1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID support for Linux 4 * 5 * Copyright (c) 1999 Andreas Gal 6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 8 * Copyright (c) 2006-2012 Jiri Kosina 9 */ 10 11 /* 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/list.h> 21 #include <linux/mm.h> 22 #include <linux/spinlock.h> 23 #include <asm/unaligned.h> 24 #include <asm/byteorder.h> 25 #include <linux/input.h> 26 #include <linux/wait.h> 27 #include <linux/vmalloc.h> 28 #include <linux/sched.h> 29 #include <linux/semaphore.h> 30 31 #include <linux/hid.h> 32 #include <linux/hiddev.h> 33 #include <linux/hid-debug.h> 34 #include <linux/hidraw.h> 35 36 #include "hid-ids.h" 37 38 /* 39 * Version Information 40 */ 41 42 #define DRIVER_DESC "HID core driver" 43 44 int hid_debug = 0; 45 module_param_named(debug, hid_debug, int, 0600); 46 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 47 EXPORT_SYMBOL_GPL(hid_debug); 48 49 static int hid_ignore_special_drivers = 0; 50 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 51 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 52 53 /* 54 * Register a new report for a device. 55 */ 56 57 struct hid_report *hid_register_report(struct hid_device *device, 58 unsigned int type, unsigned int id, 59 unsigned int application) 60 { 61 struct hid_report_enum *report_enum = device->report_enum + type; 62 struct hid_report *report; 63 64 if (id >= HID_MAX_IDS) 65 return NULL; 66 if (report_enum->report_id_hash[id]) 67 return report_enum->report_id_hash[id]; 68 69 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 70 if (!report) 71 return NULL; 72 73 if (id != 0) 74 report_enum->numbered = 1; 75 76 report->id = id; 77 report->type = type; 78 report->size = 0; 79 report->device = device; 80 report->application = application; 81 report_enum->report_id_hash[id] = report; 82 83 list_add_tail(&report->list, &report_enum->report_list); 84 85 return report; 86 } 87 EXPORT_SYMBOL_GPL(hid_register_report); 88 89 /* 90 * Register a new field for this report. 91 */ 92 93 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages) 94 { 95 struct hid_field *field; 96 97 if (report->maxfield == HID_MAX_FIELDS) { 98 hid_err(report->device, "too many fields in report\n"); 99 return NULL; 100 } 101 102 field = kzalloc((sizeof(struct hid_field) + 103 usages * sizeof(struct hid_usage) + 104 usages * sizeof(unsigned)), GFP_KERNEL); 105 if (!field) 106 return NULL; 107 108 field->index = report->maxfield++; 109 report->field[field->index] = field; 110 field->usage = (struct hid_usage *)(field + 1); 111 field->value = (s32 *)(field->usage + usages); 112 field->report = report; 113 114 return field; 115 } 116 117 /* 118 * Open a collection. The type/usage is pushed on the stack. 119 */ 120 121 static int open_collection(struct hid_parser *parser, unsigned type) 122 { 123 struct hid_collection *collection; 124 unsigned usage; 125 int collection_index; 126 127 usage = parser->local.usage[0]; 128 129 if (parser->collection_stack_ptr == parser->collection_stack_size) { 130 unsigned int *collection_stack; 131 unsigned int new_size = parser->collection_stack_size + 132 HID_COLLECTION_STACK_SIZE; 133 134 collection_stack = krealloc(parser->collection_stack, 135 new_size * sizeof(unsigned int), 136 GFP_KERNEL); 137 if (!collection_stack) 138 return -ENOMEM; 139 140 parser->collection_stack = collection_stack; 141 parser->collection_stack_size = new_size; 142 } 143 144 if (parser->device->maxcollection == parser->device->collection_size) { 145 collection = kmalloc( 146 array3_size(sizeof(struct hid_collection), 147 parser->device->collection_size, 148 2), 149 GFP_KERNEL); 150 if (collection == NULL) { 151 hid_err(parser->device, "failed to reallocate collection array\n"); 152 return -ENOMEM; 153 } 154 memcpy(collection, parser->device->collection, 155 sizeof(struct hid_collection) * 156 parser->device->collection_size); 157 memset(collection + parser->device->collection_size, 0, 158 sizeof(struct hid_collection) * 159 parser->device->collection_size); 160 kfree(parser->device->collection); 161 parser->device->collection = collection; 162 parser->device->collection_size *= 2; 163 } 164 165 parser->collection_stack[parser->collection_stack_ptr++] = 166 parser->device->maxcollection; 167 168 collection_index = parser->device->maxcollection++; 169 collection = parser->device->collection + collection_index; 170 collection->type = type; 171 collection->usage = usage; 172 collection->level = parser->collection_stack_ptr - 1; 173 collection->parent_idx = (collection->level == 0) ? -1 : 174 parser->collection_stack[collection->level - 1]; 175 176 if (type == HID_COLLECTION_APPLICATION) 177 parser->device->maxapplication++; 178 179 return 0; 180 } 181 182 /* 183 * Close a collection. 184 */ 185 186 static int close_collection(struct hid_parser *parser) 187 { 188 if (!parser->collection_stack_ptr) { 189 hid_err(parser->device, "collection stack underflow\n"); 190 return -EINVAL; 191 } 192 parser->collection_stack_ptr--; 193 return 0; 194 } 195 196 /* 197 * Climb up the stack, search for the specified collection type 198 * and return the usage. 199 */ 200 201 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 202 { 203 struct hid_collection *collection = parser->device->collection; 204 int n; 205 206 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 207 unsigned index = parser->collection_stack[n]; 208 if (collection[index].type == type) 209 return collection[index].usage; 210 } 211 return 0; /* we know nothing about this usage type */ 212 } 213 214 /* 215 * Concatenate usage which defines 16 bits or less with the 216 * currently defined usage page to form a 32 bit usage 217 */ 218 219 static void complete_usage(struct hid_parser *parser, unsigned int index) 220 { 221 parser->local.usage[index] &= 0xFFFF; 222 parser->local.usage[index] |= 223 (parser->global.usage_page & 0xFFFF) << 16; 224 } 225 226 /* 227 * Add a usage to the temporary parser table. 228 */ 229 230 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size) 231 { 232 if (parser->local.usage_index >= HID_MAX_USAGES) { 233 hid_err(parser->device, "usage index exceeded\n"); 234 return -1; 235 } 236 parser->local.usage[parser->local.usage_index] = usage; 237 238 /* 239 * If Usage item only includes usage id, concatenate it with 240 * currently defined usage page 241 */ 242 if (size <= 2) 243 complete_usage(parser, parser->local.usage_index); 244 245 parser->local.usage_size[parser->local.usage_index] = size; 246 parser->local.collection_index[parser->local.usage_index] = 247 parser->collection_stack_ptr ? 248 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 249 parser->local.usage_index++; 250 return 0; 251 } 252 253 /* 254 * Register a new field for this report. 255 */ 256 257 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 258 { 259 struct hid_report *report; 260 struct hid_field *field; 261 unsigned int usages; 262 unsigned int offset; 263 unsigned int i; 264 unsigned int application; 265 266 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 267 268 report = hid_register_report(parser->device, report_type, 269 parser->global.report_id, application); 270 if (!report) { 271 hid_err(parser->device, "hid_register_report failed\n"); 272 return -1; 273 } 274 275 /* Handle both signed and unsigned cases properly */ 276 if ((parser->global.logical_minimum < 0 && 277 parser->global.logical_maximum < 278 parser->global.logical_minimum) || 279 (parser->global.logical_minimum >= 0 && 280 (__u32)parser->global.logical_maximum < 281 (__u32)parser->global.logical_minimum)) { 282 dbg_hid("logical range invalid 0x%x 0x%x\n", 283 parser->global.logical_minimum, 284 parser->global.logical_maximum); 285 return -1; 286 } 287 288 offset = report->size; 289 report->size += parser->global.report_size * parser->global.report_count; 290 291 /* Total size check: Allow for possible report index byte */ 292 if (report->size > (HID_MAX_BUFFER_SIZE - 1) << 3) { 293 hid_err(parser->device, "report is too long\n"); 294 return -1; 295 } 296 297 if (!parser->local.usage_index) /* Ignore padding fields */ 298 return 0; 299 300 usages = max_t(unsigned, parser->local.usage_index, 301 parser->global.report_count); 302 303 field = hid_register_field(report, usages); 304 if (!field) 305 return 0; 306 307 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 308 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 309 field->application = application; 310 311 for (i = 0; i < usages; i++) { 312 unsigned j = i; 313 /* Duplicate the last usage we parsed if we have excess values */ 314 if (i >= parser->local.usage_index) 315 j = parser->local.usage_index - 1; 316 field->usage[i].hid = parser->local.usage[j]; 317 field->usage[i].collection_index = 318 parser->local.collection_index[j]; 319 field->usage[i].usage_index = i; 320 field->usage[i].resolution_multiplier = 1; 321 } 322 323 field->maxusage = usages; 324 field->flags = flags; 325 field->report_offset = offset; 326 field->report_type = report_type; 327 field->report_size = parser->global.report_size; 328 field->report_count = parser->global.report_count; 329 field->logical_minimum = parser->global.logical_minimum; 330 field->logical_maximum = parser->global.logical_maximum; 331 field->physical_minimum = parser->global.physical_minimum; 332 field->physical_maximum = parser->global.physical_maximum; 333 field->unit_exponent = parser->global.unit_exponent; 334 field->unit = parser->global.unit; 335 336 return 0; 337 } 338 339 /* 340 * Read data value from item. 341 */ 342 343 static u32 item_udata(struct hid_item *item) 344 { 345 switch (item->size) { 346 case 1: return item->data.u8; 347 case 2: return item->data.u16; 348 case 4: return item->data.u32; 349 } 350 return 0; 351 } 352 353 static s32 item_sdata(struct hid_item *item) 354 { 355 switch (item->size) { 356 case 1: return item->data.s8; 357 case 2: return item->data.s16; 358 case 4: return item->data.s32; 359 } 360 return 0; 361 } 362 363 /* 364 * Process a global item. 365 */ 366 367 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 368 { 369 __s32 raw_value; 370 switch (item->tag) { 371 case HID_GLOBAL_ITEM_TAG_PUSH: 372 373 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 374 hid_err(parser->device, "global environment stack overflow\n"); 375 return -1; 376 } 377 378 memcpy(parser->global_stack + parser->global_stack_ptr++, 379 &parser->global, sizeof(struct hid_global)); 380 return 0; 381 382 case HID_GLOBAL_ITEM_TAG_POP: 383 384 if (!parser->global_stack_ptr) { 385 hid_err(parser->device, "global environment stack underflow\n"); 386 return -1; 387 } 388 389 memcpy(&parser->global, parser->global_stack + 390 --parser->global_stack_ptr, sizeof(struct hid_global)); 391 return 0; 392 393 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 394 parser->global.usage_page = item_udata(item); 395 return 0; 396 397 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 398 parser->global.logical_minimum = item_sdata(item); 399 return 0; 400 401 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 402 if (parser->global.logical_minimum < 0) 403 parser->global.logical_maximum = item_sdata(item); 404 else 405 parser->global.logical_maximum = item_udata(item); 406 return 0; 407 408 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 409 parser->global.physical_minimum = item_sdata(item); 410 return 0; 411 412 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 413 if (parser->global.physical_minimum < 0) 414 parser->global.physical_maximum = item_sdata(item); 415 else 416 parser->global.physical_maximum = item_udata(item); 417 return 0; 418 419 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 420 /* Many devices provide unit exponent as a two's complement 421 * nibble due to the common misunderstanding of HID 422 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 423 * both this and the standard encoding. */ 424 raw_value = item_sdata(item); 425 if (!(raw_value & 0xfffffff0)) 426 parser->global.unit_exponent = hid_snto32(raw_value, 4); 427 else 428 parser->global.unit_exponent = raw_value; 429 return 0; 430 431 case HID_GLOBAL_ITEM_TAG_UNIT: 432 parser->global.unit = item_udata(item); 433 return 0; 434 435 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 436 parser->global.report_size = item_udata(item); 437 if (parser->global.report_size > 256) { 438 hid_err(parser->device, "invalid report_size %d\n", 439 parser->global.report_size); 440 return -1; 441 } 442 return 0; 443 444 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 445 parser->global.report_count = item_udata(item); 446 if (parser->global.report_count > HID_MAX_USAGES) { 447 hid_err(parser->device, "invalid report_count %d\n", 448 parser->global.report_count); 449 return -1; 450 } 451 return 0; 452 453 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 454 parser->global.report_id = item_udata(item); 455 if (parser->global.report_id == 0 || 456 parser->global.report_id >= HID_MAX_IDS) { 457 hid_err(parser->device, "report_id %u is invalid\n", 458 parser->global.report_id); 459 return -1; 460 } 461 return 0; 462 463 default: 464 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 465 return -1; 466 } 467 } 468 469 /* 470 * Process a local item. 471 */ 472 473 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 474 { 475 __u32 data; 476 unsigned n; 477 __u32 count; 478 479 data = item_udata(item); 480 481 switch (item->tag) { 482 case HID_LOCAL_ITEM_TAG_DELIMITER: 483 484 if (data) { 485 /* 486 * We treat items before the first delimiter 487 * as global to all usage sets (branch 0). 488 * In the moment we process only these global 489 * items and the first delimiter set. 490 */ 491 if (parser->local.delimiter_depth != 0) { 492 hid_err(parser->device, "nested delimiters\n"); 493 return -1; 494 } 495 parser->local.delimiter_depth++; 496 parser->local.delimiter_branch++; 497 } else { 498 if (parser->local.delimiter_depth < 1) { 499 hid_err(parser->device, "bogus close delimiter\n"); 500 return -1; 501 } 502 parser->local.delimiter_depth--; 503 } 504 return 0; 505 506 case HID_LOCAL_ITEM_TAG_USAGE: 507 508 if (parser->local.delimiter_branch > 1) { 509 dbg_hid("alternative usage ignored\n"); 510 return 0; 511 } 512 513 return hid_add_usage(parser, data, item->size); 514 515 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 516 517 if (parser->local.delimiter_branch > 1) { 518 dbg_hid("alternative usage ignored\n"); 519 return 0; 520 } 521 522 parser->local.usage_minimum = data; 523 return 0; 524 525 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 526 527 if (parser->local.delimiter_branch > 1) { 528 dbg_hid("alternative usage ignored\n"); 529 return 0; 530 } 531 532 count = data - parser->local.usage_minimum; 533 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 534 /* 535 * We do not warn if the name is not set, we are 536 * actually pre-scanning the device. 537 */ 538 if (dev_name(&parser->device->dev)) 539 hid_warn(parser->device, 540 "ignoring exceeding usage max\n"); 541 data = HID_MAX_USAGES - parser->local.usage_index + 542 parser->local.usage_minimum - 1; 543 if (data <= 0) { 544 hid_err(parser->device, 545 "no more usage index available\n"); 546 return -1; 547 } 548 } 549 550 for (n = parser->local.usage_minimum; n <= data; n++) 551 if (hid_add_usage(parser, n, item->size)) { 552 dbg_hid("hid_add_usage failed\n"); 553 return -1; 554 } 555 return 0; 556 557 default: 558 559 dbg_hid("unknown local item tag 0x%x\n", item->tag); 560 return 0; 561 } 562 return 0; 563 } 564 565 /* 566 * Concatenate Usage Pages into Usages where relevant: 567 * As per specification, 6.2.2.8: "When the parser encounters a main item it 568 * concatenates the last declared Usage Page with a Usage to form a complete 569 * usage value." 570 */ 571 572 static void hid_concatenate_last_usage_page(struct hid_parser *parser) 573 { 574 int i; 575 unsigned int usage_page; 576 unsigned int current_page; 577 578 if (!parser->local.usage_index) 579 return; 580 581 usage_page = parser->global.usage_page; 582 583 /* 584 * Concatenate usage page again only if last declared Usage Page 585 * has not been already used in previous usages concatenation 586 */ 587 for (i = parser->local.usage_index - 1; i >= 0; i--) { 588 if (parser->local.usage_size[i] > 2) 589 /* Ignore extended usages */ 590 continue; 591 592 current_page = parser->local.usage[i] >> 16; 593 if (current_page == usage_page) 594 break; 595 596 complete_usage(parser, i); 597 } 598 } 599 600 /* 601 * Process a main item. 602 */ 603 604 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 605 { 606 __u32 data; 607 int ret; 608 609 hid_concatenate_last_usage_page(parser); 610 611 data = item_udata(item); 612 613 switch (item->tag) { 614 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 615 ret = open_collection(parser, data & 0xff); 616 break; 617 case HID_MAIN_ITEM_TAG_END_COLLECTION: 618 ret = close_collection(parser); 619 break; 620 case HID_MAIN_ITEM_TAG_INPUT: 621 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 622 break; 623 case HID_MAIN_ITEM_TAG_OUTPUT: 624 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 625 break; 626 case HID_MAIN_ITEM_TAG_FEATURE: 627 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 628 break; 629 default: 630 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 631 ret = 0; 632 } 633 634 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 635 636 return ret; 637 } 638 639 /* 640 * Process a reserved item. 641 */ 642 643 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 644 { 645 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 646 return 0; 647 } 648 649 /* 650 * Free a report and all registered fields. The field->usage and 651 * field->value table's are allocated behind the field, so we need 652 * only to free(field) itself. 653 */ 654 655 static void hid_free_report(struct hid_report *report) 656 { 657 unsigned n; 658 659 for (n = 0; n < report->maxfield; n++) 660 kfree(report->field[n]); 661 kfree(report); 662 } 663 664 /* 665 * Close report. This function returns the device 666 * state to the point prior to hid_open_report(). 667 */ 668 static void hid_close_report(struct hid_device *device) 669 { 670 unsigned i, j; 671 672 for (i = 0; i < HID_REPORT_TYPES; i++) { 673 struct hid_report_enum *report_enum = device->report_enum + i; 674 675 for (j = 0; j < HID_MAX_IDS; j++) { 676 struct hid_report *report = report_enum->report_id_hash[j]; 677 if (report) 678 hid_free_report(report); 679 } 680 memset(report_enum, 0, sizeof(*report_enum)); 681 INIT_LIST_HEAD(&report_enum->report_list); 682 } 683 684 kfree(device->rdesc); 685 device->rdesc = NULL; 686 device->rsize = 0; 687 688 kfree(device->collection); 689 device->collection = NULL; 690 device->collection_size = 0; 691 device->maxcollection = 0; 692 device->maxapplication = 0; 693 694 device->status &= ~HID_STAT_PARSED; 695 } 696 697 /* 698 * Free a device structure, all reports, and all fields. 699 */ 700 701 static void hid_device_release(struct device *dev) 702 { 703 struct hid_device *hid = to_hid_device(dev); 704 705 hid_close_report(hid); 706 kfree(hid->dev_rdesc); 707 kfree(hid); 708 } 709 710 /* 711 * Fetch a report description item from the data stream. We support long 712 * items, though they are not used yet. 713 */ 714 715 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 716 { 717 u8 b; 718 719 if ((end - start) <= 0) 720 return NULL; 721 722 b = *start++; 723 724 item->type = (b >> 2) & 3; 725 item->tag = (b >> 4) & 15; 726 727 if (item->tag == HID_ITEM_TAG_LONG) { 728 729 item->format = HID_ITEM_FORMAT_LONG; 730 731 if ((end - start) < 2) 732 return NULL; 733 734 item->size = *start++; 735 item->tag = *start++; 736 737 if ((end - start) < item->size) 738 return NULL; 739 740 item->data.longdata = start; 741 start += item->size; 742 return start; 743 } 744 745 item->format = HID_ITEM_FORMAT_SHORT; 746 item->size = b & 3; 747 748 switch (item->size) { 749 case 0: 750 return start; 751 752 case 1: 753 if ((end - start) < 1) 754 return NULL; 755 item->data.u8 = *start++; 756 return start; 757 758 case 2: 759 if ((end - start) < 2) 760 return NULL; 761 item->data.u16 = get_unaligned_le16(start); 762 start = (__u8 *)((__le16 *)start + 1); 763 return start; 764 765 case 3: 766 item->size++; 767 if ((end - start) < 4) 768 return NULL; 769 item->data.u32 = get_unaligned_le32(start); 770 start = (__u8 *)((__le32 *)start + 1); 771 return start; 772 } 773 774 return NULL; 775 } 776 777 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 778 { 779 struct hid_device *hid = parser->device; 780 781 if (usage == HID_DG_CONTACTID) 782 hid->group = HID_GROUP_MULTITOUCH; 783 } 784 785 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 786 { 787 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 788 parser->global.report_size == 8) 789 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 790 791 if (usage == 0xff0000c6 && parser->global.report_count == 1 && 792 parser->global.report_size == 8) 793 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 794 } 795 796 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 797 { 798 struct hid_device *hid = parser->device; 799 int i; 800 801 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 802 type == HID_COLLECTION_PHYSICAL) 803 hid->group = HID_GROUP_SENSOR_HUB; 804 805 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 806 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 807 hid->group == HID_GROUP_MULTITOUCH) 808 hid->group = HID_GROUP_GENERIC; 809 810 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 811 for (i = 0; i < parser->local.usage_index; i++) 812 if (parser->local.usage[i] == HID_GD_POINTER) 813 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 814 815 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 816 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 817 818 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR) 819 for (i = 0; i < parser->local.usage_index; i++) 820 if (parser->local.usage[i] == 821 (HID_UP_GOOGLEVENDOR | 0x0001)) 822 parser->device->group = 823 HID_GROUP_VIVALDI; 824 } 825 826 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 827 { 828 __u32 data; 829 int i; 830 831 hid_concatenate_last_usage_page(parser); 832 833 data = item_udata(item); 834 835 switch (item->tag) { 836 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 837 hid_scan_collection(parser, data & 0xff); 838 break; 839 case HID_MAIN_ITEM_TAG_END_COLLECTION: 840 break; 841 case HID_MAIN_ITEM_TAG_INPUT: 842 /* ignore constant inputs, they will be ignored by hid-input */ 843 if (data & HID_MAIN_ITEM_CONSTANT) 844 break; 845 for (i = 0; i < parser->local.usage_index; i++) 846 hid_scan_input_usage(parser, parser->local.usage[i]); 847 break; 848 case HID_MAIN_ITEM_TAG_OUTPUT: 849 break; 850 case HID_MAIN_ITEM_TAG_FEATURE: 851 for (i = 0; i < parser->local.usage_index; i++) 852 hid_scan_feature_usage(parser, parser->local.usage[i]); 853 break; 854 } 855 856 /* Reset the local parser environment */ 857 memset(&parser->local, 0, sizeof(parser->local)); 858 859 return 0; 860 } 861 862 /* 863 * Scan a report descriptor before the device is added to the bus. 864 * Sets device groups and other properties that determine what driver 865 * to load. 866 */ 867 static int hid_scan_report(struct hid_device *hid) 868 { 869 struct hid_parser *parser; 870 struct hid_item item; 871 __u8 *start = hid->dev_rdesc; 872 __u8 *end = start + hid->dev_rsize; 873 static int (*dispatch_type[])(struct hid_parser *parser, 874 struct hid_item *item) = { 875 hid_scan_main, 876 hid_parser_global, 877 hid_parser_local, 878 hid_parser_reserved 879 }; 880 881 parser = vzalloc(sizeof(struct hid_parser)); 882 if (!parser) 883 return -ENOMEM; 884 885 parser->device = hid; 886 hid->group = HID_GROUP_GENERIC; 887 888 /* 889 * The parsing is simpler than the one in hid_open_report() as we should 890 * be robust against hid errors. Those errors will be raised by 891 * hid_open_report() anyway. 892 */ 893 while ((start = fetch_item(start, end, &item)) != NULL) 894 dispatch_type[item.type](parser, &item); 895 896 /* 897 * Handle special flags set during scanning. 898 */ 899 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 900 (hid->group == HID_GROUP_MULTITOUCH)) 901 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 902 903 /* 904 * Vendor specific handlings 905 */ 906 switch (hid->vendor) { 907 case USB_VENDOR_ID_WACOM: 908 hid->group = HID_GROUP_WACOM; 909 break; 910 case USB_VENDOR_ID_SYNAPTICS: 911 if (hid->group == HID_GROUP_GENERIC) 912 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 913 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 914 /* 915 * hid-rmi should take care of them, 916 * not hid-generic 917 */ 918 hid->group = HID_GROUP_RMI; 919 break; 920 } 921 922 kfree(parser->collection_stack); 923 vfree(parser); 924 return 0; 925 } 926 927 /** 928 * hid_parse_report - parse device report 929 * 930 * @hid: hid device 931 * @start: report start 932 * @size: report size 933 * 934 * Allocate the device report as read by the bus driver. This function should 935 * only be called from parse() in ll drivers. 936 */ 937 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 938 { 939 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 940 if (!hid->dev_rdesc) 941 return -ENOMEM; 942 hid->dev_rsize = size; 943 return 0; 944 } 945 EXPORT_SYMBOL_GPL(hid_parse_report); 946 947 static const char * const hid_report_names[] = { 948 "HID_INPUT_REPORT", 949 "HID_OUTPUT_REPORT", 950 "HID_FEATURE_REPORT", 951 }; 952 /** 953 * hid_validate_values - validate existing device report's value indexes 954 * 955 * @hid: hid device 956 * @type: which report type to examine 957 * @id: which report ID to examine (0 for first) 958 * @field_index: which report field to examine 959 * @report_counts: expected number of values 960 * 961 * Validate the number of values in a given field of a given report, after 962 * parsing. 963 */ 964 struct hid_report *hid_validate_values(struct hid_device *hid, 965 unsigned int type, unsigned int id, 966 unsigned int field_index, 967 unsigned int report_counts) 968 { 969 struct hid_report *report; 970 971 if (type > HID_FEATURE_REPORT) { 972 hid_err(hid, "invalid HID report type %u\n", type); 973 return NULL; 974 } 975 976 if (id >= HID_MAX_IDS) { 977 hid_err(hid, "invalid HID report id %u\n", id); 978 return NULL; 979 } 980 981 /* 982 * Explicitly not using hid_get_report() here since it depends on 983 * ->numbered being checked, which may not always be the case when 984 * drivers go to access report values. 985 */ 986 if (id == 0) { 987 /* 988 * Validating on id 0 means we should examine the first 989 * report in the list. 990 */ 991 report = list_entry( 992 hid->report_enum[type].report_list.next, 993 struct hid_report, list); 994 } else { 995 report = hid->report_enum[type].report_id_hash[id]; 996 } 997 if (!report) { 998 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 999 return NULL; 1000 } 1001 if (report->maxfield <= field_index) { 1002 hid_err(hid, "not enough fields in %s %u\n", 1003 hid_report_names[type], id); 1004 return NULL; 1005 } 1006 if (report->field[field_index]->report_count < report_counts) { 1007 hid_err(hid, "not enough values in %s %u field %u\n", 1008 hid_report_names[type], id, field_index); 1009 return NULL; 1010 } 1011 return report; 1012 } 1013 EXPORT_SYMBOL_GPL(hid_validate_values); 1014 1015 static int hid_calculate_multiplier(struct hid_device *hid, 1016 struct hid_field *multiplier) 1017 { 1018 int m; 1019 __s32 v = *multiplier->value; 1020 __s32 lmin = multiplier->logical_minimum; 1021 __s32 lmax = multiplier->logical_maximum; 1022 __s32 pmin = multiplier->physical_minimum; 1023 __s32 pmax = multiplier->physical_maximum; 1024 1025 /* 1026 * "Because OS implementations will generally divide the control's 1027 * reported count by the Effective Resolution Multiplier, designers 1028 * should take care not to establish a potential Effective 1029 * Resolution Multiplier of zero." 1030 * HID Usage Table, v1.12, Section 4.3.1, p31 1031 */ 1032 if (lmax - lmin == 0) 1033 return 1; 1034 /* 1035 * Handling the unit exponent is left as an exercise to whoever 1036 * finds a device where that exponent is not 0. 1037 */ 1038 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 1039 if (unlikely(multiplier->unit_exponent != 0)) { 1040 hid_warn(hid, 1041 "unsupported Resolution Multiplier unit exponent %d\n", 1042 multiplier->unit_exponent); 1043 } 1044 1045 /* There are no devices with an effective multiplier > 255 */ 1046 if (unlikely(m == 0 || m > 255 || m < -255)) { 1047 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 1048 m = 1; 1049 } 1050 1051 return m; 1052 } 1053 1054 static void hid_apply_multiplier_to_field(struct hid_device *hid, 1055 struct hid_field *field, 1056 struct hid_collection *multiplier_collection, 1057 int effective_multiplier) 1058 { 1059 struct hid_collection *collection; 1060 struct hid_usage *usage; 1061 int i; 1062 1063 /* 1064 * If multiplier_collection is NULL, the multiplier applies 1065 * to all fields in the report. 1066 * Otherwise, it is the Logical Collection the multiplier applies to 1067 * but our field may be in a subcollection of that collection. 1068 */ 1069 for (i = 0; i < field->maxusage; i++) { 1070 usage = &field->usage[i]; 1071 1072 collection = &hid->collection[usage->collection_index]; 1073 while (collection->parent_idx != -1 && 1074 collection != multiplier_collection) 1075 collection = &hid->collection[collection->parent_idx]; 1076 1077 if (collection->parent_idx != -1 || 1078 multiplier_collection == NULL) 1079 usage->resolution_multiplier = effective_multiplier; 1080 1081 } 1082 } 1083 1084 static void hid_apply_multiplier(struct hid_device *hid, 1085 struct hid_field *multiplier) 1086 { 1087 struct hid_report_enum *rep_enum; 1088 struct hid_report *rep; 1089 struct hid_field *field; 1090 struct hid_collection *multiplier_collection; 1091 int effective_multiplier; 1092 int i; 1093 1094 /* 1095 * "The Resolution Multiplier control must be contained in the same 1096 * Logical Collection as the control(s) to which it is to be applied. 1097 * If no Resolution Multiplier is defined, then the Resolution 1098 * Multiplier defaults to 1. If more than one control exists in a 1099 * Logical Collection, the Resolution Multiplier is associated with 1100 * all controls in the collection. If no Logical Collection is 1101 * defined, the Resolution Multiplier is associated with all 1102 * controls in the report." 1103 * HID Usage Table, v1.12, Section 4.3.1, p30 1104 * 1105 * Thus, search from the current collection upwards until we find a 1106 * logical collection. Then search all fields for that same parent 1107 * collection. Those are the fields the multiplier applies to. 1108 * 1109 * If we have more than one multiplier, it will overwrite the 1110 * applicable fields later. 1111 */ 1112 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1113 while (multiplier_collection->parent_idx != -1 && 1114 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1115 multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; 1116 1117 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1118 1119 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1120 list_for_each_entry(rep, &rep_enum->report_list, list) { 1121 for (i = 0; i < rep->maxfield; i++) { 1122 field = rep->field[i]; 1123 hid_apply_multiplier_to_field(hid, field, 1124 multiplier_collection, 1125 effective_multiplier); 1126 } 1127 } 1128 } 1129 1130 /* 1131 * hid_setup_resolution_multiplier - set up all resolution multipliers 1132 * 1133 * @device: hid device 1134 * 1135 * Search for all Resolution Multiplier Feature Reports and apply their 1136 * value to all matching Input items. This only updates the internal struct 1137 * fields. 1138 * 1139 * The Resolution Multiplier is applied by the hardware. If the multiplier 1140 * is anything other than 1, the hardware will send pre-multiplied events 1141 * so that the same physical interaction generates an accumulated 1142 * accumulated_value = value * * multiplier 1143 * This may be achieved by sending 1144 * - "value * multiplier" for each event, or 1145 * - "value" but "multiplier" times as frequently, or 1146 * - a combination of the above 1147 * The only guarantee is that the same physical interaction always generates 1148 * an accumulated 'value * multiplier'. 1149 * 1150 * This function must be called before any event processing and after 1151 * any SetRequest to the Resolution Multiplier. 1152 */ 1153 void hid_setup_resolution_multiplier(struct hid_device *hid) 1154 { 1155 struct hid_report_enum *rep_enum; 1156 struct hid_report *rep; 1157 struct hid_usage *usage; 1158 int i, j; 1159 1160 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1161 list_for_each_entry(rep, &rep_enum->report_list, list) { 1162 for (i = 0; i < rep->maxfield; i++) { 1163 /* Ignore if report count is out of bounds. */ 1164 if (rep->field[i]->report_count < 1) 1165 continue; 1166 1167 for (j = 0; j < rep->field[i]->maxusage; j++) { 1168 usage = &rep->field[i]->usage[j]; 1169 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1170 hid_apply_multiplier(hid, 1171 rep->field[i]); 1172 } 1173 } 1174 } 1175 } 1176 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1177 1178 /** 1179 * hid_open_report - open a driver-specific device report 1180 * 1181 * @device: hid device 1182 * 1183 * Parse a report description into a hid_device structure. Reports are 1184 * enumerated, fields are attached to these reports. 1185 * 0 returned on success, otherwise nonzero error value. 1186 * 1187 * This function (or the equivalent hid_parse() macro) should only be 1188 * called from probe() in drivers, before starting the device. 1189 */ 1190 int hid_open_report(struct hid_device *device) 1191 { 1192 struct hid_parser *parser; 1193 struct hid_item item; 1194 unsigned int size; 1195 __u8 *start; 1196 __u8 *buf; 1197 __u8 *end; 1198 __u8 *next; 1199 int ret; 1200 static int (*dispatch_type[])(struct hid_parser *parser, 1201 struct hid_item *item) = { 1202 hid_parser_main, 1203 hid_parser_global, 1204 hid_parser_local, 1205 hid_parser_reserved 1206 }; 1207 1208 if (WARN_ON(device->status & HID_STAT_PARSED)) 1209 return -EBUSY; 1210 1211 start = device->dev_rdesc; 1212 if (WARN_ON(!start)) 1213 return -ENODEV; 1214 size = device->dev_rsize; 1215 1216 buf = kmemdup(start, size, GFP_KERNEL); 1217 if (buf == NULL) 1218 return -ENOMEM; 1219 1220 if (device->driver->report_fixup) 1221 start = device->driver->report_fixup(device, buf, &size); 1222 else 1223 start = buf; 1224 1225 start = kmemdup(start, size, GFP_KERNEL); 1226 kfree(buf); 1227 if (start == NULL) 1228 return -ENOMEM; 1229 1230 device->rdesc = start; 1231 device->rsize = size; 1232 1233 parser = vzalloc(sizeof(struct hid_parser)); 1234 if (!parser) { 1235 ret = -ENOMEM; 1236 goto alloc_err; 1237 } 1238 1239 parser->device = device; 1240 1241 end = start + size; 1242 1243 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1244 sizeof(struct hid_collection), GFP_KERNEL); 1245 if (!device->collection) { 1246 ret = -ENOMEM; 1247 goto err; 1248 } 1249 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1250 1251 ret = -EINVAL; 1252 while ((next = fetch_item(start, end, &item)) != NULL) { 1253 start = next; 1254 1255 if (item.format != HID_ITEM_FORMAT_SHORT) { 1256 hid_err(device, "unexpected long global item\n"); 1257 goto err; 1258 } 1259 1260 if (dispatch_type[item.type](parser, &item)) { 1261 hid_err(device, "item %u %u %u %u parsing failed\n", 1262 item.format, (unsigned)item.size, 1263 (unsigned)item.type, (unsigned)item.tag); 1264 goto err; 1265 } 1266 1267 if (start == end) { 1268 if (parser->collection_stack_ptr) { 1269 hid_err(device, "unbalanced collection at end of report description\n"); 1270 goto err; 1271 } 1272 if (parser->local.delimiter_depth) { 1273 hid_err(device, "unbalanced delimiter at end of report description\n"); 1274 goto err; 1275 } 1276 1277 /* 1278 * fetch initial values in case the device's 1279 * default multiplier isn't the recommended 1 1280 */ 1281 hid_setup_resolution_multiplier(device); 1282 1283 kfree(parser->collection_stack); 1284 vfree(parser); 1285 device->status |= HID_STAT_PARSED; 1286 1287 return 0; 1288 } 1289 } 1290 1291 hid_err(device, "item fetching failed at offset %u/%u\n", 1292 size - (unsigned int)(end - start), size); 1293 err: 1294 kfree(parser->collection_stack); 1295 alloc_err: 1296 vfree(parser); 1297 hid_close_report(device); 1298 return ret; 1299 } 1300 EXPORT_SYMBOL_GPL(hid_open_report); 1301 1302 /* 1303 * Convert a signed n-bit integer to signed 32-bit integer. Common 1304 * cases are done through the compiler, the screwed things has to be 1305 * done by hand. 1306 */ 1307 1308 static s32 snto32(__u32 value, unsigned n) 1309 { 1310 if (!value || !n) 1311 return 0; 1312 1313 switch (n) { 1314 case 8: return ((__s8)value); 1315 case 16: return ((__s16)value); 1316 case 32: return ((__s32)value); 1317 } 1318 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1319 } 1320 1321 s32 hid_snto32(__u32 value, unsigned n) 1322 { 1323 return snto32(value, n); 1324 } 1325 EXPORT_SYMBOL_GPL(hid_snto32); 1326 1327 /* 1328 * Convert a signed 32-bit integer to a signed n-bit integer. 1329 */ 1330 1331 static u32 s32ton(__s32 value, unsigned n) 1332 { 1333 s32 a = value >> (n - 1); 1334 if (a && a != -1) 1335 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1336 return value & ((1 << n) - 1); 1337 } 1338 1339 /* 1340 * Extract/implement a data field from/to a little endian report (bit array). 1341 * 1342 * Code sort-of follows HID spec: 1343 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1344 * 1345 * While the USB HID spec allows unlimited length bit fields in "report 1346 * descriptors", most devices never use more than 16 bits. 1347 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1348 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1349 */ 1350 1351 static u32 __extract(u8 *report, unsigned offset, int n) 1352 { 1353 unsigned int idx = offset / 8; 1354 unsigned int bit_nr = 0; 1355 unsigned int bit_shift = offset % 8; 1356 int bits_to_copy = 8 - bit_shift; 1357 u32 value = 0; 1358 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1359 1360 while (n > 0) { 1361 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1362 n -= bits_to_copy; 1363 bit_nr += bits_to_copy; 1364 bits_to_copy = 8; 1365 bit_shift = 0; 1366 idx++; 1367 } 1368 1369 return value & mask; 1370 } 1371 1372 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1373 unsigned offset, unsigned n) 1374 { 1375 if (n > 32) { 1376 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n", 1377 __func__, n, current->comm); 1378 n = 32; 1379 } 1380 1381 return __extract(report, offset, n); 1382 } 1383 EXPORT_SYMBOL_GPL(hid_field_extract); 1384 1385 /* 1386 * "implement" : set bits in a little endian bit stream. 1387 * Same concepts as "extract" (see comments above). 1388 * The data mangled in the bit stream remains in little endian 1389 * order the whole time. It make more sense to talk about 1390 * endianness of register values by considering a register 1391 * a "cached" copy of the little endian bit stream. 1392 */ 1393 1394 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1395 { 1396 unsigned int idx = offset / 8; 1397 unsigned int bit_shift = offset % 8; 1398 int bits_to_set = 8 - bit_shift; 1399 1400 while (n - bits_to_set >= 0) { 1401 report[idx] &= ~(0xff << bit_shift); 1402 report[idx] |= value << bit_shift; 1403 value >>= bits_to_set; 1404 n -= bits_to_set; 1405 bits_to_set = 8; 1406 bit_shift = 0; 1407 idx++; 1408 } 1409 1410 /* last nibble */ 1411 if (n) { 1412 u8 bit_mask = ((1U << n) - 1); 1413 report[idx] &= ~(bit_mask << bit_shift); 1414 report[idx] |= value << bit_shift; 1415 } 1416 } 1417 1418 static void implement(const struct hid_device *hid, u8 *report, 1419 unsigned offset, unsigned n, u32 value) 1420 { 1421 if (unlikely(n > 32)) { 1422 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1423 __func__, n, current->comm); 1424 n = 32; 1425 } else if (n < 32) { 1426 u32 m = (1U << n) - 1; 1427 1428 if (unlikely(value > m)) { 1429 hid_warn(hid, 1430 "%s() called with too large value %d (n: %d)! (%s)\n", 1431 __func__, value, n, current->comm); 1432 WARN_ON(1); 1433 value &= m; 1434 } 1435 } 1436 1437 __implement(report, offset, n, value); 1438 } 1439 1440 /* 1441 * Search an array for a value. 1442 */ 1443 1444 static int search(__s32 *array, __s32 value, unsigned n) 1445 { 1446 while (n--) { 1447 if (*array++ == value) 1448 return 0; 1449 } 1450 return -1; 1451 } 1452 1453 /** 1454 * hid_match_report - check if driver's raw_event should be called 1455 * 1456 * @hid: hid device 1457 * @report: hid report to match against 1458 * 1459 * compare hid->driver->report_table->report_type to report->type 1460 */ 1461 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1462 { 1463 const struct hid_report_id *id = hid->driver->report_table; 1464 1465 if (!id) /* NULL means all */ 1466 return 1; 1467 1468 for (; id->report_type != HID_TERMINATOR; id++) 1469 if (id->report_type == HID_ANY_ID || 1470 id->report_type == report->type) 1471 return 1; 1472 return 0; 1473 } 1474 1475 /** 1476 * hid_match_usage - check if driver's event should be called 1477 * 1478 * @hid: hid device 1479 * @usage: usage to match against 1480 * 1481 * compare hid->driver->usage_table->usage_{type,code} to 1482 * usage->usage_{type,code} 1483 */ 1484 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1485 { 1486 const struct hid_usage_id *id = hid->driver->usage_table; 1487 1488 if (!id) /* NULL means all */ 1489 return 1; 1490 1491 for (; id->usage_type != HID_ANY_ID - 1; id++) 1492 if ((id->usage_hid == HID_ANY_ID || 1493 id->usage_hid == usage->hid) && 1494 (id->usage_type == HID_ANY_ID || 1495 id->usage_type == usage->type) && 1496 (id->usage_code == HID_ANY_ID || 1497 id->usage_code == usage->code)) 1498 return 1; 1499 return 0; 1500 } 1501 1502 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1503 struct hid_usage *usage, __s32 value, int interrupt) 1504 { 1505 struct hid_driver *hdrv = hid->driver; 1506 int ret; 1507 1508 if (!list_empty(&hid->debug_list)) 1509 hid_dump_input(hid, usage, value); 1510 1511 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1512 ret = hdrv->event(hid, field, usage, value); 1513 if (ret != 0) { 1514 if (ret < 0) 1515 hid_err(hid, "%s's event failed with %d\n", 1516 hdrv->name, ret); 1517 return; 1518 } 1519 } 1520 1521 if (hid->claimed & HID_CLAIMED_INPUT) 1522 hidinput_hid_event(hid, field, usage, value); 1523 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1524 hid->hiddev_hid_event(hid, field, usage, value); 1525 } 1526 1527 /* 1528 * Analyse a received field, and fetch the data from it. The field 1529 * content is stored for next report processing (we do differential 1530 * reporting to the layer). 1531 */ 1532 1533 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1534 __u8 *data, int interrupt) 1535 { 1536 unsigned n; 1537 unsigned count = field->report_count; 1538 unsigned offset = field->report_offset; 1539 unsigned size = field->report_size; 1540 __s32 min = field->logical_minimum; 1541 __s32 max = field->logical_maximum; 1542 __s32 *value; 1543 1544 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1545 if (!value) 1546 return; 1547 1548 for (n = 0; n < count; n++) { 1549 1550 value[n] = min < 0 ? 1551 snto32(hid_field_extract(hid, data, offset + n * size, 1552 size), size) : 1553 hid_field_extract(hid, data, offset + n * size, size); 1554 1555 /* Ignore report if ErrorRollOver */ 1556 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1557 value[n] >= min && value[n] <= max && 1558 value[n] - min < field->maxusage && 1559 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1560 goto exit; 1561 } 1562 1563 for (n = 0; n < count; n++) { 1564 1565 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1566 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1567 continue; 1568 } 1569 1570 if (field->value[n] >= min && field->value[n] <= max 1571 && field->value[n] - min < field->maxusage 1572 && field->usage[field->value[n] - min].hid 1573 && search(value, field->value[n], count)) 1574 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1575 1576 if (value[n] >= min && value[n] <= max 1577 && value[n] - min < field->maxusage 1578 && field->usage[value[n] - min].hid 1579 && search(field->value, value[n], count)) 1580 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1581 } 1582 1583 memcpy(field->value, value, count * sizeof(__s32)); 1584 exit: 1585 kfree(value); 1586 } 1587 1588 /* 1589 * Output the field into the report. 1590 */ 1591 1592 static void hid_output_field(const struct hid_device *hid, 1593 struct hid_field *field, __u8 *data) 1594 { 1595 unsigned count = field->report_count; 1596 unsigned offset = field->report_offset; 1597 unsigned size = field->report_size; 1598 unsigned n; 1599 1600 for (n = 0; n < count; n++) { 1601 if (field->logical_minimum < 0) /* signed values */ 1602 implement(hid, data, offset + n * size, size, 1603 s32ton(field->value[n], size)); 1604 else /* unsigned values */ 1605 implement(hid, data, offset + n * size, size, 1606 field->value[n]); 1607 } 1608 } 1609 1610 /* 1611 * Compute the size of a report. 1612 */ 1613 static size_t hid_compute_report_size(struct hid_report *report) 1614 { 1615 if (report->size) 1616 return ((report->size - 1) >> 3) + 1; 1617 1618 return 0; 1619 } 1620 1621 /* 1622 * Create a report. 'data' has to be allocated using 1623 * hid_alloc_report_buf() so that it has proper size. 1624 */ 1625 1626 void hid_output_report(struct hid_report *report, __u8 *data) 1627 { 1628 unsigned n; 1629 1630 if (report->id > 0) 1631 *data++ = report->id; 1632 1633 memset(data, 0, hid_compute_report_size(report)); 1634 for (n = 0; n < report->maxfield; n++) 1635 hid_output_field(report->device, report->field[n], data); 1636 } 1637 EXPORT_SYMBOL_GPL(hid_output_report); 1638 1639 /* 1640 * Allocator for buffer that is going to be passed to hid_output_report() 1641 */ 1642 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1643 { 1644 /* 1645 * 7 extra bytes are necessary to achieve proper functionality 1646 * of implement() working on 8 byte chunks 1647 */ 1648 1649 u32 len = hid_report_len(report) + 7; 1650 1651 return kmalloc(len, flags); 1652 } 1653 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1654 1655 /* 1656 * Set a field value. The report this field belongs to has to be 1657 * created and transferred to the device, to set this value in the 1658 * device. 1659 */ 1660 1661 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1662 { 1663 unsigned size; 1664 1665 if (!field) 1666 return -1; 1667 1668 size = field->report_size; 1669 1670 hid_dump_input(field->report->device, field->usage + offset, value); 1671 1672 if (offset >= field->report_count) { 1673 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1674 offset, field->report_count); 1675 return -1; 1676 } 1677 if (field->logical_minimum < 0) { 1678 if (value != snto32(s32ton(value, size), size)) { 1679 hid_err(field->report->device, "value %d is out of range\n", value); 1680 return -1; 1681 } 1682 } 1683 field->value[offset] = value; 1684 return 0; 1685 } 1686 EXPORT_SYMBOL_GPL(hid_set_field); 1687 1688 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1689 const u8 *data) 1690 { 1691 struct hid_report *report; 1692 unsigned int n = 0; /* Normally report number is 0 */ 1693 1694 /* Device uses numbered reports, data[0] is report number */ 1695 if (report_enum->numbered) 1696 n = *data; 1697 1698 report = report_enum->report_id_hash[n]; 1699 if (report == NULL) 1700 dbg_hid("undefined report_id %u received\n", n); 1701 1702 return report; 1703 } 1704 1705 /* 1706 * Implement a generic .request() callback, using .raw_request() 1707 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1708 */ 1709 int __hid_request(struct hid_device *hid, struct hid_report *report, 1710 int reqtype) 1711 { 1712 char *buf; 1713 int ret; 1714 u32 len; 1715 1716 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1717 if (!buf) 1718 return -ENOMEM; 1719 1720 len = hid_report_len(report); 1721 1722 if (reqtype == HID_REQ_SET_REPORT) 1723 hid_output_report(report, buf); 1724 1725 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1726 report->type, reqtype); 1727 if (ret < 0) { 1728 dbg_hid("unable to complete request: %d\n", ret); 1729 goto out; 1730 } 1731 1732 if (reqtype == HID_REQ_GET_REPORT) 1733 hid_input_report(hid, report->type, buf, ret, 0); 1734 1735 ret = 0; 1736 1737 out: 1738 kfree(buf); 1739 return ret; 1740 } 1741 EXPORT_SYMBOL_GPL(__hid_request); 1742 1743 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1744 int interrupt) 1745 { 1746 struct hid_report_enum *report_enum = hid->report_enum + type; 1747 struct hid_report *report; 1748 struct hid_driver *hdrv; 1749 unsigned int a; 1750 u32 rsize, csize = size; 1751 u8 *cdata = data; 1752 int ret = 0; 1753 1754 report = hid_get_report(report_enum, data); 1755 if (!report) 1756 goto out; 1757 1758 if (report_enum->numbered) { 1759 cdata++; 1760 csize--; 1761 } 1762 1763 rsize = hid_compute_report_size(report); 1764 1765 if (report_enum->numbered && rsize >= HID_MAX_BUFFER_SIZE) 1766 rsize = HID_MAX_BUFFER_SIZE - 1; 1767 else if (rsize > HID_MAX_BUFFER_SIZE) 1768 rsize = HID_MAX_BUFFER_SIZE; 1769 1770 if (csize < rsize) { 1771 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1772 csize, rsize); 1773 memset(cdata + csize, 0, rsize - csize); 1774 } 1775 1776 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1777 hid->hiddev_report_event(hid, report); 1778 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1779 ret = hidraw_report_event(hid, data, size); 1780 if (ret) 1781 goto out; 1782 } 1783 1784 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1785 for (a = 0; a < report->maxfield; a++) 1786 hid_input_field(hid, report->field[a], cdata, interrupt); 1787 hdrv = hid->driver; 1788 if (hdrv && hdrv->report) 1789 hdrv->report(hid, report); 1790 } 1791 1792 if (hid->claimed & HID_CLAIMED_INPUT) 1793 hidinput_report_event(hid, report); 1794 out: 1795 return ret; 1796 } 1797 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1798 1799 /** 1800 * hid_input_report - report data from lower layer (usb, bt...) 1801 * 1802 * @hid: hid device 1803 * @type: HID report type (HID_*_REPORT) 1804 * @data: report contents 1805 * @size: size of data parameter 1806 * @interrupt: distinguish between interrupt and control transfers 1807 * 1808 * This is data entry for lower layers. 1809 */ 1810 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1811 { 1812 struct hid_report_enum *report_enum; 1813 struct hid_driver *hdrv; 1814 struct hid_report *report; 1815 int ret = 0; 1816 1817 if (!hid) 1818 return -ENODEV; 1819 1820 if (down_trylock(&hid->driver_input_lock)) 1821 return -EBUSY; 1822 1823 if (!hid->driver) { 1824 ret = -ENODEV; 1825 goto unlock; 1826 } 1827 report_enum = hid->report_enum + type; 1828 hdrv = hid->driver; 1829 1830 if (!size) { 1831 dbg_hid("empty report\n"); 1832 ret = -1; 1833 goto unlock; 1834 } 1835 1836 /* Avoid unnecessary overhead if debugfs is disabled */ 1837 if (!list_empty(&hid->debug_list)) 1838 hid_dump_report(hid, type, data, size); 1839 1840 report = hid_get_report(report_enum, data); 1841 1842 if (!report) { 1843 ret = -1; 1844 goto unlock; 1845 } 1846 1847 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1848 ret = hdrv->raw_event(hid, report, data, size); 1849 if (ret < 0) 1850 goto unlock; 1851 } 1852 1853 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1854 1855 unlock: 1856 up(&hid->driver_input_lock); 1857 return ret; 1858 } 1859 EXPORT_SYMBOL_GPL(hid_input_report); 1860 1861 bool hid_match_one_id(const struct hid_device *hdev, 1862 const struct hid_device_id *id) 1863 { 1864 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1865 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1866 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1867 (id->product == HID_ANY_ID || id->product == hdev->product); 1868 } 1869 1870 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1871 const struct hid_device_id *id) 1872 { 1873 for (; id->bus; id++) 1874 if (hid_match_one_id(hdev, id)) 1875 return id; 1876 1877 return NULL; 1878 } 1879 1880 static const struct hid_device_id hid_hiddev_list[] = { 1881 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1882 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1883 { } 1884 }; 1885 1886 static bool hid_hiddev(struct hid_device *hdev) 1887 { 1888 return !!hid_match_id(hdev, hid_hiddev_list); 1889 } 1890 1891 1892 static ssize_t 1893 read_report_descriptor(struct file *filp, struct kobject *kobj, 1894 struct bin_attribute *attr, 1895 char *buf, loff_t off, size_t count) 1896 { 1897 struct device *dev = kobj_to_dev(kobj); 1898 struct hid_device *hdev = to_hid_device(dev); 1899 1900 if (off >= hdev->rsize) 1901 return 0; 1902 1903 if (off + count > hdev->rsize) 1904 count = hdev->rsize - off; 1905 1906 memcpy(buf, hdev->rdesc + off, count); 1907 1908 return count; 1909 } 1910 1911 static ssize_t 1912 show_country(struct device *dev, struct device_attribute *attr, 1913 char *buf) 1914 { 1915 struct hid_device *hdev = to_hid_device(dev); 1916 1917 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1918 } 1919 1920 static struct bin_attribute dev_bin_attr_report_desc = { 1921 .attr = { .name = "report_descriptor", .mode = 0444 }, 1922 .read = read_report_descriptor, 1923 .size = HID_MAX_DESCRIPTOR_SIZE, 1924 }; 1925 1926 static const struct device_attribute dev_attr_country = { 1927 .attr = { .name = "country", .mode = 0444 }, 1928 .show = show_country, 1929 }; 1930 1931 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1932 { 1933 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1934 "Joystick", "Gamepad", "Keyboard", "Keypad", 1935 "Multi-Axis Controller" 1936 }; 1937 const char *type, *bus; 1938 char buf[64] = ""; 1939 unsigned int i; 1940 int len; 1941 int ret; 1942 1943 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1944 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1945 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1946 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1947 if (hdev->bus != BUS_USB) 1948 connect_mask &= ~HID_CONNECT_HIDDEV; 1949 if (hid_hiddev(hdev)) 1950 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1951 1952 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1953 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1954 hdev->claimed |= HID_CLAIMED_INPUT; 1955 1956 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1957 !hdev->hiddev_connect(hdev, 1958 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1959 hdev->claimed |= HID_CLAIMED_HIDDEV; 1960 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1961 hdev->claimed |= HID_CLAIMED_HIDRAW; 1962 1963 if (connect_mask & HID_CONNECT_DRIVER) 1964 hdev->claimed |= HID_CLAIMED_DRIVER; 1965 1966 /* Drivers with the ->raw_event callback set are not required to connect 1967 * to any other listener. */ 1968 if (!hdev->claimed && !hdev->driver->raw_event) { 1969 hid_err(hdev, "device has no listeners, quitting\n"); 1970 return -ENODEV; 1971 } 1972 1973 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1974 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1975 hdev->ff_init(hdev); 1976 1977 len = 0; 1978 if (hdev->claimed & HID_CLAIMED_INPUT) 1979 len += sprintf(buf + len, "input"); 1980 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1981 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1982 ((struct hiddev *)hdev->hiddev)->minor); 1983 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1984 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1985 ((struct hidraw *)hdev->hidraw)->minor); 1986 1987 type = "Device"; 1988 for (i = 0; i < hdev->maxcollection; i++) { 1989 struct hid_collection *col = &hdev->collection[i]; 1990 if (col->type == HID_COLLECTION_APPLICATION && 1991 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1992 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1993 type = types[col->usage & 0xffff]; 1994 break; 1995 } 1996 } 1997 1998 switch (hdev->bus) { 1999 case BUS_USB: 2000 bus = "USB"; 2001 break; 2002 case BUS_BLUETOOTH: 2003 bus = "BLUETOOTH"; 2004 break; 2005 case BUS_I2C: 2006 bus = "I2C"; 2007 break; 2008 case BUS_VIRTUAL: 2009 bus = "VIRTUAL"; 2010 break; 2011 default: 2012 bus = "<UNKNOWN>"; 2013 } 2014 2015 ret = device_create_file(&hdev->dev, &dev_attr_country); 2016 if (ret) 2017 hid_warn(hdev, 2018 "can't create sysfs country code attribute err: %d\n", ret); 2019 2020 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 2021 buf, bus, hdev->version >> 8, hdev->version & 0xff, 2022 type, hdev->name, hdev->phys); 2023 2024 return 0; 2025 } 2026 EXPORT_SYMBOL_GPL(hid_connect); 2027 2028 void hid_disconnect(struct hid_device *hdev) 2029 { 2030 device_remove_file(&hdev->dev, &dev_attr_country); 2031 if (hdev->claimed & HID_CLAIMED_INPUT) 2032 hidinput_disconnect(hdev); 2033 if (hdev->claimed & HID_CLAIMED_HIDDEV) 2034 hdev->hiddev_disconnect(hdev); 2035 if (hdev->claimed & HID_CLAIMED_HIDRAW) 2036 hidraw_disconnect(hdev); 2037 hdev->claimed = 0; 2038 } 2039 EXPORT_SYMBOL_GPL(hid_disconnect); 2040 2041 /** 2042 * hid_hw_start - start underlying HW 2043 * @hdev: hid device 2044 * @connect_mask: which outputs to connect, see HID_CONNECT_* 2045 * 2046 * Call this in probe function *after* hid_parse. This will setup HW 2047 * buffers and start the device (if not defeirred to device open). 2048 * hid_hw_stop must be called if this was successful. 2049 */ 2050 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 2051 { 2052 int error; 2053 2054 error = hdev->ll_driver->start(hdev); 2055 if (error) 2056 return error; 2057 2058 if (connect_mask) { 2059 error = hid_connect(hdev, connect_mask); 2060 if (error) { 2061 hdev->ll_driver->stop(hdev); 2062 return error; 2063 } 2064 } 2065 2066 return 0; 2067 } 2068 EXPORT_SYMBOL_GPL(hid_hw_start); 2069 2070 /** 2071 * hid_hw_stop - stop underlying HW 2072 * @hdev: hid device 2073 * 2074 * This is usually called from remove function or from probe when something 2075 * failed and hid_hw_start was called already. 2076 */ 2077 void hid_hw_stop(struct hid_device *hdev) 2078 { 2079 hid_disconnect(hdev); 2080 hdev->ll_driver->stop(hdev); 2081 } 2082 EXPORT_SYMBOL_GPL(hid_hw_stop); 2083 2084 /** 2085 * hid_hw_open - signal underlying HW to start delivering events 2086 * @hdev: hid device 2087 * 2088 * Tell underlying HW to start delivering events from the device. 2089 * This function should be called sometime after successful call 2090 * to hid_hw_start(). 2091 */ 2092 int hid_hw_open(struct hid_device *hdev) 2093 { 2094 int ret; 2095 2096 ret = mutex_lock_killable(&hdev->ll_open_lock); 2097 if (ret) 2098 return ret; 2099 2100 if (!hdev->ll_open_count++) { 2101 ret = hdev->ll_driver->open(hdev); 2102 if (ret) 2103 hdev->ll_open_count--; 2104 } 2105 2106 mutex_unlock(&hdev->ll_open_lock); 2107 return ret; 2108 } 2109 EXPORT_SYMBOL_GPL(hid_hw_open); 2110 2111 /** 2112 * hid_hw_close - signal underlaying HW to stop delivering events 2113 * 2114 * @hdev: hid device 2115 * 2116 * This function indicates that we are not interested in the events 2117 * from this device anymore. Delivery of events may or may not stop, 2118 * depending on the number of users still outstanding. 2119 */ 2120 void hid_hw_close(struct hid_device *hdev) 2121 { 2122 mutex_lock(&hdev->ll_open_lock); 2123 if (!--hdev->ll_open_count) 2124 hdev->ll_driver->close(hdev); 2125 mutex_unlock(&hdev->ll_open_lock); 2126 } 2127 EXPORT_SYMBOL_GPL(hid_hw_close); 2128 2129 struct hid_dynid { 2130 struct list_head list; 2131 struct hid_device_id id; 2132 }; 2133 2134 /** 2135 * new_id_store - add a new HID device ID to this driver and re-probe devices 2136 * @drv: target device driver 2137 * @buf: buffer for scanning device ID data 2138 * @count: input size 2139 * 2140 * Adds a new dynamic hid device ID to this driver, 2141 * and causes the driver to probe for all devices again. 2142 */ 2143 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2144 size_t count) 2145 { 2146 struct hid_driver *hdrv = to_hid_driver(drv); 2147 struct hid_dynid *dynid; 2148 __u32 bus, vendor, product; 2149 unsigned long driver_data = 0; 2150 int ret; 2151 2152 ret = sscanf(buf, "%x %x %x %lx", 2153 &bus, &vendor, &product, &driver_data); 2154 if (ret < 3) 2155 return -EINVAL; 2156 2157 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2158 if (!dynid) 2159 return -ENOMEM; 2160 2161 dynid->id.bus = bus; 2162 dynid->id.group = HID_GROUP_ANY; 2163 dynid->id.vendor = vendor; 2164 dynid->id.product = product; 2165 dynid->id.driver_data = driver_data; 2166 2167 spin_lock(&hdrv->dyn_lock); 2168 list_add_tail(&dynid->list, &hdrv->dyn_list); 2169 spin_unlock(&hdrv->dyn_lock); 2170 2171 ret = driver_attach(&hdrv->driver); 2172 2173 return ret ? : count; 2174 } 2175 static DRIVER_ATTR_WO(new_id); 2176 2177 static struct attribute *hid_drv_attrs[] = { 2178 &driver_attr_new_id.attr, 2179 NULL, 2180 }; 2181 ATTRIBUTE_GROUPS(hid_drv); 2182 2183 static void hid_free_dynids(struct hid_driver *hdrv) 2184 { 2185 struct hid_dynid *dynid, *n; 2186 2187 spin_lock(&hdrv->dyn_lock); 2188 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2189 list_del(&dynid->list); 2190 kfree(dynid); 2191 } 2192 spin_unlock(&hdrv->dyn_lock); 2193 } 2194 2195 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2196 struct hid_driver *hdrv) 2197 { 2198 struct hid_dynid *dynid; 2199 2200 spin_lock(&hdrv->dyn_lock); 2201 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2202 if (hid_match_one_id(hdev, &dynid->id)) { 2203 spin_unlock(&hdrv->dyn_lock); 2204 return &dynid->id; 2205 } 2206 } 2207 spin_unlock(&hdrv->dyn_lock); 2208 2209 return hid_match_id(hdev, hdrv->id_table); 2210 } 2211 EXPORT_SYMBOL_GPL(hid_match_device); 2212 2213 static int hid_bus_match(struct device *dev, struct device_driver *drv) 2214 { 2215 struct hid_driver *hdrv = to_hid_driver(drv); 2216 struct hid_device *hdev = to_hid_device(dev); 2217 2218 return hid_match_device(hdev, hdrv) != NULL; 2219 } 2220 2221 /** 2222 * hid_compare_device_paths - check if both devices share the same path 2223 * @hdev_a: hid device 2224 * @hdev_b: hid device 2225 * @separator: char to use as separator 2226 * 2227 * Check if two devices share the same path up to the last occurrence of 2228 * the separator char. Both paths must exist (i.e., zero-length paths 2229 * don't match). 2230 */ 2231 bool hid_compare_device_paths(struct hid_device *hdev_a, 2232 struct hid_device *hdev_b, char separator) 2233 { 2234 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2235 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2236 2237 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2238 return false; 2239 2240 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2241 } 2242 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2243 2244 static int hid_device_probe(struct device *dev) 2245 { 2246 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2247 struct hid_device *hdev = to_hid_device(dev); 2248 const struct hid_device_id *id; 2249 int ret = 0; 2250 2251 if (down_interruptible(&hdev->driver_input_lock)) { 2252 ret = -EINTR; 2253 goto end; 2254 } 2255 hdev->io_started = false; 2256 2257 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2258 2259 if (!hdev->driver) { 2260 id = hid_match_device(hdev, hdrv); 2261 if (id == NULL) { 2262 ret = -ENODEV; 2263 goto unlock; 2264 } 2265 2266 if (hdrv->match) { 2267 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 2268 ret = -ENODEV; 2269 goto unlock; 2270 } 2271 } else { 2272 /* 2273 * hid-generic implements .match(), so if 2274 * hid_ignore_special_drivers is set, we can safely 2275 * return. 2276 */ 2277 if (hid_ignore_special_drivers) { 2278 ret = -ENODEV; 2279 goto unlock; 2280 } 2281 } 2282 2283 /* reset the quirks that has been previously set */ 2284 hdev->quirks = hid_lookup_quirk(hdev); 2285 hdev->driver = hdrv; 2286 if (hdrv->probe) { 2287 ret = hdrv->probe(hdev, id); 2288 } else { /* default probe */ 2289 ret = hid_open_report(hdev); 2290 if (!ret) 2291 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2292 } 2293 if (ret) { 2294 hid_close_report(hdev); 2295 hdev->driver = NULL; 2296 } 2297 } 2298 unlock: 2299 if (!hdev->io_started) 2300 up(&hdev->driver_input_lock); 2301 end: 2302 return ret; 2303 } 2304 2305 static void hid_device_remove(struct device *dev) 2306 { 2307 struct hid_device *hdev = to_hid_device(dev); 2308 struct hid_driver *hdrv; 2309 2310 down(&hdev->driver_input_lock); 2311 hdev->io_started = false; 2312 2313 hdrv = hdev->driver; 2314 if (hdrv) { 2315 if (hdrv->remove) 2316 hdrv->remove(hdev); 2317 else /* default remove */ 2318 hid_hw_stop(hdev); 2319 hid_close_report(hdev); 2320 hdev->driver = NULL; 2321 } 2322 2323 if (!hdev->io_started) 2324 up(&hdev->driver_input_lock); 2325 } 2326 2327 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2328 char *buf) 2329 { 2330 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2331 2332 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2333 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2334 } 2335 static DEVICE_ATTR_RO(modalias); 2336 2337 static struct attribute *hid_dev_attrs[] = { 2338 &dev_attr_modalias.attr, 2339 NULL, 2340 }; 2341 static struct bin_attribute *hid_dev_bin_attrs[] = { 2342 &dev_bin_attr_report_desc, 2343 NULL 2344 }; 2345 static const struct attribute_group hid_dev_group = { 2346 .attrs = hid_dev_attrs, 2347 .bin_attrs = hid_dev_bin_attrs, 2348 }; 2349 __ATTRIBUTE_GROUPS(hid_dev); 2350 2351 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2352 { 2353 struct hid_device *hdev = to_hid_device(dev); 2354 2355 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2356 hdev->bus, hdev->vendor, hdev->product)) 2357 return -ENOMEM; 2358 2359 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2360 return -ENOMEM; 2361 2362 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2363 return -ENOMEM; 2364 2365 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2366 return -ENOMEM; 2367 2368 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2369 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2370 return -ENOMEM; 2371 2372 return 0; 2373 } 2374 2375 struct bus_type hid_bus_type = { 2376 .name = "hid", 2377 .dev_groups = hid_dev_groups, 2378 .drv_groups = hid_drv_groups, 2379 .match = hid_bus_match, 2380 .probe = hid_device_probe, 2381 .remove = hid_device_remove, 2382 .uevent = hid_uevent, 2383 }; 2384 EXPORT_SYMBOL(hid_bus_type); 2385 2386 int hid_add_device(struct hid_device *hdev) 2387 { 2388 static atomic_t id = ATOMIC_INIT(0); 2389 int ret; 2390 2391 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2392 return -EBUSY; 2393 2394 hdev->quirks = hid_lookup_quirk(hdev); 2395 2396 /* we need to kill them here, otherwise they will stay allocated to 2397 * wait for coming driver */ 2398 if (hid_ignore(hdev)) 2399 return -ENODEV; 2400 2401 /* 2402 * Check for the mandatory transport channel. 2403 */ 2404 if (!hdev->ll_driver->raw_request) { 2405 hid_err(hdev, "transport driver missing .raw_request()\n"); 2406 return -EINVAL; 2407 } 2408 2409 /* 2410 * Read the device report descriptor once and use as template 2411 * for the driver-specific modifications. 2412 */ 2413 ret = hdev->ll_driver->parse(hdev); 2414 if (ret) 2415 return ret; 2416 if (!hdev->dev_rdesc) 2417 return -ENODEV; 2418 2419 /* 2420 * Scan generic devices for group information 2421 */ 2422 if (hid_ignore_special_drivers) { 2423 hdev->group = HID_GROUP_GENERIC; 2424 } else if (!hdev->group && 2425 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2426 ret = hid_scan_report(hdev); 2427 if (ret) 2428 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2429 } 2430 2431 /* XXX hack, any other cleaner solution after the driver core 2432 * is converted to allow more than 20 bytes as the device name? */ 2433 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2434 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2435 2436 hid_debug_register(hdev, dev_name(&hdev->dev)); 2437 ret = device_add(&hdev->dev); 2438 if (!ret) 2439 hdev->status |= HID_STAT_ADDED; 2440 else 2441 hid_debug_unregister(hdev); 2442 2443 return ret; 2444 } 2445 EXPORT_SYMBOL_GPL(hid_add_device); 2446 2447 /** 2448 * hid_allocate_device - allocate new hid device descriptor 2449 * 2450 * Allocate and initialize hid device, so that hid_destroy_device might be 2451 * used to free it. 2452 * 2453 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2454 * error value. 2455 */ 2456 struct hid_device *hid_allocate_device(void) 2457 { 2458 struct hid_device *hdev; 2459 int ret = -ENOMEM; 2460 2461 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2462 if (hdev == NULL) 2463 return ERR_PTR(ret); 2464 2465 device_initialize(&hdev->dev); 2466 hdev->dev.release = hid_device_release; 2467 hdev->dev.bus = &hid_bus_type; 2468 device_enable_async_suspend(&hdev->dev); 2469 2470 hid_close_report(hdev); 2471 2472 init_waitqueue_head(&hdev->debug_wait); 2473 INIT_LIST_HEAD(&hdev->debug_list); 2474 spin_lock_init(&hdev->debug_list_lock); 2475 sema_init(&hdev->driver_input_lock, 1); 2476 mutex_init(&hdev->ll_open_lock); 2477 2478 return hdev; 2479 } 2480 EXPORT_SYMBOL_GPL(hid_allocate_device); 2481 2482 static void hid_remove_device(struct hid_device *hdev) 2483 { 2484 if (hdev->status & HID_STAT_ADDED) { 2485 device_del(&hdev->dev); 2486 hid_debug_unregister(hdev); 2487 hdev->status &= ~HID_STAT_ADDED; 2488 } 2489 kfree(hdev->dev_rdesc); 2490 hdev->dev_rdesc = NULL; 2491 hdev->dev_rsize = 0; 2492 } 2493 2494 /** 2495 * hid_destroy_device - free previously allocated device 2496 * 2497 * @hdev: hid device 2498 * 2499 * If you allocate hid_device through hid_allocate_device, you should ever 2500 * free by this function. 2501 */ 2502 void hid_destroy_device(struct hid_device *hdev) 2503 { 2504 hid_remove_device(hdev); 2505 put_device(&hdev->dev); 2506 } 2507 EXPORT_SYMBOL_GPL(hid_destroy_device); 2508 2509 2510 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2511 { 2512 struct hid_driver *hdrv = data; 2513 struct hid_device *hdev = to_hid_device(dev); 2514 2515 if (hdev->driver == hdrv && 2516 !hdrv->match(hdev, hid_ignore_special_drivers) && 2517 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2518 return device_reprobe(dev); 2519 2520 return 0; 2521 } 2522 2523 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2524 { 2525 struct hid_driver *hdrv = to_hid_driver(drv); 2526 2527 if (hdrv->match) { 2528 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2529 __hid_bus_reprobe_drivers); 2530 } 2531 2532 return 0; 2533 } 2534 2535 static int __bus_removed_driver(struct device_driver *drv, void *data) 2536 { 2537 return bus_rescan_devices(&hid_bus_type); 2538 } 2539 2540 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2541 const char *mod_name) 2542 { 2543 int ret; 2544 2545 hdrv->driver.name = hdrv->name; 2546 hdrv->driver.bus = &hid_bus_type; 2547 hdrv->driver.owner = owner; 2548 hdrv->driver.mod_name = mod_name; 2549 2550 INIT_LIST_HEAD(&hdrv->dyn_list); 2551 spin_lock_init(&hdrv->dyn_lock); 2552 2553 ret = driver_register(&hdrv->driver); 2554 2555 if (ret == 0) 2556 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2557 __hid_bus_driver_added); 2558 2559 return ret; 2560 } 2561 EXPORT_SYMBOL_GPL(__hid_register_driver); 2562 2563 void hid_unregister_driver(struct hid_driver *hdrv) 2564 { 2565 driver_unregister(&hdrv->driver); 2566 hid_free_dynids(hdrv); 2567 2568 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2569 } 2570 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2571 2572 int hid_check_keys_pressed(struct hid_device *hid) 2573 { 2574 struct hid_input *hidinput; 2575 int i; 2576 2577 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2578 return 0; 2579 2580 list_for_each_entry(hidinput, &hid->inputs, list) { 2581 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2582 if (hidinput->input->key[i]) 2583 return 1; 2584 } 2585 2586 return 0; 2587 } 2588 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2589 2590 static int __init hid_init(void) 2591 { 2592 int ret; 2593 2594 if (hid_debug) 2595 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2596 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2597 2598 ret = bus_register(&hid_bus_type); 2599 if (ret) { 2600 pr_err("can't register hid bus\n"); 2601 goto err; 2602 } 2603 2604 ret = hidraw_init(); 2605 if (ret) 2606 goto err_bus; 2607 2608 hid_debug_init(); 2609 2610 return 0; 2611 err_bus: 2612 bus_unregister(&hid_bus_type); 2613 err: 2614 return ret; 2615 } 2616 2617 static void __exit hid_exit(void) 2618 { 2619 hid_debug_exit(); 2620 hidraw_exit(); 2621 bus_unregister(&hid_bus_type); 2622 hid_quirks_exit(HID_BUS_ANY); 2623 } 2624 2625 module_init(hid_init); 2626 module_exit(hid_exit); 2627 2628 MODULE_AUTHOR("Andreas Gal"); 2629 MODULE_AUTHOR("Vojtech Pavlik"); 2630 MODULE_AUTHOR("Jiri Kosina"); 2631 MODULE_LICENSE("GPL"); 2632