1 // SPDX-License-Identifier: GPL-2.0 2 3 mod boot; 4 5 use kernel::{ 6 device, 7 dma::{ 8 CoherentAllocation, 9 DmaAddress, // 10 }, 11 dma_write, 12 pci, 13 prelude::*, 14 transmute::AsBytes, // 15 }; 16 17 pub(crate) mod cmdq; 18 pub(crate) mod commands; 19 mod fw; 20 21 pub(crate) use fw::{ 22 GspFwWprMeta, 23 LibosParams, // 24 }; 25 26 use crate::{ 27 gsp::cmdq::Cmdq, 28 gsp::fw::{ 29 GspArgumentsCached, 30 LibosMemoryRegionInitArgument, // 31 }, 32 num, 33 }; 34 35 pub(crate) const GSP_PAGE_SHIFT: usize = 12; 36 pub(crate) const GSP_PAGE_SIZE: usize = 1 << GSP_PAGE_SHIFT; 37 38 /// Number of GSP pages to use in a RM log buffer. 39 const RM_LOG_BUFFER_NUM_PAGES: usize = 0x10; 40 41 /// Array of page table entries, as understood by the GSP bootloader. 42 #[repr(C)] 43 struct PteArray<const NUM_ENTRIES: usize>([u64; NUM_ENTRIES]); 44 45 /// SAFETY: arrays of `u64` implement `AsBytes` and we are but a wrapper around one. 46 unsafe impl<const NUM_ENTRIES: usize> AsBytes for PteArray<NUM_ENTRIES> {} 47 48 impl<const NUM_PAGES: usize> PteArray<NUM_PAGES> { 49 /// Creates a new page table array mapping `NUM_PAGES` GSP pages starting at address `start`. 50 fn new(start: DmaAddress) -> Result<Self> { 51 let mut ptes = [0u64; NUM_PAGES]; 52 for (i, pte) in ptes.iter_mut().enumerate() { 53 *pte = start 54 .checked_add(num::usize_as_u64(i) << GSP_PAGE_SHIFT) 55 .ok_or(EOVERFLOW)?; 56 } 57 58 Ok(Self(ptes)) 59 } 60 } 61 62 /// The logging buffers are byte queues that contain encoded printf-like 63 /// messages from GSP-RM. They need to be decoded by a special application 64 /// that can parse the buffers. 65 /// 66 /// The 'loginit' buffer contains logs from early GSP-RM init and 67 /// exception dumps. The 'logrm' buffer contains the subsequent logs. Both are 68 /// written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE. 69 /// 70 /// The physical address map for the log buffer is stored in the buffer 71 /// itself, starting with offset 1. Offset 0 contains the "put" pointer (pp). 72 /// Initially, pp is equal to 0. If the buffer has valid logging data in it, 73 /// then pp points to index into the buffer where the next logging entry will 74 /// be written. Therefore, the logging data is valid if: 75 /// 1 <= pp < sizeof(buffer)/sizeof(u64) 76 struct LogBuffer(CoherentAllocation<u8>); 77 78 impl LogBuffer { 79 /// Creates a new `LogBuffer` mapped on `dev`. 80 fn new(dev: &device::Device<device::Bound>) -> Result<Self> { 81 const NUM_PAGES: usize = RM_LOG_BUFFER_NUM_PAGES; 82 83 let mut obj = Self(CoherentAllocation::<u8>::alloc_coherent( 84 dev, 85 NUM_PAGES * GSP_PAGE_SIZE, 86 GFP_KERNEL | __GFP_ZERO, 87 )?); 88 let ptes = PteArray::<NUM_PAGES>::new(obj.0.dma_handle())?; 89 90 // SAFETY: `obj` has just been created and we are its sole user. 91 unsafe { 92 // Copy the self-mapping PTE at the expected location. 93 obj.0 94 .as_slice_mut(size_of::<u64>(), size_of_val(&ptes))? 95 .copy_from_slice(ptes.as_bytes()) 96 }; 97 98 Ok(obj) 99 } 100 } 101 102 /// GSP runtime data. 103 #[pin_data] 104 pub(crate) struct Gsp { 105 /// Libos arguments. 106 pub(crate) libos: CoherentAllocation<LibosMemoryRegionInitArgument>, 107 /// Init log buffer. 108 loginit: LogBuffer, 109 /// Interrupts log buffer. 110 logintr: LogBuffer, 111 /// RM log buffer. 112 logrm: LogBuffer, 113 /// Command queue. 114 pub(crate) cmdq: Cmdq, 115 /// RM arguments. 116 rmargs: CoherentAllocation<GspArgumentsCached>, 117 } 118 119 impl Gsp { 120 // Creates an in-place initializer for a `Gsp` manager for `pdev`. 121 pub(crate) fn new(pdev: &pci::Device<device::Bound>) -> Result<impl PinInit<Self, Error>> { 122 let dev = pdev.as_ref(); 123 let libos = CoherentAllocation::<LibosMemoryRegionInitArgument>::alloc_coherent( 124 dev, 125 GSP_PAGE_SIZE / size_of::<LibosMemoryRegionInitArgument>(), 126 GFP_KERNEL | __GFP_ZERO, 127 )?; 128 129 // Initialise the logging structures. The OpenRM equivalents are in: 130 // _kgspInitLibosLoggingStructures (allocates memory for buffers) 131 // kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array) 132 let loginit = LogBuffer::new(dev)?; 133 dma_write!(libos[0] = LibosMemoryRegionInitArgument::new("LOGINIT", &loginit.0))?; 134 135 let logintr = LogBuffer::new(dev)?; 136 dma_write!(libos[1] = LibosMemoryRegionInitArgument::new("LOGINTR", &logintr.0))?; 137 138 let logrm = LogBuffer::new(dev)?; 139 dma_write!(libos[2] = LibosMemoryRegionInitArgument::new("LOGRM", &logrm.0))?; 140 141 let cmdq = Cmdq::new(dev)?; 142 143 let rmargs = CoherentAllocation::<GspArgumentsCached>::alloc_coherent( 144 dev, 145 1, 146 GFP_KERNEL | __GFP_ZERO, 147 )?; 148 dma_write!(rmargs[0] = fw::GspArgumentsCached::new(&cmdq))?; 149 dma_write!(libos[3] = LibosMemoryRegionInitArgument::new("RMARGS", &rmargs))?; 150 151 Ok(try_pin_init!(Self { 152 libos, 153 loginit, 154 logintr, 155 logrm, 156 rmargs, 157 cmdq, 158 })) 159 } 160 } 161