s32 raw_value;
364 	switch (item->tag) {
365 	case HID_GLOBAL_ITEM_TAG_PUSH:
366 
367 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
368 			hid_err(parser->device, "global environment stack overflow\n");
369 			return -1;
370 		}
371 
372 		memcpy(parser->global_stack + parser->global_stack_ptr++,
373 			&parser->global, sizeof(struct hid_global));
374 		return 0;
375 
376 	case HID_GLOBAL_ITEM_TAG_POP:
377 
378 		if (!parser->global_stack_ptr) {
379 			hid_err(parser->device, "global environment stack underflow\n");
380 			return -1;
381 		}
382 
383 		memcpy(&parser->global, parser->global_stack +
384 			--parser->global_stack_ptr, sizeof(struct hid_global));
385 		return 0;
386 
387 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
388 		parser->global.usage_page = item_udata(item);
389 		return 0;
390 
391 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
392 		parser->global.logical_minimum = item_sdata(item);
393 		return 0;
394 
395 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
396 		if (parser->global.logical_minimum < 0)
397 			parser->global.logical_maximum = item_sdata(item);
398 		else
399 			parser->global.logical_maximum = item_udata(item);
400 		return 0;
401 
402 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
403 		parser->global.physical_minimum = item_sdata(item);
404 		return 0;
405 
406 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
407 		if (parser->global.physical_minimum < 0)
408 			parser->global.physical_maximum = item_sdata(item);
409 		else
410 			parser->global.physical_maximum = item_udata(item);
411 		return 0;
412 
413 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
414 		/* Many devices provide unit exponent as a two's complement
415 		 * nibble due to the common misunderstanding of HID
416 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
417 		 * both this and the standard encoding. */
418 		raw_value = item_sdata(item);
419 		if (!(raw_value & 0xfffffff0))
420 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
421 		else
422 			parser->global.unit_exponent = raw_value;
423 		return 0;
424 
425 	case HID_GLOBAL_ITEM_TAG_UNIT:
426 		parser->global.unit = item_udata(item);
427 		return 0;
428 
429 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
430 		parser->global.report_size = item_udata(item);
431 		if (parser->global.report_size > 256) {
432 			hid_err(parser->device, "invalid report_size %d\n",
433 					parser->global.report_size);
434 			return -1;
435 		}
436 		return 0;
437 
438 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
439 		parser->global.report_count = item_udata(item);
440 		if (parser->global.report_count > HID_MAX_USAGES) {
441 			hid_err(parser->device, "invalid report_count %d\n",
442 					parser->global.report_count);
443 			return -1;
444 		}
445 		return 0;
446 
447 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
448 		parser->global.report_id = item_udata(item);
449 		if (parser->global.report_id == 0 ||
450 		    parser->global.report_id >= HID_MAX_IDS) {
451 			hid_err(parser->device, "report_id %u is invalid\n",
452 				parser->global.report_id);
453 			return -1;
454 		}
455 		return 0;
456 
457 	default:
458 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
459 		return -1;
460 	}
461 }
462 
463 /*
464  * Process a local item.
465  */
466 
467 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
468 {
469 	__u32 data;
470 	unsigned n;
471 	__u32 count;
472 
473 	data = item_udata(item);
474 
475 	switch (item->tag) {
476 	case HID_LOCAL_ITEM_TAG_DELIMITER:
477 
478 		if (data) {
479 			/*
480 			 * We treat items before the first delimiter
481 			 * as global to all usage sets (branch 0).
482 			 * In the moment we process only these global
483 			 * items and the first delimiter set.
484 			 */
485 			if (parser->local.delimiter_depth != 0) {
486 				hid_err(parser->device, "nested delimiters\n");
487 				return -1;
488 			}
489 			parser->local.delimiter_depth++;
490 			parser->local.delimiter_branch++;
491 		} else {
492 			if (parser->local.delimiter_depth < 1) {
493 				hid_err(parser->device, "bogus close delimiter\n");
494 				return -1;
495 			}
496 			parser->local.delimiter_depth--;
497 		}
498 		return 0;
499 
500 	case HID_LOCAL_ITEM_TAG_USAGE:
501 
502 		if (parser->local.delimiter_branch > 1) {
503 			dbg_hid("alternative usage ignored\n");
504 			return 0;
505 		}
506 
507 		return hid_add_usage(parser, data, item->size);
508 
509 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
510 
511 		if (parser->local.delimiter_branch > 1) {
512 			dbg_hid("alternative usage ignored\n");
513 			return 0;
514 		}
515 
516 		parser->local.usage_minimum = data;
517 		return 0;
518 
519 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
520 
521 		if (parser->local.delimiter_branch > 1) {
522 			dbg_hid("alternative usage ignored\n");
523 			return 0;
524 		}
525 
526 		count = data - parser->local.usage_minimum;
527 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
528 			/*
529 			 * We do not warn if the name is not set, we are
530 			 * actually pre-scanning the device.
531 			 */
532 			if (dev_name(&parser->device->dev))
533 				hid_warn(parser->device,
534 					 "ignoring exceeding usage max\n");
535 			data = HID_MAX_USAGES - parser->local.usage_index +
536 				parser->local.usage_minimum - 1;
537 			if (data <= 0) {
538 				hid_err(parser->device,
539 					"no more usage index available\n");
540 				return -1;
541 			}
542 		}
543 
544 		for (n = parser->local.usage_minimum; n <= data; n++)
545 			if (hid_add_usage(parser, n, item->size)) {
546 				dbg_hid("hid_add_usage failed\n");
547 				return -1;
548 			}
549 		return 0;
550 
551 	default:
552 
553 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
554 		return 0;
555 	}
556 	return 0;
557 }
558 
559 /*
560  * Concatenate Usage Pages into Usages where relevant:
561  * As per specification, 6.2.2.8: "When the parser encounters a main item it
562  * concatenates the last declared Usage Page with a Usage to form a complete
563  * usage value."
564  */
565 
566 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
567 {
568 	int i;
569 	unsigned int usage_page;
570 	unsigned int current_page;
571 
572 	if (!parser->local.usage_index)
573 		return;
574 
575 	usage_page = parser->global.usage_page;
576 
577 	/*
578 	 * Concatenate usage page again only if last declared Usage Page
579 	 * has not been already used in previous usages concatenation
580 	 */
581 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
582 		if (parser->local.usage_size[i] > 2)
583 			/* Ignore extended usages */
584 			continue;
585 
586 		current_page = parser->local.usage[i] >> 16;
587 		if (current_page == usage_page)
588 			break;
589 
590 		complete_usage(parser, i);
591 	}
592 }
593 
594 /*
595  * Process a main item.
596  */
597 
598 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
599 {
600 	__u32 data;
601 	int ret;
602 
603 	hid_concatenate_last_usage_page(parser);
604 
605 	data = item_udata(item);
606 
607 	switch (item->tag) {
608 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
609 		ret = open_collection(parser, data & 0xff);
610 		break;
611 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
612 		ret = close_collection(parser);
613 		break;
614 	case HID_MAIN_ITEM_TAG_INPUT:
615 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
616 		break;
617 	case HID_MAIN_ITEM_TAG_OUTPUT:
618 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
619 		break;
620 	case HID_MAIN_ITEM_TAG_FEATURE:
621 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
622 		break;
623 	default:
624 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
625 		ret = 0;
626 	}
627 
628 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
629 
630 	return ret;
631 }
632 
633 /*
634  * Process a reserved item.
635  */
636 
637 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
638 {
639 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
640 	return 0;
641 }
642 
643 /*
644  * Free a report and all registered fields. The field->usage and
645  * field->value table's are allocated behind the field, so we need
646  * only to free(field) itself.
647  */
648 
649 static void hid_free_report(struct hid_report *report)
650 {
651 	unsigned n;
652 
653 	for (n = 0; n < report->maxfield; n++)
654 		kfree(report->field[n]);
655 	kfree(report);
656 }
657 
658 /*
659  * Close report. This function returns the device
660  * state to the point prior to hid_open_report().
661  */
662 static void hid_close_report(struct hid_device *device)
663 {
664 	unsigned i, j;
665 
666 	for (i = 0; i < HID_REPORT_TYPES; i++) {
667 		struct hid_report_enum *report_enum = device->report_enum + i;
668 
669 		for (j = 0; j < HID_MAX_IDS; j++) {
670 			struct hid_report *report = report_enum->report_id_hash[j];
671 			if (report)
672 				hid_free_report(report);
673 		}
674 		memset(report_enum, 0, sizeof(*report_enum));
675 		INIT_LIST_HEAD(&report_enum->report_list);
676 	}
677 
678 	kfree(device->rdesc);
679 	device->rdesc = NULL;
680 	device->rsize = 0;
681 
682 	kfree(device->collection);
683 	device->collection = NULL;
684 	device->collection_size = 0;
685 	device->maxcollection = 0;
686 	device->maxapplication = 0;
687 
688 	device->status &= ~HID_STAT_PARSED;
689 }
690 
691 /*
692  * Free a device structure, all reports, and all fields.
693  */
694 
695 static void hid_device_release(struct device *dev)
696 {
697 	struct hid_device *hid = to_hid_device(dev);
698 
699 	hid_close_report(hid);
700 	kfree(hid->dev_rdesc);
701 	kfree(hid);
702 }
703 
704 /*
705  * Fetch a report description item from the data stream. We support long
706  * items, though they are not used yet.
707  */
708 
709 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
710 {
711 	u8 b;
712 
713 	if ((end - start) <= 0)
714 		return NULL;
715 
716 	b = *start++;
717 
718 	item->type = (b >> 2) & 3;
719 	item->tag  = (b >> 4) & 15;
720 
721 	if (item->tag == HID_ITEM_TAG_LONG) {
722 
723 		item->format = HID_ITEM_FORMAT_LONG;
724 
725 		if ((end - start) < 2)
726 			return NULL;
727 
728 		item->size = *start++;
729 		item->tag  = *start++;
730 
731 		if ((end - start) < item->size)
732 			return NULL;
733 
734 		item->data.longdata = start;
735 		start += item->size;
736 		return start;
737 	}
738 
739 	item->format = HID_ITEM_FORMAT_SHORT;
740 	item->size = b & 3;
741 
742 	switch (item->size) {
743 	case 0:
744 		return start;
745 
746 	case 1:
747 		if ((end - start) < 1)
748 			return NULL;
749 		item->data.u8 = *start++;
750 		return start;
751 
752 	case 2:
753 		if ((end - start) < 2)
754 			return NULL;
755 		item->data.u16 = get_unaligned_le16(start);
756 		start = (__u8 *)((__le16 *)start + 1);
757 		return start;
758 
759 	case 3:
760 		item->size++;
761 		if ((end - start) < 4)
762 			return NULL;
763 		item->data.u32 = get_unaligned_le32(start);
764 		start = (__u8 *)((__le32 *)start + 1);
765 		return start;
766 	}
767 
768 	return NULL;
769 }
770 
771 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
772 {
773 	struct hid_device *hid = parser->device;
774 
775 	if (usage == HID_DG_CONTACTID)
776 		hid->group = HID_GROUP_MULTITOUCH;
777 }
778 
779 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
780 {
781 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
782 	    parser->global.report_size == 8)
783 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
784 
785 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
786 	    parser->global.report_size == 8)
787 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
788 }
789 
790 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
791 {
792 	struct hid_device *hid = parser->device;
793 	int i;
794 
795 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
796 	    type == HID_COLLECTION_PHYSICAL)
797 		hid->group = HID_GROUP_SENSOR_HUB;
798 
799 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
800 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
801 	    hid->group == HID_GROUP_MULTITOUCH)
802 		hid->group = HID_GROUP_GENERIC;
803 
804 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
805 		for (i = 0; i < parser->local.usage_index; i++)
806 			if (parser->local.usage[i] == HID_GD_POINTER)
807 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
808 
809 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
810 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
811 }
812 
813 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
814 {
815 	__u32 data;
816 	int i;
817 
818 	hid_concatenate_last_usage_page(parser);
819 
820 	data = item_udata(item);
821 
822 	switch (item->tag) {
823 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
824 		hid_scan_collection(parser, data & 0xff);
825 		break;
826 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
827 		break;
828 	case HID_MAIN_ITEM_TAG_INPUT:
829 		/* ignore constant inputs, they will be ignored by hid-input */
830 		if (data & HID_MAIN_ITEM_CONSTANT)
831 			break;
832 		for (i = 0; i < parser->local.usage_index; i++)
833 			hid_scan_input_usage(parser, parser->local.usage[i]);
834 		break;
835 	case HID_MAIN_ITEM_TAG_OUTPUT:
836 		break;
837 	case HID_MAIN_ITEM_TAG_FEATURE:
838 		for (i = 0; i < parser->local.usage_index; i++)
839 			hid_scan_feature_usage(parser, parser->local.usage[i]);
840 		break;
841 	}
842 
843 	/* Reset the local parser environment */
844 	memset(&parser->local, 0, sizeof(parser->local));
845 
846 	return 0;
847 }
848 
849 /*
850  * Scan a report descriptor before the device is added to the bus.
851  * Sets device groups and other properties that determine what driver
852  * to load.
853  */
854 static int hid_scan_report(struct hid_device *hid)
855 {
856 	struct hid_parser *parser;
857 	struct hid_item item;
858 	__u8 *start = hid->dev_rdesc;
859 	__u8 *end = start + hid->dev_rsize;
860 	static int (*dispatch_type[])(struct hid_parser *parser,
861 				      struct hid_item *item) = {
862 		hid_scan_main,
863 		hid_parser_global,
864 		hid_parser_local,
865 		hid_parser_reserved
866 	};
867 
868 	parser = vzalloc(sizeof(struct hid_parser));
869 	if (!parser)
870 		return -ENOMEM;
871 
872 	parser->device = hid;
873 	hid->group = HID_GROUP_GENERIC;
874 
875 	/*
876 	 * The parsing is simpler than the one in hid_open_report() as we should
877 	 * be robust against hid errors. Those errors will be raised by
878 	 * hid_open_report() anyway.
879 	 */
880 	while ((start = fetch_item(start, end, &item)) != NULL)
881 		dispatch_type[item.type](parser, &item);
882 
883 	/*
884 	 * Handle special flags set during scanning.
885 	 */
886 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
887 	    (hid->group == HID_GROUP_MULTITOUCH))
888 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
889 
890 	/*
891 	 * Vendor specific handlings
892 	 */
893 	switch (hid->vendor) {
894 	case USB_VENDOR_ID_WACOM:
895 		hid->group = HID_GROUP_WACOM;
896 		break;
897 	case USB_VENDOR_ID_SYNAPTICS:
898 		if (hid->group == HID_GROUP_GENERIC)
899 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
900 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
901 				/*
902 				 * hid-rmi should take care of them,
903 				 * not hid-generic
904 				 */
905 				hid->group = HID_GROUP_RMI;
906 		break;
907 	}
908 
909 	kfree(parser->collection_stack);
910 	vfree(parser);
911 	return 0;
912 }
913 
914 /**
915  * hid_parse_report - parse device report
916  *
917  * @device: hid device
918  * @start: report start
919  * @size: report size
920  *
921  * Allocate the device report as read by the bus driver. This function should
922  * only be called from parse() in ll drivers.
923  */
924 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
925 {
926 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
927 	if (!hid->dev_rdesc)
928 		return -ENOMEM;
929 	hid->dev_rsize = size;
930 	return 0;
931 }
932 EXPORT_SYMBOL_GPL(hid_parse_report);
933 
934 static const char * const hid_report_names[] = {
935 	"HID_INPUT_REPORT",
936 	"HID_OUTPUT_REPORT",
937 	"HID_FEATURE_REPORT",
938 };
939 /**
940  * hid_validate_values - validate existing device report's value indexes
941  *
942  * @device: hid device
943  * @type: which report type to examine
944  * @id: which report ID to examine (0 for first)
945  * @field_index: which report field to examine
946  * @report_counts: expected number of values
947  *
948  * Validate the number of values in a given field of a given report, after
949  * parsing.
950  */
951 struct hid_report *hid_validate_values(struct hid_device *hid,
952 				       unsigned int type, unsigned int id,
953 				       unsigned int field_index,
954 				       unsigned int report_counts)
955 {
956 	struct hid_report *report;
957 
958 	if (type > HID_FEATURE_REPORT) {
959 		hid_err(hid, "invalid HID report type %u\n", type);
960 		return NULL;
961 	}
962 
963 	if (id >= HID_MAX_IDS) {
964 		hid_err(hid, "invalid HID report id %u\n", id);
965 		return NULL;
966 	}
967 
968 	/*
969 	 * Explicitly not using hid_get_report() here since it depends on
970 	 * ->numbered being checked, which may not always be the case when
971 	 * drivers go to access report values.
972 	 */
973 	if (id == 0) {
974 		/*
975 		 * Validating on id 0 means we should examine the first
976 		 * report in the list.
977 		 */
978 		report = list_entry(
979 				hid->report_enum[type].report_list.next,
980 				struct hid_report, list);
981 	} else {
982 		report = hid->report_enum[type].report_id_hash[id];
983 	}
984 	if (!report) {
985 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
986 		return NULL;
987 	}
988 	if (report->maxfield <= field_index) {
989 		hid_err(hid, "not enough fields in %s %u\n",
990 			hid_report_names[type], id);
991 		return NULL;
992 	}
993 	if (report->field[field_index]->report_count < report_counts) {
994 		hid_err(hid, "not enough values in %s %u field %u\n",
995 			hid_report_names[type], id, field_index);
996 		return NULL;
997 	}
998 	return report;
999 }
1000 EXPORT_SYMBOL_GPL(hid_validate_values);
1001 
1002 static int hid_calculate_multiplier(struct hid_device *hid,
1003 				     struct hid_field *multiplier)
1004 {
1005 	int m;
1006 	__s32 v = *multiplier->value;
1007 	__s32 lmin = multiplier->logical_minimum;
1008 	__s32 lmax = multiplier->logical_maximum;
1009 	__s32 pmin = multiplier->physical_minimum;
1010 	__s32 pmax = multiplier->physical_maximum;
1011 
1012 	/*
1013 	 * "Because OS implementations will generally divide the control's
1014 	 * reported count by the Effective Resolution Multiplier, designers
1015 	 * should take care not to establish a potential Effective
1016 	 * Resolution Multiplier of zero."
1017 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1018 	 */
1019 	if (lmax - lmin == 0)
1020 		return 1;
1021 	/*
1022 	 * Handling the unit exponent is left as an exercise to whoever
1023 	 * finds a device where that exponent is not 0.
1024 	 */
1025 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1026 	if (unlikely(multiplier->unit_exponent != 0)) {
1027 		hid_warn(hid,
1028 			 "unsupported Resolution Multiplier unit exponent %d\n",
1029 			 multiplier->unit_exponent);
1030 	}
1031 
1032 	/* There are no devices with an effective multiplier > 255 */
1033 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1034 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1035 		m = 1;
1036 	}
1037 
1038 	return m;
1039 }
1040 
1041 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1042 					  struct hid_field *field,
1043 					  struct hid_collection *multiplier_collection,
1044 					  int effective_multiplier)
1045 {
1046 	struct hid_collection *collection;
1047 	struct hid_usage *usage;
1048 	int i;
1049 
1050 	/*
1051 	 * If multiplier_collection is NULL, the multiplier applies
1052 	 * to all fields in the report.
1053 	 * Otherwise, it is the Logical Collection the multiplier applies to
1054 	 * but our field may be in a subcollection of that collection.
1055 	 */
1056 	for (i = 0; i < field->maxusage; i++) {
1057 		usage = &field->usage[i];
1058 
1059 		collection = &hid->collection[usage->collection_index];
1060 		while (collection->parent_idx != -1 &&
1061 		       collection != multiplier_collection)
1062 			collection = &hid->collection[collection->parent_idx];
1063 
1064 		if (collection->parent_idx != -1 ||
1065 		    multiplier_collection == NULL)
1066 			usage->resolution_multiplier = effective_multiplier;
1067 
1068 	}
1069 }
1070 
1071 static void hid_apply_multiplier(struct hid_device *hid,
1072 				 struct hid_field *multiplier)
1073 {
1074 	struct hid_report_enum *rep_enum;
1075 	struct hid_report *rep;
1076 	struct hid_field *field;
1077 	struct hid_collection *multiplier_collection;
1078 	int effective_multiplier;
1079 	int i;
1080 
1081 	/*
1082 	 * "The Resolution Multiplier control must be contained in the same
1083 	 * Logical Collection as the control(s) to which it is to be applied.
1084 	 * If no Resolution Multiplier is defined, then the Resolution
1085 	 * Multiplier defaults to 1.  If more than one control exists in a
1086 	 * Logical Collection, the Resolution Multiplier is associated with
1087 	 * all controls in the collection. If no Logical Collection is
1088 	 * defined, the Resolution Multiplier is associated with all
1089 	 * controls in the report."
1090 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1091 	 *
1092 	 * Thus, search from the current collection upwards until we find a
1093 	 * logical collection. Then search all fields for that same parent
1094 	 * collection. Those are the fields the multiplier applies to.
1095 	 *
1096 	 * If we have more than one multiplier, it will overwrite the
1097 	 * applicable fields later.
1098 	 */
1099 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1100 	while (multiplier_collection->parent_idx != -1 &&
1101 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1102 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1103 
1104 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1105 
1106 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1107 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1108 		for (i = 0; i < rep->maxfield; i++) {
1109 			field = rep->field[i];
1110 			hid_apply_multiplier_to_field(hid, field,
1111 						      multiplier_collection,
1112 						      effective_multiplier);
1113 		}
1114 	}
1115 }
1116 
1117 /*
1118  * hid_setup_resolution_multiplier - set up all resolution multipliers
1119  *
1120  * @device: hid device
1121  *
1122  * Search for all Resolution Multiplier Feature Reports and apply their
1123  * value to all matching Input items. This only updates the internal struct
1124  * fields.
1125  *
1126  * The Resolution Multiplier is applied by the hardware. If the multiplier
1127  * is anything other than 1, the hardware will send pre-multiplied events
1128  * so that the same physical interaction generates an accumulated
1129  *	accumulated_value = value * * multiplier
1130  * This may be achieved by sending
1131  * - "value * multiplier" for each event, or
1132  * - "value" but "multiplier" times as frequently, or
1133  * - a combination of the above
1134  * The only guarantee is that the same physical interaction always generates
1135  * an accumulated 'value * multiplier'.
1136  *
1137  * This function must be called before any event processing and after
1138  * any SetRequest to the Resolution Multiplier.
1139  */
1140 void hid_setup_resolution_multiplier(struct hid_device *hid)
1141 {
1142 	struct hid_report_enum *rep_enum;
1143 	struct hid_report *rep;
1144 	struct hid_usage *usage;
1145 	int i, j;
1146 
1147 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1148 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1149 		for (i = 0; i < rep->maxfield; i++) {
1150 			/* Ignore if report count is out of bounds. */
1151 			if (rep->field[i]->report_count < 1)
1152 				continue;
1153 
1154 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1155 				usage = &rep->field[i]->usage[j];
1156 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1157 					hid_apply_multiplier(hid,
1158 							     rep->field[i]);
1159 			}
1160 		}
1161 	}
1162 }
1163 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1164 
1165 /**
1166  * hid_open_report - open a driver-specific device report
1167  *
1168  * @device: hid device
1169  *
1170  * Parse a report description into a hid_device structure. Reports are
1171  * enumerated, fields are attached to these reports.
1172  * 0 returned on success, otherwise nonzero error value.
1173  *
1174  * This function (or the equivalent hid_parse() macro) should only be
1175  * called from probe() in drivers, before starting the device.
1176  */
1177 int hid_open_report(struct hid_device *device)
1178 {
1179 	struct hid_parser *parser;
1180 	struct hid_item item;
1181 	unsigned int size;
1182 	__u8 *start;
1183 	__u8 *buf;
1184 	__u8 *end;
1185 	__u8 *next;
1186 	int ret;
1187 	static int (*dispatch_type[])(struct hid_parser *parser,
1188 				      struct hid_item *item) = {
1189 		hid_parser_main,
1190 		hid_parser_global,
1191 		hid_parser_local,
1192 		hid_parser_reserved
1193 	};
1194 
1195 	if (WARN_ON(device->status & HID_STAT_PARSED))
1196 		return -EBUSY;
1197 
1198 	start = device->dev_rdesc;
1199 	if (WARN_ON(!start))
1200 		return -ENODEV;
1201 	size = device->dev_rsize;
1202 
1203 	buf = kmemdup(start, size, GFP_KERNEL);
1204 	if (buf == NULL)
1205 		return -ENOMEM;
1206 
1207 	if (device->driver->report_fixup)
1208 		start = device->driver->report_fixup(device, buf, &size);
1209 	else
1210 		start = buf;
1211 
1212 	start = kmemdup(start, size, GFP_KERNEL);
1213 	kfree(buf);
1214 	if (start == NULL)
1215 		return -ENOMEM;
1216 
1217 	device->rdesc = start;
1218 	device->rsize = size;
1219 
1220 	parser = vzalloc(sizeof(struct hid_parser));
1221 	if (!parser) {
1222 		ret = -ENOMEM;
1223 		goto alloc_err;
1224 	}
1225 
1226 	parser->device = device;
1227 
1228 	end = start + size;
1229 
1230 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1231 				     sizeof(struct hid_collection), GFP_KERNEL);
1232 	if (!device->collection) {
1233 		ret = -ENOMEM;
1234 		goto err;
1235 	}
1236 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1237 
1238 	ret = -EINVAL;
1239 	while ((next = fetch_item(start, end, &item)) != NULL) {
1240 		start = next;
1241 
1242 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1243 			hid_err(device, "unexpected long global item\n");
1244 			goto err;
1245 		}
1246 
1247 		if (dispatch_type[item.type](parser, &item)) {
1248 			hid_err(device, "item %u %u %u %u parsing failed\n",
1249 				item.format, (unsigned)item.size,
1250 				(unsigned)item.type, (unsigned)item.tag);
1251 			goto err;
1252 		}
1253 
1254 		if (start == end) {
1255 			if (parser->collection_stack_ptr) {
1256 				hid_err(device, "unbalanced collection at end of report description\n");
1257 				goto err;
1258 			}
1259 			if (parser->local.delimiter_depth) {
1260 				hid_err(device, "unbalanced delimiter at end of report description\n");
1261 				goto err;
1262 			}
1263 
1264 			/*
1265 			 * fetch initial values in case the device's
1266 			 * default multiplier isn't the recommended 1
1267 			 */
1268 			hid_setup_resolution_multiplier(device);
1269 
1270 			kfree(parser->collection_stack);
1271 			vfree(parser);
1272 			device->status |= HID_STAT_PARSED;
1273 
1274 			return 0;
1275 		}
1276 	}
1277 
1278 	hid_err(device, "item fetching failed at offset %u/%u\n",
1279 		size - (unsigned int)(end - start), size);
1280 err:
1281 	kfree(parser->collection_stack);
1282 alloc_err:
1283 	vfree(parser);
1284 	hid_close_report(device);
1285 	return ret;
1286 }
1287 EXPORT_SYMBOL_GPL(hid_open_report);
1288 
1289 /*
1290  * Convert a signed n-bit integer to signed 32-bit integer. Common
1291  * cases are done through the compiler, the screwed things has to be
1292  * done by hand.
1293  */
1294 
1295 static s32 snto32(__u32 value, unsigned n)
1296 {
1297 	switch (n) {
1298 	case 8:  return ((__s8)value);
1299 	case 16: return ((__s16)value);
1300 	case 32: return ((__s32)value);
1301 	}
1302 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1303 }
1304 
1305 s32 hid_snto32(__u32 value, unsigned n)
1306 {
1307 	return snto32(value, n);
1308 }
1309 EXPORT_SYMBOL_GPL(hid_snto32);
1310 
1311 /*
1312  * Convert a signed 32-bit integer to a signed n-bit integer.
1313  */
1314 
1315 static u32 s32ton(__s32 value, unsigned n)
1316 {
1317 	s32 a = value >> (n - 1);
1318 	if (a && a != -1)
1319 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1320 	return value & ((1 << n) - 1);
1321 }
1322 
1323 /*
1324  * Extract/implement a data field from/to a little endian report (bit array).
1325  *
1326  * Code sort-of follows HID spec:
1327  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1328  *
1329  * While the USB HID spec allows unlimited length bit fields in "report
1330  * descriptors", most devices never use more than 16 bits.
1331  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1332  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1333  */
1334 
1335 static u32 __extract(u8 *report, unsigned offset, int n)
1336 {
1337 	unsigned int idx = offset / 8;
1338 	unsigned int bit_nr = 0;
1339 	unsigned int bit_shift = offset % 8;
1340 	int bits_to_copy = 8 - bit_shift;
1341 	u32 value = 0;
1342 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1343 
1344 	while (n > 0) {
1345 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1346 		n -= bits_to_copy;
1347 		bit_nr += bits_to_copy;
1348 		bits_to_copy = 8;
1349 		bit_shift = 0;
1350 		idx++;
1351 	}
1352 
1353 	return value & mask;
1354 }
1355 
1356 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1357 			unsigned offset, unsigned n)
1358 {
1359 	if (n > 32) {
1360 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1361 			      __func__, n, current->comm);
1362 		n = 32;
1363 	}
1364 
1365 	return __extract(report, offset, n);
1366 }
1367 EXPORT_SYMBOL_GPL(hid_field_extract);
1368 
1369 /*
1370  * "implement" : set bits in a little endian bit stream.
1371  * Same concepts as "extract" (see comments above).
1372  * The data mangled in the bit stream remains in little endian
1373  * order the whole time. It make more sense to talk about
1374  * endianness of register values by considering a register
1375  * a "cached" copy of the little endian bit stream.
1376  */
1377 
1378 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1379 {
1380 	unsigned int idx = offset / 8;
1381 	unsigned int bit_shift = offset % 8;
1382 	int bits_to_set = 8 - bit_shift;
1383 
1384 	while (n - bits_to_set >= 0) {
1385 		report[idx] &= ~(0xff << bit_shift);
1386 		report[idx] |= value << bit_shift;
1387 		value >>= bits_to_set;
1388 		n -= bits_to_set;
1389 		bits_to_set = 8;
1390 		bit_shift = 0;
1391 		idx++;
1392 	}
1393 
1394 	/* last nibble */
1395 	if (n) {
1396 		u8 bit_mask = ((1U << n) - 1);
1397 		report[idx] &= ~(bit_mask << bit_shift);
1398 		report[idx] |= value << bit_shift;
1399 	}
1400 }
1401 
1402 static void implement(const struct hid_device *hid, u8 *report,
1403 		      unsigned offset, unsigned n, u32 value)
1404 {
1405 	if (unlikely(n > 32)) {
1406 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1407 			 __func__, n, current->comm);
1408 		n = 32;
1409 	} else if (n < 32) {
1410 		u32 m = (1U << n) - 1;
1411 
1412 		if (unlikely(value > m)) {
1413 			hid_warn(hid,
1414 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1415 				 __func__, value, n, current->comm);
1416 			WARN_ON(1);
1417 			value &= m;
1418 		}
1419 	}
1420 
1421 	__implement(report, offset, n, value);
1422 }
1423 
1424 /*
1425  * Search an array for a value.
1426  */
1427 
1428 static int search(__s32 *array, __s32 value, unsigned n)
1429 {
1430 	while (n--) {
1431 		if (*array++ == value)
1432 			return 0;
1433 	}
1434 	return -1;
1435 }
1436 
1437 /**
1438  * hid_match_report - check if driver's raw_event should be called
1439  *
1440  * @hid: hid device
1441  * @report_type: type to match against
1442  *
1443  * compare hid->driver->report_table->report_type to report->type
1444  */
1445 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1446 {
1447 	const struct hid_report_id *id = hid->driver->report_table;
1448 
1449 	if (!id) /* NULL means all */
1450 		return 1;
1451 
1452 	for (; id->report_type != HID_TERMINATOR; id++)
1453 		if (id->report_type == HID_ANY_ID ||
1454 				id->report_type == report->type)
1455 			return 1;
1456 	return 0;
1457 }
1458 
1459 /**
1460  * hid_match_usage - check if driver's event should be called
1461  *
1462  * @hid: hid device
1463  * @usage: usage to match against
1464  *
1465  * compare hid->driver->usage_table->usage_{type,code} to
1466  * usage->usage_{type,code}
1467  */
1468 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1469 {
1470 	const struct hid_usage_id *id = hid->driver->usage_table;
1471 
1472 	if (!id) /* NULL means all */
1473 		return 1;
1474 
1475 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1476 		if ((id->usage_hid == HID_ANY_ID ||
1477 				id->usage_hid == usage->hid) &&
1478 				(id->usage_type == HID_ANY_ID ||
1479 				id->usage_type == usage->type) &&
1480 				(id->usage_code == HID_ANY_ID ||
1481 				 id->usage_code == usage->code))
1482 			return 1;
1483 	return 0;
1484 }
1485 
1486 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1487 		struct hid_usage *usage, __s32 value, int interrupt)
1488 {
1489 	struct hid_driver *hdrv = hid->driver;
1490 	int ret;
1491 
1492 	if (!list_empty(&hid->debug_list))
1493 		hid_dump_input(hid, usage, value);
1494 
1495 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1496 		ret = hdrv->event(hid, field, usage, value);
1497 		if (ret != 0) {
1498 			if (ret < 0)
1499 				hid_err(hid, "%s's event failed with %d\n",
1500 						hdrv->name, ret);
1501 			return;
1502 		}
1503 	}
1504 
1505 	if (hid->claimed & HID_CLAIMED_INPUT)
1506 		hidinput_hid_event(hid, field, usage, value);
1507 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1508 		hid->hiddev_hid_event(hid, field, usage, value);
1509 }
1510 
1511 /*
1512  * Analyse a received field, and fetch the data from it. The field
1513  * content is stored for next report processing (we do differential
1514  * reporting to the layer).
1515  */
1516 
1517 static void hid_input_field(struct hid_device *hid, struct hid_field *field,
1518 			    __u8 *data, int interrupt)
1519 {
1520 	unsigned n;
1521 	unsigned count = field->report_count;
1522 	unsigned offset = field->report_offset;
1523 	unsigned size = field->report_size;
1524 	__s32 min = field->logical_minimum;
1525 	__s32 max = field->logical_maximum;
1526 	__s32 *value;
1527 
1528 	value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC);
1529 	if (!value)
1530 		return;
1531 
1532 	for (n = 0; n < count; n++) {
1533 
1534 		value[n] = min < 0 ?
1535 			snto32(hid_field_extract(hid, data, offset + n * size,
1536 			       size), size) :
1537 			hid_field_extract(hid, data, offset + n * size, size);
1538 
1539 		/* Ignore report if ErrorRollOver */
1540 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1541 		    value[n] >= min && value[n] <= max &&
1542 		    value[n] - min < field->maxusage &&
1543 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1)
1544 			goto exit;
1545 	}
1546 
1547 	for (n = 0; n < count; n++) {
1548 
1549 		if (HID_MAIN_ITEM_VARIABLE & field->flags) {
1550 			hid_process_event(hid, field, &field->usage[n], value[n], interrupt);
1551 			continue;
1552 		}
1553 
1554 		if (field->value[n] >= min && field->value[n] <= max
1555 			&& field->value[n] - min < field->maxusage
1556 			&& field->usage[field->value[n] - min].hid
1557 			&& search(value, field->value[n], count))
1558 				hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt);
1559 
1560 		if (value[n] >= min && value[n] <= max
1561 			&& value[n] - min < field->maxusage
1562 			&& field->usage[value[n] - min].hid
1563 			&& search(field->value, value[n], count))
1564 				hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt);
1565 	}
1566 
1567 	memcpy(field->value, value, count * sizeof(__s32));
1568 exit:
1569 	kfree(value);
1570 }
1571 
1572 /*
1573  * Output the field into the report.
1574  */
1575 
1576 static void hid_output_field(const struct hid_device *hid,
1577 			     struct hid_field *field, __u8 *data)
1578 {
1579 	unsigned count = field->report_count;
1580 	unsigned offset = field->report_offset;
1581 	unsigned size = field->report_size;
1582 	unsigned n;
1583 
1584 	for (n = 0; n < count; n++) {
1585 		if (field->logical_minimum < 0)	/* signed values */
1586 			implement(hid, data, offset + n * size, size,
1587 				  s32ton(field->value[n], size));
1588 		else				/* unsigned values */
1589 			implement(hid, data, offset + n * size, size,
1590 				  field->value[n]);
1591 	}
1592 }
1593 
1594 /*
1595  * Create a report. 'data' has to be allocated using
1596  * hid_alloc_report_buf() so that it has proper size.
1597  */
1598 
1599 void hid_output_report(struct hid_report *report, __u8 *data)
1600 {
1601 	unsigned n;
1602 
1603 	if (report->id > 0)
1604 		*data++ = report->id;
1605 
1606 	memset(data, 0, ((report->size - 1) >> 3) + 1);
1607 	for (n = 0; n < report->maxfield; n++)
1608 		hid_output_field(report->device, report->field[n], data);
1609 }
1610 EXPORT_SYMBOL_GPL(hid_output_report);
1611 
1612 /*
1613  * Allocator for buffer that is going to be passed to hid_output_report()
1614  */
1615 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1616 {
1617 	/*
1618 	 * 7 extra bytes are necessary to achieve proper functionality
1619 	 * of implement() working on 8 byte chunks
1620 	 */
1621 
1622 	u32 len = hid_report_len(report) + 7;
1623 
1624 	return kmalloc(len, flags);
1625 }
1626 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1627 
1628 /*
1629  * Set a field value. The report this field belongs to has to be
1630  * created and transferred to the device, to set this value in the
1631  * device.
1632  */
1633 
1634 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1635 {
1636 	unsigned size;
1637 
1638 	if (!field)
1639 		return -1;
1640 
1641 	size = field->report_size;
1642 
1643 	hid_dump_input(field->report->device, field->usage + offset, value);
1644 
1645 	if (offset >= field->report_count) {
1646 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1647 				offset, field->report_count);
1648 		return -1;
1649 	}
1650 	if (field->logical_minimum < 0) {
1651 		if (value != snto32(s32ton(value, size), size)) {
1652 			hid_err(field->report->device, "value %d is out of range\n", value);
1653 			return -1;
1654 		}
1655 	}
1656 	field->value[offset] = value;
1657 	return 0;
1658 }
1659 EXPORT_SYMBOL_GPL(hid_set_field);
1660 
1661 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1662 		const u8 *data)
1663 {
1664 	struct hid_report *report;
1665 	unsigned int n = 0;	/* Normally report number is 0 */
1666 
1667 	/* Device uses numbered reports, data[0] is report number */
1668 	if (report_enum->numbered)
1669 		n = *data;
1670 
1671 	report = report_enum->report_id_hash[n];
1672 	if (report == NULL)
1673 		dbg_hid("undefined report_id %u received\n", n);
1674 
1675 	return report;
1676 }
1677 
1678 /*
1679  * Implement a generic .request() callback, using .raw_request()
1680  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1681  */
1682 int __hid_request(struct hid_device *hid, struct hid_report *report,
1683 		int reqtype)
1684 {
1685 	char *buf;
1686 	int ret;
1687 	u32 len;
1688 
1689 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1690 	if (!buf)
1691 		return -ENOMEM;
1692 
1693 	len = hid_report_len(report);
1694 
1695 	if (reqtype == HID_REQ_SET_REPORT)
1696 		hid_output_report(report, buf);
1697 
1698 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1699 					  report->type, reqtype);
1700 	if (ret < 0) {
1701 		dbg_hid("unable to complete request: %d\n", ret);
1702 		goto out;
1703 	}
1704 
1705 	if (reqtype == HID_REQ_GET_REPORT)
1706 		hid_input_report(hid, report->type, buf, ret, 0);
1707 
1708 	ret = 0;
1709 
1710 out:
1711 	kfree(buf);
1712 	return ret;
1713 }
1714 EXPORT_SYMBOL_GPL(__hid_request);
1715 
1716 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size,
1717 		int interrupt)
1718 {
1719 	struct hid_report_enum *report_enum = hid->report_enum + type;
1720 	struct hid_report *report;
1721 	struct hid_driver *hdrv;
1722 	unsigned int a;
1723 	u32 rsize, csize = size;
1724 	u8 *cdata = data;
1725 	int ret = 0;
1726 
1727 	report = hid_get_report(report_enum, data);
1728 	if (!report)
1729 		goto out;
1730 
1731 	if (report_enum->numbered) {
1732 		cdata++;
1733 		csize--;
1734 	}
1735 
1736 	rsize = ((report->size - 1) >> 3) + 1;
1737 
1738 	if (rsize > HID_MAX_BUFFER_SIZE)
1739 		rsize = HID_MAX_BUFFER_SIZE;
1740 
1741 	if (csize < rsize) {
1742 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1743 				csize, rsize);
1744 		memset(cdata + csize, 0, rsize - csize);
1745 	}
1746 
1747 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
1748 		hid->hiddev_report_event(hid, report);
1749 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
1750 		ret = hidraw_report_event(hid, data, size);
1751 		if (ret)
1752 			goto out;
1753 	}
1754 
1755 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
1756 		for (a = 0; a < report->maxfield; a++)
1757 			hid_input_field(hid, report->field[a], cdata, interrupt);
1758 		hdrv = hid->driver;
1759 		if (hdrv && hdrv->report)
1760 			hdrv->report(hid, report);
1761 	}
1762 
1763 	if (hid->claimed & HID_CLAIMED_INPUT)
1764 		hidinput_report_event(hid, report);
1765 out:
1766 	return ret;
1767 }
1768 EXPORT_SYMBOL_GPL(hid_report_raw_event);
1769 
1770 /**
1771  * hid_input_report - report data from lower layer (usb, bt...)
1772  *
1773  * @hid: hid device
1774  * @type: HID report type (HID_*_REPORT)
1775  * @data: report contents
1776  * @size: size of data parameter
1777  * @interrupt: distinguish between interrupt and control transfers
1778  *
1779  * This is data entry for lower layers.
1780  */
1781 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt)
1782 {
1783 	struct hid_report_enum *report_enum;
1784 	struct hid_driver *hdrv;
1785 	struct hid_report *report;
1786 	int ret = 0;
1787 
1788 	if (!hid)
1789 		return -ENODEV;
1790 
1791 	if (down_trylock(&hid->driver_input_lock))
1792 		return -EBUSY;
1793 
1794 	if (!hid->driver) {
1795 		ret = -ENODEV;
1796 		goto unlock;
1797 	}
1798 	report_enum = hid->report_enum + type;
1799 	hdrv = hid->driver;
1800 
1801 	if (!size) {
1802 		dbg_hid("empty report\n");
1803 		ret = -1;
1804 		goto unlock;
1805 	}
1806 
1807 	/* Avoid unnecessary overhead if debugfs is disabled */
1808 	if (!list_empty(&hid->debug_list))
1809 		hid_dump_report(hid, type, data, size);
1810 
1811 	report = hid_get_report(report_enum, data);
1812 
1813 	if (!report) {
1814 		ret = -1;
1815 		goto unlock;
1816 	}
1817 
1818 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
1819 		ret = hdrv->raw_event(hid, report, data, size);
1820 		if (ret < 0)
1821 			goto unlock;
1822 	}
1823 
1824 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
1825 
1826 unlock:
1827 	up(&hid->driver_input_lock);
1828 	return ret;
1829 }
1830 EXPORT_SYMBOL_GPL(hid_input_report);
1831 
1832 bool hid_match_one_id(const struct hid_device *hdev,
1833 		      const struct hid_device_id *id)
1834 {
1835 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
1836 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
1837 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
1838 		(id->product == HID_ANY_ID || id->product == hdev->product);
1839 }
1840 
1841 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
1842 		const struct hid_device_id *id)
1843 {
1844 	for (; id->bus; id++)
1845 		if (hid_match_one_id(hdev, id))
1846 			return id;
1847 
1848 	return NULL;
1849 }
1850 
1851 static const struct hid_device_id hid_hiddev_list[] = {
1852 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
1853 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
1854 	{ }
1855 };
1856 
1857 static bool hid_hiddev(struct hid_device *hdev)
1858 {
1859 	return !!hid_match_id(hdev, hid_hiddev_list);
1860 }
1861 
1862 
1863 static ssize_t
1864 read_report_descriptor(struct file *filp, struct kobject *kobj,
1865 		struct bin_attribute *attr,
1866 		char *buf, loff_t off, size_t count)
1867 {
1868 	struct device *dev = kobj_to_dev(kobj);
1869 	struct hid_device *hdev = to_hid_device(dev);
1870 
1871 	if (off >= hdev->rsize)
1872 		return 0;
1873 
1874 	if (off + count > hdev->rsize)
1875 		count = hdev->rsize - off;
1876 
1877 	memcpy(buf, hdev->rdesc + off, count);
1878 
1879 	return count;
1880 }
1881 
1882 static ssize_t
1883 show_country(struct device *dev, struct device_attribute *attr,
1884 		char *buf)
1885 {
1886 	struct hid_device *hdev = to_hid_device(dev);
1887 
1888 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
1889 }
1890 
1891 static struct bin_attribute dev_bin_attr_report_desc = {
1892 	.attr = { .name = "report_descriptor", .mode = 0444 },
1893 	.read = read_report_descriptor,
1894 	.size = HID_MAX_DESCRIPTOR_SIZE,
1895 };
1896 
1897 static const struct device_attribute dev_attr_country = {
1898 	.attr = { .name = "country", .mode = 0444 },
1899 	.show = show_country,
1900 };
1901 
1902 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
1903 {
1904 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
1905 		"Joystick", "Gamepad", "Keyboard", "Keypad",
1906 		"Multi-Axis Controller"
1907 	};
1908 	const char *type, *bus;
1909 	char buf[64] = "";
1910 	unsigned int i;
1911 	int len;
1912 	int ret;
1913 
1914 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
1915 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
1916 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
1917 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
1918 	if (hdev->bus != BUS_USB)
1919 		connect_mask &= ~HID_CONNECT_HIDDEV;
1920 	if (hid_hiddev(hdev))
1921 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
1922 
1923 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
1924 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
1925 		hdev->claimed |= HID_CLAIMED_INPUT;
1926 
1927 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
1928 			!hdev->hiddev_connect(hdev,
1929 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
1930 		hdev->claimed |= HID_CLAIMED_HIDDEV;
1931 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
1932 		hdev->claimed |= HID_CLAIMED_HIDRAW;
1933 
1934 	if (connect_mask & HID_CONNECT_DRIVER)
1935 		hdev->claimed |= HID_CLAIMED_DRIVER;
1936 
1937 	/* Drivers with the ->raw_event callback set are not required to connect
1938 	 * to any other listener. */
1939 	if (!hdev->claimed && !hdev->driver->raw_event) {
1940 		hid_err(hdev, "device has no listeners, quitting\n");
1941 		return -ENODEV;
1942 	}
1943 
1944 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
1945 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
1946 		hdev->ff_init(hdev);
1947 
1948 	len = 0;
1949 	if (hdev->claimed & HID_CLAIMED_INPUT)
1950 		len += sprintf(buf + len, "input");
1951 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
1952 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
1953 				((struct hiddev *)hdev->hiddev)->minor);
1954 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
1955 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
1956 				((struct hidraw *)hdev->hidraw)->minor);
1957 
1958 	type = "Device";
1959 	for (i = 0; i < hdev->maxcollection; i++) {
1960 		struct hid_collection *col = &hdev->collection[i];
1961 		if (col->type == HID_COLLECTION_APPLICATION &&
1962 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
1963 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
1964 			type = types[col->usage & 0xffff];
1965 			break;
1966 		}
1967 	}
1968 
1969 	switch (hdev->bus) {
1970 	case BUS_USB:
1971 		bus = "USB";
1972 		break;
1973 	case BUS_BLUETOOTH:
1974 		bus = "BLUETOOTH";
1975 		break;
1976 	case BUS_I2C:
1977 		bus = "I2C";
1978 		break;
1979 	default:
1980 		bus = "<UNKNOWN>";
1981 	}
1982 
1983 	ret = device_create_file(&hdev->dev, &dev_attr_country);
1984 	if (ret)
1985 		hid_warn(hdev,
1986 			 "can't create sysfs country code attribute err: %d\n", ret);
1987 
1988 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
1989 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
1990 		 type, hdev->name, hdev->phys);
1991 
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(hid_connect);
1995 
1996 void hid_disconnect(struct hid_device *hdev)
1997 {
1998 	device_remove_file(&hdev->dev, &dev_attr_country);
1999 	if (hdev->claimed & HID_CLAIMED_INPUT)
2000 		hidinput_disconnect(hdev);
2001 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2002 		hdev->hiddev_disconnect(hdev);
2003 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2004 		hidraw_disconnect(hdev);
2005 	hdev->claimed = 0;
2006 }
2007 EXPORT_SYMBOL_GPL(hid_disconnect);
2008 
2009 /**
2010  * hid_hw_start - start underlying HW
2011  * @hdev: hid device
2012  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2013  *
2014  * Call this in probe function *after* hid_parse. This will setup HW
2015  * buffers and start the device (if not defeirred to device open).
2016  * hid_hw_stop must be called if this was successful.
2017  */
2018 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2019 {
2020 	int error;
2021 
2022 	error = hdev->ll_driver->start(hdev);
2023 	if (error)
2024 		return error;
2025 
2026 	if (connect_mask) {
2027 		error = hid_connect(hdev, connect_mask);
2028 		if (error) {
2029 			hdev->ll_driver->stop(hdev);
2030 			return error;
2031 		}
2032 	}
2033 
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(hid_hw_start);
2037 
2038 /**
2039  * hid_hw_stop - stop underlying HW
2040  * @hdev: hid device
2041  *
2042  * This is usually called from remove function or from probe when something
2043  * failed and hid_hw_start was called already.
2044  */
2045 void hid_hw_stop(struct hid_device *hdev)
2046 {
2047 	hid_disconnect(hdev);
2048 	hdev->ll_driver->stop(hdev);
2049 }
2050 EXPORT_SYMBOL_GPL(hid_hw_stop);
2051 
2052 /**
2053  * hid_hw_open - signal underlying HW to start delivering events
2054  * @hdev: hid device
2055  *
2056  * Tell underlying HW to start delivering events from the device.
2057  * This function should be called sometime after successful call
2058  * to hid_hw_start().
2059  */
2060 int hid_hw_open(struct hid_device *hdev)
2061 {
2062 	int ret;
2063 
2064 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2065 	if (ret)
2066 		return ret;
2067 
2068 	if (!hdev->ll_open_count++) {
2069 		ret = hdev->ll_driver->open(hdev);
2070 		if (ret)
2071 			hdev->ll_open_count--;
2072 	}
2073 
2074 	mutex_unlock(&hdev->ll_open_lock);
2075 	return ret;
2076 }
2077 EXPORT_SYMBOL_GPL(hid_hw_open);
2078 
2079 /**
2080  * hid_hw_close - signal underlaying HW to stop delivering events
2081  *
2082  * @hdev: hid device
2083  *
2084  * This function indicates that we are not interested in the events
2085  * from this device anymore. Delivery of events may or may not stop,
2086  * depending on the number of users still outstanding.
2087  */
2088 void hid_hw_close(struct hid_device *hdev)
2089 {
2090 	mutex_lock(&hdev->ll_open_lock);
2091 	if (!--hdev->ll_open_count)
2092 		hdev->ll_driver->close(hdev);
2093 	mutex_unlock(&hdev->ll_open_lock);
2094 }
2095 EXPORT_SYMBOL_GPL(hid_hw_close);
2096 
2097 struct hid_dynid {
2098 	struct list_head list;
2099 	struct hid_device_id id;
2100 };
2101 
2102 /**
2103  * store_new_id - add a new HID device ID to this driver and re-probe devices
2104  * @driver: target device driver
2105  * @buf: buffer for scanning device ID data
2106  * @count: input size
2107  *
2108  * Adds a new dynamic hid device ID to this driver,
2109  * and causes the driver to probe for all devices again.
2110  */
2111 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2112 		size_t count)
2113 {
2114 	struct hid_driver *hdrv = to_hid_driver(drv);
2115 	struct hid_dynid *dynid;
2116 	__u32 bus, vendor, product;
2117 	unsigned long driver_data = 0;
2118 	int ret;
2119 
2120 	ret = sscanf(buf, "%x %x %x %lx",
2121 			&bus, &vendor, &product, &driver_data);
2122 	if (ret < 3)
2123 		return -EINVAL;
2124 
2125 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2126 	if (!dynid)
2127 		return -ENOMEM;
2128 
2129 	dynid->id.bus = bus;
2130 	dynid->id.group = HID_GROUP_ANY;
2131 	dynid->id.vendor = vendor;
2132 	dynid->id.product = product;
2133 	dynid->id.driver_data = driver_data;
2134 
2135 	spin_lock(&hdrv->dyn_lock);
2136 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2137 	spin_unlock(&hdrv->dyn_lock);
2138 
2139 	ret = driver_attach(&hdrv->driver);
2140 
2141 	return ret ? : count;
2142 }
2143 static DRIVER_ATTR_WO(new_id);
2144 
2145 static struct attribute *hid_drv_attrs[] = {
2146 	&driver_attr_new_id.attr,
2147 	NULL,
2148 };
2149 ATTRIBUTE_GROUPS(hid_drv);
2150 
2151 static void hid_free_dynids(struct hid_driver *hdrv)
2152 {
2153 	struct hid_dynid *dynid, *n;
2154 
2155 	spin_lock(&hdrv->dyn_lock);
2156 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2157 		list_del(&dynid->list);
2158 		kfree(dynid);
2159 	}
2160 	spin_unlock(&hdrv->dyn_lock);
2161 }
2162 
2163 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2164 					     struct hid_driver *hdrv)
2165 {
2166 	struct hid_dynid *dynid;
2167 
2168 	spin_lock(&hdrv->dyn_lock);
2169 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2170 		if (hid_match_one_id(hdev, &dynid->id)) {
2171 			spin_unlock(&hdrv->dyn_lock);
2172 			return &dynid->id;
2173 		}
2174 	}
2175 	spin_unlock(&hdrv->dyn_lock);
2176 
2177 	return hid_match_id(hdev, hdrv->id_table);
2178 }
2179 EXPORT_SYMBOL_GPL(hid_match_device);
2180 
2181 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2182 {
2183 	struct hid_driver *hdrv = to_hid_driver(drv);
2184 	struct hid_device *hdev = to_hid_device(dev);
2185 
2186 	return hid_match_device(hdev, hdrv) != NULL;
2187 }
2188 
2189 /**
2190  * hid_compare_device_paths - check if both devices share the same path
2191  * @hdev_a: hid device
2192  * @hdev_b: hid device
2193  * @separator: char to use as separator
2194  *
2195  * Check if two devices share the same path up to the last occurrence of
2196  * the separator char. Both paths must exist (i.e., zero-length paths
2197  * don't match).
2198  */
2199 bool hid_compare_device_paths(struct hid_device *hdev_a,
2200 			      struct hid_device *hdev_b, char separator)
2201 {
2202 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2203 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2204 
2205 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2206 		return false;
2207 
2208 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2209 }
2210 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2211 
2212 static int hid_device_probe(struct device *dev)
2213 {
2214 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2215 	struct hid_device *hdev = to_hid_device(dev);
2216 	const struct hid_device_id *id;
2217 	int ret = 0;
2218 
2219 	if (down_interruptible(&hdev->driver_input_lock)) {
2220 		ret = -EINTR;
2221 		goto end;
2222 	}
2223 	hdev->io_started = false;
2224 
2225 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2226 
2227 	if (!hdev->driver) {
2228 		id = hid_match_device(hdev, hdrv);
2229 		if (id == NULL) {
2230 			ret = -ENODEV;
2231 			goto unlock;
2232 		}
2233 
2234 		if (hdrv->match) {
2235 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2236 				ret = -ENODEV;
2237 				goto unlock;
2238 			}
2239 		} else {
2240 			/*
2241 			 * hid-generic implements .match(), so if
2242 			 * hid_ignore_special_drivers is set, we can safely
2243 			 * return.
2244 			 */
2245 			if (hid_ignore_special_drivers) {
2246 				ret = -ENODEV;
2247 				goto unlock;
2248 			}
2249 		}
2250 
2251 		/* reset the quirks that has been previously set */
2252 		hdev->quirks = hid_lookup_quirk(hdev);
2253 		hdev->driver = hdrv;
2254 		if (hdrv->probe) {
2255 			ret = hdrv->probe(hdev, id);
2256 		} else { /* default probe */
2257 			ret = hid_open_report(hdev);
2258 			if (!ret)
2259 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2260 		}
2261 		if (ret) {
2262 			hid_close_report(hdev);
2263 			hdev->driver = NULL;
2264 		}
2265 	}
2266 unlock:
2267 	if (!hdev->io_started)
2268 		up(&hdev->driver_input_lock);
2269 end:
2270 	return ret;
2271 }
2272 
2273 static int hid_device_remove(struct device *dev)
2274 {
2275 	struct hid_device *hdev = to_hid_device(dev);
2276 	struct hid_driver *hdrv;
2277 	int ret = 0;
2278 
2279 	if (down_interruptible(&hdev->driver_input_lock)) {
2280 		ret = -EINTR;
2281 		goto end;
2282 	}
2283 	hdev->io_started = false;
2284 
2285 	hdrv = hdev->driver;
2286 	if (hdrv) {
2287 		if (hdrv->remove)
2288 			hdrv->remove(hdev);
2289 		else /* default remove */
2290 			hid_hw_stop(hdev);
2291 		hid_close_report(hdev);
2292 		hdev->driver = NULL;
2293 	}
2294 
2295 	if (!hdev->io_started)
2296 		up(&hdev->driver_input_lock);
2297 end:
2298 	return ret;
2299 }
2300 
2301 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2302 			     char *buf)
2303 {
2304 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2305 
2306 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2307 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2308 }
2309 static DEVICE_ATTR_RO(modalias);
2310 
2311 static struct attribute *hid_dev_attrs[] = {
2312 	&dev_attr_modalias.attr,
2313 	NULL,
2314 };
2315 static struct bin_attribute *hid_dev_bin_attrs[] = {
2316 	&dev_bin_attr_report_desc,
2317 	NULL
2318 };
2319 static const struct attribute_group hid_dev_group = {
2320 	.attrs = hid_dev_attrs,
2321 	.bin_attrs = hid_dev_bin_attrs,
2322 };
2323 __ATTRIBUTE_GROUPS(hid_dev);
2324 
2325 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2326 {
2327 	struct hid_device *hdev = to_hid_device(dev);
2328 
2329 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2330 			hdev->bus, hdev->vendor, hdev->product))
2331 		return -ENOMEM;
2332 
2333 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2334 		return -ENOMEM;
2335 
2336 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2337 		return -ENOMEM;
2338 
2339 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2340 		return -ENOMEM;
2341 
2342 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2343 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2344 		return -ENOMEM;
2345 
2346 	return 0;
2347 }
2348 
2349 struct bus_type hid_bus_type = {
2350 	.name		= "hid",
2351 	.dev_groups	= hid_dev_groups,
2352 	.drv_groups	= hid_drv_groups,
2353 	.match		= hid_bus_match,
2354 	.probe		= hid_device_probe,
2355 	.remove		= hid_device_remove,
2356 	.uevent		= hid_uevent,
2357 };
2358 EXPORT_SYMBOL(hid_bus_type);
2359 
2360 int hid_add_device(struct hid_device *hdev)
2361 {
2362 	static atomic_t id = ATOMIC_INIT(0);
2363 	int ret;
2364 
2365 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2366 		return -EBUSY;
2367 
2368 	hdev->quirks = hid_lookup_quirk(hdev);
2369 
2370 	/* we need to kill them here, otherwise they will stay allocated to
2371 	 * wait for coming driver */
2372 	if (hid_ignore(hdev))
2373 		return -ENODEV;
2374 
2375 	/*
2376 	 * Check for the mandatory transport channel.
2377 	 */
2378 	 if (!hdev->ll_driver->raw_request) {
2379 		hid_err(hdev, "transport driver missing .raw_request()\n");
2380 		return -EINVAL;
2381 	 }
2382 
2383 	/*
2384 	 * Read the device report descriptor once and use as template
2385 	 * for the driver-specific modifications.
2386 	 */
2387 	ret = hdev->ll_driver->parse(hdev);
2388 	if (ret)
2389 		return ret;
2390 	if (!hdev->dev_rdesc)
2391 		return -ENODEV;
2392 
2393 	/*
2394 	 * Scan generic devices for group information
2395 	 */
2396 	if (hid_ignore_special_drivers) {
2397 		hdev->group = HID_GROUP_GENERIC;
2398 	} else if (!hdev->group &&
2399 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2400 		ret = hid_scan_report(hdev);
2401 		if (ret)
2402 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2403 	}
2404 
2405 	/* XXX hack, any other cleaner solution after the driver core
2406 	 * is converted to allow more than 20 bytes as the device name? */
2407 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2408 		     hdev->vendor, hdev->product, atomic_inc_return(&id));
2409 
2410 	hid_debug_register(hdev, dev_name(&hdev->dev));
2411 	ret = device_add(&hdev->dev);
2412 	if (!ret)
2413 		hdev->status |= HID_STAT_ADDED;
2414 	else
2415 		hid_debug_unregister(hdev);
2416 
2417 	return ret;
2418 }
2419 EXPORT_SYMBOL_GPL(hid_add_device);
2420 
2421 /**
2422  * hid_allocate_device - allocate new hid device descriptor
2423  *
2424  * Allocate and initialize hid device, so that hid_destroy_device might be
2425  * used to free it.
2426  *
2427  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2428  * error value.
2429  */
2430 struct hid_device *hid_allocate_device(void)
2431 {
2432 	struct hid_device *hdev;
2433 	int ret = -ENOMEM;
2434 
2435 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2436 	if (hdev == NULL)
2437 		return ERR_PTR(ret);
2438 
2439 	device_initialize(&hdev->dev);
2440 	hdev->dev.release = hid_device_release;
2441 	hdev->dev.bus = &hid_bus_type;
2442 	device_enable_async_suspend(&hdev->dev);
2443 
2444 	hid_close_report(hdev);
2445 
2446 	init_waitqueue_head(&hdev->debug_wait);
2447 	INIT_LIST_HEAD(&hdev->debug_list);
2448 	spin_lock_init(&hdev->debug_list_lock);
2449 	sema_init(&hdev->driver_input_lock, 1);
2450 	mutex_init(&hdev->ll_open_lock);
2451 
2452 	return hdev;
2453 }
2454 EXPORT_SYMBOL_GPL(hid_allocate_device);
2455 
2456 static void hid_remove_device(struct hid_device *hdev)
2457 {
2458 	if (hdev->status & HID_STAT_ADDED) {
2459 		device_del(&hdev->dev);
2460 		hid_debug_unregister(hdev);
2461 		hdev->status &= ~HID_STAT_ADDED;
2462 	}
2463 	kfree(hdev->dev_rdesc);
2464 	hdev->dev_rdesc = NULL;
2465 	hdev->dev_rsize = 0;
2466 }
2467 
2468 /**
2469  * hid_destroy_device - free previously allocated device
2470  *
2471  * @hdev: hid device
2472  *
2473  * If you allocate hid_device through hid_allocate_device, you should ever
2474  * free by this function.
2475  */
2476 void hid_destroy_device(struct hid_device *hdev)
2477 {
2478 	hid_remove_device(hdev);
2479 	put_device(&hdev->dev);
2480 }
2481 EXPORT_SYMBOL_GPL(hid_destroy_device);
2482 
2483 
2484 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2485 {
2486 	struct hid_driver *hdrv = data;
2487 	struct hid_device *hdev = to_hid_device(dev);
2488 
2489 	if (hdev->driver == hdrv &&
2490 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2491 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2492 		return device_reprobe(dev);
2493 
2494 	return 0;
2495 }
2496 
2497 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2498 {
2499 	struct hid_driver *hdrv = to_hid_driver(drv);
2500 
2501 	if (hdrv->match) {
2502 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2503 				 __hid_bus_reprobe_drivers);
2504 	}
2505 
2506 	return 0;
2507 }
2508 
2509 static int __bus_removed_driver(struct device_driver *drv, void *data)
2510 {
2511 	return bus_rescan_devices(&hid_bus_type);
2512 }
2513 
2514 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2515 		const char *mod_name)
2516 {
2517 	int ret;
2518 
2519 	hdrv->driver.name = hdrv->name;
2520 	hdrv->driver.bus = &hid_bus_type;
2521 	hdrv->driver.owner = owner;
2522 	hdrv->driver.mod_name = mod_name;
2523 
2524 	INIT_LIST_HEAD(&hdrv->dyn_list);
2525 	spin_lock_init(&hdrv->dyn_lock);
2526 
2527 	ret = driver_register(&hdrv->driver);
2528 
2529 	if (ret == 0)
2530 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2531 				 __hid_bus_driver_added);
2532 
2533 	return ret;
2534 }
2535 EXPORT_SYMBOL_GPL(__hid_register_driver);
2536 
2537 void hid_unregister_driver(struct hid_driver *hdrv)
2538 {
2539 	driver_unregister(&hdrv->driver);
2540 	hid_free_dynids(hdrv);
2541 
2542 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2543 }
2544 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2545 
2546 int hid_check_keys_pressed(struct hid_device *hid)
2547 {
2548 	struct hid_input *hidinput;
2549 	int i;
2550 
2551 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2552 		return 0;
2553 
2554 	list_for_each_entry(hidinput, &hid->inputs, list) {
2555 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2556 			if (hidinput->input->key[i])
2557 				return 1;
2558 	}
2559 
2560 	return 0;
2561 }
2562 
2563 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2564 
2565 static int __init hid_init(void)
2566 {
2567 	int ret;
2568 
2569 	if (hid_debug)
2570 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2571 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2572 
2573 	ret = bus_register(&hid_bus_type);
2574 	if (ret) {
2575 		pr_err("can't register hid bus\n");
2576 		goto err;
2577 	}
2578 
2579 	ret = hidraw_init();
2580 	if (ret)
2581 		goto err_bus;
2582 
2583 	hid_debug_init();
2584 
2585 	return 0;
2586 err_bus:
2587 	bus_unregister(&hid_bus_type);
2588 err:
2589 	return ret;
2590 }
2591 
2592 static void __exit hid_exit(void)
2593 {
2594 	hid_debug_exit();
2595 	hidraw_exit();
2596 	bus_unregister(&hid_bus_type);
2597 	hid_quirks_exit(HID_BUS_ANY);
2598 }
2599 
2600 module_init(hid_init);
2601 module_exit(hid_exit);
2602 
2603 MODULE_AUTHOR("Andreas Gal");
2604 MODULE_AUTHOR("Vojtech Pavlik");
2605 MODULE_AUTHOR("Jiri Kosina");
2606 MODULE_LICENSE("GPL");
2607