xref: /linux/drivers/gpu/ipu-v3/ipu-image-convert.c (revision 9fb29c734f9e98adc1f2f3c4629fe487cb93f2dd)
1 /*
2  * Copyright (C) 2012-2016 Mentor Graphics Inc.
3  *
4  * Queued image conversion support, with tiling and rotation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or (at your
9  * option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14  * for more details.
15  */
16 
17 #include <linux/interrupt.h>
18 #include <linux/dma-mapping.h>
19 #include <video/imx-ipu-image-convert.h>
20 #include "ipu-prv.h"
21 
22 /*
23  * The IC Resizer has a restriction that the output frame from the
24  * resizer must be 1024 or less in both width (pixels) and height
25  * (lines).
26  *
27  * The image converter attempts to split up a conversion when
28  * the desired output (converted) frame resolution exceeds the
29  * IC resizer limit of 1024 in either dimension.
30  *
31  * If either dimension of the output frame exceeds the limit, the
32  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
33  * of 4*4 or 16 tiles. A conversion is then carried out for each
34  * tile (but taking care to pass the full frame stride length to
35  * the DMA channel's parameter memory!). IDMA double-buffering is used
36  * to convert each tile back-to-back when possible (see note below
37  * when double_buffering boolean is set).
38  *
39  * Note that the input frame must be split up into the same number
40  * of tiles as the output frame:
41  *
42  *                       +---------+-----+
43  *   +-----+---+         |  A      | B   |
44  *   | A   | B |         |         |     |
45  *   +-----+---+   -->   +---------+-----+
46  *   | C   | D |         |  C      | D   |
47  *   +-----+---+         |         |     |
48  *                       +---------+-----+
49  *
50  * Clockwise 90° rotations are handled by first rescaling into a
51  * reusable temporary tile buffer and then rotating with the 8x8
52  * block rotator, writing to the correct destination:
53  *
54  *                                         +-----+-----+
55  *                                         |     |     |
56  *   +-----+---+         +---------+       | C   | A   |
57  *   | A   | B |         | A,B, |  |       |     |     |
58  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
59  *   | C   | D |         +---------+       +-----+-----+
60  *   +-----+---+                           | D   | B   |
61  *                                         |     |     |
62  *                                         +-----+-----+
63  *
64  * If the 8x8 block rotator is used, horizontal or vertical flipping
65  * is done during the rotation step, otherwise flipping is done
66  * during the scaling step.
67  * With rotation or flipping, tile order changes between input and
68  * output image. Tiles are numbered row major from top left to bottom
69  * right for both input and output image.
70  */
71 
72 #define MAX_STRIPES_W    4
73 #define MAX_STRIPES_H    4
74 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
75 
76 #define MIN_W     16
77 #define MIN_H     8
78 #define MAX_W     4096
79 #define MAX_H     4096
80 
81 enum ipu_image_convert_type {
82 	IMAGE_CONVERT_IN = 0,
83 	IMAGE_CONVERT_OUT,
84 };
85 
86 struct ipu_image_convert_dma_buf {
87 	void          *virt;
88 	dma_addr_t    phys;
89 	unsigned long len;
90 };
91 
92 struct ipu_image_convert_dma_chan {
93 	int in;
94 	int out;
95 	int rot_in;
96 	int rot_out;
97 	int vdi_in_p;
98 	int vdi_in;
99 	int vdi_in_n;
100 };
101 
102 /* dimensions of one tile */
103 struct ipu_image_tile {
104 	u32 width;
105 	u32 height;
106 	u32 left;
107 	u32 top;
108 	/* size and strides are in bytes */
109 	u32 size;
110 	u32 stride;
111 	u32 rot_stride;
112 	/* start Y or packed offset of this tile */
113 	u32 offset;
114 	/* offset from start to tile in U plane, for planar formats */
115 	u32 u_off;
116 	/* offset from start to tile in V plane, for planar formats */
117 	u32 v_off;
118 };
119 
120 struct ipu_image_convert_image {
121 	struct ipu_image base;
122 	enum ipu_image_convert_type type;
123 
124 	const struct ipu_image_pixfmt *fmt;
125 	unsigned int stride;
126 
127 	/* # of rows (horizontal stripes) if dest height is > 1024 */
128 	unsigned int num_rows;
129 	/* # of columns (vertical stripes) if dest width is > 1024 */
130 	unsigned int num_cols;
131 
132 	struct ipu_image_tile tile[MAX_TILES];
133 };
134 
135 struct ipu_image_pixfmt {
136 	u32	fourcc;        /* V4L2 fourcc */
137 	int     bpp;           /* total bpp */
138 	int     uv_width_dec;  /* decimation in width for U/V planes */
139 	int     uv_height_dec; /* decimation in height for U/V planes */
140 	bool    planar;        /* planar format */
141 	bool    uv_swapped;    /* U and V planes are swapped */
142 	bool    uv_packed;     /* partial planar (U and V in same plane) */
143 };
144 
145 struct ipu_image_convert_ctx;
146 struct ipu_image_convert_chan;
147 struct ipu_image_convert_priv;
148 
149 struct ipu_image_convert_ctx {
150 	struct ipu_image_convert_chan *chan;
151 
152 	ipu_image_convert_cb_t complete;
153 	void *complete_context;
154 
155 	/* Source/destination image data and rotation mode */
156 	struct ipu_image_convert_image in;
157 	struct ipu_image_convert_image out;
158 	enum ipu_rotate_mode rot_mode;
159 	u32 downsize_coeff_h;
160 	u32 downsize_coeff_v;
161 	u32 image_resize_coeff_h;
162 	u32 image_resize_coeff_v;
163 	u32 resize_coeffs_h[MAX_STRIPES_W];
164 	u32 resize_coeffs_v[MAX_STRIPES_H];
165 
166 	/* intermediate buffer for rotation */
167 	struct ipu_image_convert_dma_buf rot_intermediate[2];
168 
169 	/* current buffer number for double buffering */
170 	int cur_buf_num;
171 
172 	bool aborting;
173 	struct completion aborted;
174 
175 	/* can we use double-buffering for this conversion operation? */
176 	bool double_buffering;
177 	/* num_rows * num_cols */
178 	unsigned int num_tiles;
179 	/* next tile to process */
180 	unsigned int next_tile;
181 	/* where to place converted tile in dest image */
182 	unsigned int out_tile_map[MAX_TILES];
183 
184 	struct list_head list;
185 };
186 
187 struct ipu_image_convert_chan {
188 	struct ipu_image_convert_priv *priv;
189 
190 	enum ipu_ic_task ic_task;
191 	const struct ipu_image_convert_dma_chan *dma_ch;
192 
193 	struct ipu_ic *ic;
194 	struct ipuv3_channel *in_chan;
195 	struct ipuv3_channel *out_chan;
196 	struct ipuv3_channel *rotation_in_chan;
197 	struct ipuv3_channel *rotation_out_chan;
198 
199 	/* the IPU end-of-frame irqs */
200 	int out_eof_irq;
201 	int rot_out_eof_irq;
202 
203 	spinlock_t irqlock;
204 
205 	/* list of convert contexts */
206 	struct list_head ctx_list;
207 	/* queue of conversion runs */
208 	struct list_head pending_q;
209 	/* queue of completed runs */
210 	struct list_head done_q;
211 
212 	/* the current conversion run */
213 	struct ipu_image_convert_run *current_run;
214 };
215 
216 struct ipu_image_convert_priv {
217 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
218 	struct ipu_soc *ipu;
219 };
220 
221 static const struct ipu_image_convert_dma_chan
222 image_convert_dma_chan[IC_NUM_TASKS] = {
223 	[IC_TASK_VIEWFINDER] = {
224 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
225 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
226 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
227 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
228 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
229 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
230 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
231 	},
232 	[IC_TASK_POST_PROCESSOR] = {
233 		.in = IPUV3_CHANNEL_MEM_IC_PP,
234 		.out = IPUV3_CHANNEL_IC_PP_MEM,
235 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
236 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
237 	},
238 };
239 
240 static const struct ipu_image_pixfmt image_convert_formats[] = {
241 	{
242 		.fourcc	= V4L2_PIX_FMT_RGB565,
243 		.bpp    = 16,
244 	}, {
245 		.fourcc	= V4L2_PIX_FMT_RGB24,
246 		.bpp    = 24,
247 	}, {
248 		.fourcc	= V4L2_PIX_FMT_BGR24,
249 		.bpp    = 24,
250 	}, {
251 		.fourcc	= V4L2_PIX_FMT_RGB32,
252 		.bpp    = 32,
253 	}, {
254 		.fourcc	= V4L2_PIX_FMT_BGR32,
255 		.bpp    = 32,
256 	}, {
257 		.fourcc	= V4L2_PIX_FMT_XRGB32,
258 		.bpp    = 32,
259 	}, {
260 		.fourcc	= V4L2_PIX_FMT_XBGR32,
261 		.bpp    = 32,
262 	}, {
263 		.fourcc	= V4L2_PIX_FMT_YUYV,
264 		.bpp    = 16,
265 		.uv_width_dec = 2,
266 		.uv_height_dec = 1,
267 	}, {
268 		.fourcc	= V4L2_PIX_FMT_UYVY,
269 		.bpp    = 16,
270 		.uv_width_dec = 2,
271 		.uv_height_dec = 1,
272 	}, {
273 		.fourcc	= V4L2_PIX_FMT_YUV420,
274 		.bpp    = 12,
275 		.planar = true,
276 		.uv_width_dec = 2,
277 		.uv_height_dec = 2,
278 	}, {
279 		.fourcc	= V4L2_PIX_FMT_YVU420,
280 		.bpp    = 12,
281 		.planar = true,
282 		.uv_width_dec = 2,
283 		.uv_height_dec = 2,
284 		.uv_swapped = true,
285 	}, {
286 		.fourcc = V4L2_PIX_FMT_NV12,
287 		.bpp    = 12,
288 		.planar = true,
289 		.uv_width_dec = 2,
290 		.uv_height_dec = 2,
291 		.uv_packed = true,
292 	}, {
293 		.fourcc = V4L2_PIX_FMT_YUV422P,
294 		.bpp    = 16,
295 		.planar = true,
296 		.uv_width_dec = 2,
297 		.uv_height_dec = 1,
298 	}, {
299 		.fourcc = V4L2_PIX_FMT_NV16,
300 		.bpp    = 16,
301 		.planar = true,
302 		.uv_width_dec = 2,
303 		.uv_height_dec = 1,
304 		.uv_packed = true,
305 	},
306 };
307 
308 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
309 {
310 	const struct ipu_image_pixfmt *ret = NULL;
311 	unsigned int i;
312 
313 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
314 		if (image_convert_formats[i].fourcc == fourcc) {
315 			ret = &image_convert_formats[i];
316 			break;
317 		}
318 	}
319 
320 	return ret;
321 }
322 
323 static void dump_format(struct ipu_image_convert_ctx *ctx,
324 			struct ipu_image_convert_image *ic_image)
325 {
326 	struct ipu_image_convert_chan *chan = ctx->chan;
327 	struct ipu_image_convert_priv *priv = chan->priv;
328 
329 	dev_dbg(priv->ipu->dev,
330 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
331 		chan->ic_task, ctx,
332 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
333 		ic_image->base.pix.width, ic_image->base.pix.height,
334 		ic_image->num_cols, ic_image->num_rows,
335 		ic_image->fmt->fourcc & 0xff,
336 		(ic_image->fmt->fourcc >> 8) & 0xff,
337 		(ic_image->fmt->fourcc >> 16) & 0xff,
338 		(ic_image->fmt->fourcc >> 24) & 0xff);
339 }
340 
341 int ipu_image_convert_enum_format(int index, u32 *fourcc)
342 {
343 	const struct ipu_image_pixfmt *fmt;
344 
345 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
346 		return -EINVAL;
347 
348 	/* Format found */
349 	fmt = &image_convert_formats[index];
350 	*fourcc = fmt->fourcc;
351 	return 0;
352 }
353 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
354 
355 static void free_dma_buf(struct ipu_image_convert_priv *priv,
356 			 struct ipu_image_convert_dma_buf *buf)
357 {
358 	if (buf->virt)
359 		dma_free_coherent(priv->ipu->dev,
360 				  buf->len, buf->virt, buf->phys);
361 	buf->virt = NULL;
362 	buf->phys = 0;
363 }
364 
365 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
366 			 struct ipu_image_convert_dma_buf *buf,
367 			 int size)
368 {
369 	buf->len = PAGE_ALIGN(size);
370 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
371 				       GFP_DMA | GFP_KERNEL);
372 	if (!buf->virt) {
373 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
374 		return -ENOMEM;
375 	}
376 
377 	return 0;
378 }
379 
380 static inline int num_stripes(int dim)
381 {
382 	return (dim - 1) / 1024 + 1;
383 }
384 
385 /*
386  * Calculate downsizing coefficients, which are the same for all tiles,
387  * and bilinear resizing coefficients, which are used to find the best
388  * seam positions.
389  */
390 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
391 					  struct ipu_image *in,
392 					  struct ipu_image *out)
393 {
394 	u32 downsized_width = in->rect.width;
395 	u32 downsized_height = in->rect.height;
396 	u32 downsize_coeff_v = 0;
397 	u32 downsize_coeff_h = 0;
398 	u32 resized_width = out->rect.width;
399 	u32 resized_height = out->rect.height;
400 	u32 resize_coeff_h;
401 	u32 resize_coeff_v;
402 
403 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
404 		resized_width = out->rect.height;
405 		resized_height = out->rect.width;
406 	}
407 
408 	/* Do not let invalid input lead to an endless loop below */
409 	if (WARN_ON(resized_width == 0 || resized_height == 0))
410 		return -EINVAL;
411 
412 	while (downsized_width >= resized_width * 2) {
413 		downsized_width >>= 1;
414 		downsize_coeff_h++;
415 	}
416 
417 	while (downsized_height >= resized_height * 2) {
418 		downsized_height >>= 1;
419 		downsize_coeff_v++;
420 	}
421 
422 	/*
423 	 * Calculate the bilinear resizing coefficients that could be used if
424 	 * we were converting with a single tile. The bottom right output pixel
425 	 * should sample as close as possible to the bottom right input pixel
426 	 * out of the decimator, but not overshoot it:
427 	 */
428 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
429 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
430 
431 	dev_dbg(ctx->chan->priv->ipu->dev,
432 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
433 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
434 		resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows);
435 
436 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
437 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
438 		return -EINVAL;
439 
440 	ctx->downsize_coeff_h = downsize_coeff_h;
441 	ctx->downsize_coeff_v = downsize_coeff_v;
442 	ctx->image_resize_coeff_h = resize_coeff_h;
443 	ctx->image_resize_coeff_v = resize_coeff_v;
444 
445 	return 0;
446 }
447 
448 #define round_closest(x, y) round_down((x) + (y)/2, (y))
449 
450 /*
451  * Find the best aligned seam position in the inverval [out_start, out_end].
452  * Rotation and image offsets are out of scope.
453  *
454  * @out_start: start of inverval, must be within 1024 pixels / lines
455  *             of out_end
456  * @out_end: end of interval, smaller than or equal to out_edge
457  * @in_edge: input right / bottom edge
458  * @out_edge: output right / bottom edge
459  * @in_align: input alignment, either horizontal 8-byte line start address
460  *            alignment, or pixel alignment due to image format
461  * @out_align: output alignment, either horizontal 8-byte line start address
462  *             alignment, or pixel alignment due to image format or rotator
463  *             block size
464  * @in_burst: horizontal input burst size in case of horizontal flip
465  * @out_burst: horizontal output burst size or rotator block size
466  * @downsize_coeff: downsizing section coefficient
467  * @resize_coeff: main processing section resizing coefficient
468  * @_in_seam: aligned input seam position return value
469  * @_out_seam: aligned output seam position return value
470  */
471 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
472 			   unsigned int out_start,
473 			   unsigned int out_end,
474 			   unsigned int in_edge,
475 			   unsigned int out_edge,
476 			   unsigned int in_align,
477 			   unsigned int out_align,
478 			   unsigned int in_burst,
479 			   unsigned int out_burst,
480 			   unsigned int downsize_coeff,
481 			   unsigned int resize_coeff,
482 			   u32 *_in_seam,
483 			   u32 *_out_seam)
484 {
485 	struct device *dev = ctx->chan->priv->ipu->dev;
486 	unsigned int out_pos;
487 	/* Input / output seam position candidates */
488 	unsigned int out_seam = 0;
489 	unsigned int in_seam = 0;
490 	unsigned int min_diff = UINT_MAX;
491 
492 	/*
493 	 * Output tiles must start at a multiple of 8 bytes horizontally and
494 	 * possibly at an even line horizontally depending on the pixel format.
495 	 * Only consider output aligned positions for the seam.
496 	 */
497 	out_start = round_up(out_start, out_align);
498 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
499 		unsigned int in_pos;
500 		unsigned int in_pos_aligned;
501 		unsigned int abs_diff;
502 
503 		/*
504 		 * Tiles in the right row / bottom column may not be allowed to
505 		 * overshoot horizontally / vertically. out_burst may be the
506 		 * actual DMA burst size, or the rotator block size.
507 		 */
508 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
509 			continue;
510 
511 		/*
512 		 * Input sample position, corresponding to out_pos, 19.13 fixed
513 		 * point.
514 		 */
515 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
516 		/*
517 		 * The closest input sample position that we could actually
518 		 * start the input tile at, 19.13 fixed point.
519 		 */
520 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
521 
522 		if ((in_burst > 1) &&
523 		    (in_edge - in_pos_aligned / 8192U) % in_burst)
524 			continue;
525 
526 		if (in_pos < in_pos_aligned)
527 			abs_diff = in_pos_aligned - in_pos;
528 		else
529 			abs_diff = in_pos - in_pos_aligned;
530 
531 		if (abs_diff < min_diff) {
532 			in_seam = in_pos_aligned;
533 			out_seam = out_pos;
534 			min_diff = abs_diff;
535 		}
536 	}
537 
538 	*_out_seam = out_seam;
539 	/* Convert 19.13 fixed point to integer seam position */
540 	*_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
541 
542 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n",
543 		__func__, out_seam, out_align, out_start, out_end,
544 		*_in_seam, in_align, min_diff / 8192,
545 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
546 }
547 
548 /*
549  * Tile left edges are required to be aligned to multiples of 8 bytes
550  * by the IDMAC.
551  */
552 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
553 {
554 	if (fmt->planar)
555 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
556 	else
557 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
558 }
559 
560 /*
561  * Tile top edge alignment is only limited by chroma subsampling.
562  */
563 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
564 {
565 	return fmt->uv_height_dec > 1 ? 2 : 1;
566 }
567 
568 static inline u32 tile_width_align(enum ipu_image_convert_type type,
569 				   const struct ipu_image_pixfmt *fmt,
570 				   enum ipu_rotate_mode rot_mode)
571 {
572 	if (type == IMAGE_CONVERT_IN) {
573 		/*
574 		 * The IC burst reads 8 pixels at a time. Reading beyond the
575 		 * end of the line is usually acceptable. Those pixels are
576 		 * ignored, unless the IC has to write the scaled line in
577 		 * reverse.
578 		 */
579 		return (!ipu_rot_mode_is_irt(rot_mode) &&
580 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
581 	}
582 
583 	/*
584 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
585 	 * formats to guarantee 8-byte aligned line start addresses in the
586 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
587 	 * for all other formats.
588 	 */
589 	return (ipu_rot_mode_is_irt(rot_mode) &&
590 		fmt->planar && !fmt->uv_packed) ?
591 		8 * fmt->uv_width_dec : 8;
592 }
593 
594 static inline u32 tile_height_align(enum ipu_image_convert_type type,
595 				    const struct ipu_image_pixfmt *fmt,
596 				    enum ipu_rotate_mode rot_mode)
597 {
598 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
599 		return 2;
600 
601 	/*
602 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
603 	 * formats to guarantee 8-byte aligned line start addresses in the
604 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
605 	 * for all other formats.
606 	 */
607 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
608 }
609 
610 /*
611  * Fill in left position and width and for all tiles in an input column, and
612  * for all corresponding output tiles. If the 90° rotator is used, the output
613  * tiles are in a row, and output tile top position and height are set.
614  */
615 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
616 			     unsigned int col,
617 			     struct ipu_image_convert_image *in,
618 			     unsigned int in_left, unsigned int in_width,
619 			     struct ipu_image_convert_image *out,
620 			     unsigned int out_left, unsigned int out_width)
621 {
622 	unsigned int row, tile_idx;
623 	struct ipu_image_tile *in_tile, *out_tile;
624 
625 	for (row = 0; row < in->num_rows; row++) {
626 		tile_idx = in->num_cols * row + col;
627 		in_tile = &in->tile[tile_idx];
628 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
629 
630 		in_tile->left = in_left;
631 		in_tile->width = in_width;
632 
633 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
634 			out_tile->top = out_left;
635 			out_tile->height = out_width;
636 		} else {
637 			out_tile->left = out_left;
638 			out_tile->width = out_width;
639 		}
640 	}
641 }
642 
643 /*
644  * Fill in top position and height and for all tiles in an input row, and
645  * for all corresponding output tiles. If the 90° rotator is used, the output
646  * tiles are in a column, and output tile left position and width are set.
647  */
648 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
649 			  struct ipu_image_convert_image *in,
650 			  unsigned int in_top, unsigned int in_height,
651 			  struct ipu_image_convert_image *out,
652 			  unsigned int out_top, unsigned int out_height)
653 {
654 	unsigned int col, tile_idx;
655 	struct ipu_image_tile *in_tile, *out_tile;
656 
657 	for (col = 0; col < in->num_cols; col++) {
658 		tile_idx = in->num_cols * row + col;
659 		in_tile = &in->tile[tile_idx];
660 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
661 
662 		in_tile->top = in_top;
663 		in_tile->height = in_height;
664 
665 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
666 			out_tile->left = out_top;
667 			out_tile->width = out_height;
668 		} else {
669 			out_tile->top = out_top;
670 			out_tile->height = out_height;
671 		}
672 	}
673 }
674 
675 /*
676  * Find the best horizontal and vertical seam positions to split into tiles.
677  * Minimize the fractional part of the input sampling position for the
678  * top / left pixels of each tile.
679  */
680 static void find_seams(struct ipu_image_convert_ctx *ctx,
681 		       struct ipu_image_convert_image *in,
682 		       struct ipu_image_convert_image *out)
683 {
684 	struct device *dev = ctx->chan->priv->ipu->dev;
685 	unsigned int resized_width = out->base.rect.width;
686 	unsigned int resized_height = out->base.rect.height;
687 	unsigned int col;
688 	unsigned int row;
689 	unsigned int in_left_align = tile_left_align(in->fmt);
690 	unsigned int in_top_align = tile_top_align(in->fmt);
691 	unsigned int out_left_align = tile_left_align(out->fmt);
692 	unsigned int out_top_align = tile_top_align(out->fmt);
693 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
694 							ctx->rot_mode);
695 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
696 							  ctx->rot_mode);
697 	unsigned int in_right = in->base.rect.width;
698 	unsigned int in_bottom = in->base.rect.height;
699 	unsigned int out_right = out->base.rect.width;
700 	unsigned int out_bottom = out->base.rect.height;
701 	unsigned int flipped_out_left;
702 	unsigned int flipped_out_top;
703 
704 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
705 		/* Switch width/height and align top left to IRT block size */
706 		resized_width = out->base.rect.height;
707 		resized_height = out->base.rect.width;
708 		out_left_align = out_height_align;
709 		out_top_align = out_width_align;
710 		out_width_align = out_left_align;
711 		out_height_align = out_top_align;
712 		out_right = out->base.rect.height;
713 		out_bottom = out->base.rect.width;
714 	}
715 
716 	for (col = in->num_cols - 1; col > 0; col--) {
717 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
718 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
719 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
720 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
721 		unsigned int out_start;
722 		unsigned int out_end;
723 		unsigned int in_left;
724 		unsigned int out_left;
725 
726 		/*
727 		 * Align input width to burst length if the scaling step flips
728 		 * horizontally.
729 		 */
730 
731 		/* Start within 1024 pixels of the right edge */
732 		out_start = max_t(int, 0, out_right - 1024);
733 		/* End before having to add more columns to the left */
734 		out_end = min_t(unsigned int, out_right, col * 1024);
735 
736 		find_best_seam(ctx, out_start, out_end,
737 			       in_right, out_right,
738 			       in_left_align, out_left_align,
739 			       allow_in_overshoot ? 1 : 8 /* burst length */,
740 			       allow_out_overshoot ? 1 : out_width_align,
741 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
742 			       &in_left, &out_left);
743 
744 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
745 			flipped_out_left = resized_width - out_right;
746 		else
747 			flipped_out_left = out_left;
748 
749 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
750 				 out, flipped_out_left, out_right - out_left);
751 
752 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
753 			in_left, in_right - in_left,
754 			flipped_out_left, out_right - out_left);
755 
756 		in_right = in_left;
757 		out_right = out_left;
758 	}
759 
760 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
761 			   resized_width - out_right : 0;
762 
763 	fill_tile_column(ctx, 0, in, 0, in_right,
764 			 out, flipped_out_left, out_right);
765 
766 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
767 		in_right, flipped_out_left, out_right);
768 
769 	for (row = in->num_rows - 1; row > 0; row--) {
770 		bool allow_overshoot = row < in->num_rows - 1;
771 		unsigned int out_start;
772 		unsigned int out_end;
773 		unsigned int in_top;
774 		unsigned int out_top;
775 
776 		/* Start within 1024 lines of the bottom edge */
777 		out_start = max_t(int, 0, out_bottom - 1024);
778 		/* End before having to add more rows above */
779 		out_end = min_t(unsigned int, out_bottom, row * 1024);
780 
781 		find_best_seam(ctx, out_start, out_end,
782 			       in_bottom, out_bottom,
783 			       in_top_align, out_top_align,
784 			       1, allow_overshoot ? 1 : out_height_align,
785 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
786 			       &in_top, &out_top);
787 
788 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
789 		    ipu_rot_mode_is_irt(ctx->rot_mode))
790 			flipped_out_top = resized_height - out_bottom;
791 		else
792 			flipped_out_top = out_top;
793 
794 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
795 			      out, flipped_out_top, out_bottom - out_top);
796 
797 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
798 			in_top, in_bottom - in_top,
799 			flipped_out_top, out_bottom - out_top);
800 
801 		in_bottom = in_top;
802 		out_bottom = out_top;
803 	}
804 
805 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
806 	    ipu_rot_mode_is_irt(ctx->rot_mode))
807 		flipped_out_top = resized_height - out_bottom;
808 	else
809 		flipped_out_top = 0;
810 
811 	fill_tile_row(ctx, 0, in, 0, in_bottom,
812 		      out, flipped_out_top, out_bottom);
813 
814 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
815 		in_bottom, flipped_out_top, out_bottom);
816 }
817 
818 static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
819 				 struct ipu_image_convert_image *image)
820 {
821 	struct ipu_image_convert_chan *chan = ctx->chan;
822 	struct ipu_image_convert_priv *priv = chan->priv;
823 	unsigned int i;
824 
825 	for (i = 0; i < ctx->num_tiles; i++) {
826 		struct ipu_image_tile *tile;
827 		const unsigned int row = i / image->num_cols;
828 		const unsigned int col = i % image->num_cols;
829 
830 		if (image->type == IMAGE_CONVERT_OUT)
831 			tile = &image->tile[ctx->out_tile_map[i]];
832 		else
833 			tile = &image->tile[i];
834 
835 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
836 			tile->width;
837 
838 		if (image->fmt->planar) {
839 			tile->stride = tile->width;
840 			tile->rot_stride = tile->height;
841 		} else {
842 			tile->stride =
843 				(image->fmt->bpp * tile->width) >> 3;
844 			tile->rot_stride =
845 				(image->fmt->bpp * tile->height) >> 3;
846 		}
847 
848 		dev_dbg(priv->ipu->dev,
849 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
850 			chan->ic_task, ctx,
851 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
852 			row, col,
853 			tile->width, tile->height, tile->left, tile->top);
854 	}
855 }
856 
857 /*
858  * Use the rotation transformation to find the tile coordinates
859  * (row, col) of a tile in the destination frame that corresponds
860  * to the given tile coordinates of a source frame. The destination
861  * coordinate is then converted to a tile index.
862  */
863 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
864 				int src_row, int src_col)
865 {
866 	struct ipu_image_convert_chan *chan = ctx->chan;
867 	struct ipu_image_convert_priv *priv = chan->priv;
868 	struct ipu_image_convert_image *s_image = &ctx->in;
869 	struct ipu_image_convert_image *d_image = &ctx->out;
870 	int dst_row, dst_col;
871 
872 	/* with no rotation it's a 1:1 mapping */
873 	if (ctx->rot_mode == IPU_ROTATE_NONE)
874 		return src_row * s_image->num_cols + src_col;
875 
876 	/*
877 	 * before doing the transform, first we have to translate
878 	 * source row,col for an origin in the center of s_image
879 	 */
880 	src_row = src_row * 2 - (s_image->num_rows - 1);
881 	src_col = src_col * 2 - (s_image->num_cols - 1);
882 
883 	/* do the rotation transform */
884 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
885 		dst_col = -src_row;
886 		dst_row = src_col;
887 	} else {
888 		dst_col = src_col;
889 		dst_row = src_row;
890 	}
891 
892 	/* apply flip */
893 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
894 		dst_col = -dst_col;
895 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
896 		dst_row = -dst_row;
897 
898 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
899 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
900 
901 	/*
902 	 * finally translate dest row,col using an origin in upper
903 	 * left of d_image
904 	 */
905 	dst_row += d_image->num_rows - 1;
906 	dst_col += d_image->num_cols - 1;
907 	dst_row /= 2;
908 	dst_col /= 2;
909 
910 	return dst_row * d_image->num_cols + dst_col;
911 }
912 
913 /*
914  * Fill the out_tile_map[] with transformed destination tile indeces.
915  */
916 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
917 {
918 	struct ipu_image_convert_image *s_image = &ctx->in;
919 	unsigned int row, col, tile = 0;
920 
921 	for (row = 0; row < s_image->num_rows; row++) {
922 		for (col = 0; col < s_image->num_cols; col++) {
923 			ctx->out_tile_map[tile] =
924 				transform_tile_index(ctx, row, col);
925 			tile++;
926 		}
927 	}
928 }
929 
930 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
931 				    struct ipu_image_convert_image *image)
932 {
933 	struct ipu_image_convert_chan *chan = ctx->chan;
934 	struct ipu_image_convert_priv *priv = chan->priv;
935 	const struct ipu_image_pixfmt *fmt = image->fmt;
936 	unsigned int row, col, tile = 0;
937 	u32 H, top, y_stride, uv_stride;
938 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
939 	u32 y_row_off, y_col_off, y_off;
940 	u32 y_size, uv_size;
941 
942 	/* setup some convenience vars */
943 	H = image->base.pix.height;
944 
945 	y_stride = image->stride;
946 	uv_stride = y_stride / fmt->uv_width_dec;
947 	if (fmt->uv_packed)
948 		uv_stride *= 2;
949 
950 	y_size = H * y_stride;
951 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
952 
953 	for (row = 0; row < image->num_rows; row++) {
954 		top = image->tile[tile].top;
955 		y_row_off = top * y_stride;
956 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
957 
958 		for (col = 0; col < image->num_cols; col++) {
959 			y_col_off = image->tile[tile].left;
960 			uv_col_off = y_col_off / fmt->uv_width_dec;
961 			if (fmt->uv_packed)
962 				uv_col_off *= 2;
963 
964 			y_off = y_row_off + y_col_off;
965 			uv_off = uv_row_off + uv_col_off;
966 
967 			u_off = y_size - y_off + uv_off;
968 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
969 			if (fmt->uv_swapped) {
970 				tmp = u_off;
971 				u_off = v_off;
972 				v_off = tmp;
973 			}
974 
975 			image->tile[tile].offset = y_off;
976 			image->tile[tile].u_off = u_off;
977 			image->tile[tile++].v_off = v_off;
978 
979 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
980 				dev_err(priv->ipu->dev,
981 					"task %u: ctx %p: %s@[%d,%d]: "
982 					"y_off %08x, u_off %08x, v_off %08x\n",
983 					chan->ic_task, ctx,
984 					image->type == IMAGE_CONVERT_IN ?
985 					"Input" : "Output", row, col,
986 					y_off, u_off, v_off);
987 				return -EINVAL;
988 			}
989 		}
990 	}
991 
992 	return 0;
993 }
994 
995 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
996 				    struct ipu_image_convert_image *image)
997 {
998 	struct ipu_image_convert_chan *chan = ctx->chan;
999 	struct ipu_image_convert_priv *priv = chan->priv;
1000 	const struct ipu_image_pixfmt *fmt = image->fmt;
1001 	unsigned int row, col, tile = 0;
1002 	u32 bpp, stride, offset;
1003 	u32 row_off, col_off;
1004 
1005 	/* setup some convenience vars */
1006 	stride = image->stride;
1007 	bpp = fmt->bpp;
1008 
1009 	for (row = 0; row < image->num_rows; row++) {
1010 		row_off = image->tile[tile].top * stride;
1011 
1012 		for (col = 0; col < image->num_cols; col++) {
1013 			col_off = (image->tile[tile].left * bpp) >> 3;
1014 
1015 			offset = row_off + col_off;
1016 
1017 			image->tile[tile].offset = offset;
1018 			image->tile[tile].u_off = 0;
1019 			image->tile[tile++].v_off = 0;
1020 
1021 			if (offset & 0x7) {
1022 				dev_err(priv->ipu->dev,
1023 					"task %u: ctx %p: %s@[%d,%d]: "
1024 					"phys %08x\n",
1025 					chan->ic_task, ctx,
1026 					image->type == IMAGE_CONVERT_IN ?
1027 					"Input" : "Output", row, col,
1028 					row_off + col_off);
1029 				return -EINVAL;
1030 			}
1031 		}
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1038 			      struct ipu_image_convert_image *image)
1039 {
1040 	if (image->fmt->planar)
1041 		return calc_tile_offsets_planar(ctx, image);
1042 
1043 	return calc_tile_offsets_packed(ctx, image);
1044 }
1045 
1046 /*
1047  * Calculate the resizing ratio for the IC main processing section given input
1048  * size, fixed downsizing coefficient, and output size.
1049  * Either round to closest for the next tile's first pixel to minimize seams
1050  * and distortion (for all but right column / bottom row), or round down to
1051  * avoid sampling beyond the edges of the input image for this tile's last
1052  * pixel.
1053  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1054  */
1055 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1056 			     u32 output_size, bool allow_overshoot)
1057 {
1058 	u32 downsized = input_size >> downsize_coeff;
1059 
1060 	if (allow_overshoot)
1061 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1062 	else
1063 		return 8192 * (downsized - 1) / (output_size - 1);
1064 }
1065 
1066 /*
1067  * Slightly modify resize coefficients per tile to hide the bilinear
1068  * interpolator reset at tile borders, shifting the right / bottom edge
1069  * by up to a half input pixel. This removes noticeable seams between
1070  * tiles at higher upscaling factors.
1071  */
1072 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1073 {
1074 	struct ipu_image_convert_chan *chan = ctx->chan;
1075 	struct ipu_image_convert_priv *priv = chan->priv;
1076 	struct ipu_image_tile *in_tile, *out_tile;
1077 	unsigned int col, row, tile_idx;
1078 	unsigned int last_output;
1079 
1080 	for (col = 0; col < ctx->in.num_cols; col++) {
1081 		bool closest = (col < ctx->in.num_cols - 1) &&
1082 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1083 		u32 resized_width;
1084 		u32 resize_coeff_h;
1085 
1086 		tile_idx = col;
1087 		in_tile = &ctx->in.tile[tile_idx];
1088 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1089 
1090 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1091 			resized_width = out_tile->height;
1092 		else
1093 			resized_width = out_tile->width;
1094 
1095 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1096 						   ctx->downsize_coeff_h,
1097 						   resized_width, closest);
1098 
1099 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1100 			__func__, col, resize_coeff_h);
1101 
1102 
1103 		for (row = 0; row < ctx->in.num_rows; row++) {
1104 			tile_idx = row * ctx->in.num_cols + col;
1105 			in_tile = &ctx->in.tile[tile_idx];
1106 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1107 
1108 			/*
1109 			 * With the horizontal scaling factor known, round up
1110 			 * resized width (output width or height) to burst size.
1111 			 */
1112 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1113 				out_tile->height = round_up(resized_width, 8);
1114 			else
1115 				out_tile->width = round_up(resized_width, 8);
1116 
1117 			/*
1118 			 * Calculate input width from the last accessed input
1119 			 * pixel given resized width and scaling coefficients.
1120 			 * Round up to burst size.
1121 			 */
1122 			last_output = round_up(resized_width, 8) - 1;
1123 			if (closest)
1124 				last_output++;
1125 			in_tile->width = round_up(
1126 				(DIV_ROUND_UP(last_output * resize_coeff_h,
1127 					      8192) + 1)
1128 				<< ctx->downsize_coeff_h, 8);
1129 		}
1130 
1131 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1132 	}
1133 
1134 	for (row = 0; row < ctx->in.num_rows; row++) {
1135 		bool closest = (row < ctx->in.num_rows - 1) &&
1136 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1137 		u32 resized_height;
1138 		u32 resize_coeff_v;
1139 
1140 		tile_idx = row * ctx->in.num_cols;
1141 		in_tile = &ctx->in.tile[tile_idx];
1142 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1143 
1144 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1145 			resized_height = out_tile->width;
1146 		else
1147 			resized_height = out_tile->height;
1148 
1149 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1150 						   ctx->downsize_coeff_v,
1151 						   resized_height, closest);
1152 
1153 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1154 			__func__, row, resize_coeff_v);
1155 
1156 		for (col = 0; col < ctx->in.num_cols; col++) {
1157 			tile_idx = row * ctx->in.num_cols + col;
1158 			in_tile = &ctx->in.tile[tile_idx];
1159 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1160 
1161 			/*
1162 			 * With the vertical scaling factor known, round up
1163 			 * resized height (output width or height) to IDMAC
1164 			 * limitations.
1165 			 */
1166 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1167 				out_tile->width = round_up(resized_height, 2);
1168 			else
1169 				out_tile->height = round_up(resized_height, 2);
1170 
1171 			/*
1172 			 * Calculate input width from the last accessed input
1173 			 * pixel given resized height and scaling coefficients.
1174 			 * Align to IDMAC restrictions.
1175 			 */
1176 			last_output = round_up(resized_height, 2) - 1;
1177 			if (closest)
1178 				last_output++;
1179 			in_tile->height = round_up(
1180 				(DIV_ROUND_UP(last_output * resize_coeff_v,
1181 					      8192) + 1)
1182 				<< ctx->downsize_coeff_v, 2);
1183 		}
1184 
1185 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1186 	}
1187 }
1188 
1189 /*
1190  * return the number of runs in given queue (pending_q or done_q)
1191  * for this context. hold irqlock when calling.
1192  */
1193 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1194 			 struct list_head *q)
1195 {
1196 	struct ipu_image_convert_run *run;
1197 	int count = 0;
1198 
1199 	lockdep_assert_held(&ctx->chan->irqlock);
1200 
1201 	list_for_each_entry(run, q, list) {
1202 		if (run->ctx == ctx)
1203 			count++;
1204 	}
1205 
1206 	return count;
1207 }
1208 
1209 static void convert_stop(struct ipu_image_convert_run *run)
1210 {
1211 	struct ipu_image_convert_ctx *ctx = run->ctx;
1212 	struct ipu_image_convert_chan *chan = ctx->chan;
1213 	struct ipu_image_convert_priv *priv = chan->priv;
1214 
1215 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1216 		__func__, chan->ic_task, ctx, run);
1217 
1218 	/* disable IC tasks and the channels */
1219 	ipu_ic_task_disable(chan->ic);
1220 	ipu_idmac_disable_channel(chan->in_chan);
1221 	ipu_idmac_disable_channel(chan->out_chan);
1222 
1223 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1224 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1225 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1226 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1227 	}
1228 
1229 	ipu_ic_disable(chan->ic);
1230 }
1231 
1232 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1233 			       struct ipuv3_channel *channel,
1234 			       struct ipu_image_convert_image *image,
1235 			       enum ipu_rotate_mode rot_mode,
1236 			       bool rot_swap_width_height,
1237 			       unsigned int tile)
1238 {
1239 	struct ipu_image_convert_chan *chan = ctx->chan;
1240 	unsigned int burst_size;
1241 	u32 width, height, stride;
1242 	dma_addr_t addr0, addr1 = 0;
1243 	struct ipu_image tile_image;
1244 	unsigned int tile_idx[2];
1245 
1246 	if (image->type == IMAGE_CONVERT_OUT) {
1247 		tile_idx[0] = ctx->out_tile_map[tile];
1248 		tile_idx[1] = ctx->out_tile_map[1];
1249 	} else {
1250 		tile_idx[0] = tile;
1251 		tile_idx[1] = 1;
1252 	}
1253 
1254 	if (rot_swap_width_height) {
1255 		width = image->tile[tile_idx[0]].height;
1256 		height = image->tile[tile_idx[0]].width;
1257 		stride = image->tile[tile_idx[0]].rot_stride;
1258 		addr0 = ctx->rot_intermediate[0].phys;
1259 		if (ctx->double_buffering)
1260 			addr1 = ctx->rot_intermediate[1].phys;
1261 	} else {
1262 		width = image->tile[tile_idx[0]].width;
1263 		height = image->tile[tile_idx[0]].height;
1264 		stride = image->stride;
1265 		addr0 = image->base.phys0 +
1266 			image->tile[tile_idx[0]].offset;
1267 		if (ctx->double_buffering)
1268 			addr1 = image->base.phys0 +
1269 				image->tile[tile_idx[1]].offset;
1270 	}
1271 
1272 	ipu_cpmem_zero(channel);
1273 
1274 	memset(&tile_image, 0, sizeof(tile_image));
1275 	tile_image.pix.width = tile_image.rect.width = width;
1276 	tile_image.pix.height = tile_image.rect.height = height;
1277 	tile_image.pix.bytesperline = stride;
1278 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1279 	tile_image.phys0 = addr0;
1280 	tile_image.phys1 = addr1;
1281 	if (image->fmt->planar && !rot_swap_width_height) {
1282 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1283 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1284 	}
1285 
1286 	ipu_cpmem_set_image(channel, &tile_image);
1287 
1288 	if (rot_mode)
1289 		ipu_cpmem_set_rotation(channel, rot_mode);
1290 
1291 	if (channel == chan->rotation_in_chan ||
1292 	    channel == chan->rotation_out_chan) {
1293 		burst_size = 8;
1294 		ipu_cpmem_set_block_mode(channel);
1295 	} else
1296 		burst_size = (width % 16) ? 8 : 16;
1297 
1298 	ipu_cpmem_set_burstsize(channel, burst_size);
1299 
1300 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1301 			      burst_size, rot_mode);
1302 
1303 	/*
1304 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1305 	 * only do this when there is no PRG present.
1306 	 */
1307 	if (!channel->ipu->prg_priv)
1308 		ipu_cpmem_set_axi_id(channel, 1);
1309 
1310 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1311 }
1312 
1313 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1314 {
1315 	struct ipu_image_convert_ctx *ctx = run->ctx;
1316 	struct ipu_image_convert_chan *chan = ctx->chan;
1317 	struct ipu_image_convert_priv *priv = chan->priv;
1318 	struct ipu_image_convert_image *s_image = &ctx->in;
1319 	struct ipu_image_convert_image *d_image = &ctx->out;
1320 	enum ipu_color_space src_cs, dest_cs;
1321 	unsigned int dst_tile = ctx->out_tile_map[tile];
1322 	unsigned int dest_width, dest_height;
1323 	unsigned int col, row;
1324 	u32 rsc;
1325 	int ret;
1326 
1327 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1328 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1329 
1330 	src_cs = ipu_pixelformat_to_colorspace(s_image->fmt->fourcc);
1331 	dest_cs = ipu_pixelformat_to_colorspace(d_image->fmt->fourcc);
1332 
1333 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1334 		/* swap width/height for resizer */
1335 		dest_width = d_image->tile[dst_tile].height;
1336 		dest_height = d_image->tile[dst_tile].width;
1337 	} else {
1338 		dest_width = d_image->tile[dst_tile].width;
1339 		dest_height = d_image->tile[dst_tile].height;
1340 	}
1341 
1342 	row = tile / s_image->num_cols;
1343 	col = tile % s_image->num_cols;
1344 
1345 	rsc =  (ctx->downsize_coeff_v << 30) |
1346 	       (ctx->resize_coeffs_v[row] << 16) |
1347 	       (ctx->downsize_coeff_h << 14) |
1348 	       (ctx->resize_coeffs_h[col]);
1349 
1350 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1351 		__func__, s_image->tile[tile].width,
1352 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1353 
1354 	/* setup the IC resizer and CSC */
1355 	ret = ipu_ic_task_init_rsc(chan->ic,
1356 			       s_image->tile[tile].width,
1357 			       s_image->tile[tile].height,
1358 			       dest_width,
1359 			       dest_height,
1360 			       src_cs, dest_cs,
1361 			       rsc);
1362 	if (ret) {
1363 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1364 		return ret;
1365 	}
1366 
1367 	/* init the source MEM-->IC PP IDMAC channel */
1368 	init_idmac_channel(ctx, chan->in_chan, s_image,
1369 			   IPU_ROTATE_NONE, false, tile);
1370 
1371 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1372 		/* init the IC PP-->MEM IDMAC channel */
1373 		init_idmac_channel(ctx, chan->out_chan, d_image,
1374 				   IPU_ROTATE_NONE, true, tile);
1375 
1376 		/* init the MEM-->IC PP ROT IDMAC channel */
1377 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1378 				   ctx->rot_mode, true, tile);
1379 
1380 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1381 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1382 				   IPU_ROTATE_NONE, false, tile);
1383 
1384 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1385 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1386 	} else {
1387 		/* init the destination IC PP-->MEM IDMAC channel */
1388 		init_idmac_channel(ctx, chan->out_chan, d_image,
1389 				   ctx->rot_mode, false, tile);
1390 	}
1391 
1392 	/* enable the IC */
1393 	ipu_ic_enable(chan->ic);
1394 
1395 	/* set buffers ready */
1396 	ipu_idmac_select_buffer(chan->in_chan, 0);
1397 	ipu_idmac_select_buffer(chan->out_chan, 0);
1398 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1399 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1400 	if (ctx->double_buffering) {
1401 		ipu_idmac_select_buffer(chan->in_chan, 1);
1402 		ipu_idmac_select_buffer(chan->out_chan, 1);
1403 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1404 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1405 	}
1406 
1407 	/* enable the channels! */
1408 	ipu_idmac_enable_channel(chan->in_chan);
1409 	ipu_idmac_enable_channel(chan->out_chan);
1410 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1411 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1412 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1413 	}
1414 
1415 	ipu_ic_task_enable(chan->ic);
1416 
1417 	ipu_cpmem_dump(chan->in_chan);
1418 	ipu_cpmem_dump(chan->out_chan);
1419 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1420 		ipu_cpmem_dump(chan->rotation_in_chan);
1421 		ipu_cpmem_dump(chan->rotation_out_chan);
1422 	}
1423 
1424 	ipu_dump(priv->ipu);
1425 
1426 	return 0;
1427 }
1428 
1429 /* hold irqlock when calling */
1430 static int do_run(struct ipu_image_convert_run *run)
1431 {
1432 	struct ipu_image_convert_ctx *ctx = run->ctx;
1433 	struct ipu_image_convert_chan *chan = ctx->chan;
1434 
1435 	lockdep_assert_held(&chan->irqlock);
1436 
1437 	ctx->in.base.phys0 = run->in_phys;
1438 	ctx->out.base.phys0 = run->out_phys;
1439 
1440 	ctx->cur_buf_num = 0;
1441 	ctx->next_tile = 1;
1442 
1443 	/* remove run from pending_q and set as current */
1444 	list_del(&run->list);
1445 	chan->current_run = run;
1446 
1447 	return convert_start(run, 0);
1448 }
1449 
1450 /* hold irqlock when calling */
1451 static void run_next(struct ipu_image_convert_chan *chan)
1452 {
1453 	struct ipu_image_convert_priv *priv = chan->priv;
1454 	struct ipu_image_convert_run *run, *tmp;
1455 	int ret;
1456 
1457 	lockdep_assert_held(&chan->irqlock);
1458 
1459 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1460 		/* skip contexts that are aborting */
1461 		if (run->ctx->aborting) {
1462 			dev_dbg(priv->ipu->dev,
1463 				"%s: task %u: skipping aborting ctx %p run %p\n",
1464 				__func__, chan->ic_task, run->ctx, run);
1465 			continue;
1466 		}
1467 
1468 		ret = do_run(run);
1469 		if (!ret)
1470 			break;
1471 
1472 		/*
1473 		 * something went wrong with start, add the run
1474 		 * to done q and continue to the next run in the
1475 		 * pending q.
1476 		 */
1477 		run->status = ret;
1478 		list_add_tail(&run->list, &chan->done_q);
1479 		chan->current_run = NULL;
1480 	}
1481 }
1482 
1483 static void empty_done_q(struct ipu_image_convert_chan *chan)
1484 {
1485 	struct ipu_image_convert_priv *priv = chan->priv;
1486 	struct ipu_image_convert_run *run;
1487 	unsigned long flags;
1488 
1489 	spin_lock_irqsave(&chan->irqlock, flags);
1490 
1491 	while (!list_empty(&chan->done_q)) {
1492 		run = list_entry(chan->done_q.next,
1493 				 struct ipu_image_convert_run,
1494 				 list);
1495 
1496 		list_del(&run->list);
1497 
1498 		dev_dbg(priv->ipu->dev,
1499 			"%s: task %u: completing ctx %p run %p with %d\n",
1500 			__func__, chan->ic_task, run->ctx, run, run->status);
1501 
1502 		/* call the completion callback and free the run */
1503 		spin_unlock_irqrestore(&chan->irqlock, flags);
1504 		run->ctx->complete(run, run->ctx->complete_context);
1505 		spin_lock_irqsave(&chan->irqlock, flags);
1506 	}
1507 
1508 	spin_unlock_irqrestore(&chan->irqlock, flags);
1509 }
1510 
1511 /*
1512  * the bottom half thread clears out the done_q, calling the
1513  * completion handler for each.
1514  */
1515 static irqreturn_t do_bh(int irq, void *dev_id)
1516 {
1517 	struct ipu_image_convert_chan *chan = dev_id;
1518 	struct ipu_image_convert_priv *priv = chan->priv;
1519 	struct ipu_image_convert_ctx *ctx;
1520 	unsigned long flags;
1521 
1522 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1523 		chan->ic_task);
1524 
1525 	empty_done_q(chan);
1526 
1527 	spin_lock_irqsave(&chan->irqlock, flags);
1528 
1529 	/*
1530 	 * the done_q is cleared out, signal any contexts
1531 	 * that are aborting that abort can complete.
1532 	 */
1533 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1534 		if (ctx->aborting) {
1535 			dev_dbg(priv->ipu->dev,
1536 				"%s: task %u: signaling abort for ctx %p\n",
1537 				__func__, chan->ic_task, ctx);
1538 			complete_all(&ctx->aborted);
1539 		}
1540 	}
1541 
1542 	spin_unlock_irqrestore(&chan->irqlock, flags);
1543 
1544 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1545 		chan->ic_task);
1546 
1547 	return IRQ_HANDLED;
1548 }
1549 
1550 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1551 {
1552 	unsigned int cur_tile = ctx->next_tile - 1;
1553 	unsigned int next_tile = ctx->next_tile;
1554 
1555 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1556 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1557 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1558 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1559 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1560 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1561 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1562 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1563 		return true;
1564 
1565 	return false;
1566 }
1567 
1568 /* hold irqlock when calling */
1569 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1570 {
1571 	struct ipu_image_convert_ctx *ctx = run->ctx;
1572 	struct ipu_image_convert_chan *chan = ctx->chan;
1573 	struct ipu_image_tile *src_tile, *dst_tile;
1574 	struct ipu_image_convert_image *s_image = &ctx->in;
1575 	struct ipu_image_convert_image *d_image = &ctx->out;
1576 	struct ipuv3_channel *outch;
1577 	unsigned int dst_idx;
1578 
1579 	lockdep_assert_held(&chan->irqlock);
1580 
1581 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1582 		chan->rotation_out_chan : chan->out_chan;
1583 
1584 	/*
1585 	 * It is difficult to stop the channel DMA before the channels
1586 	 * enter the paused state. Without double-buffering the channels
1587 	 * are always in a paused state when the EOF irq occurs, so it
1588 	 * is safe to stop the channels now. For double-buffering we
1589 	 * just ignore the abort until the operation completes, when it
1590 	 * is safe to shut down.
1591 	 */
1592 	if (ctx->aborting && !ctx->double_buffering) {
1593 		convert_stop(run);
1594 		run->status = -EIO;
1595 		goto done;
1596 	}
1597 
1598 	if (ctx->next_tile == ctx->num_tiles) {
1599 		/*
1600 		 * the conversion is complete
1601 		 */
1602 		convert_stop(run);
1603 		run->status = 0;
1604 		goto done;
1605 	}
1606 
1607 	/*
1608 	 * not done, place the next tile buffers.
1609 	 */
1610 	if (!ctx->double_buffering) {
1611 		if (ic_settings_changed(ctx)) {
1612 			convert_stop(run);
1613 			convert_start(run, ctx->next_tile);
1614 		} else {
1615 			src_tile = &s_image->tile[ctx->next_tile];
1616 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1617 			dst_tile = &d_image->tile[dst_idx];
1618 
1619 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1620 					     s_image->base.phys0 +
1621 					     src_tile->offset);
1622 			ipu_cpmem_set_buffer(outch, 0,
1623 					     d_image->base.phys0 +
1624 					     dst_tile->offset);
1625 			if (s_image->fmt->planar)
1626 				ipu_cpmem_set_uv_offset(chan->in_chan,
1627 							src_tile->u_off,
1628 							src_tile->v_off);
1629 			if (d_image->fmt->planar)
1630 				ipu_cpmem_set_uv_offset(outch,
1631 							dst_tile->u_off,
1632 							dst_tile->v_off);
1633 
1634 			ipu_idmac_select_buffer(chan->in_chan, 0);
1635 			ipu_idmac_select_buffer(outch, 0);
1636 		}
1637 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1638 
1639 		src_tile = &s_image->tile[ctx->next_tile + 1];
1640 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1641 		dst_tile = &d_image->tile[dst_idx];
1642 
1643 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1644 				     s_image->base.phys0 + src_tile->offset);
1645 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1646 				     d_image->base.phys0 + dst_tile->offset);
1647 
1648 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1649 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1650 
1651 		ctx->cur_buf_num ^= 1;
1652 	}
1653 
1654 	ctx->next_tile++;
1655 	return IRQ_HANDLED;
1656 done:
1657 	list_add_tail(&run->list, &chan->done_q);
1658 	chan->current_run = NULL;
1659 	run_next(chan);
1660 	return IRQ_WAKE_THREAD;
1661 }
1662 
1663 static irqreturn_t norotate_irq(int irq, void *data)
1664 {
1665 	struct ipu_image_convert_chan *chan = data;
1666 	struct ipu_image_convert_ctx *ctx;
1667 	struct ipu_image_convert_run *run;
1668 	unsigned long flags;
1669 	irqreturn_t ret;
1670 
1671 	spin_lock_irqsave(&chan->irqlock, flags);
1672 
1673 	/* get current run and its context */
1674 	run = chan->current_run;
1675 	if (!run) {
1676 		ret = IRQ_NONE;
1677 		goto out;
1678 	}
1679 
1680 	ctx = run->ctx;
1681 
1682 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1683 		/* this is a rotation operation, just ignore */
1684 		spin_unlock_irqrestore(&chan->irqlock, flags);
1685 		return IRQ_HANDLED;
1686 	}
1687 
1688 	ret = do_irq(run);
1689 out:
1690 	spin_unlock_irqrestore(&chan->irqlock, flags);
1691 	return ret;
1692 }
1693 
1694 static irqreturn_t rotate_irq(int irq, void *data)
1695 {
1696 	struct ipu_image_convert_chan *chan = data;
1697 	struct ipu_image_convert_priv *priv = chan->priv;
1698 	struct ipu_image_convert_ctx *ctx;
1699 	struct ipu_image_convert_run *run;
1700 	unsigned long flags;
1701 	irqreturn_t ret;
1702 
1703 	spin_lock_irqsave(&chan->irqlock, flags);
1704 
1705 	/* get current run and its context */
1706 	run = chan->current_run;
1707 	if (!run) {
1708 		ret = IRQ_NONE;
1709 		goto out;
1710 	}
1711 
1712 	ctx = run->ctx;
1713 
1714 	if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1715 		/* this was NOT a rotation operation, shouldn't happen */
1716 		dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1717 		spin_unlock_irqrestore(&chan->irqlock, flags);
1718 		return IRQ_HANDLED;
1719 	}
1720 
1721 	ret = do_irq(run);
1722 out:
1723 	spin_unlock_irqrestore(&chan->irqlock, flags);
1724 	return ret;
1725 }
1726 
1727 /*
1728  * try to force the completion of runs for this ctx. Called when
1729  * abort wait times out in ipu_image_convert_abort().
1730  */
1731 static void force_abort(struct ipu_image_convert_ctx *ctx)
1732 {
1733 	struct ipu_image_convert_chan *chan = ctx->chan;
1734 	struct ipu_image_convert_run *run;
1735 	unsigned long flags;
1736 
1737 	spin_lock_irqsave(&chan->irqlock, flags);
1738 
1739 	run = chan->current_run;
1740 	if (run && run->ctx == ctx) {
1741 		convert_stop(run);
1742 		run->status = -EIO;
1743 		list_add_tail(&run->list, &chan->done_q);
1744 		chan->current_run = NULL;
1745 		run_next(chan);
1746 	}
1747 
1748 	spin_unlock_irqrestore(&chan->irqlock, flags);
1749 
1750 	empty_done_q(chan);
1751 }
1752 
1753 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1754 {
1755 	if (chan->out_eof_irq >= 0)
1756 		free_irq(chan->out_eof_irq, chan);
1757 	if (chan->rot_out_eof_irq >= 0)
1758 		free_irq(chan->rot_out_eof_irq, chan);
1759 
1760 	if (!IS_ERR_OR_NULL(chan->in_chan))
1761 		ipu_idmac_put(chan->in_chan);
1762 	if (!IS_ERR_OR_NULL(chan->out_chan))
1763 		ipu_idmac_put(chan->out_chan);
1764 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1765 		ipu_idmac_put(chan->rotation_in_chan);
1766 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1767 		ipu_idmac_put(chan->rotation_out_chan);
1768 	if (!IS_ERR_OR_NULL(chan->ic))
1769 		ipu_ic_put(chan->ic);
1770 
1771 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1772 		chan->rotation_out_chan = NULL;
1773 	chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1774 }
1775 
1776 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1777 {
1778 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1779 	struct ipu_image_convert_priv *priv = chan->priv;
1780 	int ret;
1781 
1782 	/* get IC */
1783 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1784 	if (IS_ERR(chan->ic)) {
1785 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1786 		ret = PTR_ERR(chan->ic);
1787 		goto err;
1788 	}
1789 
1790 	/* get IDMAC channels */
1791 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1792 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1793 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1794 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1795 		ret = -EBUSY;
1796 		goto err;
1797 	}
1798 
1799 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1800 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1801 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1802 		dev_err(priv->ipu->dev,
1803 			"could not acquire idmac rotation channels\n");
1804 		ret = -EBUSY;
1805 		goto err;
1806 	}
1807 
1808 	/* acquire the EOF interrupts */
1809 	chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1810 						  chan->out_chan,
1811 						  IPU_IRQ_EOF);
1812 
1813 	ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1814 				   0, "ipu-ic", chan);
1815 	if (ret < 0) {
1816 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1817 			 chan->out_eof_irq);
1818 		chan->out_eof_irq = -1;
1819 		goto err;
1820 	}
1821 
1822 	chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1823 						     chan->rotation_out_chan,
1824 						     IPU_IRQ_EOF);
1825 
1826 	ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1827 				   0, "ipu-ic", chan);
1828 	if (ret < 0) {
1829 		dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1830 			chan->rot_out_eof_irq);
1831 		chan->rot_out_eof_irq = -1;
1832 		goto err;
1833 	}
1834 
1835 	return 0;
1836 err:
1837 	release_ipu_resources(chan);
1838 	return ret;
1839 }
1840 
1841 static int fill_image(struct ipu_image_convert_ctx *ctx,
1842 		      struct ipu_image_convert_image *ic_image,
1843 		      struct ipu_image *image,
1844 		      enum ipu_image_convert_type type)
1845 {
1846 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1847 
1848 	ic_image->base = *image;
1849 	ic_image->type = type;
1850 
1851 	ic_image->fmt = get_format(image->pix.pixelformat);
1852 	if (!ic_image->fmt) {
1853 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1854 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1855 		return -EINVAL;
1856 	}
1857 
1858 	if (ic_image->fmt->planar)
1859 		ic_image->stride = ic_image->base.pix.width;
1860 	else
1861 		ic_image->stride  = ic_image->base.pix.bytesperline;
1862 
1863 	return 0;
1864 }
1865 
1866 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1867 static unsigned int clamp_align(unsigned int x, unsigned int min,
1868 				unsigned int max, unsigned int align)
1869 {
1870 	/* Bits that must be zero to be aligned */
1871 	unsigned int mask = ~((1 << align) - 1);
1872 
1873 	/* Clamp to aligned min and max */
1874 	x = clamp(x, (min + ~mask) & mask, max & mask);
1875 
1876 	/* Round to nearest aligned value */
1877 	if (align)
1878 		x = (x + (1 << (align - 1))) & mask;
1879 
1880 	return x;
1881 }
1882 
1883 /* Adjusts input/output images to IPU restrictions */
1884 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1885 			      enum ipu_rotate_mode rot_mode)
1886 {
1887 	const struct ipu_image_pixfmt *infmt, *outfmt;
1888 	u32 w_align, h_align;
1889 
1890 	infmt = get_format(in->pix.pixelformat);
1891 	outfmt = get_format(out->pix.pixelformat);
1892 
1893 	/* set some default pixel formats if needed */
1894 	if (!infmt) {
1895 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1896 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1897 	}
1898 	if (!outfmt) {
1899 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1900 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1901 	}
1902 
1903 	/* image converter does not handle fields */
1904 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1905 
1906 	/* resizer cannot downsize more than 4:1 */
1907 	if (ipu_rot_mode_is_irt(rot_mode)) {
1908 		out->pix.height = max_t(__u32, out->pix.height,
1909 					in->pix.width / 4);
1910 		out->pix.width = max_t(__u32, out->pix.width,
1911 				       in->pix.height / 4);
1912 	} else {
1913 		out->pix.width = max_t(__u32, out->pix.width,
1914 				       in->pix.width / 4);
1915 		out->pix.height = max_t(__u32, out->pix.height,
1916 					in->pix.height / 4);
1917 	}
1918 
1919 	/* align input width/height */
1920 	w_align = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, rot_mode));
1921 	h_align = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, rot_mode));
1922 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align);
1923 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align);
1924 
1925 	/* align output width/height */
1926 	w_align = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, rot_mode));
1927 	h_align = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, rot_mode));
1928 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align);
1929 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align);
1930 
1931 	/* set input/output strides and image sizes */
1932 	in->pix.bytesperline = infmt->planar ?
1933 		clamp_align(in->pix.width, 2 << w_align, MAX_W, w_align) :
1934 		clamp_align((in->pix.width * infmt->bpp) >> 3,
1935 			    2 << w_align, MAX_W, w_align);
1936 	in->pix.sizeimage = infmt->planar ?
1937 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1938 		in->pix.height * in->pix.bytesperline;
1939 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
1940 		(out->pix.width * outfmt->bpp) >> 3;
1941 	out->pix.sizeimage = outfmt->planar ?
1942 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
1943 		out->pix.height * out->pix.bytesperline;
1944 }
1945 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
1946 
1947 /*
1948  * this is used by ipu_image_convert_prepare() to verify set input and
1949  * output images are valid before starting the conversion. Clients can
1950  * also call it before calling ipu_image_convert_prepare().
1951  */
1952 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
1953 			     enum ipu_rotate_mode rot_mode)
1954 {
1955 	struct ipu_image testin, testout;
1956 
1957 	testin = *in;
1958 	testout = *out;
1959 
1960 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
1961 
1962 	if (testin.pix.width != in->pix.width ||
1963 	    testin.pix.height != in->pix.height ||
1964 	    testout.pix.width != out->pix.width ||
1965 	    testout.pix.height != out->pix.height)
1966 		return -EINVAL;
1967 
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
1971 
1972 /*
1973  * Call ipu_image_convert_prepare() to prepare for the conversion of
1974  * given images and rotation mode. Returns a new conversion context.
1975  */
1976 struct ipu_image_convert_ctx *
1977 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
1978 			  struct ipu_image *in, struct ipu_image *out,
1979 			  enum ipu_rotate_mode rot_mode,
1980 			  ipu_image_convert_cb_t complete,
1981 			  void *complete_context)
1982 {
1983 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
1984 	struct ipu_image_convert_image *s_image, *d_image;
1985 	struct ipu_image_convert_chan *chan;
1986 	struct ipu_image_convert_ctx *ctx;
1987 	unsigned long flags;
1988 	unsigned int i;
1989 	bool get_res;
1990 	int ret;
1991 
1992 	if (!in || !out || !complete ||
1993 	    (ic_task != IC_TASK_VIEWFINDER &&
1994 	     ic_task != IC_TASK_POST_PROCESSOR))
1995 		return ERR_PTR(-EINVAL);
1996 
1997 	/* verify the in/out images before continuing */
1998 	ret = ipu_image_convert_verify(in, out, rot_mode);
1999 	if (ret) {
2000 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2001 			__func__);
2002 		return ERR_PTR(ret);
2003 	}
2004 
2005 	chan = &priv->chan[ic_task];
2006 
2007 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2008 	if (!ctx)
2009 		return ERR_PTR(-ENOMEM);
2010 
2011 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2012 		chan->ic_task, ctx);
2013 
2014 	ctx->chan = chan;
2015 	init_completion(&ctx->aborted);
2016 
2017 	s_image = &ctx->in;
2018 	d_image = &ctx->out;
2019 
2020 	/* set tiling and rotation */
2021 	d_image->num_rows = num_stripes(out->pix.height);
2022 	d_image->num_cols = num_stripes(out->pix.width);
2023 	if (ipu_rot_mode_is_irt(rot_mode)) {
2024 		s_image->num_rows = d_image->num_cols;
2025 		s_image->num_cols = d_image->num_rows;
2026 	} else {
2027 		s_image->num_rows = d_image->num_rows;
2028 		s_image->num_cols = d_image->num_cols;
2029 	}
2030 
2031 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2032 	ctx->rot_mode = rot_mode;
2033 
2034 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2035 	if (ret)
2036 		goto out_free;
2037 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2038 	if (ret)
2039 		goto out_free;
2040 
2041 	ret = calc_image_resize_coefficients(ctx, in, out);
2042 	if (ret)
2043 		goto out_free;
2044 
2045 	calc_out_tile_map(ctx);
2046 
2047 	find_seams(ctx, s_image, d_image);
2048 
2049 	calc_tile_dimensions(ctx, s_image);
2050 	ret = calc_tile_offsets(ctx, s_image);
2051 	if (ret)
2052 		goto out_free;
2053 
2054 	calc_tile_dimensions(ctx, d_image);
2055 	ret = calc_tile_offsets(ctx, d_image);
2056 	if (ret)
2057 		goto out_free;
2058 
2059 	calc_tile_resize_coefficients(ctx);
2060 
2061 	dump_format(ctx, s_image);
2062 	dump_format(ctx, d_image);
2063 
2064 	ctx->complete = complete;
2065 	ctx->complete_context = complete_context;
2066 
2067 	/*
2068 	 * Can we use double-buffering for this operation? If there is
2069 	 * only one tile (the whole image can be converted in a single
2070 	 * operation) there's no point in using double-buffering. Also,
2071 	 * the IPU's IDMAC channels allow only a single U and V plane
2072 	 * offset shared between both buffers, but these offsets change
2073 	 * for every tile, and therefore would have to be updated for
2074 	 * each buffer which is not possible. So double-buffering is
2075 	 * impossible when either the source or destination images are
2076 	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2077 	 * sized tiles or different resizing coefficients per tile
2078 	 * prevent double-buffering as well.
2079 	 */
2080 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2081 				 !s_image->fmt->planar &&
2082 				 !d_image->fmt->planar);
2083 	for (i = 1; i < ctx->num_tiles; i++) {
2084 		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2085 		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2086 		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2087 		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2088 			ctx->double_buffering = false;
2089 			break;
2090 		}
2091 	}
2092 	for (i = 1; i < ctx->in.num_cols; i++) {
2093 		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2094 			ctx->double_buffering = false;
2095 			break;
2096 		}
2097 	}
2098 	for (i = 1; i < ctx->in.num_rows; i++) {
2099 		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2100 			ctx->double_buffering = false;
2101 			break;
2102 		}
2103 	}
2104 
2105 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2106 		unsigned long intermediate_size = d_image->tile[0].size;
2107 
2108 		for (i = 1; i < ctx->num_tiles; i++) {
2109 			if (d_image->tile[i].size > intermediate_size)
2110 				intermediate_size = d_image->tile[i].size;
2111 		}
2112 
2113 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2114 				    intermediate_size);
2115 		if (ret)
2116 			goto out_free;
2117 		if (ctx->double_buffering) {
2118 			ret = alloc_dma_buf(priv,
2119 					    &ctx->rot_intermediate[1],
2120 					    intermediate_size);
2121 			if (ret)
2122 				goto out_free_dmabuf0;
2123 		}
2124 	}
2125 
2126 	spin_lock_irqsave(&chan->irqlock, flags);
2127 
2128 	get_res = list_empty(&chan->ctx_list);
2129 
2130 	list_add_tail(&ctx->list, &chan->ctx_list);
2131 
2132 	spin_unlock_irqrestore(&chan->irqlock, flags);
2133 
2134 	if (get_res) {
2135 		ret = get_ipu_resources(chan);
2136 		if (ret)
2137 			goto out_free_dmabuf1;
2138 	}
2139 
2140 	return ctx;
2141 
2142 out_free_dmabuf1:
2143 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2144 	spin_lock_irqsave(&chan->irqlock, flags);
2145 	list_del(&ctx->list);
2146 	spin_unlock_irqrestore(&chan->irqlock, flags);
2147 out_free_dmabuf0:
2148 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2149 out_free:
2150 	kfree(ctx);
2151 	return ERR_PTR(ret);
2152 }
2153 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2154 
2155 /*
2156  * Carry out a single image conversion run. Only the physaddr's of the input
2157  * and output image buffers are needed. The conversion context must have
2158  * been created previously with ipu_image_convert_prepare().
2159  */
2160 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2161 {
2162 	struct ipu_image_convert_chan *chan;
2163 	struct ipu_image_convert_priv *priv;
2164 	struct ipu_image_convert_ctx *ctx;
2165 	unsigned long flags;
2166 	int ret = 0;
2167 
2168 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2169 		return -EINVAL;
2170 
2171 	ctx = run->ctx;
2172 	chan = ctx->chan;
2173 	priv = chan->priv;
2174 
2175 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2176 		chan->ic_task, ctx, run);
2177 
2178 	INIT_LIST_HEAD(&run->list);
2179 
2180 	spin_lock_irqsave(&chan->irqlock, flags);
2181 
2182 	if (ctx->aborting) {
2183 		ret = -EIO;
2184 		goto unlock;
2185 	}
2186 
2187 	list_add_tail(&run->list, &chan->pending_q);
2188 
2189 	if (!chan->current_run) {
2190 		ret = do_run(run);
2191 		if (ret)
2192 			chan->current_run = NULL;
2193 	}
2194 unlock:
2195 	spin_unlock_irqrestore(&chan->irqlock, flags);
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2199 
2200 /* Abort any active or pending conversions for this context */
2201 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2202 {
2203 	struct ipu_image_convert_chan *chan = ctx->chan;
2204 	struct ipu_image_convert_priv *priv = chan->priv;
2205 	struct ipu_image_convert_run *run, *active_run, *tmp;
2206 	unsigned long flags;
2207 	int run_count, ret;
2208 
2209 	spin_lock_irqsave(&chan->irqlock, flags);
2210 
2211 	/* move all remaining pending runs in this context to done_q */
2212 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2213 		if (run->ctx != ctx)
2214 			continue;
2215 		run->status = -EIO;
2216 		list_move_tail(&run->list, &chan->done_q);
2217 	}
2218 
2219 	run_count = get_run_count(ctx, &chan->done_q);
2220 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2221 		chan->current_run : NULL;
2222 
2223 	if (active_run)
2224 		reinit_completion(&ctx->aborted);
2225 
2226 	ctx->aborting = true;
2227 
2228 	spin_unlock_irqrestore(&chan->irqlock, flags);
2229 
2230 	if (!run_count && !active_run) {
2231 		dev_dbg(priv->ipu->dev,
2232 			"%s: task %u: no abort needed for ctx %p\n",
2233 			__func__, chan->ic_task, ctx);
2234 		return;
2235 	}
2236 
2237 	if (!active_run) {
2238 		empty_done_q(chan);
2239 		return;
2240 	}
2241 
2242 	dev_dbg(priv->ipu->dev,
2243 		"%s: task %u: wait for completion: %d runs\n",
2244 		__func__, chan->ic_task, run_count);
2245 
2246 	ret = wait_for_completion_timeout(&ctx->aborted,
2247 					  msecs_to_jiffies(10000));
2248 	if (ret == 0) {
2249 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2250 		force_abort(ctx);
2251 	}
2252 }
2253 
2254 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2255 {
2256 	__ipu_image_convert_abort(ctx);
2257 	ctx->aborting = false;
2258 }
2259 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2260 
2261 /* Unprepare image conversion context */
2262 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2263 {
2264 	struct ipu_image_convert_chan *chan = ctx->chan;
2265 	struct ipu_image_convert_priv *priv = chan->priv;
2266 	unsigned long flags;
2267 	bool put_res;
2268 
2269 	/* make sure no runs are hanging around */
2270 	__ipu_image_convert_abort(ctx);
2271 
2272 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2273 		chan->ic_task, ctx);
2274 
2275 	spin_lock_irqsave(&chan->irqlock, flags);
2276 
2277 	list_del(&ctx->list);
2278 
2279 	put_res = list_empty(&chan->ctx_list);
2280 
2281 	spin_unlock_irqrestore(&chan->irqlock, flags);
2282 
2283 	if (put_res)
2284 		release_ipu_resources(chan);
2285 
2286 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2287 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2288 
2289 	kfree(ctx);
2290 }
2291 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2292 
2293 /*
2294  * "Canned" asynchronous single image conversion. Allocates and returns
2295  * a new conversion run.  On successful return the caller must free the
2296  * run and call ipu_image_convert_unprepare() after conversion completes.
2297  */
2298 struct ipu_image_convert_run *
2299 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2300 		  struct ipu_image *in, struct ipu_image *out,
2301 		  enum ipu_rotate_mode rot_mode,
2302 		  ipu_image_convert_cb_t complete,
2303 		  void *complete_context)
2304 {
2305 	struct ipu_image_convert_ctx *ctx;
2306 	struct ipu_image_convert_run *run;
2307 	int ret;
2308 
2309 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2310 					complete, complete_context);
2311 	if (IS_ERR(ctx))
2312 		return ERR_CAST(ctx);
2313 
2314 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2315 	if (!run) {
2316 		ipu_image_convert_unprepare(ctx);
2317 		return ERR_PTR(-ENOMEM);
2318 	}
2319 
2320 	run->ctx = ctx;
2321 	run->in_phys = in->phys0;
2322 	run->out_phys = out->phys0;
2323 
2324 	ret = ipu_image_convert_queue(run);
2325 	if (ret) {
2326 		ipu_image_convert_unprepare(ctx);
2327 		kfree(run);
2328 		return ERR_PTR(ret);
2329 	}
2330 
2331 	return run;
2332 }
2333 EXPORT_SYMBOL_GPL(ipu_image_convert);
2334 
2335 /* "Canned" synchronous single image conversion */
2336 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2337 					void *data)
2338 {
2339 	struct completion *comp = data;
2340 
2341 	complete(comp);
2342 }
2343 
2344 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2345 			   struct ipu_image *in, struct ipu_image *out,
2346 			   enum ipu_rotate_mode rot_mode)
2347 {
2348 	struct ipu_image_convert_run *run;
2349 	struct completion comp;
2350 	int ret;
2351 
2352 	init_completion(&comp);
2353 
2354 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2355 				image_convert_sync_complete, &comp);
2356 	if (IS_ERR(run))
2357 		return PTR_ERR(run);
2358 
2359 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2360 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2361 
2362 	ipu_image_convert_unprepare(run->ctx);
2363 	kfree(run);
2364 
2365 	return ret;
2366 }
2367 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2368 
2369 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2370 {
2371 	struct ipu_image_convert_priv *priv;
2372 	int i;
2373 
2374 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2375 	if (!priv)
2376 		return -ENOMEM;
2377 
2378 	ipu->image_convert_priv = priv;
2379 	priv->ipu = ipu;
2380 
2381 	for (i = 0; i < IC_NUM_TASKS; i++) {
2382 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2383 
2384 		chan->ic_task = i;
2385 		chan->priv = priv;
2386 		chan->dma_ch = &image_convert_dma_chan[i];
2387 		chan->out_eof_irq = -1;
2388 		chan->rot_out_eof_irq = -1;
2389 
2390 		spin_lock_init(&chan->irqlock);
2391 		INIT_LIST_HEAD(&chan->ctx_list);
2392 		INIT_LIST_HEAD(&chan->pending_q);
2393 		INIT_LIST_HEAD(&chan->done_q);
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 void ipu_image_convert_exit(struct ipu_soc *ipu)
2400 {
2401 }
2402