xref: /linux/drivers/gpu/nova-core/firmware.rs (revision a841614e607c9e232dd56ec726ba63d2750025a2)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Contains structures and functions dedicated to the parsing, building and patching of firmwares
4 //! to be loaded into a given execution unit.
5 
6 use core::marker::PhantomData;
7 use core::mem::size_of;
8 
9 use kernel::device;
10 use kernel::firmware;
11 use kernel::prelude::*;
12 use kernel::str::CString;
13 use kernel::transmute::FromBytes;
14 
15 use crate::dma::DmaObject;
16 use crate::falcon::FalconFirmware;
17 use crate::gpu;
18 use crate::gpu::Chipset;
19 
20 pub(crate) mod booter;
21 pub(crate) mod fwsec;
22 pub(crate) mod gsp;
23 
24 pub(crate) const FIRMWARE_VERSION: &str = "535.113.01";
25 
26 /// Requests the GPU firmware `name` suitable for `chipset`, with version `ver`.
27 fn request_firmware(
28     dev: &device::Device,
29     chipset: gpu::Chipset,
30     name: &str,
31     ver: &str,
32 ) -> Result<firmware::Firmware> {
33     let chip_name = chipset.name();
34 
35     CString::try_from_fmt(fmt!("nvidia/{chip_name}/gsp/{name}-{ver}.bin"))
36         .and_then(|path| firmware::Firmware::request(&path, dev))
37 }
38 
39 /// Structure encapsulating the firmware blobs required for the GPU to operate.
40 #[expect(dead_code)]
41 pub(crate) struct Firmware {
42     bootloader: firmware::Firmware,
43 }
44 
45 impl Firmware {
46     pub(crate) fn new(dev: &device::Device, chipset: Chipset, ver: &str) -> Result<Firmware> {
47         let request = |name| request_firmware(dev, chipset, name, ver);
48 
49         Ok(Firmware {
50             bootloader: request("bootloader")?,
51         })
52     }
53 }
54 
55 /// Structure used to describe some firmwares, notably FWSEC-FRTS.
56 #[repr(C)]
57 #[derive(Debug, Clone)]
58 pub(crate) struct FalconUCodeDescV3 {
59     /// Header defined by `NV_BIT_FALCON_UCODE_DESC_HEADER_VDESC*` in OpenRM.
60     hdr: u32,
61     /// Stored size of the ucode after the header.
62     stored_size: u32,
63     /// Offset in `DMEM` at which the signature is expected to be found.
64     pub(crate) pkc_data_offset: u32,
65     /// Offset after the code segment at which the app headers are located.
66     pub(crate) interface_offset: u32,
67     /// Base address at which to load the code segment into `IMEM`.
68     pub(crate) imem_phys_base: u32,
69     /// Size in bytes of the code to copy into `IMEM`.
70     pub(crate) imem_load_size: u32,
71     /// Virtual `IMEM` address (i.e. `tag`) at which the code should start.
72     pub(crate) imem_virt_base: u32,
73     /// Base address at which to load the data segment into `DMEM`.
74     pub(crate) dmem_phys_base: u32,
75     /// Size in bytes of the data to copy into `DMEM`.
76     pub(crate) dmem_load_size: u32,
77     /// Mask of the falcon engines on which this firmware can run.
78     pub(crate) engine_id_mask: u16,
79     /// ID of the ucode used to infer a fuse register to validate the signature.
80     pub(crate) ucode_id: u8,
81     /// Number of signatures in this firmware.
82     pub(crate) signature_count: u8,
83     /// Versions of the signatures, used to infer a valid signature to use.
84     pub(crate) signature_versions: u16,
85     _reserved: u16,
86 }
87 
88 impl FalconUCodeDescV3 {
89     /// Returns the size in bytes of the header.
90     pub(crate) fn size(&self) -> usize {
91         const HDR_SIZE_SHIFT: u32 = 16;
92         const HDR_SIZE_MASK: u32 = 0xffff0000;
93 
94         ((self.hdr & HDR_SIZE_MASK) >> HDR_SIZE_SHIFT) as usize
95     }
96 }
97 
98 /// Trait implemented by types defining the signed state of a firmware.
99 trait SignedState {}
100 
101 /// Type indicating that the firmware must be signed before it can be used.
102 struct Unsigned;
103 impl SignedState for Unsigned {}
104 
105 /// Type indicating that the firmware is signed and ready to be loaded.
106 struct Signed;
107 impl SignedState for Signed {}
108 
109 /// A [`DmaObject`] containing a specific microcode ready to be loaded into a falcon.
110 ///
111 /// This is module-local and meant for sub-modules to use internally.
112 ///
113 /// After construction, a firmware is [`Unsigned`], and must generally be patched with a signature
114 /// before it can be loaded (with an exception for development hardware). The
115 /// [`Self::patch_signature`] and [`Self::no_patch_signature`] methods are used to transition the
116 /// firmware to its [`Signed`] state.
117 struct FirmwareDmaObject<F: FalconFirmware, S: SignedState>(DmaObject, PhantomData<(F, S)>);
118 
119 /// Trait for signatures to be patched directly into a given firmware.
120 ///
121 /// This is module-local and meant for sub-modules to use internally.
122 trait FirmwareSignature<F: FalconFirmware>: AsRef<[u8]> {}
123 
124 impl<F: FalconFirmware> FirmwareDmaObject<F, Unsigned> {
125     /// Patches the firmware at offset `sig_base_img` with `signature`.
126     fn patch_signature<S: FirmwareSignature<F>>(
127         mut self,
128         signature: &S,
129         sig_base_img: usize,
130     ) -> Result<FirmwareDmaObject<F, Signed>> {
131         let signature_bytes = signature.as_ref();
132         if sig_base_img + signature_bytes.len() > self.0.size() {
133             return Err(EINVAL);
134         }
135 
136         // SAFETY: We are the only user of this object, so there cannot be any race.
137         let dst = unsafe { self.0.start_ptr_mut().add(sig_base_img) };
138 
139         // SAFETY: `signature` and `dst` are valid, properly aligned, and do not overlap.
140         unsafe {
141             core::ptr::copy_nonoverlapping(signature_bytes.as_ptr(), dst, signature_bytes.len())
142         };
143 
144         Ok(FirmwareDmaObject(self.0, PhantomData))
145     }
146 
147     /// Mark the firmware as signed without patching it.
148     ///
149     /// This method is used to explicitly confirm that we do not need to sign the firmware, while
150     /// allowing us to continue as if it was. This is typically only needed for development
151     /// hardware.
152     fn no_patch_signature(self) -> FirmwareDmaObject<F, Signed> {
153         FirmwareDmaObject(self.0, PhantomData)
154     }
155 }
156 
157 /// Header common to most firmware files.
158 #[repr(C)]
159 #[derive(Debug, Clone)]
160 struct BinHdr {
161     /// Magic number, must be `0x10de`.
162     bin_magic: u32,
163     /// Version of the header.
164     bin_ver: u32,
165     /// Size in bytes of the binary (to be ignored).
166     bin_size: u32,
167     /// Offset of the start of the application-specific header.
168     header_offset: u32,
169     /// Offset of the start of the data payload.
170     data_offset: u32,
171     /// Size in bytes of the data payload.
172     data_size: u32,
173 }
174 
175 // SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability.
176 unsafe impl FromBytes for BinHdr {}
177 
178 // A firmware blob starting with a `BinHdr`.
179 struct BinFirmware<'a> {
180     hdr: BinHdr,
181     fw: &'a [u8],
182 }
183 
184 impl<'a> BinFirmware<'a> {
185     /// Interpret `fw` as a firmware image starting with a [`BinHdr`], and returns the
186     /// corresponding [`BinFirmware`] that can be used to extract its payload.
187     fn new(fw: &'a firmware::Firmware) -> Result<Self> {
188         const BIN_MAGIC: u32 = 0x10de;
189         let fw = fw.data();
190 
191         fw.get(0..size_of::<BinHdr>())
192             // Extract header.
193             .and_then(BinHdr::from_bytes_copy)
194             // Validate header.
195             .and_then(|hdr| {
196                 if hdr.bin_magic == BIN_MAGIC {
197                     Some(hdr)
198                 } else {
199                     None
200                 }
201             })
202             .map(|hdr| Self { hdr, fw })
203             .ok_or(EINVAL)
204     }
205 
206     /// Returns the data payload of the firmware, or `None` if the data range is out of bounds of
207     /// the firmware image.
208     fn data(&self) -> Option<&[u8]> {
209         let fw_start = self.hdr.data_offset as usize;
210         let fw_size = self.hdr.data_size as usize;
211 
212         self.fw.get(fw_start..fw_start + fw_size)
213     }
214 }
215 
216 pub(crate) struct ModInfoBuilder<const N: usize>(firmware::ModInfoBuilder<N>);
217 
218 impl<const N: usize> ModInfoBuilder<N> {
219     const fn make_entry_file(self, chipset: &str, fw: &str) -> Self {
220         ModInfoBuilder(
221             self.0
222                 .new_entry()
223                 .push("nvidia/")
224                 .push(chipset)
225                 .push("/gsp/")
226                 .push(fw)
227                 .push("-")
228                 .push(FIRMWARE_VERSION)
229                 .push(".bin"),
230         )
231     }
232 
233     const fn make_entry_chipset(self, chipset: &str) -> Self {
234         self.make_entry_file(chipset, "booter_load")
235             .make_entry_file(chipset, "booter_unload")
236             .make_entry_file(chipset, "bootloader")
237             .make_entry_file(chipset, "gsp")
238     }
239 
240     pub(crate) const fn create(
241         module_name: &'static kernel::str::CStr,
242     ) -> firmware::ModInfoBuilder<N> {
243         let mut this = Self(firmware::ModInfoBuilder::new(module_name));
244         let mut i = 0;
245 
246         while i < gpu::Chipset::ALL.len() {
247             this = this.make_entry_chipset(gpu::Chipset::ALL[i].name());
248             i += 1;
249         }
250 
251         this.0
252     }
253 }
254