1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Contains structures and functions dedicated to the parsing, building and patching of firmwares 4 //! to be loaded into a given execution unit. 5 6 use core::marker::PhantomData; 7 use core::mem::size_of; 8 9 use kernel::device; 10 use kernel::firmware; 11 use kernel::prelude::*; 12 use kernel::str::CString; 13 use kernel::transmute::FromBytes; 14 15 use crate::dma::DmaObject; 16 use crate::falcon::FalconFirmware; 17 use crate::gpu; 18 19 pub(crate) mod booter; 20 pub(crate) mod fwsec; 21 pub(crate) mod gsp; 22 pub(crate) mod riscv; 23 24 pub(crate) const FIRMWARE_VERSION: &str = "570.144"; 25 26 /// Requests the GPU firmware `name` suitable for `chipset`, with version `ver`. 27 fn request_firmware( 28 dev: &device::Device, 29 chipset: gpu::Chipset, 30 name: &str, 31 ver: &str, 32 ) -> Result<firmware::Firmware> { 33 let chip_name = chipset.name(); 34 35 CString::try_from_fmt(fmt!("nvidia/{chip_name}/gsp/{name}-{ver}.bin")) 36 .and_then(|path| firmware::Firmware::request(&path, dev)) 37 } 38 39 /// Structure used to describe some firmwares, notably FWSEC-FRTS. 40 #[repr(C)] 41 #[derive(Debug, Clone)] 42 pub(crate) struct FalconUCodeDescV3 { 43 /// Header defined by `NV_BIT_FALCON_UCODE_DESC_HEADER_VDESC*` in OpenRM. 44 hdr: u32, 45 /// Stored size of the ucode after the header. 46 stored_size: u32, 47 /// Offset in `DMEM` at which the signature is expected to be found. 48 pub(crate) pkc_data_offset: u32, 49 /// Offset after the code segment at which the app headers are located. 50 pub(crate) interface_offset: u32, 51 /// Base address at which to load the code segment into `IMEM`. 52 pub(crate) imem_phys_base: u32, 53 /// Size in bytes of the code to copy into `IMEM`. 54 pub(crate) imem_load_size: u32, 55 /// Virtual `IMEM` address (i.e. `tag`) at which the code should start. 56 pub(crate) imem_virt_base: u32, 57 /// Base address at which to load the data segment into `DMEM`. 58 pub(crate) dmem_phys_base: u32, 59 /// Size in bytes of the data to copy into `DMEM`. 60 pub(crate) dmem_load_size: u32, 61 /// Mask of the falcon engines on which this firmware can run. 62 pub(crate) engine_id_mask: u16, 63 /// ID of the ucode used to infer a fuse register to validate the signature. 64 pub(crate) ucode_id: u8, 65 /// Number of signatures in this firmware. 66 pub(crate) signature_count: u8, 67 /// Versions of the signatures, used to infer a valid signature to use. 68 pub(crate) signature_versions: u16, 69 _reserved: u16, 70 } 71 72 impl FalconUCodeDescV3 { 73 /// Returns the size in bytes of the header. 74 pub(crate) fn size(&self) -> usize { 75 const HDR_SIZE_SHIFT: u32 = 16; 76 const HDR_SIZE_MASK: u32 = 0xffff0000; 77 78 ((self.hdr & HDR_SIZE_MASK) >> HDR_SIZE_SHIFT) as usize 79 } 80 } 81 82 /// Trait implemented by types defining the signed state of a firmware. 83 trait SignedState {} 84 85 /// Type indicating that the firmware must be signed before it can be used. 86 struct Unsigned; 87 impl SignedState for Unsigned {} 88 89 /// Type indicating that the firmware is signed and ready to be loaded. 90 struct Signed; 91 impl SignedState for Signed {} 92 93 /// A [`DmaObject`] containing a specific microcode ready to be loaded into a falcon. 94 /// 95 /// This is module-local and meant for sub-modules to use internally. 96 /// 97 /// After construction, a firmware is [`Unsigned`], and must generally be patched with a signature 98 /// before it can be loaded (with an exception for development hardware). The 99 /// [`Self::patch_signature`] and [`Self::no_patch_signature`] methods are used to transition the 100 /// firmware to its [`Signed`] state. 101 struct FirmwareDmaObject<F: FalconFirmware, S: SignedState>(DmaObject, PhantomData<(F, S)>); 102 103 /// Trait for signatures to be patched directly into a given firmware. 104 /// 105 /// This is module-local and meant for sub-modules to use internally. 106 trait FirmwareSignature<F: FalconFirmware>: AsRef<[u8]> {} 107 108 impl<F: FalconFirmware> FirmwareDmaObject<F, Unsigned> { 109 /// Patches the firmware at offset `sig_base_img` with `signature`. 110 fn patch_signature<S: FirmwareSignature<F>>( 111 mut self, 112 signature: &S, 113 sig_base_img: usize, 114 ) -> Result<FirmwareDmaObject<F, Signed>> { 115 let signature_bytes = signature.as_ref(); 116 if sig_base_img + signature_bytes.len() > self.0.size() { 117 return Err(EINVAL); 118 } 119 120 // SAFETY: We are the only user of this object, so there cannot be any race. 121 let dst = unsafe { self.0.start_ptr_mut().add(sig_base_img) }; 122 123 // SAFETY: `signature` and `dst` are valid, properly aligned, and do not overlap. 124 unsafe { 125 core::ptr::copy_nonoverlapping(signature_bytes.as_ptr(), dst, signature_bytes.len()) 126 }; 127 128 Ok(FirmwareDmaObject(self.0, PhantomData)) 129 } 130 131 /// Mark the firmware as signed without patching it. 132 /// 133 /// This method is used to explicitly confirm that we do not need to sign the firmware, while 134 /// allowing us to continue as if it was. This is typically only needed for development 135 /// hardware. 136 fn no_patch_signature(self) -> FirmwareDmaObject<F, Signed> { 137 FirmwareDmaObject(self.0, PhantomData) 138 } 139 } 140 141 /// Header common to most firmware files. 142 #[repr(C)] 143 #[derive(Debug, Clone)] 144 struct BinHdr { 145 /// Magic number, must be `0x10de`. 146 bin_magic: u32, 147 /// Version of the header. 148 bin_ver: u32, 149 /// Size in bytes of the binary (to be ignored). 150 bin_size: u32, 151 /// Offset of the start of the application-specific header. 152 header_offset: u32, 153 /// Offset of the start of the data payload. 154 data_offset: u32, 155 /// Size in bytes of the data payload. 156 data_size: u32, 157 } 158 159 // SAFETY: all bit patterns are valid for this type, and it doesn't use interior mutability. 160 unsafe impl FromBytes for BinHdr {} 161 162 // A firmware blob starting with a `BinHdr`. 163 struct BinFirmware<'a> { 164 hdr: BinHdr, 165 fw: &'a [u8], 166 } 167 168 impl<'a> BinFirmware<'a> { 169 /// Interpret `fw` as a firmware image starting with a [`BinHdr`], and returns the 170 /// corresponding [`BinFirmware`] that can be used to extract its payload. 171 fn new(fw: &'a firmware::Firmware) -> Result<Self> { 172 const BIN_MAGIC: u32 = 0x10de; 173 let fw = fw.data(); 174 175 fw.get(0..size_of::<BinHdr>()) 176 // Extract header. 177 .and_then(BinHdr::from_bytes_copy) 178 // Validate header. 179 .and_then(|hdr| { 180 if hdr.bin_magic == BIN_MAGIC { 181 Some(hdr) 182 } else { 183 None 184 } 185 }) 186 .map(|hdr| Self { hdr, fw }) 187 .ok_or(EINVAL) 188 } 189 190 /// Returns the data payload of the firmware, or `None` if the data range is out of bounds of 191 /// the firmware image. 192 fn data(&self) -> Option<&[u8]> { 193 let fw_start = self.hdr.data_offset as usize; 194 let fw_size = self.hdr.data_size as usize; 195 196 self.fw.get(fw_start..fw_start + fw_size) 197 } 198 } 199 200 pub(crate) struct ModInfoBuilder<const N: usize>(firmware::ModInfoBuilder<N>); 201 202 impl<const N: usize> ModInfoBuilder<N> { 203 const fn make_entry_file(self, chipset: &str, fw: &str) -> Self { 204 ModInfoBuilder( 205 self.0 206 .new_entry() 207 .push("nvidia/") 208 .push(chipset) 209 .push("/gsp/") 210 .push(fw) 211 .push("-") 212 .push(FIRMWARE_VERSION) 213 .push(".bin"), 214 ) 215 } 216 217 const fn make_entry_chipset(self, chipset: &str) -> Self { 218 self.make_entry_file(chipset, "booter_load") 219 .make_entry_file(chipset, "booter_unload") 220 .make_entry_file(chipset, "bootloader") 221 .make_entry_file(chipset, "gsp") 222 } 223 224 pub(crate) const fn create( 225 module_name: &'static kernel::str::CStr, 226 ) -> firmware::ModInfoBuilder<N> { 227 let mut this = Self(firmware::ModInfoBuilder::new(module_name)); 228 let mut i = 0; 229 230 while i < gpu::Chipset::ALL.len() { 231 this = this.make_entry_chipset(gpu::Chipset::ALL[i].name()); 232 i += 1; 233 } 234 235 this.0 236 } 237 } 238