1 /* 2 * HID support for Linux 3 * 4 * Copyright (c) 1999 Andreas Gal 5 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz> 6 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc 7 * Copyright (c) 2006-2012 Jiri Kosina 8 */ 9 10 /* 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the Free 13 * Software Foundation; either version 2 of the License, or (at your option) 14 * any later version. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/module.h> 20 #include <linux/slab.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/mm.h> 25 #include <linux/spinlock.h> 26 #include <asm/unaligned.h> 27 #include <asm/byteorder.h> 28 #include <linux/input.h> 29 #include <linux/wait.h> 30 #include <linux/vmalloc.h> 31 #include <linux/sched.h> 32 #include <linux/semaphore.h> 33 34 #include <linux/hid.h> 35 #include <linux/hiddev.h> 36 #include <linux/hid-debug.h> 37 #include <linux/hidraw.h> 38 39 #include "hid-ids.h" 40 41 /* 42 * Version Information 43 */ 44 45 #define DRIVER_DESC "HID core driver" 46 47 int hid_debug = 0; 48 module_param_named(debug, hid_debug, int, 0600); 49 MODULE_PARM_DESC(debug, "toggle HID debugging messages"); 50 EXPORT_SYMBOL_GPL(hid_debug); 51 52 static int hid_ignore_special_drivers = 0; 53 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600); 54 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver"); 55 56 /* 57 * Register a new report for a device. 58 */ 59 60 struct hid_report *hid_register_report(struct hid_device *device, 61 unsigned int type, unsigned int id, 62 unsigned int application) 63 { 64 struct hid_report_enum *report_enum = device->report_enum + type; 65 struct hid_report *report; 66 67 if (id >= HID_MAX_IDS) 68 return NULL; 69 if (report_enum->report_id_hash[id]) 70 return report_enum->report_id_hash[id]; 71 72 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL); 73 if (!report) 74 return NULL; 75 76 if (id != 0) 77 report_enum->numbered = 1; 78 79 report->id = id; 80 report->type = type; 81 report->size = 0; 82 report->device = device; 83 report->application = application; 84 report_enum->report_id_hash[id] = report; 85 86 list_add_tail(&report->list, &report_enum->report_list); 87 88 return report; 89 } 90 EXPORT_SYMBOL_GPL(hid_register_report); 91 92 /* 93 * Register a new field for this report. 94 */ 95 96 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages, unsigned values) 97 { 98 struct hid_field *field; 99 100 if (report->maxfield == HID_MAX_FIELDS) { 101 hid_err(report->device, "too many fields in report\n"); 102 return NULL; 103 } 104 105 field = kzalloc((sizeof(struct hid_field) + 106 usages * sizeof(struct hid_usage) + 107 values * sizeof(unsigned)), GFP_KERNEL); 108 if (!field) 109 return NULL; 110 111 field->index = report->maxfield++; 112 report->field[field->index] = field; 113 field->usage = (struct hid_usage *)(field + 1); 114 field->value = (s32 *)(field->usage + usages); 115 field->report = report; 116 117 return field; 118 } 119 120 /* 121 * Open a collection. The type/usage is pushed on the stack. 122 */ 123 124 static int open_collection(struct hid_parser *parser, unsigned type) 125 { 126 struct hid_collection *collection; 127 unsigned usage; 128 129 usage = parser->local.usage[0]; 130 131 if (parser->collection_stack_ptr == parser->collection_stack_size) { 132 unsigned int *collection_stack; 133 unsigned int new_size = parser->collection_stack_size + 134 HID_COLLECTION_STACK_SIZE; 135 136 collection_stack = krealloc(parser->collection_stack, 137 new_size * sizeof(unsigned int), 138 GFP_KERNEL); 139 if (!collection_stack) 140 return -ENOMEM; 141 142 parser->collection_stack = collection_stack; 143 parser->collection_stack_size = new_size; 144 } 145 146 if (parser->device->maxcollection == parser->device->collection_size) { 147 collection = kmalloc( 148 array3_size(sizeof(struct hid_collection), 149 parser->device->collection_size, 150 2), 151 GFP_KERNEL); 152 if (collection == NULL) { 153 hid_err(parser->device, "failed to reallocate collection array\n"); 154 return -ENOMEM; 155 } 156 memcpy(collection, parser->device->collection, 157 sizeof(struct hid_collection) * 158 parser->device->collection_size); 159 memset(collection + parser->device->collection_size, 0, 160 sizeof(struct hid_collection) * 161 parser->device->collection_size); 162 kfree(parser->device->collection); 163 parser->device->collection = collection; 164 parser->device->collection_size *= 2; 165 } 166 167 parser->collection_stack[parser->collection_stack_ptr++] = 168 parser->device->maxcollection; 169 170 collection = parser->device->collection + 171 parser->device->maxcollection++; 172 collection->type = type; 173 collection->usage = usage; 174 collection->level = parser->collection_stack_ptr - 1; 175 collection->parent = parser->active_collection; 176 parser->active_collection = collection; 177 178 if (type == HID_COLLECTION_APPLICATION) 179 parser->device->maxapplication++; 180 181 return 0; 182 } 183 184 /* 185 * Close a collection. 186 */ 187 188 static int close_collection(struct hid_parser *parser) 189 { 190 if (!parser->collection_stack_ptr) { 191 hid_err(parser->device, "collection stack underflow\n"); 192 return -EINVAL; 193 } 194 parser->collection_stack_ptr--; 195 if (parser->active_collection) 196 parser->active_collection = parser->active_collection->parent; 197 return 0; 198 } 199 200 /* 201 * Climb up the stack, search for the specified collection type 202 * and return the usage. 203 */ 204 205 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type) 206 { 207 struct hid_collection *collection = parser->device->collection; 208 int n; 209 210 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) { 211 unsigned index = parser->collection_stack[n]; 212 if (collection[index].type == type) 213 return collection[index].usage; 214 } 215 return 0; /* we know nothing about this usage type */ 216 } 217 218 /* 219 * Add a usage to the temporary parser table. 220 */ 221 222 static int hid_add_usage(struct hid_parser *parser, unsigned usage) 223 { 224 if (parser->local.usage_index >= HID_MAX_USAGES) { 225 hid_err(parser->device, "usage index exceeded\n"); 226 return -1; 227 } 228 parser->local.usage[parser->local.usage_index] = usage; 229 parser->local.collection_index[parser->local.usage_index] = 230 parser->collection_stack_ptr ? 231 parser->collection_stack[parser->collection_stack_ptr - 1] : 0; 232 parser->local.usage_index++; 233 return 0; 234 } 235 236 /* 237 * Register a new field for this report. 238 */ 239 240 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags) 241 { 242 struct hid_report *report; 243 struct hid_field *field; 244 unsigned int usages; 245 unsigned int offset; 246 unsigned int i; 247 unsigned int application; 248 249 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION); 250 251 report = hid_register_report(parser->device, report_type, 252 parser->global.report_id, application); 253 if (!report) { 254 hid_err(parser->device, "hid_register_report failed\n"); 255 return -1; 256 } 257 258 /* Handle both signed and unsigned cases properly */ 259 if ((parser->global.logical_minimum < 0 && 260 parser->global.logical_maximum < 261 parser->global.logical_minimum) || 262 (parser->global.logical_minimum >= 0 && 263 (__u32)parser->global.logical_maximum < 264 (__u32)parser->global.logical_minimum)) { 265 dbg_hid("logical range invalid 0x%x 0x%x\n", 266 parser->global.logical_minimum, 267 parser->global.logical_maximum); 268 return -1; 269 } 270 271 offset = report->size; 272 report->size += parser->global.report_size * parser->global.report_count; 273 274 if (!parser->local.usage_index) /* Ignore padding fields */ 275 return 0; 276 277 usages = max_t(unsigned, parser->local.usage_index, 278 parser->global.report_count); 279 280 field = hid_register_field(report, usages, parser->global.report_count); 281 if (!field) 282 return 0; 283 284 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL); 285 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL); 286 field->application = application; 287 288 for (i = 0; i < usages; i++) { 289 unsigned j = i; 290 /* Duplicate the last usage we parsed if we have excess values */ 291 if (i >= parser->local.usage_index) 292 j = parser->local.usage_index - 1; 293 field->usage[i].hid = parser->local.usage[j]; 294 field->usage[i].collection_index = 295 parser->local.collection_index[j]; 296 field->usage[i].usage_index = i; 297 field->usage[i].resolution_multiplier = 1; 298 } 299 300 field->maxusage = usages; 301 field->flags = flags; 302 field->report_offset = offset; 303 field->report_type = report_type; 304 field->report_size = parser->global.report_size; 305 field->report_count = parser->global.report_count; 306 field->logical_minimum = parser->global.logical_minimum; 307 field->logical_maximum = parser->global.logical_maximum; 308 field->physical_minimum = parser->global.physical_minimum; 309 field->physical_maximum = parser->global.physical_maximum; 310 field->unit_exponent = parser->global.unit_exponent; 311 field->unit = parser->global.unit; 312 313 return 0; 314 } 315 316 /* 317 * Read data value from item. 318 */ 319 320 static u32 item_udata(struct hid_item *item) 321 { 322 switch (item->size) { 323 case 1: return item->data.u8; 324 case 2: return item->data.u16; 325 case 4: return item->data.u32; 326 } 327 return 0; 328 } 329 330 static s32 item_sdata(struct hid_item *item) 331 { 332 switch (item->size) { 333 case 1: return item->data.s8; 334 case 2: return item->data.s16; 335 case 4: return item->data.s32; 336 } 337 return 0; 338 } 339 340 /* 341 * Process a global item. 342 */ 343 344 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item) 345 { 346 __s32 raw_value; 347 switch (item->tag) { 348 case HID_GLOBAL_ITEM_TAG_PUSH: 349 350 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) { 351 hid_err(parser->device, "global environment stack overflow\n"); 352 return -1; 353 } 354 355 memcpy(parser->global_stack + parser->global_stack_ptr++, 356 &parser->global, sizeof(struct hid_global)); 357 return 0; 358 359 case HID_GLOBAL_ITEM_TAG_POP: 360 361 if (!parser->global_stack_ptr) { 362 hid_err(parser->device, "global environment stack underflow\n"); 363 return -1; 364 } 365 366 memcpy(&parser->global, parser->global_stack + 367 --parser->global_stack_ptr, sizeof(struct hid_global)); 368 return 0; 369 370 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE: 371 parser->global.usage_page = item_udata(item); 372 return 0; 373 374 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM: 375 parser->global.logical_minimum = item_sdata(item); 376 return 0; 377 378 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM: 379 if (parser->global.logical_minimum < 0) 380 parser->global.logical_maximum = item_sdata(item); 381 else 382 parser->global.logical_maximum = item_udata(item); 383 return 0; 384 385 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM: 386 parser->global.physical_minimum = item_sdata(item); 387 return 0; 388 389 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM: 390 if (parser->global.physical_minimum < 0) 391 parser->global.physical_maximum = item_sdata(item); 392 else 393 parser->global.physical_maximum = item_udata(item); 394 return 0; 395 396 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT: 397 /* Many devices provide unit exponent as a two's complement 398 * nibble due to the common misunderstanding of HID 399 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle 400 * both this and the standard encoding. */ 401 raw_value = item_sdata(item); 402 if (!(raw_value & 0xfffffff0)) 403 parser->global.unit_exponent = hid_snto32(raw_value, 4); 404 else 405 parser->global.unit_exponent = raw_value; 406 return 0; 407 408 case HID_GLOBAL_ITEM_TAG_UNIT: 409 parser->global.unit = item_udata(item); 410 return 0; 411 412 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE: 413 parser->global.report_size = item_udata(item); 414 if (parser->global.report_size > 256) { 415 hid_err(parser->device, "invalid report_size %d\n", 416 parser->global.report_size); 417 return -1; 418 } 419 return 0; 420 421 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT: 422 parser->global.report_count = item_udata(item); 423 if (parser->global.report_count > HID_MAX_USAGES) { 424 hid_err(parser->device, "invalid report_count %d\n", 425 parser->global.report_count); 426 return -1; 427 } 428 return 0; 429 430 case HID_GLOBAL_ITEM_TAG_REPORT_ID: 431 parser->global.report_id = item_udata(item); 432 if (parser->global.report_id == 0 || 433 parser->global.report_id >= HID_MAX_IDS) { 434 hid_err(parser->device, "report_id %u is invalid\n", 435 parser->global.report_id); 436 return -1; 437 } 438 return 0; 439 440 default: 441 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag); 442 return -1; 443 } 444 } 445 446 /* 447 * Process a local item. 448 */ 449 450 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item) 451 { 452 __u32 data; 453 unsigned n; 454 __u32 count; 455 456 data = item_udata(item); 457 458 switch (item->tag) { 459 case HID_LOCAL_ITEM_TAG_DELIMITER: 460 461 if (data) { 462 /* 463 * We treat items before the first delimiter 464 * as global to all usage sets (branch 0). 465 * In the moment we process only these global 466 * items and the first delimiter set. 467 */ 468 if (parser->local.delimiter_depth != 0) { 469 hid_err(parser->device, "nested delimiters\n"); 470 return -1; 471 } 472 parser->local.delimiter_depth++; 473 parser->local.delimiter_branch++; 474 } else { 475 if (parser->local.delimiter_depth < 1) { 476 hid_err(parser->device, "bogus close delimiter\n"); 477 return -1; 478 } 479 parser->local.delimiter_depth--; 480 } 481 return 0; 482 483 case HID_LOCAL_ITEM_TAG_USAGE: 484 485 if (parser->local.delimiter_branch > 1) { 486 dbg_hid("alternative usage ignored\n"); 487 return 0; 488 } 489 490 if (item->size <= 2) 491 data = (parser->global.usage_page << 16) + data; 492 493 return hid_add_usage(parser, data); 494 495 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM: 496 497 if (parser->local.delimiter_branch > 1) { 498 dbg_hid("alternative usage ignored\n"); 499 return 0; 500 } 501 502 if (item->size <= 2) 503 data = (parser->global.usage_page << 16) + data; 504 505 parser->local.usage_minimum = data; 506 return 0; 507 508 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM: 509 510 if (parser->local.delimiter_branch > 1) { 511 dbg_hid("alternative usage ignored\n"); 512 return 0; 513 } 514 515 if (item->size <= 2) 516 data = (parser->global.usage_page << 16) + data; 517 518 count = data - parser->local.usage_minimum; 519 if (count + parser->local.usage_index >= HID_MAX_USAGES) { 520 /* 521 * We do not warn if the name is not set, we are 522 * actually pre-scanning the device. 523 */ 524 if (dev_name(&parser->device->dev)) 525 hid_warn(parser->device, 526 "ignoring exceeding usage max\n"); 527 data = HID_MAX_USAGES - parser->local.usage_index + 528 parser->local.usage_minimum - 1; 529 if (data <= 0) { 530 hid_err(parser->device, 531 "no more usage index available\n"); 532 return -1; 533 } 534 } 535 536 for (n = parser->local.usage_minimum; n <= data; n++) 537 if (hid_add_usage(parser, n)) { 538 dbg_hid("hid_add_usage failed\n"); 539 return -1; 540 } 541 return 0; 542 543 default: 544 545 dbg_hid("unknown local item tag 0x%x\n", item->tag); 546 return 0; 547 } 548 return 0; 549 } 550 551 /* 552 * Process a main item. 553 */ 554 555 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item) 556 { 557 __u32 data; 558 int ret; 559 560 data = item_udata(item); 561 562 switch (item->tag) { 563 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 564 ret = open_collection(parser, data & 0xff); 565 break; 566 case HID_MAIN_ITEM_TAG_END_COLLECTION: 567 ret = close_collection(parser); 568 break; 569 case HID_MAIN_ITEM_TAG_INPUT: 570 ret = hid_add_field(parser, HID_INPUT_REPORT, data); 571 break; 572 case HID_MAIN_ITEM_TAG_OUTPUT: 573 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data); 574 break; 575 case HID_MAIN_ITEM_TAG_FEATURE: 576 ret = hid_add_field(parser, HID_FEATURE_REPORT, data); 577 break; 578 default: 579 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag); 580 ret = 0; 581 } 582 583 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */ 584 585 return ret; 586 } 587 588 /* 589 * Process a reserved item. 590 */ 591 592 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item) 593 { 594 dbg_hid("reserved item type, tag 0x%x\n", item->tag); 595 return 0; 596 } 597 598 /* 599 * Free a report and all registered fields. The field->usage and 600 * field->value table's are allocated behind the field, so we need 601 * only to free(field) itself. 602 */ 603 604 static void hid_free_report(struct hid_report *report) 605 { 606 unsigned n; 607 608 for (n = 0; n < report->maxfield; n++) 609 kfree(report->field[n]); 610 kfree(report); 611 } 612 613 /* 614 * Close report. This function returns the device 615 * state to the point prior to hid_open_report(). 616 */ 617 static void hid_close_report(struct hid_device *device) 618 { 619 unsigned i, j; 620 621 for (i = 0; i < HID_REPORT_TYPES; i++) { 622 struct hid_report_enum *report_enum = device->report_enum + i; 623 624 for (j = 0; j < HID_MAX_IDS; j++) { 625 struct hid_report *report = report_enum->report_id_hash[j]; 626 if (report) 627 hid_free_report(report); 628 } 629 memset(report_enum, 0, sizeof(*report_enum)); 630 INIT_LIST_HEAD(&report_enum->report_list); 631 } 632 633 kfree(device->rdesc); 634 device->rdesc = NULL; 635 device->rsize = 0; 636 637 kfree(device->collection); 638 device->collection = NULL; 639 device->collection_size = 0; 640 device->maxcollection = 0; 641 device->maxapplication = 0; 642 643 device->status &= ~HID_STAT_PARSED; 644 } 645 646 /* 647 * Free a device structure, all reports, and all fields. 648 */ 649 650 static void hid_device_release(struct device *dev) 651 { 652 struct hid_device *hid = to_hid_device(dev); 653 654 hid_close_report(hid); 655 kfree(hid->dev_rdesc); 656 kfree(hid); 657 } 658 659 /* 660 * Fetch a report description item from the data stream. We support long 661 * items, though they are not used yet. 662 */ 663 664 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item) 665 { 666 u8 b; 667 668 if ((end - start) <= 0) 669 return NULL; 670 671 b = *start++; 672 673 item->type = (b >> 2) & 3; 674 item->tag = (b >> 4) & 15; 675 676 if (item->tag == HID_ITEM_TAG_LONG) { 677 678 item->format = HID_ITEM_FORMAT_LONG; 679 680 if ((end - start) < 2) 681 return NULL; 682 683 item->size = *start++; 684 item->tag = *start++; 685 686 if ((end - start) < item->size) 687 return NULL; 688 689 item->data.longdata = start; 690 start += item->size; 691 return start; 692 } 693 694 item->format = HID_ITEM_FORMAT_SHORT; 695 item->size = b & 3; 696 697 switch (item->size) { 698 case 0: 699 return start; 700 701 case 1: 702 if ((end - start) < 1) 703 return NULL; 704 item->data.u8 = *start++; 705 return start; 706 707 case 2: 708 if ((end - start) < 2) 709 return NULL; 710 item->data.u16 = get_unaligned_le16(start); 711 start = (__u8 *)((__le16 *)start + 1); 712 return start; 713 714 case 3: 715 item->size++; 716 if ((end - start) < 4) 717 return NULL; 718 item->data.u32 = get_unaligned_le32(start); 719 start = (__u8 *)((__le32 *)start + 1); 720 return start; 721 } 722 723 return NULL; 724 } 725 726 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage) 727 { 728 struct hid_device *hid = parser->device; 729 730 if (usage == HID_DG_CONTACTID) 731 hid->group = HID_GROUP_MULTITOUCH; 732 } 733 734 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage) 735 { 736 if (usage == 0xff0000c5 && parser->global.report_count == 256 && 737 parser->global.report_size == 8) 738 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8; 739 } 740 741 static void hid_scan_collection(struct hid_parser *parser, unsigned type) 742 { 743 struct hid_device *hid = parser->device; 744 int i; 745 746 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) && 747 type == HID_COLLECTION_PHYSICAL) 748 hid->group = HID_GROUP_SENSOR_HUB; 749 750 if (hid->vendor == USB_VENDOR_ID_MICROSOFT && 751 hid->product == USB_DEVICE_ID_MS_POWER_COVER && 752 hid->group == HID_GROUP_MULTITOUCH) 753 hid->group = HID_GROUP_GENERIC; 754 755 if ((parser->global.usage_page << 16) == HID_UP_GENDESK) 756 for (i = 0; i < parser->local.usage_index; i++) 757 if (parser->local.usage[i] == HID_GD_POINTER) 758 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER; 759 760 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR) 761 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC; 762 } 763 764 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item) 765 { 766 __u32 data; 767 int i; 768 769 data = item_udata(item); 770 771 switch (item->tag) { 772 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION: 773 hid_scan_collection(parser, data & 0xff); 774 break; 775 case HID_MAIN_ITEM_TAG_END_COLLECTION: 776 break; 777 case HID_MAIN_ITEM_TAG_INPUT: 778 /* ignore constant inputs, they will be ignored by hid-input */ 779 if (data & HID_MAIN_ITEM_CONSTANT) 780 break; 781 for (i = 0; i < parser->local.usage_index; i++) 782 hid_scan_input_usage(parser, parser->local.usage[i]); 783 break; 784 case HID_MAIN_ITEM_TAG_OUTPUT: 785 break; 786 case HID_MAIN_ITEM_TAG_FEATURE: 787 for (i = 0; i < parser->local.usage_index; i++) 788 hid_scan_feature_usage(parser, parser->local.usage[i]); 789 break; 790 } 791 792 /* Reset the local parser environment */ 793 memset(&parser->local, 0, sizeof(parser->local)); 794 795 return 0; 796 } 797 798 /* 799 * Scan a report descriptor before the device is added to the bus. 800 * Sets device groups and other properties that determine what driver 801 * to load. 802 */ 803 static int hid_scan_report(struct hid_device *hid) 804 { 805 struct hid_parser *parser; 806 struct hid_item item; 807 __u8 *start = hid->dev_rdesc; 808 __u8 *end = start + hid->dev_rsize; 809 static int (*dispatch_type[])(struct hid_parser *parser, 810 struct hid_item *item) = { 811 hid_scan_main, 812 hid_parser_global, 813 hid_parser_local, 814 hid_parser_reserved 815 }; 816 817 parser = vzalloc(sizeof(struct hid_parser)); 818 if (!parser) 819 return -ENOMEM; 820 821 parser->device = hid; 822 hid->group = HID_GROUP_GENERIC; 823 824 /* 825 * The parsing is simpler than the one in hid_open_report() as we should 826 * be robust against hid errors. Those errors will be raised by 827 * hid_open_report() anyway. 828 */ 829 while ((start = fetch_item(start, end, &item)) != NULL) 830 dispatch_type[item.type](parser, &item); 831 832 /* 833 * Handle special flags set during scanning. 834 */ 835 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) && 836 (hid->group == HID_GROUP_MULTITOUCH)) 837 hid->group = HID_GROUP_MULTITOUCH_WIN_8; 838 839 /* 840 * Vendor specific handlings 841 */ 842 switch (hid->vendor) { 843 case USB_VENDOR_ID_WACOM: 844 hid->group = HID_GROUP_WACOM; 845 break; 846 case USB_VENDOR_ID_SYNAPTICS: 847 if (hid->group == HID_GROUP_GENERIC) 848 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC) 849 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER)) 850 /* 851 * hid-rmi should take care of them, 852 * not hid-generic 853 */ 854 hid->group = HID_GROUP_RMI; 855 break; 856 } 857 858 kfree(parser->collection_stack); 859 vfree(parser); 860 return 0; 861 } 862 863 /** 864 * hid_parse_report - parse device report 865 * 866 * @device: hid device 867 * @start: report start 868 * @size: report size 869 * 870 * Allocate the device report as read by the bus driver. This function should 871 * only be called from parse() in ll drivers. 872 */ 873 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size) 874 { 875 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL); 876 if (!hid->dev_rdesc) 877 return -ENOMEM; 878 hid->dev_rsize = size; 879 return 0; 880 } 881 EXPORT_SYMBOL_GPL(hid_parse_report); 882 883 static const char * const hid_report_names[] = { 884 "HID_INPUT_REPORT", 885 "HID_OUTPUT_REPORT", 886 "HID_FEATURE_REPORT", 887 }; 888 /** 889 * hid_validate_values - validate existing device report's value indexes 890 * 891 * @device: hid device 892 * @type: which report type to examine 893 * @id: which report ID to examine (0 for first) 894 * @field_index: which report field to examine 895 * @report_counts: expected number of values 896 * 897 * Validate the number of values in a given field of a given report, after 898 * parsing. 899 */ 900 struct hid_report *hid_validate_values(struct hid_device *hid, 901 unsigned int type, unsigned int id, 902 unsigned int field_index, 903 unsigned int report_counts) 904 { 905 struct hid_report *report; 906 907 if (type > HID_FEATURE_REPORT) { 908 hid_err(hid, "invalid HID report type %u\n", type); 909 return NULL; 910 } 911 912 if (id >= HID_MAX_IDS) { 913 hid_err(hid, "invalid HID report id %u\n", id); 914 return NULL; 915 } 916 917 /* 918 * Explicitly not using hid_get_report() here since it depends on 919 * ->numbered being checked, which may not always be the case when 920 * drivers go to access report values. 921 */ 922 if (id == 0) { 923 /* 924 * Validating on id 0 means we should examine the first 925 * report in the list. 926 */ 927 report = list_entry( 928 hid->report_enum[type].report_list.next, 929 struct hid_report, list); 930 } else { 931 report = hid->report_enum[type].report_id_hash[id]; 932 } 933 if (!report) { 934 hid_err(hid, "missing %s %u\n", hid_report_names[type], id); 935 return NULL; 936 } 937 if (report->maxfield <= field_index) { 938 hid_err(hid, "not enough fields in %s %u\n", 939 hid_report_names[type], id); 940 return NULL; 941 } 942 if (report->field[field_index]->report_count < report_counts) { 943 hid_err(hid, "not enough values in %s %u field %u\n", 944 hid_report_names[type], id, field_index); 945 return NULL; 946 } 947 return report; 948 } 949 EXPORT_SYMBOL_GPL(hid_validate_values); 950 951 static int hid_calculate_multiplier(struct hid_device *hid, 952 struct hid_field *multiplier) 953 { 954 int m; 955 __s32 v = *multiplier->value; 956 __s32 lmin = multiplier->logical_minimum; 957 __s32 lmax = multiplier->logical_maximum; 958 __s32 pmin = multiplier->physical_minimum; 959 __s32 pmax = multiplier->physical_maximum; 960 961 /* 962 * "Because OS implementations will generally divide the control's 963 * reported count by the Effective Resolution Multiplier, designers 964 * should take care not to establish a potential Effective 965 * Resolution Multiplier of zero." 966 * HID Usage Table, v1.12, Section 4.3.1, p31 967 */ 968 if (lmax - lmin == 0) 969 return 1; 970 /* 971 * Handling the unit exponent is left as an exercise to whoever 972 * finds a device where that exponent is not 0. 973 */ 974 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin); 975 if (unlikely(multiplier->unit_exponent != 0)) { 976 hid_warn(hid, 977 "unsupported Resolution Multiplier unit exponent %d\n", 978 multiplier->unit_exponent); 979 } 980 981 /* There are no devices with an effective multiplier > 255 */ 982 if (unlikely(m == 0 || m > 255 || m < -255)) { 983 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m); 984 m = 1; 985 } 986 987 return m; 988 } 989 990 static void hid_apply_multiplier_to_field(struct hid_device *hid, 991 struct hid_field *field, 992 struct hid_collection *multiplier_collection, 993 int effective_multiplier) 994 { 995 struct hid_collection *collection; 996 struct hid_usage *usage; 997 int i; 998 999 /* 1000 * If multiplier_collection is NULL, the multiplier applies 1001 * to all fields in the report. 1002 * Otherwise, it is the Logical Collection the multiplier applies to 1003 * but our field may be in a subcollection of that collection. 1004 */ 1005 for (i = 0; i < field->maxusage; i++) { 1006 usage = &field->usage[i]; 1007 1008 collection = &hid->collection[usage->collection_index]; 1009 while (collection && collection != multiplier_collection) 1010 collection = collection->parent; 1011 1012 if (collection || multiplier_collection == NULL) 1013 usage->resolution_multiplier = effective_multiplier; 1014 1015 } 1016 } 1017 1018 static void hid_apply_multiplier(struct hid_device *hid, 1019 struct hid_field *multiplier) 1020 { 1021 struct hid_report_enum *rep_enum; 1022 struct hid_report *rep; 1023 struct hid_field *field; 1024 struct hid_collection *multiplier_collection; 1025 int effective_multiplier; 1026 int i; 1027 1028 /* 1029 * "The Resolution Multiplier control must be contained in the same 1030 * Logical Collection as the control(s) to which it is to be applied. 1031 * If no Resolution Multiplier is defined, then the Resolution 1032 * Multiplier defaults to 1. If more than one control exists in a 1033 * Logical Collection, the Resolution Multiplier is associated with 1034 * all controls in the collection. If no Logical Collection is 1035 * defined, the Resolution Multiplier is associated with all 1036 * controls in the report." 1037 * HID Usage Table, v1.12, Section 4.3.1, p30 1038 * 1039 * Thus, search from the current collection upwards until we find a 1040 * logical collection. Then search all fields for that same parent 1041 * collection. Those are the fields the multiplier applies to. 1042 * 1043 * If we have more than one multiplier, it will overwrite the 1044 * applicable fields later. 1045 */ 1046 multiplier_collection = &hid->collection[multiplier->usage->collection_index]; 1047 while (multiplier_collection && 1048 multiplier_collection->type != HID_COLLECTION_LOGICAL) 1049 multiplier_collection = multiplier_collection->parent; 1050 1051 effective_multiplier = hid_calculate_multiplier(hid, multiplier); 1052 1053 rep_enum = &hid->report_enum[HID_INPUT_REPORT]; 1054 list_for_each_entry(rep, &rep_enum->report_list, list) { 1055 for (i = 0; i < rep->maxfield; i++) { 1056 field = rep->field[i]; 1057 hid_apply_multiplier_to_field(hid, field, 1058 multiplier_collection, 1059 effective_multiplier); 1060 } 1061 } 1062 } 1063 1064 /* 1065 * hid_setup_resolution_multiplier - set up all resolution multipliers 1066 * 1067 * @device: hid device 1068 * 1069 * Search for all Resolution Multiplier Feature Reports and apply their 1070 * value to all matching Input items. This only updates the internal struct 1071 * fields. 1072 * 1073 * The Resolution Multiplier is applied by the hardware. If the multiplier 1074 * is anything other than 1, the hardware will send pre-multiplied events 1075 * so that the same physical interaction generates an accumulated 1076 * accumulated_value = value * * multiplier 1077 * This may be achieved by sending 1078 * - "value * multiplier" for each event, or 1079 * - "value" but "multiplier" times as frequently, or 1080 * - a combination of the above 1081 * The only guarantee is that the same physical interaction always generates 1082 * an accumulated 'value * multiplier'. 1083 * 1084 * This function must be called before any event processing and after 1085 * any SetRequest to the Resolution Multiplier. 1086 */ 1087 void hid_setup_resolution_multiplier(struct hid_device *hid) 1088 { 1089 struct hid_report_enum *rep_enum; 1090 struct hid_report *rep; 1091 struct hid_usage *usage; 1092 int i, j; 1093 1094 rep_enum = &hid->report_enum[HID_FEATURE_REPORT]; 1095 list_for_each_entry(rep, &rep_enum->report_list, list) { 1096 for (i = 0; i < rep->maxfield; i++) { 1097 /* Ignore if report count is out of bounds. */ 1098 if (rep->field[i]->report_count < 1) 1099 continue; 1100 1101 for (j = 0; j < rep->field[i]->maxusage; j++) { 1102 usage = &rep->field[i]->usage[j]; 1103 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER) 1104 hid_apply_multiplier(hid, 1105 rep->field[i]); 1106 } 1107 } 1108 } 1109 } 1110 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier); 1111 1112 /** 1113 * hid_open_report - open a driver-specific device report 1114 * 1115 * @device: hid device 1116 * 1117 * Parse a report description into a hid_device structure. Reports are 1118 * enumerated, fields are attached to these reports. 1119 * 0 returned on success, otherwise nonzero error value. 1120 * 1121 * This function (or the equivalent hid_parse() macro) should only be 1122 * called from probe() in drivers, before starting the device. 1123 */ 1124 int hid_open_report(struct hid_device *device) 1125 { 1126 struct hid_parser *parser; 1127 struct hid_item item; 1128 unsigned int size; 1129 __u8 *start; 1130 __u8 *buf; 1131 __u8 *end; 1132 int ret; 1133 static int (*dispatch_type[])(struct hid_parser *parser, 1134 struct hid_item *item) = { 1135 hid_parser_main, 1136 hid_parser_global, 1137 hid_parser_local, 1138 hid_parser_reserved 1139 }; 1140 1141 if (WARN_ON(device->status & HID_STAT_PARSED)) 1142 return -EBUSY; 1143 1144 start = device->dev_rdesc; 1145 if (WARN_ON(!start)) 1146 return -ENODEV; 1147 size = device->dev_rsize; 1148 1149 buf = kmemdup(start, size, GFP_KERNEL); 1150 if (buf == NULL) 1151 return -ENOMEM; 1152 1153 if (device->driver->report_fixup) 1154 start = device->driver->report_fixup(device, buf, &size); 1155 else 1156 start = buf; 1157 1158 start = kmemdup(start, size, GFP_KERNEL); 1159 kfree(buf); 1160 if (start == NULL) 1161 return -ENOMEM; 1162 1163 device->rdesc = start; 1164 device->rsize = size; 1165 1166 parser = vzalloc(sizeof(struct hid_parser)); 1167 if (!parser) { 1168 ret = -ENOMEM; 1169 goto alloc_err; 1170 } 1171 1172 parser->device = device; 1173 1174 end = start + size; 1175 1176 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS, 1177 sizeof(struct hid_collection), GFP_KERNEL); 1178 if (!device->collection) { 1179 ret = -ENOMEM; 1180 goto err; 1181 } 1182 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS; 1183 1184 ret = -EINVAL; 1185 while ((start = fetch_item(start, end, &item)) != NULL) { 1186 1187 if (item.format != HID_ITEM_FORMAT_SHORT) { 1188 hid_err(device, "unexpected long global item\n"); 1189 goto err; 1190 } 1191 1192 if (dispatch_type[item.type](parser, &item)) { 1193 hid_err(device, "item %u %u %u %u parsing failed\n", 1194 item.format, (unsigned)item.size, 1195 (unsigned)item.type, (unsigned)item.tag); 1196 goto err; 1197 } 1198 1199 if (start == end) { 1200 if (parser->collection_stack_ptr) { 1201 hid_err(device, "unbalanced collection at end of report description\n"); 1202 goto err; 1203 } 1204 if (parser->local.delimiter_depth) { 1205 hid_err(device, "unbalanced delimiter at end of report description\n"); 1206 goto err; 1207 } 1208 1209 /* 1210 * fetch initial values in case the device's 1211 * default multiplier isn't the recommended 1 1212 */ 1213 hid_setup_resolution_multiplier(device); 1214 1215 kfree(parser->collection_stack); 1216 vfree(parser); 1217 device->status |= HID_STAT_PARSED; 1218 1219 return 0; 1220 } 1221 } 1222 1223 hid_err(device, "item fetching failed at offset %d\n", (int)(end - start)); 1224 err: 1225 kfree(parser->collection_stack); 1226 alloc_err: 1227 vfree(parser); 1228 hid_close_report(device); 1229 return ret; 1230 } 1231 EXPORT_SYMBOL_GPL(hid_open_report); 1232 1233 /* 1234 * Convert a signed n-bit integer to signed 32-bit integer. Common 1235 * cases are done through the compiler, the screwed things has to be 1236 * done by hand. 1237 */ 1238 1239 static s32 snto32(__u32 value, unsigned n) 1240 { 1241 switch (n) { 1242 case 8: return ((__s8)value); 1243 case 16: return ((__s16)value); 1244 case 32: return ((__s32)value); 1245 } 1246 return value & (1 << (n - 1)) ? value | (~0U << n) : value; 1247 } 1248 1249 s32 hid_snto32(__u32 value, unsigned n) 1250 { 1251 return snto32(value, n); 1252 } 1253 EXPORT_SYMBOL_GPL(hid_snto32); 1254 1255 /* 1256 * Convert a signed 32-bit integer to a signed n-bit integer. 1257 */ 1258 1259 static u32 s32ton(__s32 value, unsigned n) 1260 { 1261 s32 a = value >> (n - 1); 1262 if (a && a != -1) 1263 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1; 1264 return value & ((1 << n) - 1); 1265 } 1266 1267 /* 1268 * Extract/implement a data field from/to a little endian report (bit array). 1269 * 1270 * Code sort-of follows HID spec: 1271 * http://www.usb.org/developers/hidpage/HID1_11.pdf 1272 * 1273 * While the USB HID spec allows unlimited length bit fields in "report 1274 * descriptors", most devices never use more than 16 bits. 1275 * One model of UPS is claimed to report "LINEV" as a 32-bit field. 1276 * Search linux-kernel and linux-usb-devel archives for "hid-core extract". 1277 */ 1278 1279 static u32 __extract(u8 *report, unsigned offset, int n) 1280 { 1281 unsigned int idx = offset / 8; 1282 unsigned int bit_nr = 0; 1283 unsigned int bit_shift = offset % 8; 1284 int bits_to_copy = 8 - bit_shift; 1285 u32 value = 0; 1286 u32 mask = n < 32 ? (1U << n) - 1 : ~0U; 1287 1288 while (n > 0) { 1289 value |= ((u32)report[idx] >> bit_shift) << bit_nr; 1290 n -= bits_to_copy; 1291 bit_nr += bits_to_copy; 1292 bits_to_copy = 8; 1293 bit_shift = 0; 1294 idx++; 1295 } 1296 1297 return value & mask; 1298 } 1299 1300 u32 hid_field_extract(const struct hid_device *hid, u8 *report, 1301 unsigned offset, unsigned n) 1302 { 1303 if (n > 32) { 1304 hid_warn(hid, "hid_field_extract() called with n (%d) > 32! (%s)\n", 1305 n, current->comm); 1306 n = 32; 1307 } 1308 1309 return __extract(report, offset, n); 1310 } 1311 EXPORT_SYMBOL_GPL(hid_field_extract); 1312 1313 /* 1314 * "implement" : set bits in a little endian bit stream. 1315 * Same concepts as "extract" (see comments above). 1316 * The data mangled in the bit stream remains in little endian 1317 * order the whole time. It make more sense to talk about 1318 * endianness of register values by considering a register 1319 * a "cached" copy of the little endian bit stream. 1320 */ 1321 1322 static void __implement(u8 *report, unsigned offset, int n, u32 value) 1323 { 1324 unsigned int idx = offset / 8; 1325 unsigned int bit_shift = offset % 8; 1326 int bits_to_set = 8 - bit_shift; 1327 1328 while (n - bits_to_set >= 0) { 1329 report[idx] &= ~(0xff << bit_shift); 1330 report[idx] |= value << bit_shift; 1331 value >>= bits_to_set; 1332 n -= bits_to_set; 1333 bits_to_set = 8; 1334 bit_shift = 0; 1335 idx++; 1336 } 1337 1338 /* last nibble */ 1339 if (n) { 1340 u8 bit_mask = ((1U << n) - 1); 1341 report[idx] &= ~(bit_mask << bit_shift); 1342 report[idx] |= value << bit_shift; 1343 } 1344 } 1345 1346 static void implement(const struct hid_device *hid, u8 *report, 1347 unsigned offset, unsigned n, u32 value) 1348 { 1349 if (unlikely(n > 32)) { 1350 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n", 1351 __func__, n, current->comm); 1352 n = 32; 1353 } else if (n < 32) { 1354 u32 m = (1U << n) - 1; 1355 1356 if (unlikely(value > m)) { 1357 hid_warn(hid, 1358 "%s() called with too large value %d (n: %d)! (%s)\n", 1359 __func__, value, n, current->comm); 1360 WARN_ON(1); 1361 value &= m; 1362 } 1363 } 1364 1365 __implement(report, offset, n, value); 1366 } 1367 1368 /* 1369 * Search an array for a value. 1370 */ 1371 1372 static int search(__s32 *array, __s32 value, unsigned n) 1373 { 1374 while (n--) { 1375 if (*array++ == value) 1376 return 0; 1377 } 1378 return -1; 1379 } 1380 1381 /** 1382 * hid_match_report - check if driver's raw_event should be called 1383 * 1384 * @hid: hid device 1385 * @report_type: type to match against 1386 * 1387 * compare hid->driver->report_table->report_type to report->type 1388 */ 1389 static int hid_match_report(struct hid_device *hid, struct hid_report *report) 1390 { 1391 const struct hid_report_id *id = hid->driver->report_table; 1392 1393 if (!id) /* NULL means all */ 1394 return 1; 1395 1396 for (; id->report_type != HID_TERMINATOR; id++) 1397 if (id->report_type == HID_ANY_ID || 1398 id->report_type == report->type) 1399 return 1; 1400 return 0; 1401 } 1402 1403 /** 1404 * hid_match_usage - check if driver's event should be called 1405 * 1406 * @hid: hid device 1407 * @usage: usage to match against 1408 * 1409 * compare hid->driver->usage_table->usage_{type,code} to 1410 * usage->usage_{type,code} 1411 */ 1412 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage) 1413 { 1414 const struct hid_usage_id *id = hid->driver->usage_table; 1415 1416 if (!id) /* NULL means all */ 1417 return 1; 1418 1419 for (; id->usage_type != HID_ANY_ID - 1; id++) 1420 if ((id->usage_hid == HID_ANY_ID || 1421 id->usage_hid == usage->hid) && 1422 (id->usage_type == HID_ANY_ID || 1423 id->usage_type == usage->type) && 1424 (id->usage_code == HID_ANY_ID || 1425 id->usage_code == usage->code)) 1426 return 1; 1427 return 0; 1428 } 1429 1430 static void hid_process_event(struct hid_device *hid, struct hid_field *field, 1431 struct hid_usage *usage, __s32 value, int interrupt) 1432 { 1433 struct hid_driver *hdrv = hid->driver; 1434 int ret; 1435 1436 if (!list_empty(&hid->debug_list)) 1437 hid_dump_input(hid, usage, value); 1438 1439 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) { 1440 ret = hdrv->event(hid, field, usage, value); 1441 if (ret != 0) { 1442 if (ret < 0) 1443 hid_err(hid, "%s's event failed with %d\n", 1444 hdrv->name, ret); 1445 return; 1446 } 1447 } 1448 1449 if (hid->claimed & HID_CLAIMED_INPUT) 1450 hidinput_hid_event(hid, field, usage, value); 1451 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event) 1452 hid->hiddev_hid_event(hid, field, usage, value); 1453 } 1454 1455 /* 1456 * Analyse a received field, and fetch the data from it. The field 1457 * content is stored for next report processing (we do differential 1458 * reporting to the layer). 1459 */ 1460 1461 static void hid_input_field(struct hid_device *hid, struct hid_field *field, 1462 __u8 *data, int interrupt) 1463 { 1464 unsigned n; 1465 unsigned count = field->report_count; 1466 unsigned offset = field->report_offset; 1467 unsigned size = field->report_size; 1468 __s32 min = field->logical_minimum; 1469 __s32 max = field->logical_maximum; 1470 __s32 *value; 1471 1472 value = kmalloc_array(count, sizeof(__s32), GFP_ATOMIC); 1473 if (!value) 1474 return; 1475 1476 for (n = 0; n < count; n++) { 1477 1478 value[n] = min < 0 ? 1479 snto32(hid_field_extract(hid, data, offset + n * size, 1480 size), size) : 1481 hid_field_extract(hid, data, offset + n * size, size); 1482 1483 /* Ignore report if ErrorRollOver */ 1484 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) && 1485 value[n] >= min && value[n] <= max && 1486 value[n] - min < field->maxusage && 1487 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) 1488 goto exit; 1489 } 1490 1491 for (n = 0; n < count; n++) { 1492 1493 if (HID_MAIN_ITEM_VARIABLE & field->flags) { 1494 hid_process_event(hid, field, &field->usage[n], value[n], interrupt); 1495 continue; 1496 } 1497 1498 if (field->value[n] >= min && field->value[n] <= max 1499 && field->value[n] - min < field->maxusage 1500 && field->usage[field->value[n] - min].hid 1501 && search(value, field->value[n], count)) 1502 hid_process_event(hid, field, &field->usage[field->value[n] - min], 0, interrupt); 1503 1504 if (value[n] >= min && value[n] <= max 1505 && value[n] - min < field->maxusage 1506 && field->usage[value[n] - min].hid 1507 && search(field->value, value[n], count)) 1508 hid_process_event(hid, field, &field->usage[value[n] - min], 1, interrupt); 1509 } 1510 1511 memcpy(field->value, value, count * sizeof(__s32)); 1512 exit: 1513 kfree(value); 1514 } 1515 1516 /* 1517 * Output the field into the report. 1518 */ 1519 1520 static void hid_output_field(const struct hid_device *hid, 1521 struct hid_field *field, __u8 *data) 1522 { 1523 unsigned count = field->report_count; 1524 unsigned offset = field->report_offset; 1525 unsigned size = field->report_size; 1526 unsigned n; 1527 1528 for (n = 0; n < count; n++) { 1529 if (field->logical_minimum < 0) /* signed values */ 1530 implement(hid, data, offset + n * size, size, 1531 s32ton(field->value[n], size)); 1532 else /* unsigned values */ 1533 implement(hid, data, offset + n * size, size, 1534 field->value[n]); 1535 } 1536 } 1537 1538 /* 1539 * Create a report. 'data' has to be allocated using 1540 * hid_alloc_report_buf() so that it has proper size. 1541 */ 1542 1543 void hid_output_report(struct hid_report *report, __u8 *data) 1544 { 1545 unsigned n; 1546 1547 if (report->id > 0) 1548 *data++ = report->id; 1549 1550 memset(data, 0, ((report->size - 1) >> 3) + 1); 1551 for (n = 0; n < report->maxfield; n++) 1552 hid_output_field(report->device, report->field[n], data); 1553 } 1554 EXPORT_SYMBOL_GPL(hid_output_report); 1555 1556 /* 1557 * Allocator for buffer that is going to be passed to hid_output_report() 1558 */ 1559 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags) 1560 { 1561 /* 1562 * 7 extra bytes are necessary to achieve proper functionality 1563 * of implement() working on 8 byte chunks 1564 */ 1565 1566 u32 len = hid_report_len(report) + 7; 1567 1568 return kmalloc(len, flags); 1569 } 1570 EXPORT_SYMBOL_GPL(hid_alloc_report_buf); 1571 1572 /* 1573 * Set a field value. The report this field belongs to has to be 1574 * created and transferred to the device, to set this value in the 1575 * device. 1576 */ 1577 1578 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value) 1579 { 1580 unsigned size; 1581 1582 if (!field) 1583 return -1; 1584 1585 size = field->report_size; 1586 1587 hid_dump_input(field->report->device, field->usage + offset, value); 1588 1589 if (offset >= field->report_count) { 1590 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n", 1591 offset, field->report_count); 1592 return -1; 1593 } 1594 if (field->logical_minimum < 0) { 1595 if (value != snto32(s32ton(value, size), size)) { 1596 hid_err(field->report->device, "value %d is out of range\n", value); 1597 return -1; 1598 } 1599 } 1600 field->value[offset] = value; 1601 return 0; 1602 } 1603 EXPORT_SYMBOL_GPL(hid_set_field); 1604 1605 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum, 1606 const u8 *data) 1607 { 1608 struct hid_report *report; 1609 unsigned int n = 0; /* Normally report number is 0 */ 1610 1611 /* Device uses numbered reports, data[0] is report number */ 1612 if (report_enum->numbered) 1613 n = *data; 1614 1615 report = report_enum->report_id_hash[n]; 1616 if (report == NULL) 1617 dbg_hid("undefined report_id %u received\n", n); 1618 1619 return report; 1620 } 1621 1622 /* 1623 * Implement a generic .request() callback, using .raw_request() 1624 * DO NOT USE in hid drivers directly, but through hid_hw_request instead. 1625 */ 1626 void __hid_request(struct hid_device *hid, struct hid_report *report, 1627 int reqtype) 1628 { 1629 char *buf; 1630 int ret; 1631 u32 len; 1632 1633 buf = hid_alloc_report_buf(report, GFP_KERNEL); 1634 if (!buf) 1635 return; 1636 1637 len = hid_report_len(report); 1638 1639 if (reqtype == HID_REQ_SET_REPORT) 1640 hid_output_report(report, buf); 1641 1642 ret = hid->ll_driver->raw_request(hid, report->id, buf, len, 1643 report->type, reqtype); 1644 if (ret < 0) { 1645 dbg_hid("unable to complete request: %d\n", ret); 1646 goto out; 1647 } 1648 1649 if (reqtype == HID_REQ_GET_REPORT) 1650 hid_input_report(hid, report->type, buf, ret, 0); 1651 1652 out: 1653 kfree(buf); 1654 } 1655 EXPORT_SYMBOL_GPL(__hid_request); 1656 1657 int hid_report_raw_event(struct hid_device *hid, int type, u8 *data, u32 size, 1658 int interrupt) 1659 { 1660 struct hid_report_enum *report_enum = hid->report_enum + type; 1661 struct hid_report *report; 1662 struct hid_driver *hdrv; 1663 unsigned int a; 1664 u32 rsize, csize = size; 1665 u8 *cdata = data; 1666 int ret = 0; 1667 1668 report = hid_get_report(report_enum, data); 1669 if (!report) 1670 goto out; 1671 1672 if (report_enum->numbered) { 1673 cdata++; 1674 csize--; 1675 } 1676 1677 rsize = ((report->size - 1) >> 3) + 1; 1678 1679 if (rsize > HID_MAX_BUFFER_SIZE) 1680 rsize = HID_MAX_BUFFER_SIZE; 1681 1682 if (csize < rsize) { 1683 dbg_hid("report %d is too short, (%d < %d)\n", report->id, 1684 csize, rsize); 1685 memset(cdata + csize, 0, rsize - csize); 1686 } 1687 1688 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event) 1689 hid->hiddev_report_event(hid, report); 1690 if (hid->claimed & HID_CLAIMED_HIDRAW) { 1691 ret = hidraw_report_event(hid, data, size); 1692 if (ret) 1693 goto out; 1694 } 1695 1696 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) { 1697 for (a = 0; a < report->maxfield; a++) 1698 hid_input_field(hid, report->field[a], cdata, interrupt); 1699 hdrv = hid->driver; 1700 if (hdrv && hdrv->report) 1701 hdrv->report(hid, report); 1702 } 1703 1704 if (hid->claimed & HID_CLAIMED_INPUT) 1705 hidinput_report_event(hid, report); 1706 out: 1707 return ret; 1708 } 1709 EXPORT_SYMBOL_GPL(hid_report_raw_event); 1710 1711 /** 1712 * hid_input_report - report data from lower layer (usb, bt...) 1713 * 1714 * @hid: hid device 1715 * @type: HID report type (HID_*_REPORT) 1716 * @data: report contents 1717 * @size: size of data parameter 1718 * @interrupt: distinguish between interrupt and control transfers 1719 * 1720 * This is data entry for lower layers. 1721 */ 1722 int hid_input_report(struct hid_device *hid, int type, u8 *data, u32 size, int interrupt) 1723 { 1724 struct hid_report_enum *report_enum; 1725 struct hid_driver *hdrv; 1726 struct hid_report *report; 1727 int ret = 0; 1728 1729 if (!hid) 1730 return -ENODEV; 1731 1732 if (down_trylock(&hid->driver_input_lock)) 1733 return -EBUSY; 1734 1735 if (!hid->driver) { 1736 ret = -ENODEV; 1737 goto unlock; 1738 } 1739 report_enum = hid->report_enum + type; 1740 hdrv = hid->driver; 1741 1742 if (!size) { 1743 dbg_hid("empty report\n"); 1744 ret = -1; 1745 goto unlock; 1746 } 1747 1748 /* Avoid unnecessary overhead if debugfs is disabled */ 1749 if (!list_empty(&hid->debug_list)) 1750 hid_dump_report(hid, type, data, size); 1751 1752 report = hid_get_report(report_enum, data); 1753 1754 if (!report) { 1755 ret = -1; 1756 goto unlock; 1757 } 1758 1759 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) { 1760 ret = hdrv->raw_event(hid, report, data, size); 1761 if (ret < 0) 1762 goto unlock; 1763 } 1764 1765 ret = hid_report_raw_event(hid, type, data, size, interrupt); 1766 1767 unlock: 1768 up(&hid->driver_input_lock); 1769 return ret; 1770 } 1771 EXPORT_SYMBOL_GPL(hid_input_report); 1772 1773 bool hid_match_one_id(const struct hid_device *hdev, 1774 const struct hid_device_id *id) 1775 { 1776 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) && 1777 (id->group == HID_GROUP_ANY || id->group == hdev->group) && 1778 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) && 1779 (id->product == HID_ANY_ID || id->product == hdev->product); 1780 } 1781 1782 const struct hid_device_id *hid_match_id(const struct hid_device *hdev, 1783 const struct hid_device_id *id) 1784 { 1785 for (; id->bus; id++) 1786 if (hid_match_one_id(hdev, id)) 1787 return id; 1788 1789 return NULL; 1790 } 1791 1792 static const struct hid_device_id hid_hiddev_list[] = { 1793 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) }, 1794 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) }, 1795 { } 1796 }; 1797 1798 static bool hid_hiddev(struct hid_device *hdev) 1799 { 1800 return !!hid_match_id(hdev, hid_hiddev_list); 1801 } 1802 1803 1804 static ssize_t 1805 read_report_descriptor(struct file *filp, struct kobject *kobj, 1806 struct bin_attribute *attr, 1807 char *buf, loff_t off, size_t count) 1808 { 1809 struct device *dev = kobj_to_dev(kobj); 1810 struct hid_device *hdev = to_hid_device(dev); 1811 1812 if (off >= hdev->rsize) 1813 return 0; 1814 1815 if (off + count > hdev->rsize) 1816 count = hdev->rsize - off; 1817 1818 memcpy(buf, hdev->rdesc + off, count); 1819 1820 return count; 1821 } 1822 1823 static ssize_t 1824 show_country(struct device *dev, struct device_attribute *attr, 1825 char *buf) 1826 { 1827 struct hid_device *hdev = to_hid_device(dev); 1828 1829 return sprintf(buf, "%02x\n", hdev->country & 0xff); 1830 } 1831 1832 static struct bin_attribute dev_bin_attr_report_desc = { 1833 .attr = { .name = "report_descriptor", .mode = 0444 }, 1834 .read = read_report_descriptor, 1835 .size = HID_MAX_DESCRIPTOR_SIZE, 1836 }; 1837 1838 static const struct device_attribute dev_attr_country = { 1839 .attr = { .name = "country", .mode = 0444 }, 1840 .show = show_country, 1841 }; 1842 1843 int hid_connect(struct hid_device *hdev, unsigned int connect_mask) 1844 { 1845 static const char *types[] = { "Device", "Pointer", "Mouse", "Device", 1846 "Joystick", "Gamepad", "Keyboard", "Keypad", 1847 "Multi-Axis Controller" 1848 }; 1849 const char *type, *bus; 1850 char buf[64] = ""; 1851 unsigned int i; 1852 int len; 1853 int ret; 1854 1855 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE) 1856 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV); 1857 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE) 1858 connect_mask |= HID_CONNECT_HIDINPUT_FORCE; 1859 if (hdev->bus != BUS_USB) 1860 connect_mask &= ~HID_CONNECT_HIDDEV; 1861 if (hid_hiddev(hdev)) 1862 connect_mask |= HID_CONNECT_HIDDEV_FORCE; 1863 1864 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev, 1865 connect_mask & HID_CONNECT_HIDINPUT_FORCE)) 1866 hdev->claimed |= HID_CLAIMED_INPUT; 1867 1868 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect && 1869 !hdev->hiddev_connect(hdev, 1870 connect_mask & HID_CONNECT_HIDDEV_FORCE)) 1871 hdev->claimed |= HID_CLAIMED_HIDDEV; 1872 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev)) 1873 hdev->claimed |= HID_CLAIMED_HIDRAW; 1874 1875 if (connect_mask & HID_CONNECT_DRIVER) 1876 hdev->claimed |= HID_CLAIMED_DRIVER; 1877 1878 /* Drivers with the ->raw_event callback set are not required to connect 1879 * to any other listener. */ 1880 if (!hdev->claimed && !hdev->driver->raw_event) { 1881 hid_err(hdev, "device has no listeners, quitting\n"); 1882 return -ENODEV; 1883 } 1884 1885 if ((hdev->claimed & HID_CLAIMED_INPUT) && 1886 (connect_mask & HID_CONNECT_FF) && hdev->ff_init) 1887 hdev->ff_init(hdev); 1888 1889 len = 0; 1890 if (hdev->claimed & HID_CLAIMED_INPUT) 1891 len += sprintf(buf + len, "input"); 1892 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1893 len += sprintf(buf + len, "%shiddev%d", len ? "," : "", 1894 ((struct hiddev *)hdev->hiddev)->minor); 1895 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1896 len += sprintf(buf + len, "%shidraw%d", len ? "," : "", 1897 ((struct hidraw *)hdev->hidraw)->minor); 1898 1899 type = "Device"; 1900 for (i = 0; i < hdev->maxcollection; i++) { 1901 struct hid_collection *col = &hdev->collection[i]; 1902 if (col->type == HID_COLLECTION_APPLICATION && 1903 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK && 1904 (col->usage & 0xffff) < ARRAY_SIZE(types)) { 1905 type = types[col->usage & 0xffff]; 1906 break; 1907 } 1908 } 1909 1910 switch (hdev->bus) { 1911 case BUS_USB: 1912 bus = "USB"; 1913 break; 1914 case BUS_BLUETOOTH: 1915 bus = "BLUETOOTH"; 1916 break; 1917 case BUS_I2C: 1918 bus = "I2C"; 1919 break; 1920 default: 1921 bus = "<UNKNOWN>"; 1922 } 1923 1924 ret = device_create_file(&hdev->dev, &dev_attr_country); 1925 if (ret) 1926 hid_warn(hdev, 1927 "can't create sysfs country code attribute err: %d\n", ret); 1928 1929 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n", 1930 buf, bus, hdev->version >> 8, hdev->version & 0xff, 1931 type, hdev->name, hdev->phys); 1932 1933 return 0; 1934 } 1935 EXPORT_SYMBOL_GPL(hid_connect); 1936 1937 void hid_disconnect(struct hid_device *hdev) 1938 { 1939 device_remove_file(&hdev->dev, &dev_attr_country); 1940 if (hdev->claimed & HID_CLAIMED_INPUT) 1941 hidinput_disconnect(hdev); 1942 if (hdev->claimed & HID_CLAIMED_HIDDEV) 1943 hdev->hiddev_disconnect(hdev); 1944 if (hdev->claimed & HID_CLAIMED_HIDRAW) 1945 hidraw_disconnect(hdev); 1946 hdev->claimed = 0; 1947 } 1948 EXPORT_SYMBOL_GPL(hid_disconnect); 1949 1950 /** 1951 * hid_hw_start - start underlying HW 1952 * @hdev: hid device 1953 * @connect_mask: which outputs to connect, see HID_CONNECT_* 1954 * 1955 * Call this in probe function *after* hid_parse. This will setup HW 1956 * buffers and start the device (if not defeirred to device open). 1957 * hid_hw_stop must be called if this was successful. 1958 */ 1959 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask) 1960 { 1961 int error; 1962 1963 error = hdev->ll_driver->start(hdev); 1964 if (error) 1965 return error; 1966 1967 if (connect_mask) { 1968 error = hid_connect(hdev, connect_mask); 1969 if (error) { 1970 hdev->ll_driver->stop(hdev); 1971 return error; 1972 } 1973 } 1974 1975 return 0; 1976 } 1977 EXPORT_SYMBOL_GPL(hid_hw_start); 1978 1979 /** 1980 * hid_hw_stop - stop underlying HW 1981 * @hdev: hid device 1982 * 1983 * This is usually called from remove function or from probe when something 1984 * failed and hid_hw_start was called already. 1985 */ 1986 void hid_hw_stop(struct hid_device *hdev) 1987 { 1988 hid_disconnect(hdev); 1989 hdev->ll_driver->stop(hdev); 1990 } 1991 EXPORT_SYMBOL_GPL(hid_hw_stop); 1992 1993 /** 1994 * hid_hw_open - signal underlying HW to start delivering events 1995 * @hdev: hid device 1996 * 1997 * Tell underlying HW to start delivering events from the device. 1998 * This function should be called sometime after successful call 1999 * to hid_hw_start(). 2000 */ 2001 int hid_hw_open(struct hid_device *hdev) 2002 { 2003 int ret; 2004 2005 ret = mutex_lock_killable(&hdev->ll_open_lock); 2006 if (ret) 2007 return ret; 2008 2009 if (!hdev->ll_open_count++) { 2010 ret = hdev->ll_driver->open(hdev); 2011 if (ret) 2012 hdev->ll_open_count--; 2013 } 2014 2015 mutex_unlock(&hdev->ll_open_lock); 2016 return ret; 2017 } 2018 EXPORT_SYMBOL_GPL(hid_hw_open); 2019 2020 /** 2021 * hid_hw_close - signal underlaying HW to stop delivering events 2022 * 2023 * @hdev: hid device 2024 * 2025 * This function indicates that we are not interested in the events 2026 * from this device anymore. Delivery of events may or may not stop, 2027 * depending on the number of users still outstanding. 2028 */ 2029 void hid_hw_close(struct hid_device *hdev) 2030 { 2031 mutex_lock(&hdev->ll_open_lock); 2032 if (!--hdev->ll_open_count) 2033 hdev->ll_driver->close(hdev); 2034 mutex_unlock(&hdev->ll_open_lock); 2035 } 2036 EXPORT_SYMBOL_GPL(hid_hw_close); 2037 2038 struct hid_dynid { 2039 struct list_head list; 2040 struct hid_device_id id; 2041 }; 2042 2043 /** 2044 * store_new_id - add a new HID device ID to this driver and re-probe devices 2045 * @driver: target device driver 2046 * @buf: buffer for scanning device ID data 2047 * @count: input size 2048 * 2049 * Adds a new dynamic hid device ID to this driver, 2050 * and causes the driver to probe for all devices again. 2051 */ 2052 static ssize_t new_id_store(struct device_driver *drv, const char *buf, 2053 size_t count) 2054 { 2055 struct hid_driver *hdrv = to_hid_driver(drv); 2056 struct hid_dynid *dynid; 2057 __u32 bus, vendor, product; 2058 unsigned long driver_data = 0; 2059 int ret; 2060 2061 ret = sscanf(buf, "%x %x %x %lx", 2062 &bus, &vendor, &product, &driver_data); 2063 if (ret < 3) 2064 return -EINVAL; 2065 2066 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 2067 if (!dynid) 2068 return -ENOMEM; 2069 2070 dynid->id.bus = bus; 2071 dynid->id.group = HID_GROUP_ANY; 2072 dynid->id.vendor = vendor; 2073 dynid->id.product = product; 2074 dynid->id.driver_data = driver_data; 2075 2076 spin_lock(&hdrv->dyn_lock); 2077 list_add_tail(&dynid->list, &hdrv->dyn_list); 2078 spin_unlock(&hdrv->dyn_lock); 2079 2080 ret = driver_attach(&hdrv->driver); 2081 2082 return ret ? : count; 2083 } 2084 static DRIVER_ATTR_WO(new_id); 2085 2086 static struct attribute *hid_drv_attrs[] = { 2087 &driver_attr_new_id.attr, 2088 NULL, 2089 }; 2090 ATTRIBUTE_GROUPS(hid_drv); 2091 2092 static void hid_free_dynids(struct hid_driver *hdrv) 2093 { 2094 struct hid_dynid *dynid, *n; 2095 2096 spin_lock(&hdrv->dyn_lock); 2097 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) { 2098 list_del(&dynid->list); 2099 kfree(dynid); 2100 } 2101 spin_unlock(&hdrv->dyn_lock); 2102 } 2103 2104 const struct hid_device_id *hid_match_device(struct hid_device *hdev, 2105 struct hid_driver *hdrv) 2106 { 2107 struct hid_dynid *dynid; 2108 2109 spin_lock(&hdrv->dyn_lock); 2110 list_for_each_entry(dynid, &hdrv->dyn_list, list) { 2111 if (hid_match_one_id(hdev, &dynid->id)) { 2112 spin_unlock(&hdrv->dyn_lock); 2113 return &dynid->id; 2114 } 2115 } 2116 spin_unlock(&hdrv->dyn_lock); 2117 2118 return hid_match_id(hdev, hdrv->id_table); 2119 } 2120 EXPORT_SYMBOL_GPL(hid_match_device); 2121 2122 static int hid_bus_match(struct device *dev, struct device_driver *drv) 2123 { 2124 struct hid_driver *hdrv = to_hid_driver(drv); 2125 struct hid_device *hdev = to_hid_device(dev); 2126 2127 return hid_match_device(hdev, hdrv) != NULL; 2128 } 2129 2130 /** 2131 * hid_compare_device_paths - check if both devices share the same path 2132 * @hdev_a: hid device 2133 * @hdev_b: hid device 2134 * @separator: char to use as separator 2135 * 2136 * Check if two devices share the same path up to the last occurrence of 2137 * the separator char. Both paths must exist (i.e., zero-length paths 2138 * don't match). 2139 */ 2140 bool hid_compare_device_paths(struct hid_device *hdev_a, 2141 struct hid_device *hdev_b, char separator) 2142 { 2143 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys; 2144 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys; 2145 2146 if (n1 != n2 || n1 <= 0 || n2 <= 0) 2147 return false; 2148 2149 return !strncmp(hdev_a->phys, hdev_b->phys, n1); 2150 } 2151 EXPORT_SYMBOL_GPL(hid_compare_device_paths); 2152 2153 static int hid_device_probe(struct device *dev) 2154 { 2155 struct hid_driver *hdrv = to_hid_driver(dev->driver); 2156 struct hid_device *hdev = to_hid_device(dev); 2157 const struct hid_device_id *id; 2158 int ret = 0; 2159 2160 if (down_interruptible(&hdev->driver_input_lock)) { 2161 ret = -EINTR; 2162 goto end; 2163 } 2164 hdev->io_started = false; 2165 2166 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status); 2167 2168 if (!hdev->driver) { 2169 id = hid_match_device(hdev, hdrv); 2170 if (id == NULL) { 2171 ret = -ENODEV; 2172 goto unlock; 2173 } 2174 2175 if (hdrv->match) { 2176 if (!hdrv->match(hdev, hid_ignore_special_drivers)) { 2177 ret = -ENODEV; 2178 goto unlock; 2179 } 2180 } else { 2181 /* 2182 * hid-generic implements .match(), so if 2183 * hid_ignore_special_drivers is set, we can safely 2184 * return. 2185 */ 2186 if (hid_ignore_special_drivers) { 2187 ret = -ENODEV; 2188 goto unlock; 2189 } 2190 } 2191 2192 /* reset the quirks that has been previously set */ 2193 hdev->quirks = hid_lookup_quirk(hdev); 2194 hdev->driver = hdrv; 2195 if (hdrv->probe) { 2196 ret = hdrv->probe(hdev, id); 2197 } else { /* default probe */ 2198 ret = hid_open_report(hdev); 2199 if (!ret) 2200 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT); 2201 } 2202 if (ret) { 2203 hid_close_report(hdev); 2204 hdev->driver = NULL; 2205 } 2206 } 2207 unlock: 2208 if (!hdev->io_started) 2209 up(&hdev->driver_input_lock); 2210 end: 2211 return ret; 2212 } 2213 2214 static int hid_device_remove(struct device *dev) 2215 { 2216 struct hid_device *hdev = to_hid_device(dev); 2217 struct hid_driver *hdrv; 2218 int ret = 0; 2219 2220 if (down_interruptible(&hdev->driver_input_lock)) { 2221 ret = -EINTR; 2222 goto end; 2223 } 2224 hdev->io_started = false; 2225 2226 hdrv = hdev->driver; 2227 if (hdrv) { 2228 if (hdrv->remove) 2229 hdrv->remove(hdev); 2230 else /* default remove */ 2231 hid_hw_stop(hdev); 2232 hid_close_report(hdev); 2233 hdev->driver = NULL; 2234 } 2235 2236 if (!hdev->io_started) 2237 up(&hdev->driver_input_lock); 2238 end: 2239 return ret; 2240 } 2241 2242 static ssize_t modalias_show(struct device *dev, struct device_attribute *a, 2243 char *buf) 2244 { 2245 struct hid_device *hdev = container_of(dev, struct hid_device, dev); 2246 2247 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n", 2248 hdev->bus, hdev->group, hdev->vendor, hdev->product); 2249 } 2250 static DEVICE_ATTR_RO(modalias); 2251 2252 static struct attribute *hid_dev_attrs[] = { 2253 &dev_attr_modalias.attr, 2254 NULL, 2255 }; 2256 static struct bin_attribute *hid_dev_bin_attrs[] = { 2257 &dev_bin_attr_report_desc, 2258 NULL 2259 }; 2260 static const struct attribute_group hid_dev_group = { 2261 .attrs = hid_dev_attrs, 2262 .bin_attrs = hid_dev_bin_attrs, 2263 }; 2264 __ATTRIBUTE_GROUPS(hid_dev); 2265 2266 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env) 2267 { 2268 struct hid_device *hdev = to_hid_device(dev); 2269 2270 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X", 2271 hdev->bus, hdev->vendor, hdev->product)) 2272 return -ENOMEM; 2273 2274 if (add_uevent_var(env, "HID_NAME=%s", hdev->name)) 2275 return -ENOMEM; 2276 2277 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys)) 2278 return -ENOMEM; 2279 2280 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq)) 2281 return -ENOMEM; 2282 2283 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X", 2284 hdev->bus, hdev->group, hdev->vendor, hdev->product)) 2285 return -ENOMEM; 2286 2287 return 0; 2288 } 2289 2290 struct bus_type hid_bus_type = { 2291 .name = "hid", 2292 .dev_groups = hid_dev_groups, 2293 .drv_groups = hid_drv_groups, 2294 .match = hid_bus_match, 2295 .probe = hid_device_probe, 2296 .remove = hid_device_remove, 2297 .uevent = hid_uevent, 2298 }; 2299 EXPORT_SYMBOL(hid_bus_type); 2300 2301 int hid_add_device(struct hid_device *hdev) 2302 { 2303 static atomic_t id = ATOMIC_INIT(0); 2304 int ret; 2305 2306 if (WARN_ON(hdev->status & HID_STAT_ADDED)) 2307 return -EBUSY; 2308 2309 hdev->quirks = hid_lookup_quirk(hdev); 2310 2311 /* we need to kill them here, otherwise they will stay allocated to 2312 * wait for coming driver */ 2313 if (hid_ignore(hdev)) 2314 return -ENODEV; 2315 2316 /* 2317 * Check for the mandatory transport channel. 2318 */ 2319 if (!hdev->ll_driver->raw_request) { 2320 hid_err(hdev, "transport driver missing .raw_request()\n"); 2321 return -EINVAL; 2322 } 2323 2324 /* 2325 * Read the device report descriptor once and use as template 2326 * for the driver-specific modifications. 2327 */ 2328 ret = hdev->ll_driver->parse(hdev); 2329 if (ret) 2330 return ret; 2331 if (!hdev->dev_rdesc) 2332 return -ENODEV; 2333 2334 /* 2335 * Scan generic devices for group information 2336 */ 2337 if (hid_ignore_special_drivers) { 2338 hdev->group = HID_GROUP_GENERIC; 2339 } else if (!hdev->group && 2340 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) { 2341 ret = hid_scan_report(hdev); 2342 if (ret) 2343 hid_warn(hdev, "bad device descriptor (%d)\n", ret); 2344 } 2345 2346 /* XXX hack, any other cleaner solution after the driver core 2347 * is converted to allow more than 20 bytes as the device name? */ 2348 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus, 2349 hdev->vendor, hdev->product, atomic_inc_return(&id)); 2350 2351 hid_debug_register(hdev, dev_name(&hdev->dev)); 2352 ret = device_add(&hdev->dev); 2353 if (!ret) 2354 hdev->status |= HID_STAT_ADDED; 2355 else 2356 hid_debug_unregister(hdev); 2357 2358 return ret; 2359 } 2360 EXPORT_SYMBOL_GPL(hid_add_device); 2361 2362 /** 2363 * hid_allocate_device - allocate new hid device descriptor 2364 * 2365 * Allocate and initialize hid device, so that hid_destroy_device might be 2366 * used to free it. 2367 * 2368 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded 2369 * error value. 2370 */ 2371 struct hid_device *hid_allocate_device(void) 2372 { 2373 struct hid_device *hdev; 2374 int ret = -ENOMEM; 2375 2376 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL); 2377 if (hdev == NULL) 2378 return ERR_PTR(ret); 2379 2380 device_initialize(&hdev->dev); 2381 hdev->dev.release = hid_device_release; 2382 hdev->dev.bus = &hid_bus_type; 2383 device_enable_async_suspend(&hdev->dev); 2384 2385 hid_close_report(hdev); 2386 2387 init_waitqueue_head(&hdev->debug_wait); 2388 INIT_LIST_HEAD(&hdev->debug_list); 2389 spin_lock_init(&hdev->debug_list_lock); 2390 sema_init(&hdev->driver_input_lock, 1); 2391 mutex_init(&hdev->ll_open_lock); 2392 2393 return hdev; 2394 } 2395 EXPORT_SYMBOL_GPL(hid_allocate_device); 2396 2397 static void hid_remove_device(struct hid_device *hdev) 2398 { 2399 if (hdev->status & HID_STAT_ADDED) { 2400 device_del(&hdev->dev); 2401 hid_debug_unregister(hdev); 2402 hdev->status &= ~HID_STAT_ADDED; 2403 } 2404 kfree(hdev->dev_rdesc); 2405 hdev->dev_rdesc = NULL; 2406 hdev->dev_rsize = 0; 2407 } 2408 2409 /** 2410 * hid_destroy_device - free previously allocated device 2411 * 2412 * @hdev: hid device 2413 * 2414 * If you allocate hid_device through hid_allocate_device, you should ever 2415 * free by this function. 2416 */ 2417 void hid_destroy_device(struct hid_device *hdev) 2418 { 2419 hid_remove_device(hdev); 2420 put_device(&hdev->dev); 2421 } 2422 EXPORT_SYMBOL_GPL(hid_destroy_device); 2423 2424 2425 static int __hid_bus_reprobe_drivers(struct device *dev, void *data) 2426 { 2427 struct hid_driver *hdrv = data; 2428 struct hid_device *hdev = to_hid_device(dev); 2429 2430 if (hdev->driver == hdrv && 2431 !hdrv->match(hdev, hid_ignore_special_drivers) && 2432 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status)) 2433 return device_reprobe(dev); 2434 2435 return 0; 2436 } 2437 2438 static int __hid_bus_driver_added(struct device_driver *drv, void *data) 2439 { 2440 struct hid_driver *hdrv = to_hid_driver(drv); 2441 2442 if (hdrv->match) { 2443 bus_for_each_dev(&hid_bus_type, NULL, hdrv, 2444 __hid_bus_reprobe_drivers); 2445 } 2446 2447 return 0; 2448 } 2449 2450 static int __bus_removed_driver(struct device_driver *drv, void *data) 2451 { 2452 return bus_rescan_devices(&hid_bus_type); 2453 } 2454 2455 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner, 2456 const char *mod_name) 2457 { 2458 int ret; 2459 2460 hdrv->driver.name = hdrv->name; 2461 hdrv->driver.bus = &hid_bus_type; 2462 hdrv->driver.owner = owner; 2463 hdrv->driver.mod_name = mod_name; 2464 2465 INIT_LIST_HEAD(&hdrv->dyn_list); 2466 spin_lock_init(&hdrv->dyn_lock); 2467 2468 ret = driver_register(&hdrv->driver); 2469 2470 if (ret == 0) 2471 bus_for_each_drv(&hid_bus_type, NULL, NULL, 2472 __hid_bus_driver_added); 2473 2474 return ret; 2475 } 2476 EXPORT_SYMBOL_GPL(__hid_register_driver); 2477 2478 void hid_unregister_driver(struct hid_driver *hdrv) 2479 { 2480 driver_unregister(&hdrv->driver); 2481 hid_free_dynids(hdrv); 2482 2483 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver); 2484 } 2485 EXPORT_SYMBOL_GPL(hid_unregister_driver); 2486 2487 int hid_check_keys_pressed(struct hid_device *hid) 2488 { 2489 struct hid_input *hidinput; 2490 int i; 2491 2492 if (!(hid->claimed & HID_CLAIMED_INPUT)) 2493 return 0; 2494 2495 list_for_each_entry(hidinput, &hid->inputs, list) { 2496 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++) 2497 if (hidinput->input->key[i]) 2498 return 1; 2499 } 2500 2501 return 0; 2502 } 2503 2504 EXPORT_SYMBOL_GPL(hid_check_keys_pressed); 2505 2506 static int __init hid_init(void) 2507 { 2508 int ret; 2509 2510 if (hid_debug) 2511 pr_warn("hid_debug is now used solely for parser and driver debugging.\n" 2512 "debugfs is now used for inspecting the device (report descriptor, reports)\n"); 2513 2514 ret = bus_register(&hid_bus_type); 2515 if (ret) { 2516 pr_err("can't register hid bus\n"); 2517 goto err; 2518 } 2519 2520 ret = hidraw_init(); 2521 if (ret) 2522 goto err_bus; 2523 2524 hid_debug_init(); 2525 2526 return 0; 2527 err_bus: 2528 bus_unregister(&hid_bus_type); 2529 err: 2530 return ret; 2531 } 2532 2533 static void __exit hid_exit(void) 2534 { 2535 hid_debug_exit(); 2536 hidraw_exit(); 2537 bus_unregister(&hid_bus_type); 2538 hid_quirks_exit(HID_BUS_ANY); 2539 } 2540 2541 module_init(hid_init); 2542 module_exit(hid_exit); 2543 2544 MODULE_AUTHOR("Andreas Gal"); 2545 MODULE_AUTHOR("Vojtech Pavlik"); 2546 MODULE_AUTHOR("Jiri Kosina"); 2547 MODULE_LICENSE("GPL"); 2548