1 /* 2 * HID support for Linux 3 * 4 * Copyright (c) 1999 Andreas Gal 5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 7 * Copyright (c) 2006-2012 Jiri Kosina 8 */ 9 10 /* 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/mm.h> 25 #include <linux/spinlock.h> 26 #include <asm/unaligned.h> 27 #include <asm/byteorder.h> 28 #include <linux/input.h> 29 #include <linux/wait.h> 30 #include <linux/vmalloc.h> 31 #include <linux/sched.h> 32 #include <linux/semaphore.h> 33 34 #include <linux/hid.h> 35 #include <linux/hiddev.h> 36 #include <linux/hid-debug.h> 37 #include <linux/hidraw.h> 38 39 #include "hid-ids.h" 40 41 /* 42 * Version Information 43 */ 44 45 #define DRIVER_DESC "HID core driver" 46 47 int hid_debug = 0; 48 module_param_named(debug, hid_debug, int, 0600); 49 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 50 EXPORT_SYMBOL_GPL(hid_debug); 51 52 static int hid_ignore_special_drivers = 0; 53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 55 56 /* 57 * Register a new report for a device. 58 */ 59 60 struct hid_report *hid_register_report(struct hid_device *device, 61 unsigned int type, unsigned int id, 62 unsigned int application) 63 { 64 struct hid_report_enum *report_enum = device->report_enum + type; 65 struct hid_report *report; 66 67 if (id >= HID_MAX_IDS) 68 return NULL; 69 if (report_enum->report_id_hash[id]) 70 return report_enum->report_id_hash[id]; 71 72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 73 if (!report) 74 return NULL; 75 76 if (id != 0) 77 report_enum->numbered = 1; 78 79 report->id = id; 80 report->type = type; 81 report->size = 0; 82 report->device = device; 83 report->application = application; 84 report_enum->report_id_hash[id] = report; 85 86 list_add_tail(&report->list, &report_enum->report_list); 87 88 return report; 89 } 90 EXPORT_SYMBOL_GPL(hid_register_report); 91 92 /* 93 * Register a new field for this report. 94 */ 95 96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 97 { 98 struct hid_field *field; 99 100 if (report->maxfield == HID_MAX_FIELDS) { 101 hid_err(report->device, "too many fields in report\n"); 102 return NULL; 103 } 104 105 field = kzalloc((sizeof(struct hid_field) + 106 usages * sizeof(struct hid_usage) + 107 values * sizeof(unsigned)), GFP_KERNEL); 108 if (!field) 109 return NULL; 110 111 field->index = report->maxfield++; 112 report->field[field->index] = field; 113 field->usage = (struct hid_usage *)(field + 1); 114 field->value = (s32 *)(field->usage + usages); 115 field->report = report; 116 117 return field; 118 } 119 120 /* 121 * Open a collection. The type/usage is pushed on the stack. 122 */ 123 124 static int open_collection(struct hid_parser *parser, unsigned type) 125 { 126 struct hid_collection *collection; 127 unsigned usage; 128 int collection_index; 129 130 usage = parser->local.usage[0]; 131 132 if (parser->collection_stack_ptr == parser->collection_stack_size) { 133 unsigned int *collection_stack; 134 unsigned int new_size = parser->collection_stack_size + 135 HID_COLLECTION_STACK_SIZE; 136 137 collection_stack = krealloc(parser->collection_stack, 138 new_size * sizeof(unsigned int), 139 GFP_KERNEL); 140 if (!collection_stack) 141 return -ENOMEM; 142 143 parser->collection_stack = collection_stack; 144 parser->collection_stack_size = new_size; 145 } 146 147 if (parser->device->maxcollection == parser->device->collection_size) { 148 collection = kmalloc( 149 array3_size(sizeof(struct hid_collection), 150 parser->device->collection_size, 151 2), 152 GFP_KERNEL); 153 if (collection == NULL) { 154 hid_err(parser->device, "failed to reallocate collection array\n"); 155 return -ENOMEM; 156 } 157 memcpy(collection, parser->device->collection, 158 sizeof(struct hid_collection) * 159 parser->device->collection_size); 160 memset(collection + parser->device->collection_size, 0, 161 sizeof(struct hid_collection) * 162 parser->device->collection_size); 163 kfree(parser->device->collection); 164 parser->device->collection = collection; 165 parser->device->collection_size *= 2; 166 } 167 168 parser->collection_stack[parser->collection_stack_ptr++] = 169 parser->device->maxcollection; 170 171 collection_index = parser->device->maxcollection++; 172 collection = parser->device->collection + collection_index; 173 collection->type = type; 174 collection->usage = usage; 175 collection->level = parser->collection_stack_ptr - 1; 176 collection->parent_idx = (collection->level == 0) ? -1 : 177 parser->collection_stack[collection->level - 1]; 178 179 if (type == HID_COLLECTION_APPLICATION) 180 parser->device->maxapplication++; 181 182 return 0; 183 } 184 185 /* 186 * Close a collection. 187 */ 188 189 static int close_collection(struct hid_parser *parser) 190 { 191 if (!parser->collection_stack_ptr) { 192 hid_err(parser->device, "collection stack underflow\n"); 193 return -EINVAL; 194 } 195 parser->collection_stack_ptr--; 196 return 0; 197 } 198 199 /* 200 * Climb up the stack, search for the specified collection type 201 * and return the usage. 202 */ 203 204 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 205 { 206 struct hid_collection *collection = parser->device->collection; 207 int n; 208 209 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 210 unsigned index = parser->collection_stack[n]; 211 if (collection[index].type == type) 212 return collection[index].usage; 213 } 214 return 0; /* we know nothing about this usage type */ 215 } 216 217 /* 218 * Add a usage to the temporary parser table. 219 */ 220 221 static int hid_add_usage(struct hid_parser *parser, unsigned usage) 222 { 223 if (parser->local.usage_index >= HID_MAX_USAGES) { 224 hid_err(parser->device, "usage index exceeded\n"); 225 return -1; 226 } 227 parser->local.usage[parser->local.usage_index] = usage; 228 parser->local.collection_index[parser->local.usage_index] = 229 parser->collection_stack_ptr ? 230 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 231 parser->local.usage_index++; 232 return 0; 233 } 234 235 /* 236 * Register a new field for this report. 237 */ 238 239 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 240 { 241 struct hid_report *report; 242 struct hid_field *field; 243 unsigned int usages; 244 unsigned int offset; 245 unsigned int i; 246 unsigned int application; 247 248 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 249 250 report = hid_register_report(parser->device, report_type, 251 parser->global.report_id, application); 252 if (!report) { 253 hid_err(parser->device, "hid_register_report failed\n"); 254 return -1; 255 } 256 257 /* Handle both signed and unsigned cases properly */ 258 if ((parser->global.logical_minimum < 0 && 259 parser->global.logical_maximum < 260 parser->global.logical_minimum) || 261 (parser->global.logical_minimum >= 0 && 262 (__u32)parser->global.logical_maximum < 263 (__u32)parser->global.logical_minimum)) { 264 dbg_hid("logical range invalid 0x%x 0x%x\n", 265 parser->global.logical_minimum, 266 parser->global.logical_maximum); 267 return -1; 268 } 269 270 offset = report->size; 271 report->size += parser->global.report_size * parser->global.report_count; 272 273 if (!parser->local.usage_index) /* Ignore padding fields */ 274 return 0; 275 276 usages = max_t(unsigned, parser->local.usage_index, 277 parser->global.report_count); 278 279 field = hid_register_field(report, usages, parser->global.report_count); 280 if (!field) 281 return 0; 282 283 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 284 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 285 field->application = application; 286 287 for (i = 0; i < usages; i++) { 288 unsigned j = i; 289 /* Duplicate the last usage we parsed if we have excess values */ 290 if (i >= parser->local.usage_index) 291 j = parser->local.usage_index - 1; 292 field->usage[i].hid = parser->local.usage[j]; 293 field->usage[i].collection_index = 294 parser->local.collection_index[j]; 295 field->usage[i].usage_index = i; 296 field->usage[i].resolution_multiplier = 1; 297 } 298 299 field->maxusage = usages; 300 field->flags = flags; 301 field->report_offset = offset; 302 field->report_type = report_type; 303 field->report_size = parser->global.report_size; 304 field->report_count = parser->global.report_count; 305 field->logical_minimum = parser->global.logical_minimum; 306 field->logical_maximum = parser->global.logical_maximum; 307 field->physical_minimum = parser->global.physical_minimum; 308 field->physical_maximum = parser->global.physical_maximum; 309 field->unit_exponent = parser->global.unit_exponent; 310 field->unit = parser->global.unit; 311 312 return 0; 313 } 314 315 /* 316 * Read data value from item. 317 */ 318 319 static u32 item_udata(struct hid_item *item) 320 { 321 switch (item->size) { 322 case 1: return item->data.u8; 323 case 2: return item->data.u16; 324 case 4: return item->data.u32; 325 } 326 return 0; 327 } 328 329 static s32 item_sdata(struct hid_item *item) 330 { 331 switch (item->size) { 332 case 1: return item->data.s8; 333 case 2: return item->data.s16; 334 case 4: return item->data.s32; 335 } 336 return 0; 337 } 338 339 /* 340 * Process a global item. 341 */ 342 343 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 344 { 345 __s32 raw_value; 346 switch (item->tag) { 347 case HID_GLOBAL_ITEM_TAG_PUSH: 348 349 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 350 hid_err(parser->device, "global environment stack overflow\n"); 351 return -1; 352 } 353 354 memcpy(parser->global_stack + parser->global_stack_ptr++, 355 &parser->global, sizeof(struct hid_global)); 356 return 0; 357 358 case HID_GLOBAL_ITEM_TAG_POP: 359 360 if (!parser->global_stack_ptr) { 361 hid_err(parser->device, "global environment stack underflow\n"); 362 return -1; 363 } 364 365 memcpy(&parser->global, parser->global_stack + 366 --parser->global_stack_ptr, sizeof(struct hid_global)); 367 return 0; 368 369 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 370 parser->global.usage_page = item_udata(item); 371 return 0; 372 373 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 374 parser->global.logical_minimum = item_sdata(item); 375 return 0; 376 377 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 378 if (parser->global.logical_minimum < 0) 379 parser->global.logical_maximum = item_sdata(item); 380 else 381 parser->global.logical_maximum = item_udata(item); 382 return 0; 383 384 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 385 parser->global.physical_minimum = item_sdata(item); 386 return 0; 387 388 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 389 if (parser->global.physical_minimum < 0) 390 parser->global.physical_maximum = item_sdata(item); 391 else 392 parser->global.physical_maximum = item_udata(item); 393 return 0; 394 395 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 396 /* Many devices provide unit exponent as a two's complement 397 * nibble due to the common misunderstanding of HID 398 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 399 * both this and the standard encoding. */ 400 raw_value = item_sdata(item); 401 if (!(raw_value & 0xfffffff0)) 402 parser->global.unit_exponent = hid_snto32(raw_value, 4); 403 else 404 parser->global.unit_exponent = raw_value; 405 return 0; 406 407 case HID_GLOBAL_ITEM_TAG_UNIT: 408 parser->global.unit = item_udata(item); 409 return 0; 410 411 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 412 parser->global.report_size = item_udata(item); 413 if (parser->global.report_size > 256) { 414 hid_err(parser->device, "invalid report_size %d\n", 415 parser->global.report_size); 416 return -1; 417 } 418 return 0; 419 420 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 421 parser->global.report_count = item_udata(item); 422 if (parser->global.report_count > HID_MAX_USAGES) { 423 hid_err(parser->device, "invalid report_count %d\n", 424 parser->global.report_count); 425 return -1; 426 } 427 return 0; 428 429 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 430 parser->global.report_id = item_udata(item); 431 if (parser->global.report_id == 0 || 432 parser->global.report_id >= HID_MAX_IDS) { 433 hid_err(parser->device, "report_id %u is invalid\n", 434 parser->global.report_id); 435 return -1; 436 } 437 return 0; 438 439 default: 440 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 441 return -1; 442 } 443 } 444 445 /* 446 * Process a local item. 447 */ 448 449 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 450 { 451 __u32 data; 452 unsigned n; 453 __u32 count; 454 455 data = item_udata(item); 456 457 switch (item->tag) { 458 case HID_LOCAL_ITEM_TAG_DELIMITER: 459 460 if (data) { 461 /* 462 * We treat items before the first delimiter 463 * as global to all usage sets (branch 0). 464 * In the moment we process only these global 465 * items and the first delimiter set. 466 */ 467 if (parser->local.delimiter_depth != 0) { 468 hid_err(parser->device, "nested delimiters\n"); 469 return -1; 470 } 471 parser->local.delimiter_depth++; 472 parser->local.delimiter_branch++; 473 } else { 474 if (parser->local.delimiter_depth < 1) { 475 hid_err(parser->device, "bogus close delimiter\n"); 476 return -1; 477 } 478 parser->local.delimiter_depth--; 479 } 480 return 0; 481 482 case HID_LOCAL_ITEM_TAG_USAGE: 483 484 if (parser->local.delimiter_branch > 1) { 485 dbg_hid("alternative usage ignored\n"); 486 return 0; 487 } 488 489 if (item->size <= 2) 490 data = (parser->global.usage_page << 16) + data; 491 492 return hid_add_usage(parser, data); 493 494 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 495 496 if (parser->local.delimiter_branch > 1) { 497 dbg_hid("alternative usage ignored\n"); 498 return 0; 499 } 500 501 if (item->size <= 2) 502 data = (parser->global.usage_page << 16) + data; 503 504 parser->local.usage_minimum = data; 505 return 0; 506 507 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 508 509 if (parser->local.delimiter_branch > 1) { 510 dbg_hid("alternative usage ignored\n"); 511 return 0; 512 } 513 514 if (item->size <= 2) 515 data = (parser->global.usage_page << 16) + data; 516 517 count = data - parser->local.usage_minimum; 518 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 519 /* 520 * We do not warn if the name is not set, we are 521 * actually pre-scanning the device. 522 */ 523 if (dev_name(&parser->device->dev)) 524 hid_warn(parser->device, 525 "ignoring exceeding usage max\n"); 526 data = HID_MAX_USAGES - parser->local.usage_index + 527 parser->local.usage_minimum - 1; 528 if (data <= 0) { 529 hid_err(parser->device, 530 "no more usage index available\n"); 531 return -1; 532 } 533 } 534 535 for (n = parser->local.usage_minimum; n <= data; n++) 536 if (hid_add_usage(parser, n)) { 537 dbg_hid("hid_add_usage failed\n"); 538 return -1; 539 } 540 return 0; 541 542 default: 543 544 dbg_hid("unknown local item tag 0x%x\n", item->tag); 545 return 0; 546 } 547 return 0; 548 } 549 550 /* 551 * Process a main item. 552 */ 553 554 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 555 { 556 __u32 data; 557 int ret; 558 559 data = item_udata(item); 560 561 switch (item->tag) { 562 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 563 ret = open_collection(parser, data & 0xff); 564 break; 565 case HID_MAIN_ITEM_TAG_END_COLLECTION: 566 ret = close_collection(parser); 567 break; 568 case HID_MAIN_ITEM_TAG_INPUT: 569 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 570 break; 571 case HID_MAIN_ITEM_TAG_OUTPUT: 572 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 573 break; 574 case HID_MAIN_ITEM_TAG_FEATURE: 575 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 576 break; 577 default: 578 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 579 ret = 0; 580 } 581 582 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 583 584 return ret; 585 } 586 587 /* 588 * Process a reserved item. 589 */ 590 591 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 592 { 593 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 594 return 0; 595 } 596 597 /* 598 * Free a report and all registered fields. The field->usage and 599 * field->value table's are allocated behind the field, so we need 600 * only to free(field) itself. 601 */ 602 603 static void hid_free_report(struct hid_report *report) 604 { 605 unsigned n; 606 607 for (n = 0; n < report->maxfield; n++) 608 kfree(report->field[n]); 609 kfree(report); 610 } 611 612 /* 613 * Close report. This function returns the device 614 * state to the point prior to hid_open_report(). 615 */ 616 static void hid_close_report(struct hid_device *device) 617 { 618 unsigned i, j; 619 620 for (i = 0; i < HID_REPORT_TYPES; i++) { 621 struct hid_report_enum *report_enum = device->report_enum + i; 622 623 for (j = 0; j < HID_MAX_IDS; j++) { 624 struct hid_report *report = report_enum->report_id_hash[j]; 625 if (report) 626 hid_free_report(report); 627 } 628 memset(report_enum, 0, sizeof(*report_enum)); 629 INIT_LIST_HEAD(&report_enum->report_list); 630 } 631 632 kfree(device->rdesc); 633 device->rdesc = NULL; 634 device->rsize = 0; 635 636 kfree(device->collection); 637 device->collection = NULL; 638 device->collection_size = 0; 639 device->maxcollection = 0; 640 device->maxapplication = 0; 641 642 device->status &= ~HID_STAT_PARSED; 643 } 644 645 /* 646 * Free a device structure, all reports, and all fields. 647 */ 648 649 static void hid_device_release(struct device *dev) 650 { 651 struct hid_device *hid = to_hid_device(dev); 652 653 hid_close_report(hid); 654 kfree(hid->dev_rdesc); 655 kfree(hid); 656 } 657 658 /* 659 * Fetch a report description item from the data stream. We support long 660 * items, though they are not used yet. 661 */ 662 663 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 664 { 665 u8 b; 666 667 if ((end - start) <= 0) 668 return NULL; 669 670 b = *start++; 671 672 item->type = (b >> 2) & 3; 673 item->tag = (b >> 4) & 15; 674 675 if (item->tag == HID_ITEM_TAG_LONG) { 676 677 item->format = HID_ITEM_FORMAT_LONG; 678 679 if ((end - start) < 2) 680 return NULL; 681 682 item->size = *start++; 683 item->tag = *start++; 684 685 if ((end - start) < item->size) 686 return NULL; 687 688 item->data.longdata = start; 689 start += item->size; 690 return start; 691 } 692 693 item->format = HID_ITEM_FORMAT_SHORT; 694 item->size = b & 3; 695 696 switch (item->size) { 697 case 0: 698 return start; 699 700 case 1: 701 if ((end - start) < 1) 702 return NULL; 703 item->data.u8 = *start++; 704 return start; 705 706 case 2: 707 if ((end - start) < 2) 708 return NULL; 709 item->data.u16 = get_unaligned_le16(start); 710 start = (__u8 *)((__le16 *)start + 1); 711 return start; 712 713 case 3: 714 item->size++; 715 if ((end - start) < 4) 716 return NULL; 717 item->data.u32 = get_unaligned_le32(start); 718 start = (__u8 *)((__le32 *)start + 1); 719 return start; 720 } 721 722 return NULL; 723 } 724 725 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 726 { 727 struct hid_device *hid = parser->device; 728 729 if (usage == HID_DG_CONTACTID) 730 hid->group = HID_GROUP_MULTITOUCH; 731 } 732 733 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 734 { 735 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 736 parser->global.report_size == 8) 737 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 738 } 739 740 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 741 { 742 struct hid_device *hid = parser->device; 743 int i; 744 745 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 746 type == HID_COLLECTION_PHYSICAL) 747 hid->group = HID_GROUP_SENSOR_HUB; 748 749 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 750 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 751 hid->group == HID_GROUP_MULTITOUCH) 752 hid->group = HID_GROUP_GENERIC; 753 754 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 755 for (i = 0; i < parser->local.usage_index; i++) 756 if (parser->local.usage[i] == HID_GD_POINTER) 757 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 758 759 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 760 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 761 } 762 763 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 764 { 765 __u32 data; 766 int i; 767 768 data = item_udata(item); 769 770 switch (item->tag) { 771 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 772 hid_scan_collection(parser, data & 0xff); 773 break; 774 case HID_MAIN_ITEM_TAG_END_COLLECTION: 775 break; 776 case HID_MAIN_ITEM_TAG_INPUT: 777 /* ignore constant inputs, they will be ignored by hid-input */ 778 if (data & HID_MAIN_ITEM_CONSTANT) 779 break; 780 for (i = 0; i < parser->local.usage_index; i++) 781 hid_scan_input_usage(parser, parser->local.usage[i]); 782 break; 783 case HID_MAIN_ITEM_TAG_OUTPUT: 784 break; 785 case HID_MAIN_ITEM_TAG_FEATURE: 786 for (i = 0; i < parser->local.usage_index; i++) 787 hid_scan_feature_usage(parser, parser->local.usage[i]); 788 break; 789 } 790 791 /* Reset the local parser environment */ 792 memset(&parser->local, 0, sizeof(parser->local)); 793 794 return 0; 795 } 796 797 /* 798 * Scan a report descriptor before the device is added to the bus. 799 * Sets device groups and other properties that determine what driver 800 * to load. 801 */ 802 static int hid_scan_report(struct hid_device *hid) 803 { 804 struct hid_parser *parser; 805 struct hid_item item; 806 __u8 *start = hid->dev_rdesc; 807 __u8 *end = start + hid->dev_rsize; 808 static int (*dispatch_type[])(struct hid_parser *parser, 809 struct hid_item *item) = { 810 hid_scan_main, 811 hid_parser_global, 812 hid_parser_local, 813 hid_parser_reserved 814 }; 815 816 parser = vzalloc(sizeof(struct hid_parser)); 817 if (!parser) 818 return -ENOMEM; 819 820 parser->device = hid; 821 hid->group = HID_GROUP_GENERIC; 822 823 /* 824 * The parsing is simpler than the one in hid_open_report() as we should 825 * be robust against hid errors. Those errors will be raised by 826 * hid_open_report() anyway. 827 */ 828 while ((start = fetch_item(start, end, &item)) != NULL) 829 dispatch_type[item.type](parser, &item); 830 831 /* 832 * Handle special flags set during scanning. 833 */ 834 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 835 (hid->group == HID_GROUP_MULTITOUCH)) 836 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 837 838 /* 839 * Vendor specific handlings 840 */ 841 switch (hid->vendor) { 842 case USB_VENDOR_ID_WACOM: 843 hid->group = HID_GROUP_WACOM; 844 break; 845 case USB_VENDOR_ID_SYNAPTICS: 846 if (hid->group == HID_GROUP_GENERIC) 847 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 848 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 849 /* 850 * hid-rmi should take care of them, 851 * not hid-generic 852 */ 853 hid->group = HID_GROUP_RMI; 854 break; 855 } 856 857 kfree(parser->collection_stack); 858 vfree(parser); 859 return 0; 860 } 861 862 /** 863 * hid_parse_report - parse device report 864 * 865 * @device: hid device 866 * @start: report start 867 * @size: report size 868 * 869 * Allocate the device report as read by the bus driver. This function should 870 * only be called from parse() in ll drivers. 871 */ 872 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 873 { 874 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 875 if (!hid->dev_rdesc) 876 return -ENOMEM; 877 hid->dev_rsize = size; 878 return 0; 879 } 880 EXPORT_SYMBOL_GPL(hid_parse_report); 881 882 static const char * const hid_report_names[] = { 883 "HID_INPUT_REPORT", 884 "HID_OUTPUT_REPORT", 885 "HID_FEATURE_REPORT", 886 }; 887 /** 888 * hid_validate_values - validate existing device report's value indexes 889 * 890 * @device: hid device 891 * @type: which report type to examine 892 * @id: which report ID to examine (0 for first) 893 * @field_index: which report field to examine 894 * @report_counts: expected number of values 895 * 896 * Validate the number of values in a given field of a given report, after 897 * parsing. 898 */ 899 struct hid_report *hid_validate_values(struct hid_device *hid, 900 unsigned int type, unsigned int id, 901 unsigned int field_index, 902 unsigned int report_counts) 903 { 904 struct hid_report *report; 905 906 if (type > HID_FEATURE_REPORT) { 907 hid_err(hid, "invalid HID report type %u\n", type); 908 return NULL; 909 } 910 911 if (id >= HID_MAX_IDS) { 912 hid_err(hid, "invalid HID report id %u\n", id); 913 return NULL; 914 } 915 916 /* 917 * Explicitly not using hid_get_report() here since it depends on 918 * ->numbered being checked, which may not always be the case when 919 * drivers go to access report values. 920 */ 921 if (id == 0) { 922 /* 923 * Validating on id 0 means we should examine the first 924 * report in the list. 925 */ 926 report = list_entry( 927 hid->report_enum[type].report_list.next, 928 struct hid_report, list); 929 } else { 930 report = hid->report_enum[type].report_id_hash[id]; 931 } 932 if (!report) { 933 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 934 return NULL; 935 } 936 if (report->maxfield <= field_index) { 937 hid_err(hid, "not enough fields in %s %u\n", 938 hid_report_names[type], id); 939 return NULL; 940 } 941 if (report->field[field_index]->report_count < report_counts) { 942 hid_err(hid, "not enough values in %s %u field %u\n", 943 hid_report_names[type], id, field_index); 944 return NULL; 945 } 946 return report; 947 } 948 EXPORT_SYMBOL_GPL(hid_validate_values); 949 950 static int hid_calculate_multiplier(struct hid_device *hid, 951 struct hid_field *multiplier) 952 { 953 int m; 954 __s32 v = *multiplier->value; 955 __s32 lmin = multiplier->logical_minimum; 956 __s32 lmax = multiplier->logical_maximum; 957 __s32 pmin = multiplier->physical_minimum; 958 __s32 pmax = multiplier->physical_maximum; 959 960 /* 961 * "Because OS implementations will generally divide the control's 962 * reported count by the Effective Resolution Multiplier, designers 963 * should take care not to establish a potential Effective 964 * Resolution Multiplier of zero." 965 * HID Usage Table, v1.12, Section 4.3.1, p31 966 */ 967 if (lmax - lmin == 0) 968 return 1; 969 /* 970 * Handling the unit exponent is left as an exercise to whoever 971 * finds a device where that exponent is not 0. 972 */ 973 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 974 if (unlikely(multiplier->unit_exponent != 0)) { 975 hid_warn(hid, 976 "unsupported Resolution Multiplier unit exponent %d\n", 977 multiplier->unit_exponent); 978 } 979 980 /* There are no devices with an effective multiplier > 255 */ 981 if (unlikely(m == 0 || m > 255 || m < -255)) { 982 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 983 m = 1; 984 } 985 986 return m; 987 } 988 989 static void hid_apply_multiplier_to_field(struct hid_device *hid, 990 struct hid_field *field, 991 struct hid_collection *multiplier_collection, 992 int effective_multiplier) 993 { 994 struct hid_collection *collection; 995 struct hid_usage *usage; 996 int i; 997 998 /* 999 * If multiplier_collection is NULL, the multiplier applies 1000 * to all fields in the report. 1001 * Otherwise, it is the Logical Collection the multiplier applies to 1002 * but our field may be in a subcollection of that collection. 1003 */ 1004 for (i = 0; i < field->maxusage; i++) { 1005 usage = &field->usage[i]; 1006 1007 collection = &hid->collection[usage->collection_index]; 1008 while (collection->parent_idx != -1 && 1009 collection != multiplier_collection) 1010 collection = &hid->collection[collection->parent_idx]; 1011 1012 if (collection->parent_idx != -1 || 1013 multiplier_collection == NULL) 1014 usage->resolution_multiplier = effective_multiplier; 1015 1016 } 1017 } 1018 1019 static void hid_apply_multiplier(struct hid_device *hid, 1020 struct hid_field *multiplier) 1021 { 1022 struct hid_report_enum *rep_enum; 1023 struct hid_report *rep; 1024 struct hid_field *field; 1025 struct hid_collection *multiplier_collection; 1026 int effective_multiplier; 1027 int i; 1028 1029 /* 1030 * "The Resolution Multiplier control must be contained in the same 1031 * Logical Collection as the control(s) to which it is to be applied. 1032 * If no Resolution Multiplier is defined, then the Resolution 1033 * Multiplier defaults to 1. If more than one control exists in a 1034 * Logical Collection, the Resolution Multiplier is associated with 1035 * all controls in the collection. If no Logical Collection is 1036 * defined, the Resolution Multiplier is associated with all 1037 * controls in the report." 1038 * HID Usage Table, v1.12, Section 4.3.1, p30 1039 * 1040 * Thus, search from the current collection upwards until we find a 1041 * logical collection. Then search all fields for that same parent 1042 * collection. Those are the fields the multiplier applies to. 1043 * 1044 * If we have more than one multiplier, it will overwrite the 1045 * applicable fields later. 1046 */ 1047 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1048 while (multiplier_collection->parent_idx != -1 && 1049 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1050 multiplier_collection = &hid->collection[multiplier_collection->parent_idx]; 1051 1052 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1053 1054 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1055 list_for_each_entry(rep, &rep_enum->report_list, list) { 1056 for (i = 0; i < rep->maxfield; i++) { 1057 field = rep->field[i]; 1058 hid_apply_multiplier_to_field(hid, field, 1059 multiplier_collection, 1060 effective_multiplier); 1061 } 1062 } 1063 } 1064 1065 /* 1066 * hid_setup_resolution_multiplier - set up all resolution multipliers 1067 * 1068 * @device: hid device 1069 * 1070 * Search for all Resolution Multiplier Feature Reports and apply their 1071 * value to all matching Input items. This only updates the internal struct 1072 * fields. 1073 * 1074 * The Resolution Multiplier is applied by the hardware. If the multiplier 1075 * is anything other than 1, the hardware will send pre-multiplied events 1076 * so that the same physical interaction generates an accumulated 1077 * accumulated_value = value * * multiplier 1078 * This may be achieved by sending 1079 * - "value * multiplier" for each event, or 1080 * - "value" but "multiplier" times as frequently, or 1081 * - a combination of the above 1082 * The only guarantee is that the same physical interaction always generates 1083 * an accumulated 'value * multiplier'. 1084 * 1085 * This function must be called before any event processing and after 1086 * any SetRequest to the Resolution Multiplier. 1087 */ 1088 void hid_setup_resolution_multiplier(struct hid_device *hid) 1089 { 1090 struct hid_report_enum *rep_enum; 1091 struct hid_report *rep; 1092 struct hid_usage *usage; 1093 int i, j; 1094 1095 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1096 list_for_each_entry(rep, &rep_enum->report_list, list) { 1097 for (i = 0; i < rep->maxfield; i++) { 1098 /* Ignore if report count is out of bounds. */ 1099 if (rep->field[i]->report_count < 1) 1100 continue; 1101 1102 for (j = 0; j < rep->field[i]->maxusage; j++) { 1103 usage = &rep->field[i]->usage[j]; 1104 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1105 hid_apply_multiplier(hid, 1106 rep->field[i]); 1107 } 1108 } 1109 } 1110 } 1111 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1112 1113 /** 1114 * hid_open_report - open a driver-specific device report 1115 * 1116 * @device: hid device 1117 * 1118 * Parse a report description into a hid_device structure. Reports are 1119 * enumerated, fields are attached to these reports. 1120 * 0 returned on success, otherwise nonzero error value. 1121 * 1122 * This function (or the equivalent hid_parse() macro) should only be 1123 * called from probe() in drivers, before starting the device. 1124 */ 1125 int hid_open_report(struct hid_device *device) 1126 { 1127 struct hid_parser *parser; 1128 struct hid_item item; 1129 unsigned int size; 1130 __u8 *start; 1131 __u8 *buf; 1132 __u8 *end; 1133 int ret; 1134 static int (*dispatch_type[])(struct hid_parser *parser, 1135 struct hid_item *item) = { 1136 hid_parser_main, 1137 hid_parser_global, 1138 hid_parser_local, 1139 hid_parser_reserved 1140 }; 1141 1142 if (WARN_ON(device->status & HID_STAT_PARSED)) 1143 return -EBUSY; 1144 1145 start = device->dev_rdesc; 1146 if (WARN_ON(!start)) 1147 return -ENODEV; 1148 size = device->dev_rsize; 1149 1150 buf = kmemdup(start, size, GFP_KERNEL); 1151 if (buf == NULL) 1152 return -ENOMEM; 1153 1154 if (device->driver->report_fixup) 1155 start = device->driver->report_fixup(device, buf, &size); 1156 else 1157 start = buf; 1158 1159 start = kmemdup(start, size, GFP_KERNEL); 1160 kfree(buf); 1161 if (start == NULL) 1162 return -ENOMEM; 1163 1164 device->rdesc = start; 1165 device->rsize = size; 1166 1167 parser = vzalloc(sizeof(struct hid_parser)); 1168 if (!parser) { 1169 ret = -ENOMEM; 1170 goto alloc_err; 1171 } 1172 1173 parser->device = device; 1174 1175 end = start + size; 1176 1177 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1178 sizeof(struct hid_collection), GFP_KERNEL); 1179 if (!device->collection) { 1180 ret = -ENOMEM; 1181 goto err; 1182 } 1183 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1184 1185 ret = -EINVAL; 1186 while ((start = fetch_item(start, end, &item)) != NULL) { 1187 1188 if (item.format != HID_ITEM_FORMAT_SHORT) { 1189 hid_err(device, "unexpected long global item\n"); 1190 goto err; 1191 } 1192 1193 if (dispatch_type[item.type](parser, &item)) { 1194 hid_err(device, "item %u %u %u %u parsing failed\n", 1195 item.format, (unsigned)item.size, 1196 (unsigned)item.type, (unsigned)item.tag); 1197 goto err; 1198 } 1199 1200 if (start == end) { 1201 if (parser->collection_stack_ptr) { 1202 hid_err(device, "unbalanced collection at end of report description\n"); 1203 goto err; 1204 } 1205 if (parser->local.delimiter_depth) { 1206 hid_err(device, "unbalanced delimiter at end of report description\n"); 1207 goto err; 1208 } 1209 1210 /* 1211 * fetch initial values in case the device's 1212 * default multiplier isn't the recommended 1 1213 */ 1214 hid_setup_resolution_multiplier(device); 1215 1216 kfree(parser->collection_stack); 1217 vfree(parser); 1218 device->status |= HID_STAT_PARSED; 1219 1220 return 0; 1221 } 1222 } 1223 1224 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start)); 1225 err: 1226 kfree(parser->collection_stack); 1227 alloc_err: 1228 vfree(parser); 1229 hid_close_report(device); 1230 return ret; 1231 } 1232 EXPORT_SYMBOL_GPL(hid_open_report); 1233 1234 /* 1235 * Convert a signed n-bit integer to signed 32-bit integer. Common 1236 * cases are done through the compiler, the screwed things has to be 1237 * done by hand. 1238 */ 1239 1240 static s32 snto32(__u32 value, unsigned n) 1241 { 1242 switch (n) { 1243 case 8: return ((__s8)value); 1244 case 16: return ((__s16)value); 1245 case 32: return ((__s32)value); 1246 } 1247 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1248 } 1249 1250 s32 hid_snto32(__u32 value, unsigned n) 1251 { 1252 return snto32(value, n); 1253 } 1254 EXPORT_SYMBOL_GPL(hid_snto32); 1255 1256 /* 1257 * Convert a signed 32-bit integer to a signed n-bit integer. 1258 */ 1259 1260 static u32 s32ton(__s32 value, unsigned n) 1261 { 1262 s32 a = value >> (n - 1); 1263 if (a && a != -1) 1264 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1265 return value & ((1 << n) - 1); 1266 } 1267 1268 /* 1269 * Extract/implement a data field from/to a little endian report (bit array). 1270 * 1271 * Code sort-of follows HID spec: 1272 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1273 * 1274 * While the USB HID spec allows unlimited length bit fields in "report 1275 * descriptors", most devices never use more than 16 bits. 1276 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1277 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1278 */ 1279 1280 static u32 __extract(u8 *report, unsigned offset, int n) 1281 { 1282 unsigned int idx = offset / 8; 1283 unsigned int bit_nr = 0; 1284 unsigned int bit_shift = offset % 8; 1285 int bits_to_copy = 8 - bit_shift; 1286 u32 value = 0; 1287 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1288 1289 while (n > 0) { 1290 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1291 n -= bits_to_copy; 1292 bit_nr += bits_to_copy; 1293 bits_to_copy = 8; 1294 bit_shift = 0; 1295 idx++; 1296 } 1297 1298 return value & mask; 1299 } 1300 1301 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1302 unsigned offset, unsigned n) 1303 { 1304 if (n > 32) { 1305 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n", 1306 n, current->comm); 1307 n = 32; 1308 } 1309 1310 return __extract(report, offset, n); 1311 } 1312 EXPORT_SYMBOL_GPL(hid_field_extract); 1313 1314 /* 1315 * "implement" : set bits in a little endian bit stream. 1316 * Same concepts as "extract" (see comments above). 1317 * The data mangled in the bit stream remains in little endian 1318 * order the whole time. It make more sense to talk about 1319 * endianness of register values by considering a register 1320 * a "cached" copy of the little endian bit stream. 1321 */ 1322 1323 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1324 { 1325 unsigned int idx = offset / 8; 1326 unsigned int bit_shift = offset % 8; 1327 int bits_to_set = 8 - bit_shift; 1328 1329 while (n - bits_to_set >= 0) { 1330 report[idx] &= ~(0xff << bit_shift); 1331 report[idx] |= value << bit_shift; 1332 value >>= bits_to_set; 1333 n -= bits_to_set; 1334 bits_to_set = 8; 1335 bit_shift = 0; 1336 idx++; 1337 } 1338 1339 /* last nibble */ 1340 if (n) { 1341 u8 bit_mask = ((1U << n) - 1); 1342 report[idx] &= ~(bit_mask << bit_shift); 1343 report[idx] |= value << bit_shift; 1344 } 1345 } 1346 1347 static void implement(const struct hid_device *hid, u8 *report, 1348 unsigned offset, unsigned n, u32 value) 1349 { 1350 if (unlikely(n > 32)) { 1351 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1352 __func__, n, current->comm); 1353 n = 32; 1354 } else if (n < 32) { 1355 u32 m = (1U << n) - 1; 1356 1357 if (unlikely(value > m)) { 1358 hid_warn(hid, 1359 "%s() called with too large value %d (n: %d)! (%s)\n", 1360 __func__, value, n, current->comm); 1361 WARN_ON(1); 1362 value &= m; 1363 } 1364 } 1365 1366 __implement(report, offset, n, value); 1367 } 1368 1369 /* 1370 * Search an array for a value. 1371 */ 1372 1373 static int search(__s32 *array, __s32 value, unsigned n) 1374 { 1375 while (n--) { 1376 if (*array++ == value) 1377 return 0; 1378 } 1379 return -1; 1380 } 1381 1382 /** 1383 * hid_match_report - check if driver's raw_event should be called 1384 * 1385 * @hid: hid device 1386 * @report_type: type to match against 1387 * 1388 * compare hid->driver->report_table->report_type to report->type 1389 */ 1390 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1391 { 1392 const struct hid_report_id *id = hid->driver->report_table; 1393 1394 if (!id) /* NULL means all */ 1395 return 1; 1396 1397 for (; id->report_type != HID_TERMINATOR; id++) 1398 if (id->report_type == HID_ANY_ID || 1399 id->report_type == report->type) 1400 return 1; 1401 return 0; 1402 } 1403 1404 /** 1405 * hid_match_usage - check if driver's event should be called 1406 * 1407 * @hid: hid device 1408 * @usage: usage to match against 1409 * 1410 * compare hid->driver->usage_table->usage_{type,code} to 1411 * usage->usage_{type,code} 1412 */ 1413 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1414 { 1415 const struct hid_usage_id *id = hid->driver->usage_table; 1416 1417 if (!id) /* NULL means all */ 1418 return 1; 1419 1420 for (; id->usage_type != HID_ANY_ID - 1; id++) 1421 if ((id->usage_hid == HID_ANY_ID || 1422 id->usage_hid == usage->hid) && 1423 (id->usage_type == HID_ANY_ID || 1424 id->usage_type == usage->type) && 1425 (id->usage_code == HID_ANY_ID || 1426 id->usage_code == usage->code)) 1427 return 1; 1428 return 0; 1429 } 1430 1431 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1432 struct hid_usage *usage, __s32 value, int interrupt) 1433 { 1434 struct hid_driver *hdrv = hid->driver; 1435 int ret; 1436 1437 if (!list_empty(&hid->debug_list)) 1438 hid_dump_input(hid, usage, value); 1439 1440 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1441 ret = hdrv->event(hid, field, usage, value); 1442 if (ret != 0) { 1443 if (ret < 0) 1444 hid_err(hid, "%s's event failed with %d\n", 1445 hdrv->name, ret); 1446 return; 1447 } 1448 } 1449 1450 if (hid->claimed & HID_CLAIMED_INPUT) 1451 hidinput_hid_event(hid, field, usage, value); 1452 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1453 hid->hiddev_hid_event(hid, field, usage, value); 1454 } 1455 1456 /* 1457 * Analyse a received field, and fetch the data from it. The field 1458 * content is stored for next report processing (we do differential 1459 * reporting to the layer). 1460 */ 1461 1462 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1463 __u8 *data, int interrupt) 1464 { 1465 unsigned n; 1466 unsigned count = field->report_count; 1467 unsigned offset = field->report_offset; 1468 unsigned size = field->report_size; 1469 __s32 min = field->logical_minimum; 1470 __s32 max = field->logical_maximum; 1471 __s32 *value; 1472 1473 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1474 if (!value) 1475 return; 1476 1477 for (n = 0; n < count; n++) { 1478 1479 value[n] = min < 0 ? 1480 snto32(hid_field_extract(hid, data, offset + n * size, 1481 size), size) : 1482 hid_field_extract(hid, data, offset + n * size, size); 1483 1484 /* Ignore report if ErrorRollOver */ 1485 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1486 value[n] >= min && value[n] <= max && 1487 value[n] - min < field->maxusage && 1488 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1489 goto exit; 1490 } 1491 1492 for (n = 0; n < count; n++) { 1493 1494 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1495 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1496 continue; 1497 } 1498 1499 if (field->value[n] >= min && field->value[n] <= max 1500 && field->value[n] - min < field->maxusage 1501 && field->usage[field->value[n] - min].hid 1502 && search(value, field->value[n], count)) 1503 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1504 1505 if (value[n] >= min && value[n] <= max 1506 && value[n] - min < field->maxusage 1507 && field->usage[value[n] - min].hid 1508 && search(field->value, value[n], count)) 1509 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1510 } 1511 1512 memcpy(field->value, value, count * sizeof(__s32)); 1513 exit: 1514 kfree(value); 1515 } 1516 1517 /* 1518 * Output the field into the report. 1519 */ 1520 1521 static void hid_output_field(const struct hid_device *hid, 1522 struct hid_field *field, __u8 *data) 1523 { 1524 unsigned count = field->report_count; 1525 unsigned offset = field->report_offset; 1526 unsigned size = field->report_size; 1527 unsigned n; 1528 1529 for (n = 0; n < count; n++) { 1530 if (field->logical_minimum < 0) /* signed values */ 1531 implement(hid, data, offset + n * size, size, 1532 s32ton(field->value[n], size)); 1533 else /* unsigned values */ 1534 implement(hid, data, offset + n * size, size, 1535 field->value[n]); 1536 } 1537 } 1538 1539 /* 1540 * Create a report. 'data' has to be allocated using 1541 * hid_alloc_report_buf() so that it has proper size. 1542 */ 1543 1544 void hid_output_report(struct hid_report *report, __u8 *data) 1545 { 1546 unsigned n; 1547 1548 if (report->id > 0) 1549 *data++ = report->id; 1550 1551 memset(data, 0, ((report->size - 1) >> 3) + 1); 1552 for (n = 0; n < report->maxfield; n++) 1553 hid_output_field(report->device, report->field[n], data); 1554 } 1555 EXPORT_SYMBOL_GPL(hid_output_report); 1556 1557 /* 1558 * Allocator for buffer that is going to be passed to hid_output_report() 1559 */ 1560 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1561 { 1562 /* 1563 * 7 extra bytes are necessary to achieve proper functionality 1564 * of implement() working on 8 byte chunks 1565 */ 1566 1567 u32 len = hid_report_len(report) + 7; 1568 1569 return kmalloc(len, flags); 1570 } 1571 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1572 1573 /* 1574 * Set a field value. The report this field belongs to has to be 1575 * created and transferred to the device, to set this value in the 1576 * device. 1577 */ 1578 1579 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1580 { 1581 unsigned size; 1582 1583 if (!field) 1584 return -1; 1585 1586 size = field->report_size; 1587 1588 hid_dump_input(field->report->device, field->usage + offset, value); 1589 1590 if (offset >= field->report_count) { 1591 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1592 offset, field->report_count); 1593 return -1; 1594 } 1595 if (field->logical_minimum < 0) { 1596 if (value != snto32(s32ton(value, size), size)) { 1597 hid_err(field->report->device, "value %d is out of range\n", value); 1598 return -1; 1599 } 1600 } 1601 field->value[offset] = value; 1602 return 0; 1603 } 1604 EXPORT_SYMBOL_GPL(hid_set_field); 1605 1606 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1607 const u8 *data) 1608 { 1609 struct hid_report *report; 1610 unsigned int n = 0; /* Normally report number is 0 */ 1611 1612 /* Device uses numbered reports, data[0] is report number */ 1613 if (report_enum->numbered) 1614 n = *data; 1615 1616 report = report_enum->report_id_hash[n]; 1617 if (report == NULL) 1618 dbg_hid("undefined report_id %u received\n", n); 1619 1620 return report; 1621 } 1622 1623 /* 1624 * Implement a generic .request() callback, using .raw_request() 1625 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1626 */ 1627 void __hid_request(struct hid_device *hid, struct hid_report *report, 1628 int reqtype) 1629 { 1630 char *buf; 1631 int ret; 1632 u32 len; 1633 1634 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1635 if (!buf) 1636 return; 1637 1638 len = hid_report_len(report); 1639 1640 if (reqtype == HID_REQ_SET_REPORT) 1641 hid_output_report(report, buf); 1642 1643 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1644 report->type, reqtype); 1645 if (ret < 0) { 1646 dbg_hid("unable to complete request: %d\n", ret); 1647 goto out; 1648 } 1649 1650 if (reqtype == HID_REQ_GET_REPORT) 1651 hid_input_report(hid, report->type, buf, ret, 0); 1652 1653 out: 1654 kfree(buf); 1655 } 1656 EXPORT_SYMBOL_GPL(__hid_request); 1657 1658 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1659 int interrupt) 1660 { 1661 struct hid_report_enum *report_enum = hid->report_enum + type; 1662 struct hid_report *report; 1663 struct hid_driver *hdrv; 1664 unsigned int a; 1665 u32 rsize, csize = size; 1666 u8 *cdata = data; 1667 int ret = 0; 1668 1669 report = hid_get_report(report_enum, data); 1670 if (!report) 1671 goto out; 1672 1673 if (report_enum->numbered) { 1674 cdata++; 1675 csize--; 1676 } 1677 1678 rsize = ((report->size - 1) >> 3) + 1; 1679 1680 if (rsize > HID_MAX_BUFFER_SIZE) 1681 rsize = HID_MAX_BUFFER_SIZE; 1682 1683 if (csize < rsize) { 1684 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1685 csize, rsize); 1686 memset(cdata + csize, 0, rsize - csize); 1687 } 1688 1689 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1690 hid->hiddev_report_event(hid, report); 1691 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1692 ret = hidraw_report_event(hid, data, size); 1693 if (ret) 1694 goto out; 1695 } 1696 1697 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1698 for (a = 0; a < report->maxfield; a++) 1699 hid_input_field(hid, report->field[a], cdata, interrupt); 1700 hdrv = hid->driver; 1701 if (hdrv && hdrv->report) 1702 hdrv->report(hid, report); 1703 } 1704 1705 if (hid->claimed & HID_CLAIMED_INPUT) 1706 hidinput_report_event(hid, report); 1707 out: 1708 return ret; 1709 } 1710 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1711 1712 /** 1713 * hid_input_report - report data from lower layer (usb, bt...) 1714 * 1715 * @hid: hid device 1716 * @type: HID report type (HID_*_REPORT) 1717 * @data: report contents 1718 * @size: size of data parameter 1719 * @interrupt: distinguish between interrupt and control transfers 1720 * 1721 * This is data entry for lower layers. 1722 */ 1723 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1724 { 1725 struct hid_report_enum *report_enum; 1726 struct hid_driver *hdrv; 1727 struct hid_report *report; 1728 int ret = 0; 1729 1730 if (!hid) 1731 return -ENODEV; 1732 1733 if (down_trylock(&hid->driver_input_lock)) 1734 return -EBUSY; 1735 1736 if (!hid->driver) { 1737 ret = -ENODEV; 1738 goto unlock; 1739 } 1740 report_enum = hid->report_enum + type; 1741 hdrv = hid->driver; 1742 1743 if (!size) { 1744 dbg_hid("empty report\n"); 1745 ret = -1; 1746 goto unlock; 1747 } 1748 1749 /* Avoid unnecessary overhead if debugfs is disabled */ 1750 if (!list_empty(&hid->debug_list)) 1751 hid_dump_report(hid, type, data, size); 1752 1753 report = hid_get_report(report_enum, data); 1754 1755 if (!report) { 1756 ret = -1; 1757 goto unlock; 1758 } 1759 1760 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1761 ret = hdrv->raw_event(hid, report, data, size); 1762 if (ret < 0) 1763 goto unlock; 1764 } 1765 1766 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1767 1768 unlock: 1769 up(&hid->driver_input_lock); 1770 return ret; 1771 } 1772 EXPORT_SYMBOL_GPL(hid_input_report); 1773 1774 bool hid_match_one_id(const struct hid_device *hdev, 1775 const struct hid_device_id *id) 1776 { 1777 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1778 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1779 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1780 (id->product == HID_ANY_ID || id->product == hdev->product); 1781 } 1782 1783 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1784 const struct hid_device_id *id) 1785 { 1786 for (; id->bus; id++) 1787 if (hid_match_one_id(hdev, id)) 1788 return id; 1789 1790 return NULL; 1791 } 1792 1793 static const struct hid_device_id hid_hiddev_list[] = { 1794 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1795 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1796 { } 1797 }; 1798 1799 static bool hid_hiddev(struct hid_device *hdev) 1800 { 1801 return !!hid_match_id(hdev, hid_hiddev_list); 1802 } 1803 1804 1805 static ssize_t 1806 read_report_descriptor(struct file *filp, struct kobject *kobj, 1807 struct bin_attribute *attr, 1808 char *buf, loff_t off, size_t count) 1809 { 1810 struct device *dev = kobj_to_dev(kobj); 1811 struct hid_device *hdev = to_hid_device(dev); 1812 1813 if (off >= hdev->rsize) 1814 return 0; 1815 1816 if (off + count > hdev->rsize) 1817 count = hdev->rsize - off; 1818 1819 memcpy(buf, hdev->rdesc + off, count); 1820 1821 return count; 1822 } 1823 1824 static ssize_t 1825 show_country(struct device *dev, struct device_attribute *attr, 1826 char *buf) 1827 { 1828 struct hid_device *hdev = to_hid_device(dev); 1829 1830 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1831 } 1832 1833 static struct bin_attribute dev_bin_attr_report_desc = { 1834 .attr = { .name = "report_descriptor", .mode = 0444 }, 1835 .read = read_report_descriptor, 1836 .size = HID_MAX_DESCRIPTOR_SIZE, 1837 }; 1838 1839 static const struct device_attribute dev_attr_country = { 1840 .attr = { .name = "country", .mode = 0444 }, 1841 .show = show_country, 1842 }; 1843 1844 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1845 { 1846 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1847 "Joystick", "Gamepad", "Keyboard", "Keypad", 1848 "Multi-Axis Controller" 1849 }; 1850 const char *type, *bus; 1851 char buf[64] = ""; 1852 unsigned int i; 1853 int len; 1854 int ret; 1855 1856 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1857 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1858 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1859 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1860 if (hdev->bus != BUS_USB) 1861 connect_mask &= ~HID_CONNECT_HIDDEV; 1862 if (hid_hiddev(hdev)) 1863 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1864 1865 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1866 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1867 hdev->claimed |= HID_CLAIMED_INPUT; 1868 1869 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1870 !hdev->hiddev_connect(hdev, 1871 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1872 hdev->claimed |= HID_CLAIMED_HIDDEV; 1873 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1874 hdev->claimed |= HID_CLAIMED_HIDRAW; 1875 1876 if (connect_mask & HID_CONNECT_DRIVER) 1877 hdev->claimed |= HID_CLAIMED_DRIVER; 1878 1879 /* Drivers with the ->raw_event callback set are not required to connect 1880 * to any other listener. */ 1881 if (!hdev->claimed && !hdev->driver->raw_event) { 1882 hid_err(hdev, "device has no listeners, quitting\n"); 1883 return -ENODEV; 1884 } 1885 1886 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1887 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1888 hdev->ff_init(hdev); 1889 1890 len = 0; 1891 if (hdev->claimed & HID_CLAIMED_INPUT) 1892 len += sprintf(buf + len, "input"); 1893 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1894 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1895 ((struct hiddev *)hdev->hiddev)->minor); 1896 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1897 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1898 ((struct hidraw *)hdev->hidraw)->minor); 1899 1900 type = "Device"; 1901 for (i = 0; i < hdev->maxcollection; i++) { 1902 struct hid_collection *col = &hdev->collection[i]; 1903 if (col->type == HID_COLLECTION_APPLICATION && 1904 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1905 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1906 type = types[col->usage & 0xffff]; 1907 break; 1908 } 1909 } 1910 1911 switch (hdev->bus) { 1912 case BUS_USB: 1913 bus = "USB"; 1914 break; 1915 case BUS_BLUETOOTH: 1916 bus = "BLUETOOTH"; 1917 break; 1918 case BUS_I2C: 1919 bus = "I2C"; 1920 break; 1921 default: 1922 bus = "<UNKNOWN>"; 1923 } 1924 1925 ret = device_create_file(&hdev->dev, &dev_attr_country); 1926 if (ret) 1927 hid_warn(hdev, 1928 "can't create sysfs country code attribute err: %d\n", ret); 1929 1930 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 1931 buf, bus, hdev->version >> 8, hdev->version & 0xff, 1932 type, hdev->name, hdev->phys); 1933 1934 return 0; 1935 } 1936 EXPORT_SYMBOL_GPL(hid_connect); 1937 1938 void hid_disconnect(struct hid_device *hdev) 1939 { 1940 device_remove_file(&hdev->dev, &dev_attr_country); 1941 if (hdev->claimed & HID_CLAIMED_INPUT) 1942 hidinput_disconnect(hdev); 1943 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1944 hdev->hiddev_disconnect(hdev); 1945 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1946 hidraw_disconnect(hdev); 1947 hdev->claimed = 0; 1948 } 1949 EXPORT_SYMBOL_GPL(hid_disconnect); 1950 1951 /** 1952 * hid_hw_start - start underlying HW 1953 * @hdev: hid device 1954 * @connect_mask: which outputs to connect, see HID_CONNECT_* 1955 * 1956 * Call this in probe function *after* hid_parse. This will setup HW 1957 * buffers and start the device (if not defeirred to device open). 1958 * hid_hw_stop must be called if this was successful. 1959 */ 1960 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 1961 { 1962 int error; 1963 1964 error = hdev->ll_driver->start(hdev); 1965 if (error) 1966 return error; 1967 1968 if (connect_mask) { 1969 error = hid_connect(hdev, connect_mask); 1970 if (error) { 1971 hdev->ll_driver->stop(hdev); 1972 return error; 1973 } 1974 } 1975 1976 return 0; 1977 } 1978 EXPORT_SYMBOL_GPL(hid_hw_start); 1979 1980 /** 1981 * hid_hw_stop - stop underlying HW 1982 * @hdev: hid device 1983 * 1984 * This is usually called from remove function or from probe when something 1985 * failed and hid_hw_start was called already. 1986 */ 1987 void hid_hw_stop(struct hid_device *hdev) 1988 { 1989 hid_disconnect(hdev); 1990 hdev->ll_driver->stop(hdev); 1991 } 1992 EXPORT_SYMBOL_GPL(hid_hw_stop); 1993 1994 /** 1995 * hid_hw_open - signal underlying HW to start delivering events 1996 * @hdev: hid device 1997 * 1998 * Tell underlying HW to start delivering events from the device. 1999 * This function should be called sometime after successful call 2000 * to hid_hw_start(). 2001 */ 2002 int hid_hw_open(struct hid_device *hdev) 2003 { 2004 int ret; 2005 2006 ret = mutex_lock_killable(&hdev->ll_open_lock); 2007 if (ret) 2008 return ret; 2009 2010 if (!hdev->ll_open_count++) { 2011 ret = hdev->ll_driver->open(hdev); 2012 if (ret) 2013 hdev->ll_open_count--; 2014 } 2015 2016 mutex_unlock(&hdev->ll_open_lock); 2017 return ret; 2018 } 2019 EXPORT_SYMBOL_GPL(hid_hw_open); 2020 2021 /** 2022 * hid_hw_close - signal underlaying HW to stop delivering events 2023 * 2024 * @hdev: hid device 2025 * 2026 * This function indicates that we are not interested in the events 2027 * from this device anymore. Delivery of events may or may not stop, 2028 * depending on the number of users still outstanding. 2029 */ 2030 void hid_hw_close(struct hid_device *hdev) 2031 { 2032 mutex_lock(&hdev->ll_open_lock); 2033 if (!--hdev->ll_open_count) 2034 hdev->ll_driver->close(hdev); 2035 mutex_unlock(&hdev->ll_open_lock); 2036 } 2037 EXPORT_SYMBOL_GPL(hid_hw_close); 2038 2039 struct hid_dynid { 2040 struct list_head list; 2041 struct hid_device_id id; 2042 }; 2043 2044 /** 2045 * store_new_id - add a new HID device ID to this driver and re-probe devices 2046 * @driver: target device driver 2047 * @buf: buffer for scanning device ID data 2048 * @count: input size 2049 * 2050 * Adds a new dynamic hid device ID to this driver, 2051 * and causes the driver to probe for all devices again. 2052 */ 2053 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2054 size_t count) 2055 { 2056 struct hid_driver *hdrv = to_hid_driver(drv); 2057 struct hid_dynid *dynid; 2058 __u32 bus, vendor, product; 2059 unsigned long driver_data = 0; 2060 int ret; 2061 2062 ret = sscanf(buf, "%x %x %x %lx", 2063 &bus, &vendor, &product, &driver_data); 2064 if (ret < 3) 2065 return -EINVAL; 2066 2067 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2068 if (!dynid) 2069 return -ENOMEM; 2070 2071 dynid->id.bus = bus; 2072 dynid->id.group = HID_GROUP_ANY; 2073 dynid->id.vendor = vendor; 2074 dynid->id.product = product; 2075 dynid->id.driver_data = driver_data; 2076 2077 spin_lock(&hdrv->dyn_lock); 2078 list_add_tail(&dynid->list, &hdrv->dyn_list); 2079 spin_unlock(&hdrv->dyn_lock); 2080 2081 ret = driver_attach(&hdrv->driver); 2082 2083 return ret ? : count; 2084 } 2085 static DRIVER_ATTR_WO(new_id); 2086 2087 static struct attribute *hid_drv_attrs[] = { 2088 &driver_attr_new_id.attr, 2089 NULL, 2090 }; 2091 ATTRIBUTE_GROUPS(hid_drv); 2092 2093 static void hid_free_dynids(struct hid_driver *hdrv) 2094 { 2095 struct hid_dynid *dynid, *n; 2096 2097 spin_lock(&hdrv->dyn_lock); 2098 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2099 list_del(&dynid->list); 2100 kfree(dynid); 2101 } 2102 spin_unlock(&hdrv->dyn_lock); 2103 } 2104 2105 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2106 struct hid_driver *hdrv) 2107 { 2108 struct hid_dynid *dynid; 2109 2110 spin_lock(&hdrv->dyn_lock); 2111 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2112 if (hid_match_one_id(hdev, &dynid->id)) { 2113 spin_unlock(&hdrv->dyn_lock); 2114 return &dynid->id; 2115 } 2116 } 2117 spin_unlock(&hdrv->dyn_lock); 2118 2119 return hid_match_id(hdev, hdrv->id_table); 2120 } 2121 EXPORT_SYMBOL_GPL(hid_match_device); 2122 2123 static int hid_bus_match(struct device *dev, struct device_driver *drv) 2124 { 2125 struct hid_driver *hdrv = to_hid_driver(drv); 2126 struct hid_device *hdev = to_hid_device(dev); 2127 2128 return hid_match_device(hdev, hdrv) != NULL; 2129 } 2130 2131 /** 2132 * hid_compare_device_paths - check if both devices share the same path 2133 * @hdev_a: hid device 2134 * @hdev_b: hid device 2135 * @separator: char to use as separator 2136 * 2137 * Check if two devices share the same path up to the last occurrence of 2138 * the separator char. Both paths must exist (i.e., zero-length paths 2139 * don't match). 2140 */ 2141 bool hid_compare_device_paths(struct hid_device *hdev_a, 2142 struct hid_device *hdev_b, char separator) 2143 { 2144 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2145 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2146 2147 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2148 return false; 2149 2150 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2151 } 2152 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2153 2154 static int hid_device_probe(struct device *dev) 2155 { 2156 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2157 struct hid_device *hdev = to_hid_device(dev); 2158 const struct hid_device_id *id; 2159 int ret = 0; 2160 2161 if (down_interruptible(&hdev->driver_input_lock)) { 2162 ret = -EINTR; 2163 goto end; 2164 } 2165 hdev->io_started = false; 2166 2167 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2168 2169 if (!hdev->driver) { 2170 id = hid_match_device(hdev, hdrv); 2171 if (id == NULL) { 2172 ret = -ENODEV; 2173 goto unlock; 2174 } 2175 2176 if (hdrv->match) { 2177 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 2178 ret = -ENODEV; 2179 goto unlock; 2180 } 2181 } else { 2182 /* 2183 * hid-generic implements .match(), so if 2184 * hid_ignore_special_drivers is set, we can safely 2185 * return. 2186 */ 2187 if (hid_ignore_special_drivers) { 2188 ret = -ENODEV; 2189 goto unlock; 2190 } 2191 } 2192 2193 /* reset the quirks that has been previously set */ 2194 hdev->quirks = hid_lookup_quirk(hdev); 2195 hdev->driver = hdrv; 2196 if (hdrv->probe) { 2197 ret = hdrv->probe(hdev, id); 2198 } else { /* default probe */ 2199 ret = hid_open_report(hdev); 2200 if (!ret) 2201 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2202 } 2203 if (ret) { 2204 hid_close_report(hdev); 2205 hdev->driver = NULL; 2206 } 2207 } 2208 unlock: 2209 if (!hdev->io_started) 2210 up(&hdev->driver_input_lock); 2211 end: 2212 return ret; 2213 } 2214 2215 static int hid_device_remove(struct device *dev) 2216 { 2217 struct hid_device *hdev = to_hid_device(dev); 2218 struct hid_driver *hdrv; 2219 int ret = 0; 2220 2221 if (down_interruptible(&hdev->driver_input_lock)) { 2222 ret = -EINTR; 2223 goto end; 2224 } 2225 hdev->io_started = false; 2226 2227 hdrv = hdev->driver; 2228 if (hdrv) { 2229 if (hdrv->remove) 2230 hdrv->remove(hdev); 2231 else /* default remove */ 2232 hid_hw_stop(hdev); 2233 hid_close_report(hdev); 2234 hdev->driver = NULL; 2235 } 2236 2237 if (!hdev->io_started) 2238 up(&hdev->driver_input_lock); 2239 end: 2240 return ret; 2241 } 2242 2243 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2244 char *buf) 2245 { 2246 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2247 2248 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2249 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2250 } 2251 static DEVICE_ATTR_RO(modalias); 2252 2253 static struct attribute *hid_dev_attrs[] = { 2254 &dev_attr_modalias.attr, 2255 NULL, 2256 }; 2257 static struct bin_attribute *hid_dev_bin_attrs[] = { 2258 &dev_bin_attr_report_desc, 2259 NULL 2260 }; 2261 static const struct attribute_group hid_dev_group = { 2262 .attrs = hid_dev_attrs, 2263 .bin_attrs = hid_dev_bin_attrs, 2264 }; 2265 __ATTRIBUTE_GROUPS(hid_dev); 2266 2267 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2268 { 2269 struct hid_device *hdev = to_hid_device(dev); 2270 2271 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2272 hdev->bus, hdev->vendor, hdev->product)) 2273 return -ENOMEM; 2274 2275 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2276 return -ENOMEM; 2277 2278 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2279 return -ENOMEM; 2280 2281 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2282 return -ENOMEM; 2283 2284 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2285 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2286 return -ENOMEM; 2287 2288 return 0; 2289 } 2290 2291 struct bus_type hid_bus_type = { 2292 .name = "hid", 2293 .dev_groups = hid_dev_groups, 2294 .drv_groups = hid_drv_groups, 2295 .match = hid_bus_match, 2296 .probe = hid_device_probe, 2297 .remove = hid_device_remove, 2298 .uevent = hid_uevent, 2299 }; 2300 EXPORT_SYMBOL(hid_bus_type); 2301 2302 int hid_add_device(struct hid_device *hdev) 2303 { 2304 static atomic_t id = ATOMIC_INIT(0); 2305 int ret; 2306 2307 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2308 return -EBUSY; 2309 2310 hdev->quirks = hid_lookup_quirk(hdev); 2311 2312 /* we need to kill them here, otherwise they will stay allocated to 2313 * wait for coming driver */ 2314 if (hid_ignore(hdev)) 2315 return -ENODEV; 2316 2317 /* 2318 * Check for the mandatory transport channel. 2319 */ 2320 if (!hdev->ll_driver->raw_request) { 2321 hid_err(hdev, "transport driver missing .raw_request()\n"); 2322 return -EINVAL; 2323 } 2324 2325 /* 2326 * Read the device report descriptor once and use as template 2327 * for the driver-specific modifications. 2328 */ 2329 ret = hdev->ll_driver->parse(hdev); 2330 if (ret) 2331 return ret; 2332 if (!hdev->dev_rdesc) 2333 return -ENODEV; 2334 2335 /* 2336 * Scan generic devices for group information 2337 */ 2338 if (hid_ignore_special_drivers) { 2339 hdev->group = HID_GROUP_GENERIC; 2340 } else if (!hdev->group && 2341 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2342 ret = hid_scan_report(hdev); 2343 if (ret) 2344 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2345 } 2346 2347 /* XXX hack, any other cleaner solution after the driver core 2348 * is converted to allow more than 20 bytes as the device name? */ 2349 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2350 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2351 2352 hid_debug_register(hdev, dev_name(&hdev->dev)); 2353 ret = device_add(&hdev->dev); 2354 if (!ret) 2355 hdev->status |= HID_STAT_ADDED; 2356 else 2357 hid_debug_unregister(hdev); 2358 2359 return ret; 2360 } 2361 EXPORT_SYMBOL_GPL(hid_add_device); 2362 2363 /** 2364 * hid_allocate_device - allocate new hid device descriptor 2365 * 2366 * Allocate and initialize hid device, so that hid_destroy_device might be 2367 * used to free it. 2368 * 2369 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2370 * error value. 2371 */ 2372 struct hid_device *hid_allocate_device(void) 2373 { 2374 struct hid_device *hdev; 2375 int ret = -ENOMEM; 2376 2377 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2378 if (hdev == NULL) 2379 return ERR_PTR(ret); 2380 2381 device_initialize(&hdev->dev); 2382 hdev->dev.release = hid_device_release; 2383 hdev->dev.bus = &hid_bus_type; 2384 device_enable_async_suspend(&hdev->dev); 2385 2386 hid_close_report(hdev); 2387 2388 init_waitqueue_head(&hdev->debug_wait); 2389 INIT_LIST_HEAD(&hdev->debug_list); 2390 spin_lock_init(&hdev->debug_list_lock); 2391 sema_init(&hdev->driver_input_lock, 1); 2392 mutex_init(&hdev->ll_open_lock); 2393 2394 return hdev; 2395 } 2396 EXPORT_SYMBOL_GPL(hid_allocate_device); 2397 2398 static void hid_remove_device(struct hid_device *hdev) 2399 { 2400 if (hdev->status & HID_STAT_ADDED) { 2401 device_del(&hdev->dev); 2402 hid_debug_unregister(hdev); 2403 hdev->status &= ~HID_STAT_ADDED; 2404 } 2405 kfree(hdev->dev_rdesc); 2406 hdev->dev_rdesc = NULL; 2407 hdev->dev_rsize = 0; 2408 } 2409 2410 /** 2411 * hid_destroy_device - free previously allocated device 2412 * 2413 * @hdev: hid device 2414 * 2415 * If you allocate hid_device through hid_allocate_device, you should ever 2416 * free by this function. 2417 */ 2418 void hid_destroy_device(struct hid_device *hdev) 2419 { 2420 hid_remove_device(hdev); 2421 put_device(&hdev->dev); 2422 } 2423 EXPORT_SYMBOL_GPL(hid_destroy_device); 2424 2425 2426 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2427 { 2428 struct hid_driver *hdrv = data; 2429 struct hid_device *hdev = to_hid_device(dev); 2430 2431 if (hdev->driver == hdrv && 2432 !hdrv->match(hdev, hid_ignore_special_drivers) && 2433 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2434 return device_reprobe(dev); 2435 2436 return 0; 2437 } 2438 2439 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2440 { 2441 struct hid_driver *hdrv = to_hid_driver(drv); 2442 2443 if (hdrv->match) { 2444 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2445 __hid_bus_reprobe_drivers); 2446 } 2447 2448 return 0; 2449 } 2450 2451 static int __bus_removed_driver(struct device_driver *drv, void *data) 2452 { 2453 return bus_rescan_devices(&hid_bus_type); 2454 } 2455 2456 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2457 const char *mod_name) 2458 { 2459 int ret; 2460 2461 hdrv->driver.name = hdrv->name; 2462 hdrv->driver.bus = &hid_bus_type; 2463 hdrv->driver.owner = owner; 2464 hdrv->driver.mod_name = mod_name; 2465 2466 INIT_LIST_HEAD(&hdrv->dyn_list); 2467 spin_lock_init(&hdrv->dyn_lock); 2468 2469 ret = driver_register(&hdrv->driver); 2470 2471 if (ret == 0) 2472 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2473 __hid_bus_driver_added); 2474 2475 return ret; 2476 } 2477 EXPORT_SYMBOL_GPL(__hid_register_driver); 2478 2479 void hid_unregister_driver(struct hid_driver *hdrv) 2480 { 2481 driver_unregister(&hdrv->driver); 2482 hid_free_dynids(hdrv); 2483 2484 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2485 } 2486 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2487 2488 int hid_check_keys_pressed(struct hid_device *hid) 2489 { 2490 struct hid_input *hidinput; 2491 int i; 2492 2493 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2494 return 0; 2495 2496 list_for_each_entry(hidinput, &hid->inputs, list) { 2497 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2498 if (hidinput->input->key[i]) 2499 return 1; 2500 } 2501 2502 return 0; 2503 } 2504 2505 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2506 2507 static int __init hid_init(void) 2508 { 2509 int ret; 2510 2511 if (hid_debug) 2512 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2513 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2514 2515 ret = bus_register(&hid_bus_type); 2516 if (ret) { 2517 pr_err("can't register hid bus\n"); 2518 goto err; 2519 } 2520 2521 ret = hidraw_init(); 2522 if (ret) 2523 goto err_bus; 2524 2525 hid_debug_init(); 2526 2527 return 0; 2528 err_bus: 2529 bus_unregister(&hid_bus_type); 2530 err: 2531 return ret; 2532 } 2533 2534 static void __exit hid_exit(void) 2535 { 2536 hid_debug_exit(); 2537 hidraw_exit(); 2538 bus_unregister(&hid_bus_type); 2539 hid_quirks_exit(HID_BUS_ANY); 2540 } 2541 2542 module_init(hid_init); 2543 module_exit(hid_exit); 2544 2545 MODULE_AUTHOR("Andreas Gal"); 2546 MODULE_AUTHOR("Vojtech Pavlik"); 2547 MODULE_AUTHOR("Jiri Kosina"); 2548 MODULE_LICENSE("GPL"); 2549