xref: /linux/drivers/gpu/nova-core/firmware/gsp.rs (revision a841614e607c9e232dd56ec726ba63d2750025a2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 use core::mem::size_of_val;
4 
5 use kernel::device;
6 use kernel::dma::{DataDirection, DmaAddress};
7 use kernel::kvec;
8 use kernel::prelude::*;
9 use kernel::scatterlist::{Owned, SGTable};
10 
11 use crate::dma::DmaObject;
12 use crate::gpu::{Architecture, Chipset};
13 use crate::gsp::GSP_PAGE_SIZE;
14 
15 /// Ad-hoc and temporary module to extract sections from ELF images.
16 ///
17 /// Some firmware images are currently packaged as ELF files, where sections names are used as keys
18 /// to specific and related bits of data. Future firmware versions are scheduled to move away from
19 /// that scheme before nova-core becomes stable, which means this module will eventually be
20 /// removed.
21 mod elf {
22     use core::mem::size_of;
23 
24     use kernel::bindings;
25     use kernel::str::CStr;
26     use kernel::transmute::FromBytes;
27 
28     /// Newtype to provide a [`FromBytes`] implementation.
29     #[repr(transparent)]
30     struct Elf64Hdr(bindings::elf64_hdr);
31     // SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
32     unsafe impl FromBytes for Elf64Hdr {}
33 
34     #[repr(transparent)]
35     struct Elf64SHdr(bindings::elf64_shdr);
36     // SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
37     unsafe impl FromBytes for Elf64SHdr {}
38 
39     /// Tries to extract section with name `name` from the ELF64 image `elf`, and returns it.
40     pub(super) fn elf64_section<'a, 'b>(elf: &'a [u8], name: &'b str) -> Option<&'a [u8]> {
41         let hdr = &elf
42             .get(0..size_of::<bindings::elf64_hdr>())
43             .and_then(Elf64Hdr::from_bytes)?
44             .0;
45 
46         // Get all the section headers.
47         let mut shdr = {
48             let shdr_num = usize::from(hdr.e_shnum);
49             let shdr_start = usize::try_from(hdr.e_shoff).ok()?;
50             let shdr_end = shdr_num
51                 .checked_mul(size_of::<Elf64SHdr>())
52                 .and_then(|v| v.checked_add(shdr_start))?;
53 
54             elf.get(shdr_start..shdr_end)
55                 .map(|slice| slice.chunks_exact(size_of::<Elf64SHdr>()))?
56         };
57 
58         // Get the strings table.
59         let strhdr = shdr
60             .clone()
61             .nth(usize::from(hdr.e_shstrndx))
62             .and_then(Elf64SHdr::from_bytes)?;
63 
64         // Find the section which name matches `name` and return it.
65         shdr.find(|&sh| {
66             let Some(hdr) = Elf64SHdr::from_bytes(sh) else {
67                 return false;
68             };
69 
70             let Some(name_idx) = strhdr
71                 .0
72                 .sh_offset
73                 .checked_add(u64::from(hdr.0.sh_name))
74                 .and_then(|idx| usize::try_from(idx).ok())
75             else {
76                 return false;
77             };
78 
79             // Get the start of the name.
80             elf.get(name_idx..)
81                 // Stop at the first `0`.
82                 .and_then(|nstr| nstr.get(0..=nstr.iter().position(|b| *b == 0)?))
83                 // Convert into CStr. This should never fail because of the line above.
84                 .and_then(|nstr| CStr::from_bytes_with_nul(nstr).ok())
85                 // Convert into str.
86                 .and_then(|c_str| c_str.to_str().ok())
87                 // Check that the name matches.
88                 .map(|str| str == name)
89                 .unwrap_or(false)
90         })
91         // Return the slice containing the section.
92         .and_then(|sh| {
93             let hdr = Elf64SHdr::from_bytes(sh)?;
94             let start = usize::try_from(hdr.0.sh_offset).ok()?;
95             let end = usize::try_from(hdr.0.sh_size)
96                 .ok()
97                 .and_then(|sh_size| start.checked_add(sh_size))?;
98 
99             elf.get(start..end)
100         })
101     }
102 }
103 
104 /// GSP firmware with 3-level radix page tables for the GSP bootloader.
105 ///
106 /// The bootloader expects firmware to be mapped starting at address 0 in GSP's virtual address
107 /// space:
108 ///
109 /// ```text
110 /// Level 0:  1 page, 1 entry         -> points to first level 1 page
111 /// Level 1:  Multiple pages/entries  -> each entry points to a level 2 page
112 /// Level 2:  Multiple pages/entries  -> each entry points to a firmware page
113 /// ```
114 ///
115 /// Each page is 4KB, each entry is 8 bytes (64-bit DMA address).
116 /// Also known as "Radix3" firmware.
117 #[pin_data]
118 pub(crate) struct GspFirmware {
119     /// The GSP firmware inside a [`VVec`], device-mapped via a SG table.
120     #[pin]
121     fw: SGTable<Owned<VVec<u8>>>,
122     /// Level 2 page table whose entries contain DMA addresses of firmware pages.
123     #[pin]
124     level2: SGTable<Owned<VVec<u8>>>,
125     /// Level 1 page table whose entries contain DMA addresses of level 2 pages.
126     #[pin]
127     level1: SGTable<Owned<VVec<u8>>>,
128     /// Level 0 page table (single 4KB page) with one entry: DMA address of first level 1 page.
129     level0: DmaObject,
130     /// Size in bytes of the firmware contained in [`Self::fw`].
131     size: usize,
132     /// Device-mapped GSP signatures matching the GPU's [`Chipset`].
133     signatures: DmaObject,
134 }
135 
136 impl GspFirmware {
137     /// Loads the GSP firmware binaries, map them into `dev`'s address-space, and creates the page
138     /// tables expected by the GSP bootloader to load it.
139     pub(crate) fn new<'a, 'b>(
140         dev: &'a device::Device<device::Bound>,
141         chipset: Chipset,
142         ver: &'b str,
143     ) -> Result<impl PinInit<Self, Error> + 'a> {
144         let fw = super::request_firmware(dev, chipset, "gsp", ver)?;
145 
146         let fw_section = elf::elf64_section(fw.data(), ".fwimage").ok_or(EINVAL)?;
147 
148         let sigs_section = match chipset.arch() {
149             Architecture::Ampere => ".fwsignature_ga10x",
150             _ => return Err(ENOTSUPP),
151         };
152         let signatures = elf::elf64_section(fw.data(), sigs_section)
153             .ok_or(EINVAL)
154             .and_then(|data| DmaObject::from_data(dev, data))?;
155 
156         let size = fw_section.len();
157 
158         // Move the firmware into a vmalloc'd vector and map it into the device address
159         // space.
160         let fw_vvec = VVec::with_capacity(fw_section.len(), GFP_KERNEL)
161             .and_then(|mut v| {
162                 v.extend_from_slice(fw_section, GFP_KERNEL)?;
163                 Ok(v)
164             })
165             .map_err(|_| ENOMEM)?;
166 
167         Ok(try_pin_init!(Self {
168             fw <- SGTable::new(dev, fw_vvec, DataDirection::ToDevice, GFP_KERNEL),
169             level2 <- {
170                 // Allocate the level 2 page table, map the firmware onto it, and map it into the
171                 // device address space.
172                 VVec::<u8>::with_capacity(
173                     fw.iter().count() * core::mem::size_of::<u64>(),
174                     GFP_KERNEL,
175                 )
176                 .map_err(|_| ENOMEM)
177                 .and_then(|level2| map_into_lvl(&fw, level2))
178                 .map(|level2| SGTable::new(dev, level2, DataDirection::ToDevice, GFP_KERNEL))?
179             },
180             level1 <- {
181                 // Allocate the level 1 page table, map the level 2 page table onto it, and map it
182                 // into the device address space.
183                 VVec::<u8>::with_capacity(
184                     level2.iter().count() * core::mem::size_of::<u64>(),
185                     GFP_KERNEL,
186                 )
187                 .map_err(|_| ENOMEM)
188                 .and_then(|level1| map_into_lvl(&level2, level1))
189                 .map(|level1| SGTable::new(dev, level1, DataDirection::ToDevice, GFP_KERNEL))?
190             },
191             level0: {
192                 // Allocate the level 0 page table as a device-visible DMA object, and map the
193                 // level 1 page table onto it.
194 
195                 // Level 0 page table data.
196                 let mut level0_data = kvec![0u8; GSP_PAGE_SIZE]?;
197 
198                 // Fill level 1 page entry.
199                 #[allow(clippy::useless_conversion)]
200                 let level1_entry = u64::from(level1.iter().next().unwrap().dma_address());
201                 let dst = &mut level0_data[..size_of_val(&level1_entry)];
202                 dst.copy_from_slice(&level1_entry.to_le_bytes());
203 
204                 // Turn the level0 page table into a [`DmaObject`].
205                 DmaObject::from_data(dev, &level0_data)?
206             },
207             size,
208             signatures,
209         }))
210     }
211 
212     #[expect(unused)]
213     /// Returns the DMA handle of the radix3 level 0 page table.
214     pub(crate) fn radix3_dma_handle(&self) -> DmaAddress {
215         self.level0.dma_handle()
216     }
217 }
218 
219 /// Build a page table from a scatter-gather list.
220 ///
221 /// Takes each DMA-mapped region from `sg_table` and writes page table entries
222 /// for all 4KB pages within that region. For example, a 16KB SG entry becomes
223 /// 4 consecutive page table entries.
224 fn map_into_lvl(sg_table: &SGTable<Owned<VVec<u8>>>, mut dst: VVec<u8>) -> Result<VVec<u8>> {
225     for sg_entry in sg_table.iter() {
226         // Number of pages we need to map.
227         let num_pages = (sg_entry.dma_len() as usize).div_ceil(GSP_PAGE_SIZE);
228 
229         for i in 0..num_pages {
230             let entry = sg_entry.dma_address() + (i as u64 * GSP_PAGE_SIZE as u64);
231             dst.extend_from_slice(&entry.to_le_bytes(), GFP_KERNEL)?;
232         }
233     }
234 
235     Ok(dst)
236 }
237