xref: /linux/drivers/gpu/ipu-v3/ipu-image-convert.c (revision b0f84a84fff180718995b1269da2988e5b28be42)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12 
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62 
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66 
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71 
72 enum ipu_image_convert_type {
73 	IMAGE_CONVERT_IN = 0,
74 	IMAGE_CONVERT_OUT,
75 };
76 
77 struct ipu_image_convert_dma_buf {
78 	void          *virt;
79 	dma_addr_t    phys;
80 	unsigned long len;
81 };
82 
83 struct ipu_image_convert_dma_chan {
84 	int in;
85 	int out;
86 	int rot_in;
87 	int rot_out;
88 	int vdi_in_p;
89 	int vdi_in;
90 	int vdi_in_n;
91 };
92 
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 	u32 width;
96 	u32 height;
97 	u32 left;
98 	u32 top;
99 	/* size and strides are in bytes */
100 	u32 size;
101 	u32 stride;
102 	u32 rot_stride;
103 	/* start Y or packed offset of this tile */
104 	u32 offset;
105 	/* offset from start to tile in U plane, for planar formats */
106 	u32 u_off;
107 	/* offset from start to tile in V plane, for planar formats */
108 	u32 v_off;
109 };
110 
111 struct ipu_image_convert_image {
112 	struct ipu_image base;
113 	enum ipu_image_convert_type type;
114 
115 	const struct ipu_image_pixfmt *fmt;
116 	unsigned int stride;
117 
118 	/* # of rows (horizontal stripes) if dest height is > 1024 */
119 	unsigned int num_rows;
120 	/* # of columns (vertical stripes) if dest width is > 1024 */
121 	unsigned int num_cols;
122 
123 	struct ipu_image_tile tile[MAX_TILES];
124 };
125 
126 struct ipu_image_pixfmt {
127 	u32	fourcc;        /* V4L2 fourcc */
128 	int     bpp;           /* total bpp */
129 	int     uv_width_dec;  /* decimation in width for U/V planes */
130 	int     uv_height_dec; /* decimation in height for U/V planes */
131 	bool    planar;        /* planar format */
132 	bool    uv_swapped;    /* U and V planes are swapped */
133 	bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135 
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139 
140 struct ipu_image_convert_ctx {
141 	struct ipu_image_convert_chan *chan;
142 
143 	ipu_image_convert_cb_t complete;
144 	void *complete_context;
145 
146 	/* Source/destination image data and rotation mode */
147 	struct ipu_image_convert_image in;
148 	struct ipu_image_convert_image out;
149 	struct ipu_ic_csc csc;
150 	enum ipu_rotate_mode rot_mode;
151 	u32 downsize_coeff_h;
152 	u32 downsize_coeff_v;
153 	u32 image_resize_coeff_h;
154 	u32 image_resize_coeff_v;
155 	u32 resize_coeffs_h[MAX_STRIPES_W];
156 	u32 resize_coeffs_v[MAX_STRIPES_H];
157 
158 	/* intermediate buffer for rotation */
159 	struct ipu_image_convert_dma_buf rot_intermediate[2];
160 
161 	/* current buffer number for double buffering */
162 	int cur_buf_num;
163 
164 	bool aborting;
165 	struct completion aborted;
166 
167 	/* can we use double-buffering for this conversion operation? */
168 	bool double_buffering;
169 	/* num_rows * num_cols */
170 	unsigned int num_tiles;
171 	/* next tile to process */
172 	unsigned int next_tile;
173 	/* where to place converted tile in dest image */
174 	unsigned int out_tile_map[MAX_TILES];
175 
176 	struct list_head list;
177 };
178 
179 struct ipu_image_convert_chan {
180 	struct ipu_image_convert_priv *priv;
181 
182 	enum ipu_ic_task ic_task;
183 	const struct ipu_image_convert_dma_chan *dma_ch;
184 
185 	struct ipu_ic *ic;
186 	struct ipuv3_channel *in_chan;
187 	struct ipuv3_channel *out_chan;
188 	struct ipuv3_channel *rotation_in_chan;
189 	struct ipuv3_channel *rotation_out_chan;
190 
191 	/* the IPU end-of-frame irqs */
192 	int out_eof_irq;
193 	int rot_out_eof_irq;
194 
195 	spinlock_t irqlock;
196 
197 	/* list of convert contexts */
198 	struct list_head ctx_list;
199 	/* queue of conversion runs */
200 	struct list_head pending_q;
201 	/* queue of completed runs */
202 	struct list_head done_q;
203 
204 	/* the current conversion run */
205 	struct ipu_image_convert_run *current_run;
206 };
207 
208 struct ipu_image_convert_priv {
209 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
210 	struct ipu_soc *ipu;
211 };
212 
213 static const struct ipu_image_convert_dma_chan
214 image_convert_dma_chan[IC_NUM_TASKS] = {
215 	[IC_TASK_VIEWFINDER] = {
216 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
217 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
218 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
219 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
220 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
221 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
222 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
223 	},
224 	[IC_TASK_POST_PROCESSOR] = {
225 		.in = IPUV3_CHANNEL_MEM_IC_PP,
226 		.out = IPUV3_CHANNEL_IC_PP_MEM,
227 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
228 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
229 	},
230 };
231 
232 static const struct ipu_image_pixfmt image_convert_formats[] = {
233 	{
234 		.fourcc	= V4L2_PIX_FMT_RGB565,
235 		.bpp    = 16,
236 	}, {
237 		.fourcc	= V4L2_PIX_FMT_RGB24,
238 		.bpp    = 24,
239 	}, {
240 		.fourcc	= V4L2_PIX_FMT_BGR24,
241 		.bpp    = 24,
242 	}, {
243 		.fourcc	= V4L2_PIX_FMT_RGB32,
244 		.bpp    = 32,
245 	}, {
246 		.fourcc	= V4L2_PIX_FMT_BGR32,
247 		.bpp    = 32,
248 	}, {
249 		.fourcc	= V4L2_PIX_FMT_XRGB32,
250 		.bpp    = 32,
251 	}, {
252 		.fourcc	= V4L2_PIX_FMT_XBGR32,
253 		.bpp    = 32,
254 	}, {
255 		.fourcc	= V4L2_PIX_FMT_YUYV,
256 		.bpp    = 16,
257 		.uv_width_dec = 2,
258 		.uv_height_dec = 1,
259 	}, {
260 		.fourcc	= V4L2_PIX_FMT_UYVY,
261 		.bpp    = 16,
262 		.uv_width_dec = 2,
263 		.uv_height_dec = 1,
264 	}, {
265 		.fourcc	= V4L2_PIX_FMT_YUV420,
266 		.bpp    = 12,
267 		.planar = true,
268 		.uv_width_dec = 2,
269 		.uv_height_dec = 2,
270 	}, {
271 		.fourcc	= V4L2_PIX_FMT_YVU420,
272 		.bpp    = 12,
273 		.planar = true,
274 		.uv_width_dec = 2,
275 		.uv_height_dec = 2,
276 		.uv_swapped = true,
277 	}, {
278 		.fourcc = V4L2_PIX_FMT_NV12,
279 		.bpp    = 12,
280 		.planar = true,
281 		.uv_width_dec = 2,
282 		.uv_height_dec = 2,
283 		.uv_packed = true,
284 	}, {
285 		.fourcc = V4L2_PIX_FMT_YUV422P,
286 		.bpp    = 16,
287 		.planar = true,
288 		.uv_width_dec = 2,
289 		.uv_height_dec = 1,
290 	}, {
291 		.fourcc = V4L2_PIX_FMT_NV16,
292 		.bpp    = 16,
293 		.planar = true,
294 		.uv_width_dec = 2,
295 		.uv_height_dec = 1,
296 		.uv_packed = true,
297 	},
298 };
299 
300 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
301 {
302 	const struct ipu_image_pixfmt *ret = NULL;
303 	unsigned int i;
304 
305 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
306 		if (image_convert_formats[i].fourcc == fourcc) {
307 			ret = &image_convert_formats[i];
308 			break;
309 		}
310 	}
311 
312 	return ret;
313 }
314 
315 static void dump_format(struct ipu_image_convert_ctx *ctx,
316 			struct ipu_image_convert_image *ic_image)
317 {
318 	struct ipu_image_convert_chan *chan = ctx->chan;
319 	struct ipu_image_convert_priv *priv = chan->priv;
320 
321 	dev_dbg(priv->ipu->dev,
322 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
323 		chan->ic_task, ctx,
324 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
325 		ic_image->base.pix.width, ic_image->base.pix.height,
326 		ic_image->num_cols, ic_image->num_rows,
327 		ic_image->fmt->fourcc & 0xff,
328 		(ic_image->fmt->fourcc >> 8) & 0xff,
329 		(ic_image->fmt->fourcc >> 16) & 0xff,
330 		(ic_image->fmt->fourcc >> 24) & 0xff);
331 }
332 
333 int ipu_image_convert_enum_format(int index, u32 *fourcc)
334 {
335 	const struct ipu_image_pixfmt *fmt;
336 
337 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
338 		return -EINVAL;
339 
340 	/* Format found */
341 	fmt = &image_convert_formats[index];
342 	*fourcc = fmt->fourcc;
343 	return 0;
344 }
345 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
346 
347 static void free_dma_buf(struct ipu_image_convert_priv *priv,
348 			 struct ipu_image_convert_dma_buf *buf)
349 {
350 	if (buf->virt)
351 		dma_free_coherent(priv->ipu->dev,
352 				  buf->len, buf->virt, buf->phys);
353 	buf->virt = NULL;
354 	buf->phys = 0;
355 }
356 
357 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
358 			 struct ipu_image_convert_dma_buf *buf,
359 			 int size)
360 {
361 	buf->len = PAGE_ALIGN(size);
362 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
363 				       GFP_DMA | GFP_KERNEL);
364 	if (!buf->virt) {
365 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
366 		return -ENOMEM;
367 	}
368 
369 	return 0;
370 }
371 
372 static inline int num_stripes(int dim)
373 {
374 	return (dim - 1) / 1024 + 1;
375 }
376 
377 /*
378  * Calculate downsizing coefficients, which are the same for all tiles,
379  * and bilinear resizing coefficients, which are used to find the best
380  * seam positions.
381  */
382 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
383 					  struct ipu_image *in,
384 					  struct ipu_image *out)
385 {
386 	u32 downsized_width = in->rect.width;
387 	u32 downsized_height = in->rect.height;
388 	u32 downsize_coeff_v = 0;
389 	u32 downsize_coeff_h = 0;
390 	u32 resized_width = out->rect.width;
391 	u32 resized_height = out->rect.height;
392 	u32 resize_coeff_h;
393 	u32 resize_coeff_v;
394 
395 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
396 		resized_width = out->rect.height;
397 		resized_height = out->rect.width;
398 	}
399 
400 	/* Do not let invalid input lead to an endless loop below */
401 	if (WARN_ON(resized_width == 0 || resized_height == 0))
402 		return -EINVAL;
403 
404 	while (downsized_width >= resized_width * 2) {
405 		downsized_width >>= 1;
406 		downsize_coeff_h++;
407 	}
408 
409 	while (downsized_height >= resized_height * 2) {
410 		downsized_height >>= 1;
411 		downsize_coeff_v++;
412 	}
413 
414 	/*
415 	 * Calculate the bilinear resizing coefficients that could be used if
416 	 * we were converting with a single tile. The bottom right output pixel
417 	 * should sample as close as possible to the bottom right input pixel
418 	 * out of the decimator, but not overshoot it:
419 	 */
420 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
421 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
422 
423 	dev_dbg(ctx->chan->priv->ipu->dev,
424 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
425 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
426 		resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
427 
428 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
429 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
430 		return -EINVAL;
431 
432 	ctx->downsize_coeff_h = downsize_coeff_h;
433 	ctx->downsize_coeff_v = downsize_coeff_v;
434 	ctx->image_resize_coeff_h = resize_coeff_h;
435 	ctx->image_resize_coeff_v = resize_coeff_v;
436 
437 	return 0;
438 }
439 
440 #define round_closest(x, y) round_down((x) + (y)/2, (y))
441 
442 /*
443  * Find the best aligned seam position in the inverval [out_start, out_end].
444  * Rotation and image offsets are out of scope.
445  *
446  * @out_start: start of inverval, must be within 1024 pixels / lines
447  *             of out_end
448  * @out_end: end of interval, smaller than or equal to out_edge
449  * @in_edge: input right / bottom edge
450  * @out_edge: output right / bottom edge
451  * @in_align: input alignment, either horizontal 8-byte line start address
452  *            alignment, or pixel alignment due to image format
453  * @out_align: output alignment, either horizontal 8-byte line start address
454  *             alignment, or pixel alignment due to image format or rotator
455  *             block size
456  * @in_burst: horizontal input burst size in case of horizontal flip
457  * @out_burst: horizontal output burst size or rotator block size
458  * @downsize_coeff: downsizing section coefficient
459  * @resize_coeff: main processing section resizing coefficient
460  * @_in_seam: aligned input seam position return value
461  * @_out_seam: aligned output seam position return value
462  */
463 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
464 			   unsigned int out_start,
465 			   unsigned int out_end,
466 			   unsigned int in_edge,
467 			   unsigned int out_edge,
468 			   unsigned int in_align,
469 			   unsigned int out_align,
470 			   unsigned int in_burst,
471 			   unsigned int out_burst,
472 			   unsigned int downsize_coeff,
473 			   unsigned int resize_coeff,
474 			   u32 *_in_seam,
475 			   u32 *_out_seam)
476 {
477 	struct device *dev = ctx->chan->priv->ipu->dev;
478 	unsigned int out_pos;
479 	/* Input / output seam position candidates */
480 	unsigned int out_seam = 0;
481 	unsigned int in_seam = 0;
482 	unsigned int min_diff = UINT_MAX;
483 
484 	/*
485 	 * Output tiles must start at a multiple of 8 bytes horizontally and
486 	 * possibly at an even line horizontally depending on the pixel format.
487 	 * Only consider output aligned positions for the seam.
488 	 */
489 	out_start = round_up(out_start, out_align);
490 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
491 		unsigned int in_pos;
492 		unsigned int in_pos_aligned;
493 		unsigned int abs_diff;
494 
495 		/*
496 		 * Tiles in the right row / bottom column may not be allowed to
497 		 * overshoot horizontally / vertically. out_burst may be the
498 		 * actual DMA burst size, or the rotator block size.
499 		 */
500 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
501 			continue;
502 
503 		/*
504 		 * Input sample position, corresponding to out_pos, 19.13 fixed
505 		 * point.
506 		 */
507 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
508 		/*
509 		 * The closest input sample position that we could actually
510 		 * start the input tile at, 19.13 fixed point.
511 		 */
512 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
513 
514 		if ((in_burst > 1) &&
515 		    (in_edge - in_pos_aligned / 8192U) % in_burst)
516 			continue;
517 
518 		if (in_pos < in_pos_aligned)
519 			abs_diff = in_pos_aligned - in_pos;
520 		else
521 			abs_diff = in_pos - in_pos_aligned;
522 
523 		if (abs_diff < min_diff) {
524 			in_seam = in_pos_aligned;
525 			out_seam = out_pos;
526 			min_diff = abs_diff;
527 		}
528 	}
529 
530 	*_out_seam = out_seam;
531 	/* Convert 19.13 fixed point to integer seam position */
532 	*_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
533 
534 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
535 		__func__, out_seam, out_align, out_start, out_end,
536 		*_in_seam, in_align, min_diff / 8192,
537 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
538 }
539 
540 /*
541  * Tile left edges are required to be aligned to multiples of 8 bytes
542  * by the IDMAC.
543  */
544 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
545 {
546 	if (fmt->planar)
547 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
548 	else
549 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
550 }
551 
552 /*
553  * Tile top edge alignment is only limited by chroma subsampling.
554  */
555 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
556 {
557 	return fmt->uv_height_dec > 1 ? 2 : 1;
558 }
559 
560 static inline u32 tile_width_align(enum ipu_image_convert_type type,
561 				   const struct ipu_image_pixfmt *fmt,
562 				   enum ipu_rotate_mode rot_mode)
563 {
564 	if (type == IMAGE_CONVERT_IN) {
565 		/*
566 		 * The IC burst reads 8 pixels at a time. Reading beyond the
567 		 * end of the line is usually acceptable. Those pixels are
568 		 * ignored, unless the IC has to write the scaled line in
569 		 * reverse.
570 		 */
571 		return (!ipu_rot_mode_is_irt(rot_mode) &&
572 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
573 	}
574 
575 	/*
576 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
577 	 * formats to guarantee 8-byte aligned line start addresses in the
578 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
579 	 * for all other formats.
580 	 */
581 	return (ipu_rot_mode_is_irt(rot_mode) &&
582 		fmt->planar && !fmt->uv_packed) ?
583 		8 * fmt->uv_width_dec : 8;
584 }
585 
586 static inline u32 tile_height_align(enum ipu_image_convert_type type,
587 				    const struct ipu_image_pixfmt *fmt,
588 				    enum ipu_rotate_mode rot_mode)
589 {
590 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
591 		return 2;
592 
593 	/*
594 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
595 	 * formats to guarantee 8-byte aligned line start addresses in the
596 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
597 	 * for all other formats.
598 	 */
599 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
600 }
601 
602 /*
603  * Fill in left position and width and for all tiles in an input column, and
604  * for all corresponding output tiles. If the 90° rotator is used, the output
605  * tiles are in a row, and output tile top position and height are set.
606  */
607 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
608 			     unsigned int col,
609 			     struct ipu_image_convert_image *in,
610 			     unsigned int in_left, unsigned int in_width,
611 			     struct ipu_image_convert_image *out,
612 			     unsigned int out_left, unsigned int out_width)
613 {
614 	unsigned int row, tile_idx;
615 	struct ipu_image_tile *in_tile, *out_tile;
616 
617 	for (row = 0; row < in->num_rows; row++) {
618 		tile_idx = in->num_cols * row + col;
619 		in_tile = &in->tile[tile_idx];
620 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
621 
622 		in_tile->left = in_left;
623 		in_tile->width = in_width;
624 
625 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
626 			out_tile->top = out_left;
627 			out_tile->height = out_width;
628 		} else {
629 			out_tile->left = out_left;
630 			out_tile->width = out_width;
631 		}
632 	}
633 }
634 
635 /*
636  * Fill in top position and height and for all tiles in an input row, and
637  * for all corresponding output tiles. If the 90° rotator is used, the output
638  * tiles are in a column, and output tile left position and width are set.
639  */
640 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
641 			  struct ipu_image_convert_image *in,
642 			  unsigned int in_top, unsigned int in_height,
643 			  struct ipu_image_convert_image *out,
644 			  unsigned int out_top, unsigned int out_height)
645 {
646 	unsigned int col, tile_idx;
647 	struct ipu_image_tile *in_tile, *out_tile;
648 
649 	for (col = 0; col < in->num_cols; col++) {
650 		tile_idx = in->num_cols * row + col;
651 		in_tile = &in->tile[tile_idx];
652 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
653 
654 		in_tile->top = in_top;
655 		in_tile->height = in_height;
656 
657 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
658 			out_tile->left = out_top;
659 			out_tile->width = out_height;
660 		} else {
661 			out_tile->top = out_top;
662 			out_tile->height = out_height;
663 		}
664 	}
665 }
666 
667 /*
668  * Find the best horizontal and vertical seam positions to split into tiles.
669  * Minimize the fractional part of the input sampling position for the
670  * top / left pixels of each tile.
671  */
672 static void find_seams(struct ipu_image_convert_ctx *ctx,
673 		       struct ipu_image_convert_image *in,
674 		       struct ipu_image_convert_image *out)
675 {
676 	struct device *dev = ctx->chan->priv->ipu->dev;
677 	unsigned int resized_width = out->base.rect.width;
678 	unsigned int resized_height = out->base.rect.height;
679 	unsigned int col;
680 	unsigned int row;
681 	unsigned int in_left_align = tile_left_align(in->fmt);
682 	unsigned int in_top_align = tile_top_align(in->fmt);
683 	unsigned int out_left_align = tile_left_align(out->fmt);
684 	unsigned int out_top_align = tile_top_align(out->fmt);
685 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
686 							ctx->rot_mode);
687 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
688 							  ctx->rot_mode);
689 	unsigned int in_right = in->base.rect.width;
690 	unsigned int in_bottom = in->base.rect.height;
691 	unsigned int out_right = out->base.rect.width;
692 	unsigned int out_bottom = out->base.rect.height;
693 	unsigned int flipped_out_left;
694 	unsigned int flipped_out_top;
695 
696 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
697 		/* Switch width/height and align top left to IRT block size */
698 		resized_width = out->base.rect.height;
699 		resized_height = out->base.rect.width;
700 		out_left_align = out_height_align;
701 		out_top_align = out_width_align;
702 		out_width_align = out_left_align;
703 		out_height_align = out_top_align;
704 		out_right = out->base.rect.height;
705 		out_bottom = out->base.rect.width;
706 	}
707 
708 	for (col = in->num_cols - 1; col > 0; col--) {
709 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
710 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
711 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
712 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
713 		unsigned int out_start;
714 		unsigned int out_end;
715 		unsigned int in_left;
716 		unsigned int out_left;
717 
718 		/*
719 		 * Align input width to burst length if the scaling step flips
720 		 * horizontally.
721 		 */
722 
723 		/* Start within 1024 pixels of the right edge */
724 		out_start = max_t(int, 0, out_right - 1024);
725 		/* End before having to add more columns to the left */
726 		out_end = min_t(unsigned int, out_right, col * 1024);
727 
728 		find_best_seam(ctx, out_start, out_end,
729 			       in_right, out_right,
730 			       in_left_align, out_left_align,
731 			       allow_in_overshoot ? 1 : 8 /* burst length */,
732 			       allow_out_overshoot ? 1 : out_width_align,
733 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
734 			       &in_left, &out_left);
735 
736 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
737 			flipped_out_left = resized_width - out_right;
738 		else
739 			flipped_out_left = out_left;
740 
741 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
742 				 out, flipped_out_left, out_right - out_left);
743 
744 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
745 			in_left, in_right - in_left,
746 			flipped_out_left, out_right - out_left);
747 
748 		in_right = in_left;
749 		out_right = out_left;
750 	}
751 
752 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
753 			   resized_width - out_right : 0;
754 
755 	fill_tile_column(ctx, 0, in, 0, in_right,
756 			 out, flipped_out_left, out_right);
757 
758 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
759 		in_right, flipped_out_left, out_right);
760 
761 	for (row = in->num_rows - 1; row > 0; row--) {
762 		bool allow_overshoot = row < in->num_rows - 1;
763 		unsigned int out_start;
764 		unsigned int out_end;
765 		unsigned int in_top;
766 		unsigned int out_top;
767 
768 		/* Start within 1024 lines of the bottom edge */
769 		out_start = max_t(int, 0, out_bottom - 1024);
770 		/* End before having to add more rows above */
771 		out_end = min_t(unsigned int, out_bottom, row * 1024);
772 
773 		find_best_seam(ctx, out_start, out_end,
774 			       in_bottom, out_bottom,
775 			       in_top_align, out_top_align,
776 			       1, allow_overshoot ? 1 : out_height_align,
777 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
778 			       &in_top, &out_top);
779 
780 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
781 		    ipu_rot_mode_is_irt(ctx->rot_mode))
782 			flipped_out_top = resized_height - out_bottom;
783 		else
784 			flipped_out_top = out_top;
785 
786 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
787 			      out, flipped_out_top, out_bottom - out_top);
788 
789 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
790 			in_top, in_bottom - in_top,
791 			flipped_out_top, out_bottom - out_top);
792 
793 		in_bottom = in_top;
794 		out_bottom = out_top;
795 	}
796 
797 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
798 	    ipu_rot_mode_is_irt(ctx->rot_mode))
799 		flipped_out_top = resized_height - out_bottom;
800 	else
801 		flipped_out_top = 0;
802 
803 	fill_tile_row(ctx, 0, in, 0, in_bottom,
804 		      out, flipped_out_top, out_bottom);
805 
806 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
807 		in_bottom, flipped_out_top, out_bottom);
808 }
809 
810 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
811 				 struct ipu_image_convert_image *image)
812 {
813 	struct ipu_image_convert_chan *chan = ctx->chan;
814 	struct ipu_image_convert_priv *priv = chan->priv;
815 	unsigned int i;
816 
817 	for (i = 0; i < ctx->num_tiles; i++) {
818 		struct ipu_image_tile *tile;
819 		const unsigned int row = i / image->num_cols;
820 		const unsigned int col = i % image->num_cols;
821 
822 		if (image->type == IMAGE_CONVERT_OUT)
823 			tile = &image->tile[ctx->out_tile_map[i]];
824 		else
825 			tile = &image->tile[i];
826 
827 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
828 			tile->width;
829 
830 		if (image->fmt->planar) {
831 			tile->stride = tile->width;
832 			tile->rot_stride = tile->height;
833 		} else {
834 			tile->stride =
835 				(image->fmt->bpp * tile->width) >> 3;
836 			tile->rot_stride =
837 				(image->fmt->bpp * tile->height) >> 3;
838 		}
839 
840 		dev_dbg(priv->ipu->dev,
841 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
842 			chan->ic_task, ctx,
843 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
844 			row, col,
845 			tile->width, tile->height, tile->left, tile->top);
846 	}
847 }
848 
849 /*
850  * Use the rotation transformation to find the tile coordinates
851  * (row, col) of a tile in the destination frame that corresponds
852  * to the given tile coordinates of a source frame. The destination
853  * coordinate is then converted to a tile index.
854  */
855 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
856 				int src_row, int src_col)
857 {
858 	struct ipu_image_convert_chan *chan = ctx->chan;
859 	struct ipu_image_convert_priv *priv = chan->priv;
860 	struct ipu_image_convert_image *s_image = &ctx->in;
861 	struct ipu_image_convert_image *d_image = &ctx->out;
862 	int dst_row, dst_col;
863 
864 	/* with no rotation it's a 1:1 mapping */
865 	if (ctx->rot_mode == IPU_ROTATE_NONE)
866 		return src_row * s_image->num_cols + src_col;
867 
868 	/*
869 	 * before doing the transform, first we have to translate
870 	 * source row,col for an origin in the center of s_image
871 	 */
872 	src_row = src_row * 2 - (s_image->num_rows - 1);
873 	src_col = src_col * 2 - (s_image->num_cols - 1);
874 
875 	/* do the rotation transform */
876 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
877 		dst_col = -src_row;
878 		dst_row = src_col;
879 	} else {
880 		dst_col = src_col;
881 		dst_row = src_row;
882 	}
883 
884 	/* apply flip */
885 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
886 		dst_col = -dst_col;
887 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
888 		dst_row = -dst_row;
889 
890 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
891 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
892 
893 	/*
894 	 * finally translate dest row,col using an origin in upper
895 	 * left of d_image
896 	 */
897 	dst_row += d_image->num_rows - 1;
898 	dst_col += d_image->num_cols - 1;
899 	dst_row /= 2;
900 	dst_col /= 2;
901 
902 	return dst_row * d_image->num_cols + dst_col;
903 }
904 
905 /*
906  * Fill the out_tile_map[] with transformed destination tile indeces.
907  */
908 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
909 {
910 	struct ipu_image_convert_image *s_image = &ctx->in;
911 	unsigned int row, col, tile = 0;
912 
913 	for (row = 0; row < s_image->num_rows; row++) {
914 		for (col = 0; col < s_image->num_cols; col++) {
915 			ctx->out_tile_map[tile] =
916 				transform_tile_index(ctx, row, col);
917 			tile++;
918 		}
919 	}
920 }
921 
922 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
923 				    struct ipu_image_convert_image *image)
924 {
925 	struct ipu_image_convert_chan *chan = ctx->chan;
926 	struct ipu_image_convert_priv *priv = chan->priv;
927 	const struct ipu_image_pixfmt *fmt = image->fmt;
928 	unsigned int row, col, tile = 0;
929 	u32 H, top, y_stride, uv_stride;
930 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
931 	u32 y_row_off, y_col_off, y_off;
932 	u32 y_size, uv_size;
933 
934 	/* setup some convenience vars */
935 	H = image->base.pix.height;
936 
937 	y_stride = image->stride;
938 	uv_stride = y_stride / fmt->uv_width_dec;
939 	if (fmt->uv_packed)
940 		uv_stride *= 2;
941 
942 	y_size = H * y_stride;
943 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
944 
945 	for (row = 0; row < image->num_rows; row++) {
946 		top = image->tile[tile].top;
947 		y_row_off = top * y_stride;
948 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
949 
950 		for (col = 0; col < image->num_cols; col++) {
951 			y_col_off = image->tile[tile].left;
952 			uv_col_off = y_col_off / fmt->uv_width_dec;
953 			if (fmt->uv_packed)
954 				uv_col_off *= 2;
955 
956 			y_off = y_row_off + y_col_off;
957 			uv_off = uv_row_off + uv_col_off;
958 
959 			u_off = y_size - y_off + uv_off;
960 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
961 			if (fmt->uv_swapped) {
962 				tmp = u_off;
963 				u_off = v_off;
964 				v_off = tmp;
965 			}
966 
967 			image->tile[tile].offset = y_off;
968 			image->tile[tile].u_off = u_off;
969 			image->tile[tile++].v_off = v_off;
970 
971 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
972 				dev_err(priv->ipu->dev,
973 					"task %u: ctx %p: %s@[%d,%d]: "
974 					"y_off %08x, u_off %08x, v_off %08x\n",
975 					chan->ic_task, ctx,
976 					image->type == IMAGE_CONVERT_IN ?
977 					"Input" : "Output", row, col,
978 					y_off, u_off, v_off);
979 				return -EINVAL;
980 			}
981 		}
982 	}
983 
984 	return 0;
985 }
986 
987 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
988 				    struct ipu_image_convert_image *image)
989 {
990 	struct ipu_image_convert_chan *chan = ctx->chan;
991 	struct ipu_image_convert_priv *priv = chan->priv;
992 	const struct ipu_image_pixfmt *fmt = image->fmt;
993 	unsigned int row, col, tile = 0;
994 	u32 bpp, stride, offset;
995 	u32 row_off, col_off;
996 
997 	/* setup some convenience vars */
998 	stride = image->stride;
999 	bpp = fmt->bpp;
1000 
1001 	for (row = 0; row < image->num_rows; row++) {
1002 		row_off = image->tile[tile].top * stride;
1003 
1004 		for (col = 0; col < image->num_cols; col++) {
1005 			col_off = (image->tile[tile].left * bpp) >> 3;
1006 
1007 			offset = row_off + col_off;
1008 
1009 			image->tile[tile].offset = offset;
1010 			image->tile[tile].u_off = 0;
1011 			image->tile[tile++].v_off = 0;
1012 
1013 			if (offset & 0x7) {
1014 				dev_err(priv->ipu->dev,
1015 					"task %u: ctx %p: %s@[%d,%d]: "
1016 					"phys %08x\n",
1017 					chan->ic_task, ctx,
1018 					image->type == IMAGE_CONVERT_IN ?
1019 					"Input" : "Output", row, col,
1020 					row_off + col_off);
1021 				return -EINVAL;
1022 			}
1023 		}
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1030 			      struct ipu_image_convert_image *image)
1031 {
1032 	if (image->fmt->planar)
1033 		return calc_tile_offsets_planar(ctx, image);
1034 
1035 	return calc_tile_offsets_packed(ctx, image);
1036 }
1037 
1038 /*
1039  * Calculate the resizing ratio for the IC main processing section given input
1040  * size, fixed downsizing coefficient, and output size.
1041  * Either round to closest for the next tile's first pixel to minimize seams
1042  * and distortion (for all but right column / bottom row), or round down to
1043  * avoid sampling beyond the edges of the input image for this tile's last
1044  * pixel.
1045  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1046  */
1047 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1048 			     u32 output_size, bool allow_overshoot)
1049 {
1050 	u32 downsized = input_size >> downsize_coeff;
1051 
1052 	if (allow_overshoot)
1053 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1054 	else
1055 		return 8192 * (downsized - 1) / (output_size - 1);
1056 }
1057 
1058 /*
1059  * Slightly modify resize coefficients per tile to hide the bilinear
1060  * interpolator reset at tile borders, shifting the right / bottom edge
1061  * by up to a half input pixel. This removes noticeable seams between
1062  * tiles at higher upscaling factors.
1063  */
1064 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1065 {
1066 	struct ipu_image_convert_chan *chan = ctx->chan;
1067 	struct ipu_image_convert_priv *priv = chan->priv;
1068 	struct ipu_image_tile *in_tile, *out_tile;
1069 	unsigned int col, row, tile_idx;
1070 	unsigned int last_output;
1071 
1072 	for (col = 0; col < ctx->in.num_cols; col++) {
1073 		bool closest = (col < ctx->in.num_cols - 1) &&
1074 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1075 		u32 resized_width;
1076 		u32 resize_coeff_h;
1077 
1078 		tile_idx = col;
1079 		in_tile = &ctx->in.tile[tile_idx];
1080 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1081 
1082 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1083 			resized_width = out_tile->height;
1084 		else
1085 			resized_width = out_tile->width;
1086 
1087 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1088 						   ctx->downsize_coeff_h,
1089 						   resized_width, closest);
1090 
1091 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1092 			__func__, col, resize_coeff_h);
1093 
1094 
1095 		for (row = 0; row < ctx->in.num_rows; row++) {
1096 			tile_idx = row * ctx->in.num_cols + col;
1097 			in_tile = &ctx->in.tile[tile_idx];
1098 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1099 
1100 			/*
1101 			 * With the horizontal scaling factor known, round up
1102 			 * resized width (output width or height) to burst size.
1103 			 */
1104 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1105 				out_tile->height = round_up(resized_width, 8);
1106 			else
1107 				out_tile->width = round_up(resized_width, 8);
1108 
1109 			/*
1110 			 * Calculate input width from the last accessed input
1111 			 * pixel given resized width and scaling coefficients.
1112 			 * Round up to burst size.
1113 			 */
1114 			last_output = round_up(resized_width, 8) - 1;
1115 			if (closest)
1116 				last_output++;
1117 			in_tile->width = round_up(
1118 				(DIV_ROUND_UP(last_output * resize_coeff_h,
1119 					      8192) + 1)
1120 				<< ctx->downsize_coeff_h, 8);
1121 		}
1122 
1123 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1124 	}
1125 
1126 	for (row = 0; row < ctx->in.num_rows; row++) {
1127 		bool closest = (row < ctx->in.num_rows - 1) &&
1128 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1129 		u32 resized_height;
1130 		u32 resize_coeff_v;
1131 
1132 		tile_idx = row * ctx->in.num_cols;
1133 		in_tile = &ctx->in.tile[tile_idx];
1134 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1135 
1136 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1137 			resized_height = out_tile->width;
1138 		else
1139 			resized_height = out_tile->height;
1140 
1141 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1142 						   ctx->downsize_coeff_v,
1143 						   resized_height, closest);
1144 
1145 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1146 			__func__, row, resize_coeff_v);
1147 
1148 		for (col = 0; col < ctx->in.num_cols; col++) {
1149 			tile_idx = row * ctx->in.num_cols + col;
1150 			in_tile = &ctx->in.tile[tile_idx];
1151 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1152 
1153 			/*
1154 			 * With the vertical scaling factor known, round up
1155 			 * resized height (output width or height) to IDMAC
1156 			 * limitations.
1157 			 */
1158 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1159 				out_tile->width = round_up(resized_height, 2);
1160 			else
1161 				out_tile->height = round_up(resized_height, 2);
1162 
1163 			/*
1164 			 * Calculate input width from the last accessed input
1165 			 * pixel given resized height and scaling coefficients.
1166 			 * Align to IDMAC restrictions.
1167 			 */
1168 			last_output = round_up(resized_height, 2) - 1;
1169 			if (closest)
1170 				last_output++;
1171 			in_tile->height = round_up(
1172 				(DIV_ROUND_UP(last_output * resize_coeff_v,
1173 					      8192) + 1)
1174 				<< ctx->downsize_coeff_v, 2);
1175 		}
1176 
1177 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1178 	}
1179 }
1180 
1181 /*
1182  * return the number of runs in given queue (pending_q or done_q)
1183  * for this context. hold irqlock when calling.
1184  */
1185 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1186 			 struct list_head *q)
1187 {
1188 	struct ipu_image_convert_run *run;
1189 	int count = 0;
1190 
1191 	lockdep_assert_held(&ctx->chan->irqlock);
1192 
1193 	list_for_each_entry(run, q, list) {
1194 		if (run->ctx == ctx)
1195 			count++;
1196 	}
1197 
1198 	return count;
1199 }
1200 
1201 static void convert_stop(struct ipu_image_convert_run *run)
1202 {
1203 	struct ipu_image_convert_ctx *ctx = run->ctx;
1204 	struct ipu_image_convert_chan *chan = ctx->chan;
1205 	struct ipu_image_convert_priv *priv = chan->priv;
1206 
1207 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1208 		__func__, chan->ic_task, ctx, run);
1209 
1210 	/* disable IC tasks and the channels */
1211 	ipu_ic_task_disable(chan->ic);
1212 	ipu_idmac_disable_channel(chan->in_chan);
1213 	ipu_idmac_disable_channel(chan->out_chan);
1214 
1215 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1216 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1217 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1218 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1219 	}
1220 
1221 	ipu_ic_disable(chan->ic);
1222 }
1223 
1224 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1225 			       struct ipuv3_channel *channel,
1226 			       struct ipu_image_convert_image *image,
1227 			       enum ipu_rotate_mode rot_mode,
1228 			       bool rot_swap_width_height,
1229 			       unsigned int tile)
1230 {
1231 	struct ipu_image_convert_chan *chan = ctx->chan;
1232 	unsigned int burst_size;
1233 	u32 width, height, stride;
1234 	dma_addr_t addr0, addr1 = 0;
1235 	struct ipu_image tile_image;
1236 	unsigned int tile_idx[2];
1237 
1238 	if (image->type == IMAGE_CONVERT_OUT) {
1239 		tile_idx[0] = ctx->out_tile_map[tile];
1240 		tile_idx[1] = ctx->out_tile_map[1];
1241 	} else {
1242 		tile_idx[0] = tile;
1243 		tile_idx[1] = 1;
1244 	}
1245 
1246 	if (rot_swap_width_height) {
1247 		width = image->tile[tile_idx[0]].height;
1248 		height = image->tile[tile_idx[0]].width;
1249 		stride = image->tile[tile_idx[0]].rot_stride;
1250 		addr0 = ctx->rot_intermediate[0].phys;
1251 		if (ctx->double_buffering)
1252 			addr1 = ctx->rot_intermediate[1].phys;
1253 	} else {
1254 		width = image->tile[tile_idx[0]].width;
1255 		height = image->tile[tile_idx[0]].height;
1256 		stride = image->stride;
1257 		addr0 = image->base.phys0 +
1258 			image->tile[tile_idx[0]].offset;
1259 		if (ctx->double_buffering)
1260 			addr1 = image->base.phys0 +
1261 				image->tile[tile_idx[1]].offset;
1262 	}
1263 
1264 	ipu_cpmem_zero(channel);
1265 
1266 	memset(&tile_image, 0, sizeof(tile_image));
1267 	tile_image.pix.width = tile_image.rect.width = width;
1268 	tile_image.pix.height = tile_image.rect.height = height;
1269 	tile_image.pix.bytesperline = stride;
1270 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1271 	tile_image.phys0 = addr0;
1272 	tile_image.phys1 = addr1;
1273 	if (image->fmt->planar && !rot_swap_width_height) {
1274 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1275 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1276 	}
1277 
1278 	ipu_cpmem_set_image(channel, &tile_image);
1279 
1280 	if (rot_mode)
1281 		ipu_cpmem_set_rotation(channel, rot_mode);
1282 
1283 	/*
1284 	 * Skip writing U and V components to odd rows in the output
1285 	 * channels for planar 4:2:0.
1286 	 */
1287 	if ((channel == chan->out_chan ||
1288 	     channel == chan->rotation_out_chan) &&
1289 	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1290 		ipu_cpmem_skip_odd_chroma_rows(channel);
1291 
1292 	if (channel == chan->rotation_in_chan ||
1293 	    channel == chan->rotation_out_chan) {
1294 		burst_size = 8;
1295 		ipu_cpmem_set_block_mode(channel);
1296 	} else
1297 		burst_size = (width % 16) ? 8 : 16;
1298 
1299 	ipu_cpmem_set_burstsize(channel, burst_size);
1300 
1301 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1302 			      burst_size, rot_mode);
1303 
1304 	/*
1305 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1306 	 * only do this when there is no PRG present.
1307 	 */
1308 	if (!channel->ipu->prg_priv)
1309 		ipu_cpmem_set_axi_id(channel, 1);
1310 
1311 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1312 }
1313 
1314 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1315 {
1316 	struct ipu_image_convert_ctx *ctx = run->ctx;
1317 	struct ipu_image_convert_chan *chan = ctx->chan;
1318 	struct ipu_image_convert_priv *priv = chan->priv;
1319 	struct ipu_image_convert_image *s_image = &ctx->in;
1320 	struct ipu_image_convert_image *d_image = &ctx->out;
1321 	unsigned int dst_tile = ctx->out_tile_map[tile];
1322 	unsigned int dest_width, dest_height;
1323 	unsigned int col, row;
1324 	u32 rsc;
1325 	int ret;
1326 
1327 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1328 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1329 
1330 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1331 		/* swap width/height for resizer */
1332 		dest_width = d_image->tile[dst_tile].height;
1333 		dest_height = d_image->tile[dst_tile].width;
1334 	} else {
1335 		dest_width = d_image->tile[dst_tile].width;
1336 		dest_height = d_image->tile[dst_tile].height;
1337 	}
1338 
1339 	row = tile / s_image->num_cols;
1340 	col = tile % s_image->num_cols;
1341 
1342 	rsc =  (ctx->downsize_coeff_v << 30) |
1343 	       (ctx->resize_coeffs_v[row] << 16) |
1344 	       (ctx->downsize_coeff_h << 14) |
1345 	       (ctx->resize_coeffs_h[col]);
1346 
1347 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1348 		__func__, s_image->tile[tile].width,
1349 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1350 
1351 	/* setup the IC resizer and CSC */
1352 	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1353 				   s_image->tile[tile].width,
1354 				   s_image->tile[tile].height,
1355 				   dest_width,
1356 				   dest_height,
1357 				   rsc);
1358 	if (ret) {
1359 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1360 		return ret;
1361 	}
1362 
1363 	/* init the source MEM-->IC PP IDMAC channel */
1364 	init_idmac_channel(ctx, chan->in_chan, s_image,
1365 			   IPU_ROTATE_NONE, false, tile);
1366 
1367 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1368 		/* init the IC PP-->MEM IDMAC channel */
1369 		init_idmac_channel(ctx, chan->out_chan, d_image,
1370 				   IPU_ROTATE_NONE, true, tile);
1371 
1372 		/* init the MEM-->IC PP ROT IDMAC channel */
1373 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1374 				   ctx->rot_mode, true, tile);
1375 
1376 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1377 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1378 				   IPU_ROTATE_NONE, false, tile);
1379 
1380 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1381 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1382 	} else {
1383 		/* init the destination IC PP-->MEM IDMAC channel */
1384 		init_idmac_channel(ctx, chan->out_chan, d_image,
1385 				   ctx->rot_mode, false, tile);
1386 	}
1387 
1388 	/* enable the IC */
1389 	ipu_ic_enable(chan->ic);
1390 
1391 	/* set buffers ready */
1392 	ipu_idmac_select_buffer(chan->in_chan, 0);
1393 	ipu_idmac_select_buffer(chan->out_chan, 0);
1394 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1395 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1396 	if (ctx->double_buffering) {
1397 		ipu_idmac_select_buffer(chan->in_chan, 1);
1398 		ipu_idmac_select_buffer(chan->out_chan, 1);
1399 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1400 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1401 	}
1402 
1403 	/* enable the channels! */
1404 	ipu_idmac_enable_channel(chan->in_chan);
1405 	ipu_idmac_enable_channel(chan->out_chan);
1406 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1407 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1408 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1409 	}
1410 
1411 	ipu_ic_task_enable(chan->ic);
1412 
1413 	ipu_cpmem_dump(chan->in_chan);
1414 	ipu_cpmem_dump(chan->out_chan);
1415 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1416 		ipu_cpmem_dump(chan->rotation_in_chan);
1417 		ipu_cpmem_dump(chan->rotation_out_chan);
1418 	}
1419 
1420 	ipu_dump(priv->ipu);
1421 
1422 	return 0;
1423 }
1424 
1425 /* hold irqlock when calling */
1426 static int do_run(struct ipu_image_convert_run *run)
1427 {
1428 	struct ipu_image_convert_ctx *ctx = run->ctx;
1429 	struct ipu_image_convert_chan *chan = ctx->chan;
1430 
1431 	lockdep_assert_held(&chan->irqlock);
1432 
1433 	ctx->in.base.phys0 = run->in_phys;
1434 	ctx->out.base.phys0 = run->out_phys;
1435 
1436 	ctx->cur_buf_num = 0;
1437 	ctx->next_tile = 1;
1438 
1439 	/* remove run from pending_q and set as current */
1440 	list_del(&run->list);
1441 	chan->current_run = run;
1442 
1443 	return convert_start(run, 0);
1444 }
1445 
1446 /* hold irqlock when calling */
1447 static void run_next(struct ipu_image_convert_chan *chan)
1448 {
1449 	struct ipu_image_convert_priv *priv = chan->priv;
1450 	struct ipu_image_convert_run *run, *tmp;
1451 	int ret;
1452 
1453 	lockdep_assert_held(&chan->irqlock);
1454 
1455 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1456 		/* skip contexts that are aborting */
1457 		if (run->ctx->aborting) {
1458 			dev_dbg(priv->ipu->dev,
1459 				"%s: task %u: skipping aborting ctx %p run %p\n",
1460 				__func__, chan->ic_task, run->ctx, run);
1461 			continue;
1462 		}
1463 
1464 		ret = do_run(run);
1465 		if (!ret)
1466 			break;
1467 
1468 		/*
1469 		 * something went wrong with start, add the run
1470 		 * to done q and continue to the next run in the
1471 		 * pending q.
1472 		 */
1473 		run->status = ret;
1474 		list_add_tail(&run->list, &chan->done_q);
1475 		chan->current_run = NULL;
1476 	}
1477 }
1478 
1479 static void empty_done_q(struct ipu_image_convert_chan *chan)
1480 {
1481 	struct ipu_image_convert_priv *priv = chan->priv;
1482 	struct ipu_image_convert_run *run;
1483 	unsigned long flags;
1484 
1485 	spin_lock_irqsave(&chan->irqlock, flags);
1486 
1487 	while (!list_empty(&chan->done_q)) {
1488 		run = list_entry(chan->done_q.next,
1489 				 struct ipu_image_convert_run,
1490 				 list);
1491 
1492 		list_del(&run->list);
1493 
1494 		dev_dbg(priv->ipu->dev,
1495 			"%s: task %u: completing ctx %p run %p with %d\n",
1496 			__func__, chan->ic_task, run->ctx, run, run->status);
1497 
1498 		/* call the completion callback and free the run */
1499 		spin_unlock_irqrestore(&chan->irqlock, flags);
1500 		run->ctx->complete(run, run->ctx->complete_context);
1501 		spin_lock_irqsave(&chan->irqlock, flags);
1502 	}
1503 
1504 	spin_unlock_irqrestore(&chan->irqlock, flags);
1505 }
1506 
1507 /*
1508  * the bottom half thread clears out the done_q, calling the
1509  * completion handler for each.
1510  */
1511 static irqreturn_t do_bh(int irq, void *dev_id)
1512 {
1513 	struct ipu_image_convert_chan *chan = dev_id;
1514 	struct ipu_image_convert_priv *priv = chan->priv;
1515 	struct ipu_image_convert_ctx *ctx;
1516 	unsigned long flags;
1517 
1518 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1519 		chan->ic_task);
1520 
1521 	empty_done_q(chan);
1522 
1523 	spin_lock_irqsave(&chan->irqlock, flags);
1524 
1525 	/*
1526 	 * the done_q is cleared out, signal any contexts
1527 	 * that are aborting that abort can complete.
1528 	 */
1529 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1530 		if (ctx->aborting) {
1531 			dev_dbg(priv->ipu->dev,
1532 				"%s: task %u: signaling abort for ctx %p\n",
1533 				__func__, chan->ic_task, ctx);
1534 			complete_all(&ctx->aborted);
1535 		}
1536 	}
1537 
1538 	spin_unlock_irqrestore(&chan->irqlock, flags);
1539 
1540 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1541 		chan->ic_task);
1542 
1543 	return IRQ_HANDLED;
1544 }
1545 
1546 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1547 {
1548 	unsigned int cur_tile = ctx->next_tile - 1;
1549 	unsigned int next_tile = ctx->next_tile;
1550 
1551 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1552 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1553 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1554 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1555 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1556 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1557 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1558 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1559 		return true;
1560 
1561 	return false;
1562 }
1563 
1564 /* hold irqlock when calling */
1565 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1566 {
1567 	struct ipu_image_convert_ctx *ctx = run->ctx;
1568 	struct ipu_image_convert_chan *chan = ctx->chan;
1569 	struct ipu_image_tile *src_tile, *dst_tile;
1570 	struct ipu_image_convert_image *s_image = &ctx->in;
1571 	struct ipu_image_convert_image *d_image = &ctx->out;
1572 	struct ipuv3_channel *outch;
1573 	unsigned int dst_idx;
1574 
1575 	lockdep_assert_held(&chan->irqlock);
1576 
1577 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1578 		chan->rotation_out_chan : chan->out_chan;
1579 
1580 	/*
1581 	 * It is difficult to stop the channel DMA before the channels
1582 	 * enter the paused state. Without double-buffering the channels
1583 	 * are always in a paused state when the EOF irq occurs, so it
1584 	 * is safe to stop the channels now. For double-buffering we
1585 	 * just ignore the abort until the operation completes, when it
1586 	 * is safe to shut down.
1587 	 */
1588 	if (ctx->aborting && !ctx->double_buffering) {
1589 		convert_stop(run);
1590 		run->status = -EIO;
1591 		goto done;
1592 	}
1593 
1594 	if (ctx->next_tile == ctx->num_tiles) {
1595 		/*
1596 		 * the conversion is complete
1597 		 */
1598 		convert_stop(run);
1599 		run->status = 0;
1600 		goto done;
1601 	}
1602 
1603 	/*
1604 	 * not done, place the next tile buffers.
1605 	 */
1606 	if (!ctx->double_buffering) {
1607 		if (ic_settings_changed(ctx)) {
1608 			convert_stop(run);
1609 			convert_start(run, ctx->next_tile);
1610 		} else {
1611 			src_tile = &s_image->tile[ctx->next_tile];
1612 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1613 			dst_tile = &d_image->tile[dst_idx];
1614 
1615 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1616 					     s_image->base.phys0 +
1617 					     src_tile->offset);
1618 			ipu_cpmem_set_buffer(outch, 0,
1619 					     d_image->base.phys0 +
1620 					     dst_tile->offset);
1621 			if (s_image->fmt->planar)
1622 				ipu_cpmem_set_uv_offset(chan->in_chan,
1623 							src_tile->u_off,
1624 							src_tile->v_off);
1625 			if (d_image->fmt->planar)
1626 				ipu_cpmem_set_uv_offset(outch,
1627 							dst_tile->u_off,
1628 							dst_tile->v_off);
1629 
1630 			ipu_idmac_select_buffer(chan->in_chan, 0);
1631 			ipu_idmac_select_buffer(outch, 0);
1632 		}
1633 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1634 
1635 		src_tile = &s_image->tile[ctx->next_tile + 1];
1636 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1637 		dst_tile = &d_image->tile[dst_idx];
1638 
1639 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1640 				     s_image->base.phys0 + src_tile->offset);
1641 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1642 				     d_image->base.phys0 + dst_tile->offset);
1643 
1644 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1645 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1646 
1647 		ctx->cur_buf_num ^= 1;
1648 	}
1649 
1650 	ctx->next_tile++;
1651 	return IRQ_HANDLED;
1652 done:
1653 	list_add_tail(&run->list, &chan->done_q);
1654 	chan->current_run = NULL;
1655 	run_next(chan);
1656 	return IRQ_WAKE_THREAD;
1657 }
1658 
1659 static irqreturn_t norotate_irq(int irq, void *data)
1660 {
1661 	struct ipu_image_convert_chan *chan = data;
1662 	struct ipu_image_convert_ctx *ctx;
1663 	struct ipu_image_convert_run *run;
1664 	unsigned long flags;
1665 	irqreturn_t ret;
1666 
1667 	spin_lock_irqsave(&chan->irqlock, flags);
1668 
1669 	/* get current run and its context */
1670 	run = chan->current_run;
1671 	if (!run) {
1672 		ret = IRQ_NONE;
1673 		goto out;
1674 	}
1675 
1676 	ctx = run->ctx;
1677 
1678 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1679 		/* this is a rotation operation, just ignore */
1680 		spin_unlock_irqrestore(&chan->irqlock, flags);
1681 		return IRQ_HANDLED;
1682 	}
1683 
1684 	ret = do_irq(run);
1685 out:
1686 	spin_unlock_irqrestore(&chan->irqlock, flags);
1687 	return ret;
1688 }
1689 
1690 static irqreturn_t rotate_irq(int irq, void *data)
1691 {
1692 	struct ipu_image_convert_chan *chan = data;
1693 	struct ipu_image_convert_priv *priv = chan->priv;
1694 	struct ipu_image_convert_ctx *ctx;
1695 	struct ipu_image_convert_run *run;
1696 	unsigned long flags;
1697 	irqreturn_t ret;
1698 
1699 	spin_lock_irqsave(&chan->irqlock, flags);
1700 
1701 	/* get current run and its context */
1702 	run = chan->current_run;
1703 	if (!run) {
1704 		ret = IRQ_NONE;
1705 		goto out;
1706 	}
1707 
1708 	ctx = run->ctx;
1709 
1710 	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1711 		/* this was NOT a rotation operation, shouldn't happen */
1712 		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1713 		spin_unlock_irqrestore(&chan->irqlock, flags);
1714 		return IRQ_HANDLED;
1715 	}
1716 
1717 	ret = do_irq(run);
1718 out:
1719 	spin_unlock_irqrestore(&chan->irqlock, flags);
1720 	return ret;
1721 }
1722 
1723 /*
1724  * try to force the completion of runs for this ctx. Called when
1725  * abort wait times out in ipu_image_convert_abort().
1726  */
1727 static void force_abort(struct ipu_image_convert_ctx *ctx)
1728 {
1729 	struct ipu_image_convert_chan *chan = ctx->chan;
1730 	struct ipu_image_convert_run *run;
1731 	unsigned long flags;
1732 
1733 	spin_lock_irqsave(&chan->irqlock, flags);
1734 
1735 	run = chan->current_run;
1736 	if (run && run->ctx == ctx) {
1737 		convert_stop(run);
1738 		run->status = -EIO;
1739 		list_add_tail(&run->list, &chan->done_q);
1740 		chan->current_run = NULL;
1741 		run_next(chan);
1742 	}
1743 
1744 	spin_unlock_irqrestore(&chan->irqlock, flags);
1745 
1746 	empty_done_q(chan);
1747 }
1748 
1749 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1750 {
1751 	if (chan->out_eof_irq >= 0)
1752 		free_irq(chan->out_eof_irq, chan);
1753 	if (chan->rot_out_eof_irq >= 0)
1754 		free_irq(chan->rot_out_eof_irq, chan);
1755 
1756 	if (!IS_ERR_OR_NULL(chan->in_chan))
1757 		ipu_idmac_put(chan->in_chan);
1758 	if (!IS_ERR_OR_NULL(chan->out_chan))
1759 		ipu_idmac_put(chan->out_chan);
1760 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1761 		ipu_idmac_put(chan->rotation_in_chan);
1762 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1763 		ipu_idmac_put(chan->rotation_out_chan);
1764 	if (!IS_ERR_OR_NULL(chan->ic))
1765 		ipu_ic_put(chan->ic);
1766 
1767 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1768 		chan->rotation_out_chan = NULL;
1769 	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1770 }
1771 
1772 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1773 {
1774 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1775 	struct ipu_image_convert_priv *priv = chan->priv;
1776 	int ret;
1777 
1778 	/* get IC */
1779 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1780 	if (IS_ERR(chan->ic)) {
1781 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1782 		ret = PTR_ERR(chan->ic);
1783 		goto err;
1784 	}
1785 
1786 	/* get IDMAC channels */
1787 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1788 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1789 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1790 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1791 		ret = -EBUSY;
1792 		goto err;
1793 	}
1794 
1795 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1796 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1797 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1798 		dev_err(priv->ipu->dev,
1799 			"could not acquire idmac rotation channels\n");
1800 		ret = -EBUSY;
1801 		goto err;
1802 	}
1803 
1804 	/* acquire the EOF interrupts */
1805 	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1806 						  chan->out_chan,
1807 						  IPU_IRQ_EOF);
1808 
1809 	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1810 				   0, "ipu-ic", chan);
1811 	if (ret < 0) {
1812 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1813 			 chan->out_eof_irq);
1814 		chan->out_eof_irq = -1;
1815 		goto err;
1816 	}
1817 
1818 	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1819 						     chan->rotation_out_chan,
1820 						     IPU_IRQ_EOF);
1821 
1822 	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1823 				   0, "ipu-ic", chan);
1824 	if (ret < 0) {
1825 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1826 			chan->rot_out_eof_irq);
1827 		chan->rot_out_eof_irq = -1;
1828 		goto err;
1829 	}
1830 
1831 	return 0;
1832 err:
1833 	release_ipu_resources(chan);
1834 	return ret;
1835 }
1836 
1837 static int fill_image(struct ipu_image_convert_ctx *ctx,
1838 		      struct ipu_image_convert_image *ic_image,
1839 		      struct ipu_image *image,
1840 		      enum ipu_image_convert_type type)
1841 {
1842 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1843 
1844 	ic_image->base = *image;
1845 	ic_image->type = type;
1846 
1847 	ic_image->fmt = get_format(image->pix.pixelformat);
1848 	if (!ic_image->fmt) {
1849 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1850 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1851 		return -EINVAL;
1852 	}
1853 
1854 	if (ic_image->fmt->planar)
1855 		ic_image->stride = ic_image->base.pix.width;
1856 	else
1857 		ic_image->stride  = ic_image->base.pix.bytesperline;
1858 
1859 	return 0;
1860 }
1861 
1862 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1863 static unsigned int clamp_align(unsigned int x, unsigned int min,
1864 				unsigned int max, unsigned int align)
1865 {
1866 	/* Bits that must be zero to be aligned */
1867 	unsigned int mask = ~((1 << align) - 1);
1868 
1869 	/* Clamp to aligned min and max */
1870 	x = clamp(x, (min + ~mask) & mask, max & mask);
1871 
1872 	/* Round to nearest aligned value */
1873 	if (align)
1874 		x = (x + (1 << (align - 1))) & mask;
1875 
1876 	return x;
1877 }
1878 
1879 /* Adjusts input/output images to IPU restrictions */
1880 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1881 			      enum ipu_rotate_mode rot_mode)
1882 {
1883 	const struct ipu_image_pixfmt *infmt, *outfmt;
1884 	u32 w_align, h_align;
1885 
1886 	infmt = get_format(in->pix.pixelformat);
1887 	outfmt = get_format(out->pix.pixelformat);
1888 
1889 	/* set some default pixel formats if needed */
1890 	if (!infmt) {
1891 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1892 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1893 	}
1894 	if (!outfmt) {
1895 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1896 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1897 	}
1898 
1899 	/* image converter does not handle fields */
1900 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1901 
1902 	/* resizer cannot downsize more than 4:1 */
1903 	if (ipu_rot_mode_is_irt(rot_mode)) {
1904 		out->pix.height = max_t(__u32, out->pix.height,
1905 					in->pix.width / 4);
1906 		out->pix.width = max_t(__u32, out->pix.width,
1907 				       in->pix.height / 4);
1908 	} else {
1909 		out->pix.width = max_t(__u32, out->pix.width,
1910 				       in->pix.width / 4);
1911 		out->pix.height = max_t(__u32, out->pix.height,
1912 					in->pix.height / 4);
1913 	}
1914 
1915 	/* align input width/height */
1916 	w_align = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, rot_mode));
1917 	h_align = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, rot_mode));
1918 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align);
1919 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align);
1920 
1921 	/* align output width/height */
1922 	w_align = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, rot_mode));
1923 	h_align = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, rot_mode));
1924 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align);
1925 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align);
1926 
1927 	/* set input/output strides and image sizes */
1928 	in->pix.bytesperline = infmt->planar ?
1929 		clamp_align(in->pix.width, 2 << w_align, MAX_W, w_align) :
1930 		clamp_align((in->pix.width * infmt->bpp) >> 3,
1931 			    2 << w_align, MAX_W, w_align);
1932 	in->pix.sizeimage = infmt->planar ?
1933 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1934 		in->pix.height * in->pix.bytesperline;
1935 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
1936 		(out->pix.width * outfmt->bpp) >> 3;
1937 	out->pix.sizeimage = outfmt->planar ?
1938 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
1939 		out->pix.height * out->pix.bytesperline;
1940 }
1941 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1942 
1943 /*
1944  * this is used by ipu_image_convert_prepare() to verify set input and
1945  * output images are valid before starting the conversion. Clients can
1946  * also call it before calling ipu_image_convert_prepare().
1947  */
1948 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1949 			     enum ipu_rotate_mode rot_mode)
1950 {
1951 	struct ipu_image testin, testout;
1952 
1953 	testin = *in;
1954 	testout = *out;
1955 
1956 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
1957 
1958 	if (testin.pix.width != in->pix.width ||
1959 	    testin.pix.height != in->pix.height ||
1960 	    testout.pix.width != out->pix.width ||
1961 	    testout.pix.height != out->pix.height)
1962 		return -EINVAL;
1963 
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1967 
1968 /*
1969  * Call ipu_image_convert_prepare() to prepare for the conversion of
1970  * given images and rotation mode. Returns a new conversion context.
1971  */
1972 struct ipu_image_convert_ctx *
1973 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1974 			  struct ipu_image *in, struct ipu_image *out,
1975 			  enum ipu_rotate_mode rot_mode,
1976 			  ipu_image_convert_cb_t complete,
1977 			  void *complete_context)
1978 {
1979 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1980 	struct ipu_image_convert_image *s_image, *d_image;
1981 	struct ipu_image_convert_chan *chan;
1982 	struct ipu_image_convert_ctx *ctx;
1983 	unsigned long flags;
1984 	unsigned int i;
1985 	bool get_res;
1986 	int ret;
1987 
1988 	if (!in || !out || !complete ||
1989 	    (ic_task != IC_TASK_VIEWFINDER &&
1990 	     ic_task != IC_TASK_POST_PROCESSOR))
1991 		return ERR_PTR(-EINVAL);
1992 
1993 	/* verify the in/out images before continuing */
1994 	ret = ipu_image_convert_verify(in, out, rot_mode);
1995 	if (ret) {
1996 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
1997 			__func__);
1998 		return ERR_PTR(ret);
1999 	}
2000 
2001 	chan = &priv->chan[ic_task];
2002 
2003 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2004 	if (!ctx)
2005 		return ERR_PTR(-ENOMEM);
2006 
2007 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2008 		chan->ic_task, ctx);
2009 
2010 	ctx->chan = chan;
2011 	init_completion(&ctx->aborted);
2012 
2013 	s_image = &ctx->in;
2014 	d_image = &ctx->out;
2015 
2016 	/* set tiling and rotation */
2017 	d_image->num_rows = num_stripes(out->pix.height);
2018 	d_image->num_cols = num_stripes(out->pix.width);
2019 	if (ipu_rot_mode_is_irt(rot_mode)) {
2020 		s_image->num_rows = d_image->num_cols;
2021 		s_image->num_cols = d_image->num_rows;
2022 	} else {
2023 		s_image->num_rows = d_image->num_rows;
2024 		s_image->num_cols = d_image->num_cols;
2025 	}
2026 
2027 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2028 	ctx->rot_mode = rot_mode;
2029 
2030 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2031 	if (ret)
2032 		goto out_free;
2033 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2034 	if (ret)
2035 		goto out_free;
2036 
2037 	ret = calc_image_resize_coefficients(ctx, in, out);
2038 	if (ret)
2039 		goto out_free;
2040 
2041 	calc_out_tile_map(ctx);
2042 
2043 	find_seams(ctx, s_image, d_image);
2044 
2045 	calc_tile_dimensions(ctx, s_image);
2046 	ret = calc_tile_offsets(ctx, s_image);
2047 	if (ret)
2048 		goto out_free;
2049 
2050 	calc_tile_dimensions(ctx, d_image);
2051 	ret = calc_tile_offsets(ctx, d_image);
2052 	if (ret)
2053 		goto out_free;
2054 
2055 	calc_tile_resize_coefficients(ctx);
2056 
2057 	ret = ipu_ic_calc_csc(&ctx->csc,
2058 			s_image->base.pix.ycbcr_enc,
2059 			s_image->base.pix.quantization,
2060 			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2061 			d_image->base.pix.ycbcr_enc,
2062 			d_image->base.pix.quantization,
2063 			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2064 	if (ret)
2065 		goto out_free;
2066 
2067 	dump_format(ctx, s_image);
2068 	dump_format(ctx, d_image);
2069 
2070 	ctx->complete = complete;
2071 	ctx->complete_context = complete_context;
2072 
2073 	/*
2074 	 * Can we use double-buffering for this operation? If there is
2075 	 * only one tile (the whole image can be converted in a single
2076 	 * operation) there's no point in using double-buffering. Also,
2077 	 * the IPU's IDMAC channels allow only a single U and V plane
2078 	 * offset shared between both buffers, but these offsets change
2079 	 * for every tile, and therefore would have to be updated for
2080 	 * each buffer which is not possible. So double-buffering is
2081 	 * impossible when either the source or destination images are
2082 	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2083 	 * sized tiles or different resizing coefficients per tile
2084 	 * prevent double-buffering as well.
2085 	 */
2086 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2087 				 !s_image->fmt->planar &&
2088 				 !d_image->fmt->planar);
2089 	for (i = 1; i < ctx->num_tiles; i++) {
2090 		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2091 		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2092 		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2093 		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2094 			ctx->double_buffering = false;
2095 			break;
2096 		}
2097 	}
2098 	for (i = 1; i < ctx->in.num_cols; i++) {
2099 		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2100 			ctx->double_buffering = false;
2101 			break;
2102 		}
2103 	}
2104 	for (i = 1; i < ctx->in.num_rows; i++) {
2105 		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2106 			ctx->double_buffering = false;
2107 			break;
2108 		}
2109 	}
2110 
2111 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2112 		unsigned long intermediate_size = d_image->tile[0].size;
2113 
2114 		for (i = 1; i < ctx->num_tiles; i++) {
2115 			if (d_image->tile[i].size > intermediate_size)
2116 				intermediate_size = d_image->tile[i].size;
2117 		}
2118 
2119 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2120 				    intermediate_size);
2121 		if (ret)
2122 			goto out_free;
2123 		if (ctx->double_buffering) {
2124 			ret = alloc_dma_buf(priv,
2125 					    &ctx->rot_intermediate[1],
2126 					    intermediate_size);
2127 			if (ret)
2128 				goto out_free_dmabuf0;
2129 		}
2130 	}
2131 
2132 	spin_lock_irqsave(&chan->irqlock, flags);
2133 
2134 	get_res = list_empty(&chan->ctx_list);
2135 
2136 	list_add_tail(&ctx->list, &chan->ctx_list);
2137 
2138 	spin_unlock_irqrestore(&chan->irqlock, flags);
2139 
2140 	if (get_res) {
2141 		ret = get_ipu_resources(chan);
2142 		if (ret)
2143 			goto out_free_dmabuf1;
2144 	}
2145 
2146 	return ctx;
2147 
2148 out_free_dmabuf1:
2149 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2150 	spin_lock_irqsave(&chan->irqlock, flags);
2151 	list_del(&ctx->list);
2152 	spin_unlock_irqrestore(&chan->irqlock, flags);
2153 out_free_dmabuf0:
2154 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2155 out_free:
2156 	kfree(ctx);
2157 	return ERR_PTR(ret);
2158 }
2159 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2160 
2161 /*
2162  * Carry out a single image conversion run. Only the physaddr's of the input
2163  * and output image buffers are needed. The conversion context must have
2164  * been created previously with ipu_image_convert_prepare().
2165  */
2166 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2167 {
2168 	struct ipu_image_convert_chan *chan;
2169 	struct ipu_image_convert_priv *priv;
2170 	struct ipu_image_convert_ctx *ctx;
2171 	unsigned long flags;
2172 	int ret = 0;
2173 
2174 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2175 		return -EINVAL;
2176 
2177 	ctx = run->ctx;
2178 	chan = ctx->chan;
2179 	priv = chan->priv;
2180 
2181 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2182 		chan->ic_task, ctx, run);
2183 
2184 	INIT_LIST_HEAD(&run->list);
2185 
2186 	spin_lock_irqsave(&chan->irqlock, flags);
2187 
2188 	if (ctx->aborting) {
2189 		ret = -EIO;
2190 		goto unlock;
2191 	}
2192 
2193 	list_add_tail(&run->list, &chan->pending_q);
2194 
2195 	if (!chan->current_run) {
2196 		ret = do_run(run);
2197 		if (ret)
2198 			chan->current_run = NULL;
2199 	}
2200 unlock:
2201 	spin_unlock_irqrestore(&chan->irqlock, flags);
2202 	return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2205 
2206 /* Abort any active or pending conversions for this context */
2207 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2208 {
2209 	struct ipu_image_convert_chan *chan = ctx->chan;
2210 	struct ipu_image_convert_priv *priv = chan->priv;
2211 	struct ipu_image_convert_run *run, *active_run, *tmp;
2212 	unsigned long flags;
2213 	int run_count, ret;
2214 
2215 	spin_lock_irqsave(&chan->irqlock, flags);
2216 
2217 	/* move all remaining pending runs in this context to done_q */
2218 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2219 		if (run->ctx != ctx)
2220 			continue;
2221 		run->status = -EIO;
2222 		list_move_tail(&run->list, &chan->done_q);
2223 	}
2224 
2225 	run_count = get_run_count(ctx, &chan->done_q);
2226 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2227 		chan->current_run : NULL;
2228 
2229 	if (active_run)
2230 		reinit_completion(&ctx->aborted);
2231 
2232 	ctx->aborting = true;
2233 
2234 	spin_unlock_irqrestore(&chan->irqlock, flags);
2235 
2236 	if (!run_count && !active_run) {
2237 		dev_dbg(priv->ipu->dev,
2238 			"%s: task %u: no abort needed for ctx %p\n",
2239 			__func__, chan->ic_task, ctx);
2240 		return;
2241 	}
2242 
2243 	if (!active_run) {
2244 		empty_done_q(chan);
2245 		return;
2246 	}
2247 
2248 	dev_dbg(priv->ipu->dev,
2249 		"%s: task %u: wait for completion: %d runs\n",
2250 		__func__, chan->ic_task, run_count);
2251 
2252 	ret = wait_for_completion_timeout(&ctx->aborted,
2253 					  msecs_to_jiffies(10000));
2254 	if (ret == 0) {
2255 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2256 		force_abort(ctx);
2257 	}
2258 }
2259 
2260 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2261 {
2262 	__ipu_image_convert_abort(ctx);
2263 	ctx->aborting = false;
2264 }
2265 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2266 
2267 /* Unprepare image conversion context */
2268 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2269 {
2270 	struct ipu_image_convert_chan *chan = ctx->chan;
2271 	struct ipu_image_convert_priv *priv = chan->priv;
2272 	unsigned long flags;
2273 	bool put_res;
2274 
2275 	/* make sure no runs are hanging around */
2276 	__ipu_image_convert_abort(ctx);
2277 
2278 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2279 		chan->ic_task, ctx);
2280 
2281 	spin_lock_irqsave(&chan->irqlock, flags);
2282 
2283 	list_del(&ctx->list);
2284 
2285 	put_res = list_empty(&chan->ctx_list);
2286 
2287 	spin_unlock_irqrestore(&chan->irqlock, flags);
2288 
2289 	if (put_res)
2290 		release_ipu_resources(chan);
2291 
2292 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2293 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2294 
2295 	kfree(ctx);
2296 }
2297 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2298 
2299 /*
2300  * "Canned" asynchronous single image conversion. Allocates and returns
2301  * a new conversion run.  On successful return the caller must free the
2302  * run and call ipu_image_convert_unprepare() after conversion completes.
2303  */
2304 struct ipu_image_convert_run *
2305 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2306 		  struct ipu_image *in, struct ipu_image *out,
2307 		  enum ipu_rotate_mode rot_mode,
2308 		  ipu_image_convert_cb_t complete,
2309 		  void *complete_context)
2310 {
2311 	struct ipu_image_convert_ctx *ctx;
2312 	struct ipu_image_convert_run *run;
2313 	int ret;
2314 
2315 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2316 					complete, complete_context);
2317 	if (IS_ERR(ctx))
2318 		return ERR_CAST(ctx);
2319 
2320 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2321 	if (!run) {
2322 		ipu_image_convert_unprepare(ctx);
2323 		return ERR_PTR(-ENOMEM);
2324 	}
2325 
2326 	run->ctx = ctx;
2327 	run->in_phys = in->phys0;
2328 	run->out_phys = out->phys0;
2329 
2330 	ret = ipu_image_convert_queue(run);
2331 	if (ret) {
2332 		ipu_image_convert_unprepare(ctx);
2333 		kfree(run);
2334 		return ERR_PTR(ret);
2335 	}
2336 
2337 	return run;
2338 }
2339 EXPORT_SYMBOL_GPL(ipu_image_convert);
2340 
2341 /* "Canned" synchronous single image conversion */
2342 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2343 					void *data)
2344 {
2345 	struct completion *comp = data;
2346 
2347 	complete(comp);
2348 }
2349 
2350 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2351 			   struct ipu_image *in, struct ipu_image *out,
2352 			   enum ipu_rotate_mode rot_mode)
2353 {
2354 	struct ipu_image_convert_run *run;
2355 	struct completion comp;
2356 	int ret;
2357 
2358 	init_completion(&comp);
2359 
2360 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2361 				image_convert_sync_complete, &comp);
2362 	if (IS_ERR(run))
2363 		return PTR_ERR(run);
2364 
2365 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2366 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2367 
2368 	ipu_image_convert_unprepare(run->ctx);
2369 	kfree(run);
2370 
2371 	return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2374 
2375 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2376 {
2377 	struct ipu_image_convert_priv *priv;
2378 	int i;
2379 
2380 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2381 	if (!priv)
2382 		return -ENOMEM;
2383 
2384 	ipu->image_convert_priv = priv;
2385 	priv->ipu = ipu;
2386 
2387 	for (i = 0; i < IC_NUM_TASKS; i++) {
2388 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2389 
2390 		chan->ic_task = i;
2391 		chan->priv = priv;
2392 		chan->dma_ch = &image_convert_dma_chan[i];
2393 		chan->out_eof_irq = -1;
2394 		chan->rot_out_eof_irq = -1;
2395 
2396 		spin_lock_init(&chan->irqlock);
2397 		INIT_LIST_HEAD(&chan->ctx_list);
2398 		INIT_LIST_HEAD(&chan->pending_q);
2399 		INIT_LIST_HEAD(&chan->done_q);
2400 	}
2401 
2402 	return 0;
2403 }
2404 
2405 void ipu_image_convert_exit(struct ipu_soc *ipu)
2406 {
2407 }
2408