xref: /linux/drivers/gpu/ipu-v3/ipu-image-convert.c (revision f83d9396d1f63048c423efa00e4e244da10a35fd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12 
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62 
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66 
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71 
72 enum ipu_image_convert_type {
73 	IMAGE_CONVERT_IN = 0,
74 	IMAGE_CONVERT_OUT,
75 };
76 
77 struct ipu_image_convert_dma_buf {
78 	void          *virt;
79 	dma_addr_t    phys;
80 	unsigned long len;
81 };
82 
83 struct ipu_image_convert_dma_chan {
84 	int in;
85 	int out;
86 	int rot_in;
87 	int rot_out;
88 	int vdi_in_p;
89 	int vdi_in;
90 	int vdi_in_n;
91 };
92 
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 	u32 width;
96 	u32 height;
97 	u32 left;
98 	u32 top;
99 	/* size and strides are in bytes */
100 	u32 size;
101 	u32 stride;
102 	u32 rot_stride;
103 	/* start Y or packed offset of this tile */
104 	u32 offset;
105 	/* offset from start to tile in U plane, for planar formats */
106 	u32 u_off;
107 	/* offset from start to tile in V plane, for planar formats */
108 	u32 v_off;
109 };
110 
111 struct ipu_image_convert_image {
112 	struct ipu_image base;
113 	enum ipu_image_convert_type type;
114 
115 	const struct ipu_image_pixfmt *fmt;
116 	unsigned int stride;
117 
118 	/* # of rows (horizontal stripes) if dest height is > 1024 */
119 	unsigned int num_rows;
120 	/* # of columns (vertical stripes) if dest width is > 1024 */
121 	unsigned int num_cols;
122 
123 	struct ipu_image_tile tile[MAX_TILES];
124 };
125 
126 struct ipu_image_pixfmt {
127 	u32	fourcc;        /* V4L2 fourcc */
128 	int     bpp;           /* total bpp */
129 	int     uv_width_dec;  /* decimation in width for U/V planes */
130 	int     uv_height_dec; /* decimation in height for U/V planes */
131 	bool    planar;        /* planar format */
132 	bool    uv_swapped;    /* U and V planes are swapped */
133 	bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135 
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139 
140 enum eof_irq_mask {
141 	EOF_IRQ_IN      = BIT(0),
142 	EOF_IRQ_ROT_IN  = BIT(1),
143 	EOF_IRQ_OUT     = BIT(2),
144 	EOF_IRQ_ROT_OUT = BIT(3),
145 };
146 
147 #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
148 #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT |	\
149 			      EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
150 
151 struct ipu_image_convert_ctx {
152 	struct ipu_image_convert_chan *chan;
153 
154 	ipu_image_convert_cb_t complete;
155 	void *complete_context;
156 
157 	/* Source/destination image data and rotation mode */
158 	struct ipu_image_convert_image in;
159 	struct ipu_image_convert_image out;
160 	struct ipu_ic_csc csc;
161 	enum ipu_rotate_mode rot_mode;
162 	u32 downsize_coeff_h;
163 	u32 downsize_coeff_v;
164 	u32 image_resize_coeff_h;
165 	u32 image_resize_coeff_v;
166 	u32 resize_coeffs_h[MAX_STRIPES_W];
167 	u32 resize_coeffs_v[MAX_STRIPES_H];
168 
169 	/* intermediate buffer for rotation */
170 	struct ipu_image_convert_dma_buf rot_intermediate[2];
171 
172 	/* current buffer number for double buffering */
173 	int cur_buf_num;
174 
175 	bool aborting;
176 	struct completion aborted;
177 
178 	/* can we use double-buffering for this conversion operation? */
179 	bool double_buffering;
180 	/* num_rows * num_cols */
181 	unsigned int num_tiles;
182 	/* next tile to process */
183 	unsigned int next_tile;
184 	/* where to place converted tile in dest image */
185 	unsigned int out_tile_map[MAX_TILES];
186 
187 	/* mask of completed EOF irqs at every tile conversion */
188 	enum eof_irq_mask eof_mask;
189 
190 	struct list_head list;
191 };
192 
193 struct ipu_image_convert_chan {
194 	struct ipu_image_convert_priv *priv;
195 
196 	enum ipu_ic_task ic_task;
197 	const struct ipu_image_convert_dma_chan *dma_ch;
198 
199 	struct ipu_ic *ic;
200 	struct ipuv3_channel *in_chan;
201 	struct ipuv3_channel *out_chan;
202 	struct ipuv3_channel *rotation_in_chan;
203 	struct ipuv3_channel *rotation_out_chan;
204 
205 	/* the IPU end-of-frame irqs */
206 	int in_eof_irq;
207 	int rot_in_eof_irq;
208 	int out_eof_irq;
209 	int rot_out_eof_irq;
210 
211 	spinlock_t irqlock;
212 
213 	/* list of convert contexts */
214 	struct list_head ctx_list;
215 	/* queue of conversion runs */
216 	struct list_head pending_q;
217 	/* queue of completed runs */
218 	struct list_head done_q;
219 
220 	/* the current conversion run */
221 	struct ipu_image_convert_run *current_run;
222 };
223 
224 struct ipu_image_convert_priv {
225 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
226 	struct ipu_soc *ipu;
227 };
228 
229 static const struct ipu_image_convert_dma_chan
230 image_convert_dma_chan[IC_NUM_TASKS] = {
231 	[IC_TASK_VIEWFINDER] = {
232 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
233 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
234 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
235 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
236 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
237 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
238 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
239 	},
240 	[IC_TASK_POST_PROCESSOR] = {
241 		.in = IPUV3_CHANNEL_MEM_IC_PP,
242 		.out = IPUV3_CHANNEL_IC_PP_MEM,
243 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
244 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
245 	},
246 };
247 
248 static const struct ipu_image_pixfmt image_convert_formats[] = {
249 	{
250 		.fourcc	= V4L2_PIX_FMT_RGB565,
251 		.bpp    = 16,
252 	}, {
253 		.fourcc	= V4L2_PIX_FMT_RGB24,
254 		.bpp    = 24,
255 	}, {
256 		.fourcc	= V4L2_PIX_FMT_BGR24,
257 		.bpp    = 24,
258 	}, {
259 		.fourcc	= V4L2_PIX_FMT_RGB32,
260 		.bpp    = 32,
261 	}, {
262 		.fourcc	= V4L2_PIX_FMT_BGR32,
263 		.bpp    = 32,
264 	}, {
265 		.fourcc	= V4L2_PIX_FMT_XRGB32,
266 		.bpp    = 32,
267 	}, {
268 		.fourcc	= V4L2_PIX_FMT_XBGR32,
269 		.bpp    = 32,
270 	}, {
271 		.fourcc	= V4L2_PIX_FMT_BGRX32,
272 		.bpp    = 32,
273 	}, {
274 		.fourcc	= V4L2_PIX_FMT_RGBX32,
275 		.bpp    = 32,
276 	}, {
277 		.fourcc	= V4L2_PIX_FMT_YUYV,
278 		.bpp    = 16,
279 		.uv_width_dec = 2,
280 		.uv_height_dec = 1,
281 	}, {
282 		.fourcc	= V4L2_PIX_FMT_UYVY,
283 		.bpp    = 16,
284 		.uv_width_dec = 2,
285 		.uv_height_dec = 1,
286 	}, {
287 		.fourcc	= V4L2_PIX_FMT_YUV420,
288 		.bpp    = 12,
289 		.planar = true,
290 		.uv_width_dec = 2,
291 		.uv_height_dec = 2,
292 	}, {
293 		.fourcc	= V4L2_PIX_FMT_YVU420,
294 		.bpp    = 12,
295 		.planar = true,
296 		.uv_width_dec = 2,
297 		.uv_height_dec = 2,
298 		.uv_swapped = true,
299 	}, {
300 		.fourcc = V4L2_PIX_FMT_NV12,
301 		.bpp    = 12,
302 		.planar = true,
303 		.uv_width_dec = 2,
304 		.uv_height_dec = 2,
305 		.uv_packed = true,
306 	}, {
307 		.fourcc = V4L2_PIX_FMT_YUV422P,
308 		.bpp    = 16,
309 		.planar = true,
310 		.uv_width_dec = 2,
311 		.uv_height_dec = 1,
312 	}, {
313 		.fourcc = V4L2_PIX_FMT_NV16,
314 		.bpp    = 16,
315 		.planar = true,
316 		.uv_width_dec = 2,
317 		.uv_height_dec = 1,
318 		.uv_packed = true,
319 	},
320 };
321 
322 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
323 {
324 	const struct ipu_image_pixfmt *ret = NULL;
325 	unsigned int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
328 		if (image_convert_formats[i].fourcc == fourcc) {
329 			ret = &image_convert_formats[i];
330 			break;
331 		}
332 	}
333 
334 	return ret;
335 }
336 
337 static void dump_format(struct ipu_image_convert_ctx *ctx,
338 			struct ipu_image_convert_image *ic_image)
339 {
340 	struct ipu_image_convert_chan *chan = ctx->chan;
341 	struct ipu_image_convert_priv *priv = chan->priv;
342 
343 	dev_dbg(priv->ipu->dev,
344 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
345 		chan->ic_task, ctx,
346 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
347 		ic_image->base.pix.width, ic_image->base.pix.height,
348 		ic_image->num_cols, ic_image->num_rows,
349 		ic_image->fmt->fourcc & 0xff,
350 		(ic_image->fmt->fourcc >> 8) & 0xff,
351 		(ic_image->fmt->fourcc >> 16) & 0xff,
352 		(ic_image->fmt->fourcc >> 24) & 0xff);
353 }
354 
355 int ipu_image_convert_enum_format(int index, u32 *fourcc)
356 {
357 	const struct ipu_image_pixfmt *fmt;
358 
359 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
360 		return -EINVAL;
361 
362 	/* Format found */
363 	fmt = &image_convert_formats[index];
364 	*fourcc = fmt->fourcc;
365 	return 0;
366 }
367 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
368 
369 static void free_dma_buf(struct ipu_image_convert_priv *priv,
370 			 struct ipu_image_convert_dma_buf *buf)
371 {
372 	if (buf->virt)
373 		dma_free_coherent(priv->ipu->dev,
374 				  buf->len, buf->virt, buf->phys);
375 	buf->virt = NULL;
376 	buf->phys = 0;
377 }
378 
379 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
380 			 struct ipu_image_convert_dma_buf *buf,
381 			 int size)
382 {
383 	buf->len = PAGE_ALIGN(size);
384 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
385 				       GFP_DMA | GFP_KERNEL);
386 	if (!buf->virt) {
387 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
388 		return -ENOMEM;
389 	}
390 
391 	return 0;
392 }
393 
394 static inline int num_stripes(int dim)
395 {
396 	return (dim - 1) / 1024 + 1;
397 }
398 
399 /*
400  * Calculate downsizing coefficients, which are the same for all tiles,
401  * and initial bilinear resizing coefficients, which are used to find the
402  * best seam positions.
403  * Also determine the number of tiles necessary to guarantee that no tile
404  * is larger than 1024 pixels in either dimension at the output and between
405  * IC downsizing and main processing sections.
406  */
407 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
408 					  struct ipu_image *in,
409 					  struct ipu_image *out)
410 {
411 	u32 downsized_width = in->rect.width;
412 	u32 downsized_height = in->rect.height;
413 	u32 downsize_coeff_v = 0;
414 	u32 downsize_coeff_h = 0;
415 	u32 resized_width = out->rect.width;
416 	u32 resized_height = out->rect.height;
417 	u32 resize_coeff_h;
418 	u32 resize_coeff_v;
419 	u32 cols;
420 	u32 rows;
421 
422 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
423 		resized_width = out->rect.height;
424 		resized_height = out->rect.width;
425 	}
426 
427 	/* Do not let invalid input lead to an endless loop below */
428 	if (WARN_ON(resized_width == 0 || resized_height == 0))
429 		return -EINVAL;
430 
431 	while (downsized_width >= resized_width * 2) {
432 		downsized_width >>= 1;
433 		downsize_coeff_h++;
434 	}
435 
436 	while (downsized_height >= resized_height * 2) {
437 		downsized_height >>= 1;
438 		downsize_coeff_v++;
439 	}
440 
441 	/*
442 	 * Calculate the bilinear resizing coefficients that could be used if
443 	 * we were converting with a single tile. The bottom right output pixel
444 	 * should sample as close as possible to the bottom right input pixel
445 	 * out of the decimator, but not overshoot it:
446 	 */
447 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
448 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
449 
450 	/*
451 	 * Both the output of the IC downsizing section before being passed to
452 	 * the IC main processing section and the final output of the IC main
453 	 * processing section must be <= 1024 pixels in both dimensions.
454 	 */
455 	cols = num_stripes(max_t(u32, downsized_width, resized_width));
456 	rows = num_stripes(max_t(u32, downsized_height, resized_height));
457 
458 	dev_dbg(ctx->chan->priv->ipu->dev,
459 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
460 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
461 		resize_coeff_v, cols, rows);
462 
463 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
464 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
465 		return -EINVAL;
466 
467 	ctx->downsize_coeff_h = downsize_coeff_h;
468 	ctx->downsize_coeff_v = downsize_coeff_v;
469 	ctx->image_resize_coeff_h = resize_coeff_h;
470 	ctx->image_resize_coeff_v = resize_coeff_v;
471 	ctx->in.num_cols = cols;
472 	ctx->in.num_rows = rows;
473 
474 	return 0;
475 }
476 
477 #define round_closest(x, y) round_down((x) + (y)/2, (y))
478 
479 /*
480  * Find the best aligned seam position for the given column / row index.
481  * Rotation and image offsets are out of scope.
482  *
483  * @index: column / row index, used to calculate valid interval
484  * @in_edge: input right / bottom edge
485  * @out_edge: output right / bottom edge
486  * @in_align: input alignment, either horizontal 8-byte line start address
487  *            alignment, or pixel alignment due to image format
488  * @out_align: output alignment, either horizontal 8-byte line start address
489  *             alignment, or pixel alignment due to image format or rotator
490  *             block size
491  * @in_burst: horizontal input burst size in case of horizontal flip
492  * @out_burst: horizontal output burst size or rotator block size
493  * @downsize_coeff: downsizing section coefficient
494  * @resize_coeff: main processing section resizing coefficient
495  * @_in_seam: aligned input seam position return value
496  * @_out_seam: aligned output seam position return value
497  */
498 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
499 			   unsigned int index,
500 			   unsigned int in_edge,
501 			   unsigned int out_edge,
502 			   unsigned int in_align,
503 			   unsigned int out_align,
504 			   unsigned int in_burst,
505 			   unsigned int out_burst,
506 			   unsigned int downsize_coeff,
507 			   unsigned int resize_coeff,
508 			   u32 *_in_seam,
509 			   u32 *_out_seam)
510 {
511 	struct device *dev = ctx->chan->priv->ipu->dev;
512 	unsigned int out_pos;
513 	/* Input / output seam position candidates */
514 	unsigned int out_seam = 0;
515 	unsigned int in_seam = 0;
516 	unsigned int min_diff = UINT_MAX;
517 	unsigned int out_start;
518 	unsigned int out_end;
519 	unsigned int in_start;
520 	unsigned int in_end;
521 
522 	/* Start within 1024 pixels of the right / bottom edge */
523 	out_start = max_t(int, index * out_align, out_edge - 1024);
524 	/* End before having to add more columns to the left / rows above */
525 	out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
526 
527 	/*
528 	 * Limit input seam position to make sure that the downsized input tile
529 	 * to the right or bottom does not exceed 1024 pixels.
530 	 */
531 	in_start = max_t(int, index * in_align,
532 			 in_edge - (1024 << downsize_coeff));
533 	in_end = min_t(unsigned int, in_edge,
534 		       index * (1024 << downsize_coeff) + 1);
535 
536 	/*
537 	 * Output tiles must start at a multiple of 8 bytes horizontally and
538 	 * possibly at an even line horizontally depending on the pixel format.
539 	 * Only consider output aligned positions for the seam.
540 	 */
541 	out_start = round_up(out_start, out_align);
542 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
543 		unsigned int in_pos;
544 		unsigned int in_pos_aligned;
545 		unsigned int in_pos_rounded;
546 		unsigned int abs_diff;
547 
548 		/*
549 		 * Tiles in the right row / bottom column may not be allowed to
550 		 * overshoot horizontally / vertically. out_burst may be the
551 		 * actual DMA burst size, or the rotator block size.
552 		 */
553 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
554 			continue;
555 
556 		/*
557 		 * Input sample position, corresponding to out_pos, 19.13 fixed
558 		 * point.
559 		 */
560 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
561 		/*
562 		 * The closest input sample position that we could actually
563 		 * start the input tile at, 19.13 fixed point.
564 		 */
565 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
566 		/* Convert 19.13 fixed point to integer */
567 		in_pos_rounded = in_pos_aligned / 8192U;
568 
569 		if (in_pos_rounded < in_start)
570 			continue;
571 		if (in_pos_rounded >= in_end)
572 			break;
573 
574 		if ((in_burst > 1) &&
575 		    (in_edge - in_pos_rounded) % in_burst)
576 			continue;
577 
578 		if (in_pos < in_pos_aligned)
579 			abs_diff = in_pos_aligned - in_pos;
580 		else
581 			abs_diff = in_pos - in_pos_aligned;
582 
583 		if (abs_diff < min_diff) {
584 			in_seam = in_pos_rounded;
585 			out_seam = out_pos;
586 			min_diff = abs_diff;
587 		}
588 	}
589 
590 	*_out_seam = out_seam;
591 	*_in_seam = in_seam;
592 
593 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
594 		__func__, out_seam, out_align, out_start, out_end,
595 		in_seam, in_align, in_start, in_end, min_diff / 8192,
596 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
597 }
598 
599 /*
600  * Tile left edges are required to be aligned to multiples of 8 bytes
601  * by the IDMAC.
602  */
603 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
604 {
605 	if (fmt->planar)
606 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
607 	else
608 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
609 }
610 
611 /*
612  * Tile top edge alignment is only limited by chroma subsampling.
613  */
614 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
615 {
616 	return fmt->uv_height_dec > 1 ? 2 : 1;
617 }
618 
619 static inline u32 tile_width_align(enum ipu_image_convert_type type,
620 				   const struct ipu_image_pixfmt *fmt,
621 				   enum ipu_rotate_mode rot_mode)
622 {
623 	if (type == IMAGE_CONVERT_IN) {
624 		/*
625 		 * The IC burst reads 8 pixels at a time. Reading beyond the
626 		 * end of the line is usually acceptable. Those pixels are
627 		 * ignored, unless the IC has to write the scaled line in
628 		 * reverse.
629 		 */
630 		return (!ipu_rot_mode_is_irt(rot_mode) &&
631 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
632 	}
633 
634 	/*
635 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
636 	 * formats to guarantee 8-byte aligned line start addresses in the
637 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
638 	 * for all other formats.
639 	 */
640 	return (ipu_rot_mode_is_irt(rot_mode) &&
641 		fmt->planar && !fmt->uv_packed) ?
642 		8 * fmt->uv_width_dec : 8;
643 }
644 
645 static inline u32 tile_height_align(enum ipu_image_convert_type type,
646 				    const struct ipu_image_pixfmt *fmt,
647 				    enum ipu_rotate_mode rot_mode)
648 {
649 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
650 		return 2;
651 
652 	/*
653 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
654 	 * formats to guarantee 8-byte aligned line start addresses in the
655 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
656 	 * for all other formats.
657 	 */
658 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
659 }
660 
661 /*
662  * Fill in left position and width and for all tiles in an input column, and
663  * for all corresponding output tiles. If the 90° rotator is used, the output
664  * tiles are in a row, and output tile top position and height are set.
665  */
666 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
667 			     unsigned int col,
668 			     struct ipu_image_convert_image *in,
669 			     unsigned int in_left, unsigned int in_width,
670 			     struct ipu_image_convert_image *out,
671 			     unsigned int out_left, unsigned int out_width)
672 {
673 	unsigned int row, tile_idx;
674 	struct ipu_image_tile *in_tile, *out_tile;
675 
676 	for (row = 0; row < in->num_rows; row++) {
677 		tile_idx = in->num_cols * row + col;
678 		in_tile = &in->tile[tile_idx];
679 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
680 
681 		in_tile->left = in_left;
682 		in_tile->width = in_width;
683 
684 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
685 			out_tile->top = out_left;
686 			out_tile->height = out_width;
687 		} else {
688 			out_tile->left = out_left;
689 			out_tile->width = out_width;
690 		}
691 	}
692 }
693 
694 /*
695  * Fill in top position and height and for all tiles in an input row, and
696  * for all corresponding output tiles. If the 90° rotator is used, the output
697  * tiles are in a column, and output tile left position and width are set.
698  */
699 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
700 			  struct ipu_image_convert_image *in,
701 			  unsigned int in_top, unsigned int in_height,
702 			  struct ipu_image_convert_image *out,
703 			  unsigned int out_top, unsigned int out_height)
704 {
705 	unsigned int col, tile_idx;
706 	struct ipu_image_tile *in_tile, *out_tile;
707 
708 	for (col = 0; col < in->num_cols; col++) {
709 		tile_idx = in->num_cols * row + col;
710 		in_tile = &in->tile[tile_idx];
711 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
712 
713 		in_tile->top = in_top;
714 		in_tile->height = in_height;
715 
716 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
717 			out_tile->left = out_top;
718 			out_tile->width = out_height;
719 		} else {
720 			out_tile->top = out_top;
721 			out_tile->height = out_height;
722 		}
723 	}
724 }
725 
726 /*
727  * Find the best horizontal and vertical seam positions to split into tiles.
728  * Minimize the fractional part of the input sampling position for the
729  * top / left pixels of each tile.
730  */
731 static void find_seams(struct ipu_image_convert_ctx *ctx,
732 		       struct ipu_image_convert_image *in,
733 		       struct ipu_image_convert_image *out)
734 {
735 	struct device *dev = ctx->chan->priv->ipu->dev;
736 	unsigned int resized_width = out->base.rect.width;
737 	unsigned int resized_height = out->base.rect.height;
738 	unsigned int col;
739 	unsigned int row;
740 	unsigned int in_left_align = tile_left_align(in->fmt);
741 	unsigned int in_top_align = tile_top_align(in->fmt);
742 	unsigned int out_left_align = tile_left_align(out->fmt);
743 	unsigned int out_top_align = tile_top_align(out->fmt);
744 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
745 							ctx->rot_mode);
746 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
747 							  ctx->rot_mode);
748 	unsigned int in_right = in->base.rect.width;
749 	unsigned int in_bottom = in->base.rect.height;
750 	unsigned int out_right = out->base.rect.width;
751 	unsigned int out_bottom = out->base.rect.height;
752 	unsigned int flipped_out_left;
753 	unsigned int flipped_out_top;
754 
755 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
756 		/* Switch width/height and align top left to IRT block size */
757 		resized_width = out->base.rect.height;
758 		resized_height = out->base.rect.width;
759 		out_left_align = out_height_align;
760 		out_top_align = out_width_align;
761 		out_width_align = out_left_align;
762 		out_height_align = out_top_align;
763 		out_right = out->base.rect.height;
764 		out_bottom = out->base.rect.width;
765 	}
766 
767 	for (col = in->num_cols - 1; col > 0; col--) {
768 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
769 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
770 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
771 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
772 		unsigned int in_left;
773 		unsigned int out_left;
774 
775 		/*
776 		 * Align input width to burst length if the scaling step flips
777 		 * horizontally.
778 		 */
779 
780 		find_best_seam(ctx, col,
781 			       in_right, out_right,
782 			       in_left_align, out_left_align,
783 			       allow_in_overshoot ? 1 : 8 /* burst length */,
784 			       allow_out_overshoot ? 1 : out_width_align,
785 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
786 			       &in_left, &out_left);
787 
788 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
789 			flipped_out_left = resized_width - out_right;
790 		else
791 			flipped_out_left = out_left;
792 
793 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
794 				 out, flipped_out_left, out_right - out_left);
795 
796 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
797 			in_left, in_right - in_left,
798 			flipped_out_left, out_right - out_left);
799 
800 		in_right = in_left;
801 		out_right = out_left;
802 	}
803 
804 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
805 			   resized_width - out_right : 0;
806 
807 	fill_tile_column(ctx, 0, in, 0, in_right,
808 			 out, flipped_out_left, out_right);
809 
810 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
811 		in_right, flipped_out_left, out_right);
812 
813 	for (row = in->num_rows - 1; row > 0; row--) {
814 		bool allow_overshoot = row < in->num_rows - 1;
815 		unsigned int in_top;
816 		unsigned int out_top;
817 
818 		find_best_seam(ctx, row,
819 			       in_bottom, out_bottom,
820 			       in_top_align, out_top_align,
821 			       1, allow_overshoot ? 1 : out_height_align,
822 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
823 			       &in_top, &out_top);
824 
825 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
826 		    ipu_rot_mode_is_irt(ctx->rot_mode))
827 			flipped_out_top = resized_height - out_bottom;
828 		else
829 			flipped_out_top = out_top;
830 
831 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
832 			      out, flipped_out_top, out_bottom - out_top);
833 
834 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
835 			in_top, in_bottom - in_top,
836 			flipped_out_top, out_bottom - out_top);
837 
838 		in_bottom = in_top;
839 		out_bottom = out_top;
840 	}
841 
842 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
843 	    ipu_rot_mode_is_irt(ctx->rot_mode))
844 		flipped_out_top = resized_height - out_bottom;
845 	else
846 		flipped_out_top = 0;
847 
848 	fill_tile_row(ctx, 0, in, 0, in_bottom,
849 		      out, flipped_out_top, out_bottom);
850 
851 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
852 		in_bottom, flipped_out_top, out_bottom);
853 }
854 
855 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
856 				struct ipu_image_convert_image *image)
857 {
858 	struct ipu_image_convert_chan *chan = ctx->chan;
859 	struct ipu_image_convert_priv *priv = chan->priv;
860 	unsigned int max_width = 1024;
861 	unsigned int max_height = 1024;
862 	unsigned int i;
863 
864 	if (image->type == IMAGE_CONVERT_IN) {
865 		/* Up to 4096x4096 input tile size */
866 		max_width <<= ctx->downsize_coeff_h;
867 		max_height <<= ctx->downsize_coeff_v;
868 	}
869 
870 	for (i = 0; i < ctx->num_tiles; i++) {
871 		struct ipu_image_tile *tile;
872 		const unsigned int row = i / image->num_cols;
873 		const unsigned int col = i % image->num_cols;
874 
875 		if (image->type == IMAGE_CONVERT_OUT)
876 			tile = &image->tile[ctx->out_tile_map[i]];
877 		else
878 			tile = &image->tile[i];
879 
880 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
881 			tile->width;
882 
883 		if (image->fmt->planar) {
884 			tile->stride = tile->width;
885 			tile->rot_stride = tile->height;
886 		} else {
887 			tile->stride =
888 				(image->fmt->bpp * tile->width) >> 3;
889 			tile->rot_stride =
890 				(image->fmt->bpp * tile->height) >> 3;
891 		}
892 
893 		dev_dbg(priv->ipu->dev,
894 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
895 			chan->ic_task, ctx,
896 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
897 			row, col,
898 			tile->width, tile->height, tile->left, tile->top);
899 
900 		if (!tile->width || tile->width > max_width ||
901 		    !tile->height || tile->height > max_height) {
902 			dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
903 				image->type == IMAGE_CONVERT_IN ? "input" :
904 				"output", tile->width, tile->height);
905 			return -EINVAL;
906 		}
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * Use the rotation transformation to find the tile coordinates
914  * (row, col) of a tile in the destination frame that corresponds
915  * to the given tile coordinates of a source frame. The destination
916  * coordinate is then converted to a tile index.
917  */
918 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
919 				int src_row, int src_col)
920 {
921 	struct ipu_image_convert_chan *chan = ctx->chan;
922 	struct ipu_image_convert_priv *priv = chan->priv;
923 	struct ipu_image_convert_image *s_image = &ctx->in;
924 	struct ipu_image_convert_image *d_image = &ctx->out;
925 	int dst_row, dst_col;
926 
927 	/* with no rotation it's a 1:1 mapping */
928 	if (ctx->rot_mode == IPU_ROTATE_NONE)
929 		return src_row * s_image->num_cols + src_col;
930 
931 	/*
932 	 * before doing the transform, first we have to translate
933 	 * source row,col for an origin in the center of s_image
934 	 */
935 	src_row = src_row * 2 - (s_image->num_rows - 1);
936 	src_col = src_col * 2 - (s_image->num_cols - 1);
937 
938 	/* do the rotation transform */
939 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
940 		dst_col = -src_row;
941 		dst_row = src_col;
942 	} else {
943 		dst_col = src_col;
944 		dst_row = src_row;
945 	}
946 
947 	/* apply flip */
948 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
949 		dst_col = -dst_col;
950 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
951 		dst_row = -dst_row;
952 
953 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
954 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
955 
956 	/*
957 	 * finally translate dest row,col using an origin in upper
958 	 * left of d_image
959 	 */
960 	dst_row += d_image->num_rows - 1;
961 	dst_col += d_image->num_cols - 1;
962 	dst_row /= 2;
963 	dst_col /= 2;
964 
965 	return dst_row * d_image->num_cols + dst_col;
966 }
967 
968 /*
969  * Fill the out_tile_map[] with transformed destination tile indeces.
970  */
971 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
972 {
973 	struct ipu_image_convert_image *s_image = &ctx->in;
974 	unsigned int row, col, tile = 0;
975 
976 	for (row = 0; row < s_image->num_rows; row++) {
977 		for (col = 0; col < s_image->num_cols; col++) {
978 			ctx->out_tile_map[tile] =
979 				transform_tile_index(ctx, row, col);
980 			tile++;
981 		}
982 	}
983 }
984 
985 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
986 				    struct ipu_image_convert_image *image)
987 {
988 	struct ipu_image_convert_chan *chan = ctx->chan;
989 	struct ipu_image_convert_priv *priv = chan->priv;
990 	const struct ipu_image_pixfmt *fmt = image->fmt;
991 	unsigned int row, col, tile = 0;
992 	u32 H, top, y_stride, uv_stride;
993 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off;
994 	u32 y_row_off, y_col_off, y_off;
995 	u32 y_size, uv_size;
996 
997 	/* setup some convenience vars */
998 	H = image->base.pix.height;
999 
1000 	y_stride = image->stride;
1001 	uv_stride = y_stride / fmt->uv_width_dec;
1002 	if (fmt->uv_packed)
1003 		uv_stride *= 2;
1004 
1005 	y_size = H * y_stride;
1006 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1007 
1008 	for (row = 0; row < image->num_rows; row++) {
1009 		top = image->tile[tile].top;
1010 		y_row_off = top * y_stride;
1011 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1012 
1013 		for (col = 0; col < image->num_cols; col++) {
1014 			y_col_off = image->tile[tile].left;
1015 			uv_col_off = y_col_off / fmt->uv_width_dec;
1016 			if (fmt->uv_packed)
1017 				uv_col_off *= 2;
1018 
1019 			y_off = y_row_off + y_col_off;
1020 			uv_off = uv_row_off + uv_col_off;
1021 
1022 			u_off = y_size - y_off + uv_off;
1023 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1024 			if (fmt->uv_swapped)
1025 				swap(u_off, v_off);
1026 
1027 			image->tile[tile].offset = y_off;
1028 			image->tile[tile].u_off = u_off;
1029 			image->tile[tile++].v_off = v_off;
1030 
1031 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1032 				dev_err(priv->ipu->dev,
1033 					"task %u: ctx %p: %s@[%d,%d]: "
1034 					"y_off %08x, u_off %08x, v_off %08x\n",
1035 					chan->ic_task, ctx,
1036 					image->type == IMAGE_CONVERT_IN ?
1037 					"Input" : "Output", row, col,
1038 					y_off, u_off, v_off);
1039 				return -EINVAL;
1040 			}
1041 		}
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1048 				    struct ipu_image_convert_image *image)
1049 {
1050 	struct ipu_image_convert_chan *chan = ctx->chan;
1051 	struct ipu_image_convert_priv *priv = chan->priv;
1052 	const struct ipu_image_pixfmt *fmt = image->fmt;
1053 	unsigned int row, col, tile = 0;
1054 	u32 bpp, stride, offset;
1055 	u32 row_off, col_off;
1056 
1057 	/* setup some convenience vars */
1058 	stride = image->stride;
1059 	bpp = fmt->bpp;
1060 
1061 	for (row = 0; row < image->num_rows; row++) {
1062 		row_off = image->tile[tile].top * stride;
1063 
1064 		for (col = 0; col < image->num_cols; col++) {
1065 			col_off = (image->tile[tile].left * bpp) >> 3;
1066 
1067 			offset = row_off + col_off;
1068 
1069 			image->tile[tile].offset = offset;
1070 			image->tile[tile].u_off = 0;
1071 			image->tile[tile++].v_off = 0;
1072 
1073 			if (offset & 0x7) {
1074 				dev_err(priv->ipu->dev,
1075 					"task %u: ctx %p: %s@[%d,%d]: "
1076 					"phys %08x\n",
1077 					chan->ic_task, ctx,
1078 					image->type == IMAGE_CONVERT_IN ?
1079 					"Input" : "Output", row, col,
1080 					row_off + col_off);
1081 				return -EINVAL;
1082 			}
1083 		}
1084 	}
1085 
1086 	return 0;
1087 }
1088 
1089 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1090 			      struct ipu_image_convert_image *image)
1091 {
1092 	if (image->fmt->planar)
1093 		return calc_tile_offsets_planar(ctx, image);
1094 
1095 	return calc_tile_offsets_packed(ctx, image);
1096 }
1097 
1098 /*
1099  * Calculate the resizing ratio for the IC main processing section given input
1100  * size, fixed downsizing coefficient, and output size.
1101  * Either round to closest for the next tile's first pixel to minimize seams
1102  * and distortion (for all but right column / bottom row), or round down to
1103  * avoid sampling beyond the edges of the input image for this tile's last
1104  * pixel.
1105  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1106  */
1107 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1108 			     u32 output_size, bool allow_overshoot)
1109 {
1110 	u32 downsized = input_size >> downsize_coeff;
1111 
1112 	if (allow_overshoot)
1113 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1114 	else
1115 		return 8192 * (downsized - 1) / (output_size - 1);
1116 }
1117 
1118 /*
1119  * Slightly modify resize coefficients per tile to hide the bilinear
1120  * interpolator reset at tile borders, shifting the right / bottom edge
1121  * by up to a half input pixel. This removes noticeable seams between
1122  * tiles at higher upscaling factors.
1123  */
1124 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1125 {
1126 	struct ipu_image_convert_chan *chan = ctx->chan;
1127 	struct ipu_image_convert_priv *priv = chan->priv;
1128 	struct ipu_image_tile *in_tile, *out_tile;
1129 	unsigned int col, row, tile_idx;
1130 	unsigned int last_output;
1131 
1132 	for (col = 0; col < ctx->in.num_cols; col++) {
1133 		bool closest = (col < ctx->in.num_cols - 1) &&
1134 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1135 		u32 resized_width;
1136 		u32 resize_coeff_h;
1137 		u32 in_width;
1138 
1139 		tile_idx = col;
1140 		in_tile = &ctx->in.tile[tile_idx];
1141 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1142 
1143 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1144 			resized_width = out_tile->height;
1145 		else
1146 			resized_width = out_tile->width;
1147 
1148 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1149 						   ctx->downsize_coeff_h,
1150 						   resized_width, closest);
1151 
1152 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1153 			__func__, col, resize_coeff_h);
1154 
1155 		/*
1156 		 * With the horizontal scaling factor known, round up resized
1157 		 * width (output width or height) to burst size.
1158 		 */
1159 		resized_width = round_up(resized_width, 8);
1160 
1161 		/*
1162 		 * Calculate input width from the last accessed input pixel
1163 		 * given resized width and scaling coefficients. Round up to
1164 		 * burst size.
1165 		 */
1166 		last_output = resized_width - 1;
1167 		if (closest && ((last_output * resize_coeff_h) % 8192))
1168 			last_output++;
1169 		in_width = round_up(
1170 			(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1171 			<< ctx->downsize_coeff_h, 8);
1172 
1173 		for (row = 0; row < ctx->in.num_rows; row++) {
1174 			tile_idx = row * ctx->in.num_cols + col;
1175 			in_tile = &ctx->in.tile[tile_idx];
1176 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1177 
1178 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1179 				out_tile->height = resized_width;
1180 			else
1181 				out_tile->width = resized_width;
1182 
1183 			in_tile->width = in_width;
1184 		}
1185 
1186 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1187 	}
1188 
1189 	for (row = 0; row < ctx->in.num_rows; row++) {
1190 		bool closest = (row < ctx->in.num_rows - 1) &&
1191 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1192 		u32 resized_height;
1193 		u32 resize_coeff_v;
1194 		u32 in_height;
1195 
1196 		tile_idx = row * ctx->in.num_cols;
1197 		in_tile = &ctx->in.tile[tile_idx];
1198 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1199 
1200 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1201 			resized_height = out_tile->width;
1202 		else
1203 			resized_height = out_tile->height;
1204 
1205 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1206 						   ctx->downsize_coeff_v,
1207 						   resized_height, closest);
1208 
1209 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1210 			__func__, row, resize_coeff_v);
1211 
1212 		/*
1213 		 * With the vertical scaling factor known, round up resized
1214 		 * height (output width or height) to IDMAC limitations.
1215 		 */
1216 		resized_height = round_up(resized_height, 2);
1217 
1218 		/*
1219 		 * Calculate input width from the last accessed input pixel
1220 		 * given resized height and scaling coefficients. Align to
1221 		 * IDMAC restrictions.
1222 		 */
1223 		last_output = resized_height - 1;
1224 		if (closest && ((last_output * resize_coeff_v) % 8192))
1225 			last_output++;
1226 		in_height = round_up(
1227 			(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1228 			<< ctx->downsize_coeff_v, 2);
1229 
1230 		for (col = 0; col < ctx->in.num_cols; col++) {
1231 			tile_idx = row * ctx->in.num_cols + col;
1232 			in_tile = &ctx->in.tile[tile_idx];
1233 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1234 
1235 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1236 				out_tile->width = resized_height;
1237 			else
1238 				out_tile->height = resized_height;
1239 
1240 			in_tile->height = in_height;
1241 		}
1242 
1243 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1244 	}
1245 }
1246 
1247 /*
1248  * return the number of runs in given queue (pending_q or done_q)
1249  * for this context. hold irqlock when calling.
1250  */
1251 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1252 			 struct list_head *q)
1253 {
1254 	struct ipu_image_convert_run *run;
1255 	int count = 0;
1256 
1257 	lockdep_assert_held(&ctx->chan->irqlock);
1258 
1259 	list_for_each_entry(run, q, list) {
1260 		if (run->ctx == ctx)
1261 			count++;
1262 	}
1263 
1264 	return count;
1265 }
1266 
1267 static void convert_stop(struct ipu_image_convert_run *run)
1268 {
1269 	struct ipu_image_convert_ctx *ctx = run->ctx;
1270 	struct ipu_image_convert_chan *chan = ctx->chan;
1271 	struct ipu_image_convert_priv *priv = chan->priv;
1272 
1273 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1274 		__func__, chan->ic_task, ctx, run);
1275 
1276 	/* disable IC tasks and the channels */
1277 	ipu_ic_task_disable(chan->ic);
1278 	ipu_idmac_disable_channel(chan->in_chan);
1279 	ipu_idmac_disable_channel(chan->out_chan);
1280 
1281 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1282 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1283 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1284 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1285 	}
1286 
1287 	ipu_ic_disable(chan->ic);
1288 }
1289 
1290 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1291 			       struct ipuv3_channel *channel,
1292 			       struct ipu_image_convert_image *image,
1293 			       enum ipu_rotate_mode rot_mode,
1294 			       bool rot_swap_width_height,
1295 			       unsigned int tile)
1296 {
1297 	struct ipu_image_convert_chan *chan = ctx->chan;
1298 	unsigned int burst_size;
1299 	u32 width, height, stride;
1300 	dma_addr_t addr0, addr1 = 0;
1301 	struct ipu_image tile_image;
1302 	unsigned int tile_idx[2];
1303 
1304 	if (image->type == IMAGE_CONVERT_OUT) {
1305 		tile_idx[0] = ctx->out_tile_map[tile];
1306 		tile_idx[1] = ctx->out_tile_map[1];
1307 	} else {
1308 		tile_idx[0] = tile;
1309 		tile_idx[1] = 1;
1310 	}
1311 
1312 	if (rot_swap_width_height) {
1313 		width = image->tile[tile_idx[0]].height;
1314 		height = image->tile[tile_idx[0]].width;
1315 		stride = image->tile[tile_idx[0]].rot_stride;
1316 		addr0 = ctx->rot_intermediate[0].phys;
1317 		if (ctx->double_buffering)
1318 			addr1 = ctx->rot_intermediate[1].phys;
1319 	} else {
1320 		width = image->tile[tile_idx[0]].width;
1321 		height = image->tile[tile_idx[0]].height;
1322 		stride = image->stride;
1323 		addr0 = image->base.phys0 +
1324 			image->tile[tile_idx[0]].offset;
1325 		if (ctx->double_buffering)
1326 			addr1 = image->base.phys0 +
1327 				image->tile[tile_idx[1]].offset;
1328 	}
1329 
1330 	ipu_cpmem_zero(channel);
1331 
1332 	memset(&tile_image, 0, sizeof(tile_image));
1333 	tile_image.pix.width = tile_image.rect.width = width;
1334 	tile_image.pix.height = tile_image.rect.height = height;
1335 	tile_image.pix.bytesperline = stride;
1336 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1337 	tile_image.phys0 = addr0;
1338 	tile_image.phys1 = addr1;
1339 	if (image->fmt->planar && !rot_swap_width_height) {
1340 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1341 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1342 	}
1343 
1344 	ipu_cpmem_set_image(channel, &tile_image);
1345 
1346 	if (rot_mode)
1347 		ipu_cpmem_set_rotation(channel, rot_mode);
1348 
1349 	/*
1350 	 * Skip writing U and V components to odd rows in the output
1351 	 * channels for planar 4:2:0.
1352 	 */
1353 	if ((channel == chan->out_chan ||
1354 	     channel == chan->rotation_out_chan) &&
1355 	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1356 		ipu_cpmem_skip_odd_chroma_rows(channel);
1357 
1358 	if (channel == chan->rotation_in_chan ||
1359 	    channel == chan->rotation_out_chan) {
1360 		burst_size = 8;
1361 		ipu_cpmem_set_block_mode(channel);
1362 	} else
1363 		burst_size = (width % 16) ? 8 : 16;
1364 
1365 	ipu_cpmem_set_burstsize(channel, burst_size);
1366 
1367 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1368 			      burst_size, rot_mode);
1369 
1370 	/*
1371 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1372 	 * only do this when there is no PRG present.
1373 	 */
1374 	if (!channel->ipu->prg_priv)
1375 		ipu_cpmem_set_axi_id(channel, 1);
1376 
1377 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1378 }
1379 
1380 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1381 {
1382 	struct ipu_image_convert_ctx *ctx = run->ctx;
1383 	struct ipu_image_convert_chan *chan = ctx->chan;
1384 	struct ipu_image_convert_priv *priv = chan->priv;
1385 	struct ipu_image_convert_image *s_image = &ctx->in;
1386 	struct ipu_image_convert_image *d_image = &ctx->out;
1387 	unsigned int dst_tile = ctx->out_tile_map[tile];
1388 	unsigned int dest_width, dest_height;
1389 	unsigned int col, row;
1390 	u32 rsc;
1391 	int ret;
1392 
1393 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1394 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1395 
1396 	/* clear EOF irq mask */
1397 	ctx->eof_mask = 0;
1398 
1399 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1400 		/* swap width/height for resizer */
1401 		dest_width = d_image->tile[dst_tile].height;
1402 		dest_height = d_image->tile[dst_tile].width;
1403 	} else {
1404 		dest_width = d_image->tile[dst_tile].width;
1405 		dest_height = d_image->tile[dst_tile].height;
1406 	}
1407 
1408 	row = tile / s_image->num_cols;
1409 	col = tile % s_image->num_cols;
1410 
1411 	rsc =  (ctx->downsize_coeff_v << 30) |
1412 	       (ctx->resize_coeffs_v[row] << 16) |
1413 	       (ctx->downsize_coeff_h << 14) |
1414 	       (ctx->resize_coeffs_h[col]);
1415 
1416 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1417 		__func__, s_image->tile[tile].width,
1418 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1419 
1420 	/* setup the IC resizer and CSC */
1421 	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1422 				   s_image->tile[tile].width,
1423 				   s_image->tile[tile].height,
1424 				   dest_width,
1425 				   dest_height,
1426 				   rsc);
1427 	if (ret) {
1428 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1429 		return ret;
1430 	}
1431 
1432 	/* init the source MEM-->IC PP IDMAC channel */
1433 	init_idmac_channel(ctx, chan->in_chan, s_image,
1434 			   IPU_ROTATE_NONE, false, tile);
1435 
1436 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1437 		/* init the IC PP-->MEM IDMAC channel */
1438 		init_idmac_channel(ctx, chan->out_chan, d_image,
1439 				   IPU_ROTATE_NONE, true, tile);
1440 
1441 		/* init the MEM-->IC PP ROT IDMAC channel */
1442 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1443 				   ctx->rot_mode, true, tile);
1444 
1445 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1446 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1447 				   IPU_ROTATE_NONE, false, tile);
1448 
1449 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1450 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1451 	} else {
1452 		/* init the destination IC PP-->MEM IDMAC channel */
1453 		init_idmac_channel(ctx, chan->out_chan, d_image,
1454 				   ctx->rot_mode, false, tile);
1455 	}
1456 
1457 	/* enable the IC */
1458 	ipu_ic_enable(chan->ic);
1459 
1460 	/* set buffers ready */
1461 	ipu_idmac_select_buffer(chan->in_chan, 0);
1462 	ipu_idmac_select_buffer(chan->out_chan, 0);
1463 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1464 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1465 	if (ctx->double_buffering) {
1466 		ipu_idmac_select_buffer(chan->in_chan, 1);
1467 		ipu_idmac_select_buffer(chan->out_chan, 1);
1468 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1469 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1470 	}
1471 
1472 	/* enable the channels! */
1473 	ipu_idmac_enable_channel(chan->in_chan);
1474 	ipu_idmac_enable_channel(chan->out_chan);
1475 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1476 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1477 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1478 	}
1479 
1480 	ipu_ic_task_enable(chan->ic);
1481 
1482 	ipu_cpmem_dump(chan->in_chan);
1483 	ipu_cpmem_dump(chan->out_chan);
1484 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1485 		ipu_cpmem_dump(chan->rotation_in_chan);
1486 		ipu_cpmem_dump(chan->rotation_out_chan);
1487 	}
1488 
1489 	ipu_dump(priv->ipu);
1490 
1491 	return 0;
1492 }
1493 
1494 /* hold irqlock when calling */
1495 static int do_run(struct ipu_image_convert_run *run)
1496 {
1497 	struct ipu_image_convert_ctx *ctx = run->ctx;
1498 	struct ipu_image_convert_chan *chan = ctx->chan;
1499 
1500 	lockdep_assert_held(&chan->irqlock);
1501 
1502 	ctx->in.base.phys0 = run->in_phys;
1503 	ctx->out.base.phys0 = run->out_phys;
1504 
1505 	ctx->cur_buf_num = 0;
1506 	ctx->next_tile = 1;
1507 
1508 	/* remove run from pending_q and set as current */
1509 	list_del(&run->list);
1510 	chan->current_run = run;
1511 
1512 	return convert_start(run, 0);
1513 }
1514 
1515 /* hold irqlock when calling */
1516 static void run_next(struct ipu_image_convert_chan *chan)
1517 {
1518 	struct ipu_image_convert_priv *priv = chan->priv;
1519 	struct ipu_image_convert_run *run, *tmp;
1520 	int ret;
1521 
1522 	lockdep_assert_held(&chan->irqlock);
1523 
1524 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1525 		/* skip contexts that are aborting */
1526 		if (run->ctx->aborting) {
1527 			dev_dbg(priv->ipu->dev,
1528 				"%s: task %u: skipping aborting ctx %p run %p\n",
1529 				__func__, chan->ic_task, run->ctx, run);
1530 			continue;
1531 		}
1532 
1533 		ret = do_run(run);
1534 		if (!ret)
1535 			break;
1536 
1537 		/*
1538 		 * something went wrong with start, add the run
1539 		 * to done q and continue to the next run in the
1540 		 * pending q.
1541 		 */
1542 		run->status = ret;
1543 		list_add_tail(&run->list, &chan->done_q);
1544 		chan->current_run = NULL;
1545 	}
1546 }
1547 
1548 static void empty_done_q(struct ipu_image_convert_chan *chan)
1549 {
1550 	struct ipu_image_convert_priv *priv = chan->priv;
1551 	struct ipu_image_convert_run *run;
1552 	unsigned long flags;
1553 
1554 	spin_lock_irqsave(&chan->irqlock, flags);
1555 
1556 	while (!list_empty(&chan->done_q)) {
1557 		run = list_entry(chan->done_q.next,
1558 				 struct ipu_image_convert_run,
1559 				 list);
1560 
1561 		list_del(&run->list);
1562 
1563 		dev_dbg(priv->ipu->dev,
1564 			"%s: task %u: completing ctx %p run %p with %d\n",
1565 			__func__, chan->ic_task, run->ctx, run, run->status);
1566 
1567 		/* call the completion callback and free the run */
1568 		spin_unlock_irqrestore(&chan->irqlock, flags);
1569 		run->ctx->complete(run, run->ctx->complete_context);
1570 		spin_lock_irqsave(&chan->irqlock, flags);
1571 	}
1572 
1573 	spin_unlock_irqrestore(&chan->irqlock, flags);
1574 }
1575 
1576 /*
1577  * the bottom half thread clears out the done_q, calling the
1578  * completion handler for each.
1579  */
1580 static irqreturn_t do_bh(int irq, void *dev_id)
1581 {
1582 	struct ipu_image_convert_chan *chan = dev_id;
1583 	struct ipu_image_convert_priv *priv = chan->priv;
1584 	struct ipu_image_convert_ctx *ctx;
1585 	unsigned long flags;
1586 
1587 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1588 		chan->ic_task);
1589 
1590 	empty_done_q(chan);
1591 
1592 	spin_lock_irqsave(&chan->irqlock, flags);
1593 
1594 	/*
1595 	 * the done_q is cleared out, signal any contexts
1596 	 * that are aborting that abort can complete.
1597 	 */
1598 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1599 		if (ctx->aborting) {
1600 			dev_dbg(priv->ipu->dev,
1601 				"%s: task %u: signaling abort for ctx %p\n",
1602 				__func__, chan->ic_task, ctx);
1603 			complete_all(&ctx->aborted);
1604 		}
1605 	}
1606 
1607 	spin_unlock_irqrestore(&chan->irqlock, flags);
1608 
1609 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1610 		chan->ic_task);
1611 
1612 	return IRQ_HANDLED;
1613 }
1614 
1615 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1616 {
1617 	unsigned int cur_tile = ctx->next_tile - 1;
1618 	unsigned int next_tile = ctx->next_tile;
1619 
1620 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1621 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1622 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1623 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1624 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1625 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1626 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1627 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1628 		return true;
1629 
1630 	return false;
1631 }
1632 
1633 /* hold irqlock when calling */
1634 static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1635 {
1636 	struct ipu_image_convert_ctx *ctx = run->ctx;
1637 	struct ipu_image_convert_chan *chan = ctx->chan;
1638 	struct ipu_image_tile *src_tile, *dst_tile;
1639 	struct ipu_image_convert_image *s_image = &ctx->in;
1640 	struct ipu_image_convert_image *d_image = &ctx->out;
1641 	struct ipuv3_channel *outch;
1642 	unsigned int dst_idx;
1643 
1644 	lockdep_assert_held(&chan->irqlock);
1645 
1646 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1647 		chan->rotation_out_chan : chan->out_chan;
1648 
1649 	/*
1650 	 * It is difficult to stop the channel DMA before the channels
1651 	 * enter the paused state. Without double-buffering the channels
1652 	 * are always in a paused state when the EOF irq occurs, so it
1653 	 * is safe to stop the channels now. For double-buffering we
1654 	 * just ignore the abort until the operation completes, when it
1655 	 * is safe to shut down.
1656 	 */
1657 	if (ctx->aborting && !ctx->double_buffering) {
1658 		convert_stop(run);
1659 		run->status = -EIO;
1660 		goto done;
1661 	}
1662 
1663 	if (ctx->next_tile == ctx->num_tiles) {
1664 		/*
1665 		 * the conversion is complete
1666 		 */
1667 		convert_stop(run);
1668 		run->status = 0;
1669 		goto done;
1670 	}
1671 
1672 	/*
1673 	 * not done, place the next tile buffers.
1674 	 */
1675 	if (!ctx->double_buffering) {
1676 		if (ic_settings_changed(ctx)) {
1677 			convert_stop(run);
1678 			convert_start(run, ctx->next_tile);
1679 		} else {
1680 			src_tile = &s_image->tile[ctx->next_tile];
1681 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1682 			dst_tile = &d_image->tile[dst_idx];
1683 
1684 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1685 					     s_image->base.phys0 +
1686 					     src_tile->offset);
1687 			ipu_cpmem_set_buffer(outch, 0,
1688 					     d_image->base.phys0 +
1689 					     dst_tile->offset);
1690 			if (s_image->fmt->planar)
1691 				ipu_cpmem_set_uv_offset(chan->in_chan,
1692 							src_tile->u_off,
1693 							src_tile->v_off);
1694 			if (d_image->fmt->planar)
1695 				ipu_cpmem_set_uv_offset(outch,
1696 							dst_tile->u_off,
1697 							dst_tile->v_off);
1698 
1699 			ipu_idmac_select_buffer(chan->in_chan, 0);
1700 			ipu_idmac_select_buffer(outch, 0);
1701 		}
1702 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1703 
1704 		src_tile = &s_image->tile[ctx->next_tile + 1];
1705 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1706 		dst_tile = &d_image->tile[dst_idx];
1707 
1708 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1709 				     s_image->base.phys0 + src_tile->offset);
1710 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1711 				     d_image->base.phys0 + dst_tile->offset);
1712 
1713 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1714 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1715 
1716 		ctx->cur_buf_num ^= 1;
1717 	}
1718 
1719 	ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1720 	ctx->next_tile++;
1721 	return IRQ_HANDLED;
1722 done:
1723 	list_add_tail(&run->list, &chan->done_q);
1724 	chan->current_run = NULL;
1725 	run_next(chan);
1726 	return IRQ_WAKE_THREAD;
1727 }
1728 
1729 static irqreturn_t eof_irq(int irq, void *data)
1730 {
1731 	struct ipu_image_convert_chan *chan = data;
1732 	struct ipu_image_convert_priv *priv = chan->priv;
1733 	struct ipu_image_convert_ctx *ctx;
1734 	struct ipu_image_convert_run *run;
1735 	irqreturn_t ret = IRQ_HANDLED;
1736 	bool tile_complete = false;
1737 	unsigned long flags;
1738 
1739 	spin_lock_irqsave(&chan->irqlock, flags);
1740 
1741 	/* get current run and its context */
1742 	run = chan->current_run;
1743 	if (!run) {
1744 		ret = IRQ_NONE;
1745 		goto out;
1746 	}
1747 
1748 	ctx = run->ctx;
1749 
1750 	if (irq == chan->in_eof_irq) {
1751 		ctx->eof_mask |= EOF_IRQ_IN;
1752 	} else if (irq == chan->out_eof_irq) {
1753 		ctx->eof_mask |= EOF_IRQ_OUT;
1754 	} else if (irq == chan->rot_in_eof_irq ||
1755 		   irq == chan->rot_out_eof_irq) {
1756 		if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1757 			/* this was NOT a rotation op, shouldn't happen */
1758 			dev_err(priv->ipu->dev,
1759 				"Unexpected rotation interrupt\n");
1760 			goto out;
1761 		}
1762 		ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1763 			EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1764 	} else {
1765 		dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
1766 		ret = IRQ_NONE;
1767 		goto out;
1768 	}
1769 
1770 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1771 		tile_complete =	(ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1772 	else
1773 		tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
1774 
1775 	if (tile_complete)
1776 		ret = do_tile_complete(run);
1777 out:
1778 	spin_unlock_irqrestore(&chan->irqlock, flags);
1779 	return ret;
1780 }
1781 
1782 /*
1783  * try to force the completion of runs for this ctx. Called when
1784  * abort wait times out in ipu_image_convert_abort().
1785  */
1786 static void force_abort(struct ipu_image_convert_ctx *ctx)
1787 {
1788 	struct ipu_image_convert_chan *chan = ctx->chan;
1789 	struct ipu_image_convert_run *run;
1790 	unsigned long flags;
1791 
1792 	spin_lock_irqsave(&chan->irqlock, flags);
1793 
1794 	run = chan->current_run;
1795 	if (run && run->ctx == ctx) {
1796 		convert_stop(run);
1797 		run->status = -EIO;
1798 		list_add_tail(&run->list, &chan->done_q);
1799 		chan->current_run = NULL;
1800 		run_next(chan);
1801 	}
1802 
1803 	spin_unlock_irqrestore(&chan->irqlock, flags);
1804 
1805 	empty_done_q(chan);
1806 }
1807 
1808 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1809 {
1810 	if (chan->in_eof_irq >= 0)
1811 		free_irq(chan->in_eof_irq, chan);
1812 	if (chan->rot_in_eof_irq >= 0)
1813 		free_irq(chan->rot_in_eof_irq, chan);
1814 	if (chan->out_eof_irq >= 0)
1815 		free_irq(chan->out_eof_irq, chan);
1816 	if (chan->rot_out_eof_irq >= 0)
1817 		free_irq(chan->rot_out_eof_irq, chan);
1818 
1819 	if (!IS_ERR_OR_NULL(chan->in_chan))
1820 		ipu_idmac_put(chan->in_chan);
1821 	if (!IS_ERR_OR_NULL(chan->out_chan))
1822 		ipu_idmac_put(chan->out_chan);
1823 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1824 		ipu_idmac_put(chan->rotation_in_chan);
1825 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1826 		ipu_idmac_put(chan->rotation_out_chan);
1827 	if (!IS_ERR_OR_NULL(chan->ic))
1828 		ipu_ic_put(chan->ic);
1829 
1830 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1831 		chan->rotation_out_chan = NULL;
1832 	chan->in_eof_irq = -1;
1833 	chan->rot_in_eof_irq = -1;
1834 	chan->out_eof_irq = -1;
1835 	chan->rot_out_eof_irq = -1;
1836 }
1837 
1838 static int get_eof_irq(struct ipu_image_convert_chan *chan,
1839 		       struct ipuv3_channel *channel)
1840 {
1841 	struct ipu_image_convert_priv *priv = chan->priv;
1842 	int ret, irq;
1843 
1844 	irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1845 
1846 	ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1847 	if (ret < 0) {
1848 		dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1849 		return ret;
1850 	}
1851 
1852 	return irq;
1853 }
1854 
1855 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1856 {
1857 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1858 	struct ipu_image_convert_priv *priv = chan->priv;
1859 	int ret;
1860 
1861 	/* get IC */
1862 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1863 	if (IS_ERR(chan->ic)) {
1864 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1865 		ret = PTR_ERR(chan->ic);
1866 		goto err;
1867 	}
1868 
1869 	/* get IDMAC channels */
1870 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1871 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1872 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1873 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1874 		ret = -EBUSY;
1875 		goto err;
1876 	}
1877 
1878 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1879 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1880 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1881 		dev_err(priv->ipu->dev,
1882 			"could not acquire idmac rotation channels\n");
1883 		ret = -EBUSY;
1884 		goto err;
1885 	}
1886 
1887 	/* acquire the EOF interrupts */
1888 	ret = get_eof_irq(chan, chan->in_chan);
1889 	if (ret < 0) {
1890 		chan->in_eof_irq = -1;
1891 		goto err;
1892 	}
1893 	chan->in_eof_irq = ret;
1894 
1895 	ret = get_eof_irq(chan, chan->rotation_in_chan);
1896 	if (ret < 0) {
1897 		chan->rot_in_eof_irq = -1;
1898 		goto err;
1899 	}
1900 	chan->rot_in_eof_irq = ret;
1901 
1902 	ret = get_eof_irq(chan, chan->out_chan);
1903 	if (ret < 0) {
1904 		chan->out_eof_irq = -1;
1905 		goto err;
1906 	}
1907 	chan->out_eof_irq = ret;
1908 
1909 	ret = get_eof_irq(chan, chan->rotation_out_chan);
1910 	if (ret < 0) {
1911 		chan->rot_out_eof_irq = -1;
1912 		goto err;
1913 	}
1914 	chan->rot_out_eof_irq = ret;
1915 
1916 	return 0;
1917 err:
1918 	release_ipu_resources(chan);
1919 	return ret;
1920 }
1921 
1922 static int fill_image(struct ipu_image_convert_ctx *ctx,
1923 		      struct ipu_image_convert_image *ic_image,
1924 		      struct ipu_image *image,
1925 		      enum ipu_image_convert_type type)
1926 {
1927 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1928 
1929 	ic_image->base = *image;
1930 	ic_image->type = type;
1931 
1932 	ic_image->fmt = get_format(image->pix.pixelformat);
1933 	if (!ic_image->fmt) {
1934 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1935 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1936 		return -EINVAL;
1937 	}
1938 
1939 	if (ic_image->fmt->planar)
1940 		ic_image->stride = ic_image->base.pix.width;
1941 	else
1942 		ic_image->stride  = ic_image->base.pix.bytesperline;
1943 
1944 	return 0;
1945 }
1946 
1947 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1948 static unsigned int clamp_align(unsigned int x, unsigned int min,
1949 				unsigned int max, unsigned int align)
1950 {
1951 	/* Bits that must be zero to be aligned */
1952 	unsigned int mask = ~((1 << align) - 1);
1953 
1954 	/* Clamp to aligned min and max */
1955 	x = clamp(x, (min + ~mask) & mask, max & mask);
1956 
1957 	/* Round to nearest aligned value */
1958 	if (align)
1959 		x = (x + (1 << (align - 1))) & mask;
1960 
1961 	return x;
1962 }
1963 
1964 /* Adjusts input/output images to IPU restrictions */
1965 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1966 			      enum ipu_rotate_mode rot_mode)
1967 {
1968 	const struct ipu_image_pixfmt *infmt, *outfmt;
1969 	u32 w_align_out, h_align_out;
1970 	u32 w_align_in, h_align_in;
1971 
1972 	infmt = get_format(in->pix.pixelformat);
1973 	outfmt = get_format(out->pix.pixelformat);
1974 
1975 	/* set some default pixel formats if needed */
1976 	if (!infmt) {
1977 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1978 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1979 	}
1980 	if (!outfmt) {
1981 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1982 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1983 	}
1984 
1985 	/* image converter does not handle fields */
1986 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1987 
1988 	/* resizer cannot downsize more than 4:1 */
1989 	if (ipu_rot_mode_is_irt(rot_mode)) {
1990 		out->pix.height = max_t(__u32, out->pix.height,
1991 					in->pix.width / 4);
1992 		out->pix.width = max_t(__u32, out->pix.width,
1993 				       in->pix.height / 4);
1994 	} else {
1995 		out->pix.width = max_t(__u32, out->pix.width,
1996 				       in->pix.width / 4);
1997 		out->pix.height = max_t(__u32, out->pix.height,
1998 					in->pix.height / 4);
1999 	}
2000 
2001 	/* align input width/height */
2002 	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2003 					    rot_mode));
2004 	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2005 					     rot_mode));
2006 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2007 				    w_align_in);
2008 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2009 				     h_align_in);
2010 
2011 	/* align output width/height */
2012 	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2013 					     rot_mode));
2014 	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2015 					      rot_mode));
2016 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2017 				     w_align_out);
2018 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2019 				      h_align_out);
2020 
2021 	/* set input/output strides and image sizes */
2022 	in->pix.bytesperline = infmt->planar ?
2023 		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2024 			    w_align_in) :
2025 		clamp_align((in->pix.width * infmt->bpp) >> 3,
2026 			    ((2 << w_align_in) * infmt->bpp) >> 3,
2027 			    (MAX_W * infmt->bpp) >> 3,
2028 			    w_align_in);
2029 	in->pix.sizeimage = infmt->planar ?
2030 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2031 		in->pix.height * in->pix.bytesperline;
2032 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
2033 		(out->pix.width * outfmt->bpp) >> 3;
2034 	out->pix.sizeimage = outfmt->planar ?
2035 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2036 		out->pix.height * out->pix.bytesperline;
2037 }
2038 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2039 
2040 /*
2041  * this is used by ipu_image_convert_prepare() to verify set input and
2042  * output images are valid before starting the conversion. Clients can
2043  * also call it before calling ipu_image_convert_prepare().
2044  */
2045 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2046 			     enum ipu_rotate_mode rot_mode)
2047 {
2048 	struct ipu_image testin, testout;
2049 
2050 	testin = *in;
2051 	testout = *out;
2052 
2053 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
2054 
2055 	if (testin.pix.width != in->pix.width ||
2056 	    testin.pix.height != in->pix.height ||
2057 	    testout.pix.width != out->pix.width ||
2058 	    testout.pix.height != out->pix.height)
2059 		return -EINVAL;
2060 
2061 	return 0;
2062 }
2063 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2064 
2065 /*
2066  * Call ipu_image_convert_prepare() to prepare for the conversion of
2067  * given images and rotation mode. Returns a new conversion context.
2068  */
2069 struct ipu_image_convert_ctx *
2070 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2071 			  struct ipu_image *in, struct ipu_image *out,
2072 			  enum ipu_rotate_mode rot_mode,
2073 			  ipu_image_convert_cb_t complete,
2074 			  void *complete_context)
2075 {
2076 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2077 	struct ipu_image_convert_image *s_image, *d_image;
2078 	struct ipu_image_convert_chan *chan;
2079 	struct ipu_image_convert_ctx *ctx;
2080 	unsigned long flags;
2081 	unsigned int i;
2082 	bool get_res;
2083 	int ret;
2084 
2085 	if (!in || !out || !complete ||
2086 	    (ic_task != IC_TASK_VIEWFINDER &&
2087 	     ic_task != IC_TASK_POST_PROCESSOR))
2088 		return ERR_PTR(-EINVAL);
2089 
2090 	/* verify the in/out images before continuing */
2091 	ret = ipu_image_convert_verify(in, out, rot_mode);
2092 	if (ret) {
2093 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2094 			__func__);
2095 		return ERR_PTR(ret);
2096 	}
2097 
2098 	chan = &priv->chan[ic_task];
2099 
2100 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2101 	if (!ctx)
2102 		return ERR_PTR(-ENOMEM);
2103 
2104 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2105 		chan->ic_task, ctx);
2106 
2107 	ctx->chan = chan;
2108 	init_completion(&ctx->aborted);
2109 
2110 	ctx->rot_mode = rot_mode;
2111 
2112 	/* Sets ctx->in.num_rows/cols as well */
2113 	ret = calc_image_resize_coefficients(ctx, in, out);
2114 	if (ret)
2115 		goto out_free;
2116 
2117 	s_image = &ctx->in;
2118 	d_image = &ctx->out;
2119 
2120 	/* set tiling and rotation */
2121 	if (ipu_rot_mode_is_irt(rot_mode)) {
2122 		d_image->num_rows = s_image->num_cols;
2123 		d_image->num_cols = s_image->num_rows;
2124 	} else {
2125 		d_image->num_rows = s_image->num_rows;
2126 		d_image->num_cols = s_image->num_cols;
2127 	}
2128 
2129 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2130 
2131 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2132 	if (ret)
2133 		goto out_free;
2134 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2135 	if (ret)
2136 		goto out_free;
2137 
2138 	calc_out_tile_map(ctx);
2139 
2140 	find_seams(ctx, s_image, d_image);
2141 
2142 	ret = calc_tile_dimensions(ctx, s_image);
2143 	if (ret)
2144 		goto out_free;
2145 
2146 	ret = calc_tile_offsets(ctx, s_image);
2147 	if (ret)
2148 		goto out_free;
2149 
2150 	calc_tile_dimensions(ctx, d_image);
2151 	ret = calc_tile_offsets(ctx, d_image);
2152 	if (ret)
2153 		goto out_free;
2154 
2155 	calc_tile_resize_coefficients(ctx);
2156 
2157 	ret = ipu_ic_calc_csc(&ctx->csc,
2158 			s_image->base.pix.ycbcr_enc,
2159 			s_image->base.pix.quantization,
2160 			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2161 			d_image->base.pix.ycbcr_enc,
2162 			d_image->base.pix.quantization,
2163 			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2164 	if (ret)
2165 		goto out_free;
2166 
2167 	dump_format(ctx, s_image);
2168 	dump_format(ctx, d_image);
2169 
2170 	ctx->complete = complete;
2171 	ctx->complete_context = complete_context;
2172 
2173 	/*
2174 	 * Can we use double-buffering for this operation? If there is
2175 	 * only one tile (the whole image can be converted in a single
2176 	 * operation) there's no point in using double-buffering. Also,
2177 	 * the IPU's IDMAC channels allow only a single U and V plane
2178 	 * offset shared between both buffers, but these offsets change
2179 	 * for every tile, and therefore would have to be updated for
2180 	 * each buffer which is not possible. So double-buffering is
2181 	 * impossible when either the source or destination images are
2182 	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2183 	 * sized tiles or different resizing coefficients per tile
2184 	 * prevent double-buffering as well.
2185 	 */
2186 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2187 				 !s_image->fmt->planar &&
2188 				 !d_image->fmt->planar);
2189 	for (i = 1; i < ctx->num_tiles; i++) {
2190 		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2191 		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2192 		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2193 		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2194 			ctx->double_buffering = false;
2195 			break;
2196 		}
2197 	}
2198 	for (i = 1; i < ctx->in.num_cols; i++) {
2199 		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2200 			ctx->double_buffering = false;
2201 			break;
2202 		}
2203 	}
2204 	for (i = 1; i < ctx->in.num_rows; i++) {
2205 		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2206 			ctx->double_buffering = false;
2207 			break;
2208 		}
2209 	}
2210 
2211 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2212 		unsigned long intermediate_size = d_image->tile[0].size;
2213 
2214 		for (i = 1; i < ctx->num_tiles; i++) {
2215 			if (d_image->tile[i].size > intermediate_size)
2216 				intermediate_size = d_image->tile[i].size;
2217 		}
2218 
2219 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2220 				    intermediate_size);
2221 		if (ret)
2222 			goto out_free;
2223 		if (ctx->double_buffering) {
2224 			ret = alloc_dma_buf(priv,
2225 					    &ctx->rot_intermediate[1],
2226 					    intermediate_size);
2227 			if (ret)
2228 				goto out_free_dmabuf0;
2229 		}
2230 	}
2231 
2232 	spin_lock_irqsave(&chan->irqlock, flags);
2233 
2234 	get_res = list_empty(&chan->ctx_list);
2235 
2236 	list_add_tail(&ctx->list, &chan->ctx_list);
2237 
2238 	spin_unlock_irqrestore(&chan->irqlock, flags);
2239 
2240 	if (get_res) {
2241 		ret = get_ipu_resources(chan);
2242 		if (ret)
2243 			goto out_free_dmabuf1;
2244 	}
2245 
2246 	return ctx;
2247 
2248 out_free_dmabuf1:
2249 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2250 	spin_lock_irqsave(&chan->irqlock, flags);
2251 	list_del(&ctx->list);
2252 	spin_unlock_irqrestore(&chan->irqlock, flags);
2253 out_free_dmabuf0:
2254 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2255 out_free:
2256 	kfree(ctx);
2257 	return ERR_PTR(ret);
2258 }
2259 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2260 
2261 /*
2262  * Carry out a single image conversion run. Only the physaddr's of the input
2263  * and output image buffers are needed. The conversion context must have
2264  * been created previously with ipu_image_convert_prepare().
2265  */
2266 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2267 {
2268 	struct ipu_image_convert_chan *chan;
2269 	struct ipu_image_convert_priv *priv;
2270 	struct ipu_image_convert_ctx *ctx;
2271 	unsigned long flags;
2272 	int ret = 0;
2273 
2274 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2275 		return -EINVAL;
2276 
2277 	ctx = run->ctx;
2278 	chan = ctx->chan;
2279 	priv = chan->priv;
2280 
2281 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2282 		chan->ic_task, ctx, run);
2283 
2284 	INIT_LIST_HEAD(&run->list);
2285 
2286 	spin_lock_irqsave(&chan->irqlock, flags);
2287 
2288 	if (ctx->aborting) {
2289 		ret = -EIO;
2290 		goto unlock;
2291 	}
2292 
2293 	list_add_tail(&run->list, &chan->pending_q);
2294 
2295 	if (!chan->current_run) {
2296 		ret = do_run(run);
2297 		if (ret)
2298 			chan->current_run = NULL;
2299 	}
2300 unlock:
2301 	spin_unlock_irqrestore(&chan->irqlock, flags);
2302 	return ret;
2303 }
2304 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2305 
2306 /* Abort any active or pending conversions for this context */
2307 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2308 {
2309 	struct ipu_image_convert_chan *chan = ctx->chan;
2310 	struct ipu_image_convert_priv *priv = chan->priv;
2311 	struct ipu_image_convert_run *run, *active_run, *tmp;
2312 	unsigned long flags;
2313 	int run_count, ret;
2314 
2315 	spin_lock_irqsave(&chan->irqlock, flags);
2316 
2317 	/* move all remaining pending runs in this context to done_q */
2318 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2319 		if (run->ctx != ctx)
2320 			continue;
2321 		run->status = -EIO;
2322 		list_move_tail(&run->list, &chan->done_q);
2323 	}
2324 
2325 	run_count = get_run_count(ctx, &chan->done_q);
2326 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2327 		chan->current_run : NULL;
2328 
2329 	if (active_run)
2330 		reinit_completion(&ctx->aborted);
2331 
2332 	ctx->aborting = true;
2333 
2334 	spin_unlock_irqrestore(&chan->irqlock, flags);
2335 
2336 	if (!run_count && !active_run) {
2337 		dev_dbg(priv->ipu->dev,
2338 			"%s: task %u: no abort needed for ctx %p\n",
2339 			__func__, chan->ic_task, ctx);
2340 		return;
2341 	}
2342 
2343 	if (!active_run) {
2344 		empty_done_q(chan);
2345 		return;
2346 	}
2347 
2348 	dev_dbg(priv->ipu->dev,
2349 		"%s: task %u: wait for completion: %d runs\n",
2350 		__func__, chan->ic_task, run_count);
2351 
2352 	ret = wait_for_completion_timeout(&ctx->aborted,
2353 					  msecs_to_jiffies(10000));
2354 	if (ret == 0) {
2355 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2356 		force_abort(ctx);
2357 	}
2358 }
2359 
2360 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2361 {
2362 	__ipu_image_convert_abort(ctx);
2363 	ctx->aborting = false;
2364 }
2365 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2366 
2367 /* Unprepare image conversion context */
2368 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2369 {
2370 	struct ipu_image_convert_chan *chan = ctx->chan;
2371 	struct ipu_image_convert_priv *priv = chan->priv;
2372 	unsigned long flags;
2373 	bool put_res;
2374 
2375 	/* make sure no runs are hanging around */
2376 	__ipu_image_convert_abort(ctx);
2377 
2378 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2379 		chan->ic_task, ctx);
2380 
2381 	spin_lock_irqsave(&chan->irqlock, flags);
2382 
2383 	list_del(&ctx->list);
2384 
2385 	put_res = list_empty(&chan->ctx_list);
2386 
2387 	spin_unlock_irqrestore(&chan->irqlock, flags);
2388 
2389 	if (put_res)
2390 		release_ipu_resources(chan);
2391 
2392 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2393 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2394 
2395 	kfree(ctx);
2396 }
2397 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2398 
2399 /*
2400  * "Canned" asynchronous single image conversion. Allocates and returns
2401  * a new conversion run.  On successful return the caller must free the
2402  * run and call ipu_image_convert_unprepare() after conversion completes.
2403  */
2404 struct ipu_image_convert_run *
2405 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2406 		  struct ipu_image *in, struct ipu_image *out,
2407 		  enum ipu_rotate_mode rot_mode,
2408 		  ipu_image_convert_cb_t complete,
2409 		  void *complete_context)
2410 {
2411 	struct ipu_image_convert_ctx *ctx;
2412 	struct ipu_image_convert_run *run;
2413 	int ret;
2414 
2415 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2416 					complete, complete_context);
2417 	if (IS_ERR(ctx))
2418 		return ERR_CAST(ctx);
2419 
2420 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2421 	if (!run) {
2422 		ipu_image_convert_unprepare(ctx);
2423 		return ERR_PTR(-ENOMEM);
2424 	}
2425 
2426 	run->ctx = ctx;
2427 	run->in_phys = in->phys0;
2428 	run->out_phys = out->phys0;
2429 
2430 	ret = ipu_image_convert_queue(run);
2431 	if (ret) {
2432 		ipu_image_convert_unprepare(ctx);
2433 		kfree(run);
2434 		return ERR_PTR(ret);
2435 	}
2436 
2437 	return run;
2438 }
2439 EXPORT_SYMBOL_GPL(ipu_image_convert);
2440 
2441 /* "Canned" synchronous single image conversion */
2442 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2443 					void *data)
2444 {
2445 	struct completion *comp = data;
2446 
2447 	complete(comp);
2448 }
2449 
2450 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2451 			   struct ipu_image *in, struct ipu_image *out,
2452 			   enum ipu_rotate_mode rot_mode)
2453 {
2454 	struct ipu_image_convert_run *run;
2455 	struct completion comp;
2456 	int ret;
2457 
2458 	init_completion(&comp);
2459 
2460 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2461 				image_convert_sync_complete, &comp);
2462 	if (IS_ERR(run))
2463 		return PTR_ERR(run);
2464 
2465 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2466 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2467 
2468 	ipu_image_convert_unprepare(run->ctx);
2469 	kfree(run);
2470 
2471 	return ret;
2472 }
2473 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2474 
2475 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2476 {
2477 	struct ipu_image_convert_priv *priv;
2478 	int i;
2479 
2480 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2481 	if (!priv)
2482 		return -ENOMEM;
2483 
2484 	ipu->image_convert_priv = priv;
2485 	priv->ipu = ipu;
2486 
2487 	for (i = 0; i < IC_NUM_TASKS; i++) {
2488 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2489 
2490 		chan->ic_task = i;
2491 		chan->priv = priv;
2492 		chan->dma_ch = &image_convert_dma_chan[i];
2493 		chan->in_eof_irq = -1;
2494 		chan->rot_in_eof_irq = -1;
2495 		chan->out_eof_irq = -1;
2496 		chan->rot_out_eof_irq = -1;
2497 
2498 		spin_lock_init(&chan->irqlock);
2499 		INIT_LIST_HEAD(&chan->ctx_list);
2500 		INIT_LIST_HEAD(&chan->pending_q);
2501 		INIT_LIST_HEAD(&chan->done_q);
2502 	}
2503 
2504 	return 0;
2505 }
2506 
2507 void ipu_image_convert_exit(struct ipu_soc *ipu)
2508 {
2509 }
2510