xref: /linux/drivers/gpu/ipu-v3/ipu-image-convert.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7 
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12 
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62 
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66 
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71 
72 enum ipu_image_convert_type {
73 	IMAGE_CONVERT_IN = 0,
74 	IMAGE_CONVERT_OUT,
75 };
76 
77 struct ipu_image_convert_dma_buf {
78 	void          *virt;
79 	dma_addr_t    phys;
80 	unsigned long len;
81 };
82 
83 struct ipu_image_convert_dma_chan {
84 	int in;
85 	int out;
86 	int rot_in;
87 	int rot_out;
88 	int vdi_in_p;
89 	int vdi_in;
90 	int vdi_in_n;
91 };
92 
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95 	u32 width;
96 	u32 height;
97 	u32 left;
98 	u32 top;
99 	/* size and strides are in bytes */
100 	u32 size;
101 	u32 stride;
102 	u32 rot_stride;
103 	/* start Y or packed offset of this tile */
104 	u32 offset;
105 	/* offset from start to tile in U plane, for planar formats */
106 	u32 u_off;
107 	/* offset from start to tile in V plane, for planar formats */
108 	u32 v_off;
109 };
110 
111 struct ipu_image_convert_image {
112 	struct ipu_image base;
113 	enum ipu_image_convert_type type;
114 
115 	const struct ipu_image_pixfmt *fmt;
116 	unsigned int stride;
117 
118 	/* # of rows (horizontal stripes) if dest height is > 1024 */
119 	unsigned int num_rows;
120 	/* # of columns (vertical stripes) if dest width is > 1024 */
121 	unsigned int num_cols;
122 
123 	struct ipu_image_tile tile[MAX_TILES];
124 };
125 
126 struct ipu_image_pixfmt {
127 	u32	fourcc;        /* V4L2 fourcc */
128 	int     bpp;           /* total bpp */
129 	int     uv_width_dec;  /* decimation in width for U/V planes */
130 	int     uv_height_dec; /* decimation in height for U/V planes */
131 	bool    planar;        /* planar format */
132 	bool    uv_swapped;    /* U and V planes are swapped */
133 	bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135 
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139 
140 enum eof_irq_mask {
141 	EOF_IRQ_IN      = BIT(0),
142 	EOF_IRQ_ROT_IN  = BIT(1),
143 	EOF_IRQ_OUT     = BIT(2),
144 	EOF_IRQ_ROT_OUT = BIT(3),
145 };
146 
147 #define EOF_IRQ_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT)
148 #define EOF_IRQ_ROT_COMPLETE (EOF_IRQ_IN | EOF_IRQ_OUT |	\
149 			      EOF_IRQ_ROT_IN | EOF_IRQ_ROT_OUT)
150 
151 struct ipu_image_convert_ctx {
152 	struct ipu_image_convert_chan *chan;
153 
154 	ipu_image_convert_cb_t complete;
155 	void *complete_context;
156 
157 	/* Source/destination image data and rotation mode */
158 	struct ipu_image_convert_image in;
159 	struct ipu_image_convert_image out;
160 	struct ipu_ic_csc csc;
161 	enum ipu_rotate_mode rot_mode;
162 	u32 downsize_coeff_h;
163 	u32 downsize_coeff_v;
164 	u32 image_resize_coeff_h;
165 	u32 image_resize_coeff_v;
166 	u32 resize_coeffs_h[MAX_STRIPES_W];
167 	u32 resize_coeffs_v[MAX_STRIPES_H];
168 
169 	/* intermediate buffer for rotation */
170 	struct ipu_image_convert_dma_buf rot_intermediate[2];
171 
172 	/* current buffer number for double buffering */
173 	int cur_buf_num;
174 
175 	bool aborting;
176 	struct completion aborted;
177 
178 	/* can we use double-buffering for this conversion operation? */
179 	bool double_buffering;
180 	/* num_rows * num_cols */
181 	unsigned int num_tiles;
182 	/* next tile to process */
183 	unsigned int next_tile;
184 	/* where to place converted tile in dest image */
185 	unsigned int out_tile_map[MAX_TILES];
186 
187 	/* mask of completed EOF irqs at every tile conversion */
188 	enum eof_irq_mask eof_mask;
189 
190 	struct list_head list;
191 };
192 
193 struct ipu_image_convert_chan {
194 	struct ipu_image_convert_priv *priv;
195 
196 	enum ipu_ic_task ic_task;
197 	const struct ipu_image_convert_dma_chan *dma_ch;
198 
199 	struct ipu_ic *ic;
200 	struct ipuv3_channel *in_chan;
201 	struct ipuv3_channel *out_chan;
202 	struct ipuv3_channel *rotation_in_chan;
203 	struct ipuv3_channel *rotation_out_chan;
204 
205 	/* the IPU end-of-frame irqs */
206 	int in_eof_irq;
207 	int rot_in_eof_irq;
208 	int out_eof_irq;
209 	int rot_out_eof_irq;
210 
211 	spinlock_t irqlock;
212 
213 	/* list of convert contexts */
214 	struct list_head ctx_list;
215 	/* queue of conversion runs */
216 	struct list_head pending_q;
217 	/* queue of completed runs */
218 	struct list_head done_q;
219 
220 	/* the current conversion run */
221 	struct ipu_image_convert_run *current_run;
222 };
223 
224 struct ipu_image_convert_priv {
225 	struct ipu_image_convert_chan chan[IC_NUM_TASKS];
226 	struct ipu_soc *ipu;
227 };
228 
229 static const struct ipu_image_convert_dma_chan
230 image_convert_dma_chan[IC_NUM_TASKS] = {
231 	[IC_TASK_VIEWFINDER] = {
232 		.in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
233 		.out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
234 		.rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
235 		.rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
236 		.vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
237 		.vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
238 		.vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
239 	},
240 	[IC_TASK_POST_PROCESSOR] = {
241 		.in = IPUV3_CHANNEL_MEM_IC_PP,
242 		.out = IPUV3_CHANNEL_IC_PP_MEM,
243 		.rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
244 		.rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
245 	},
246 };
247 
248 static const struct ipu_image_pixfmt image_convert_formats[] = {
249 	{
250 		.fourcc	= V4L2_PIX_FMT_RGB565,
251 		.bpp    = 16,
252 	}, {
253 		.fourcc	= V4L2_PIX_FMT_RGB24,
254 		.bpp    = 24,
255 	}, {
256 		.fourcc	= V4L2_PIX_FMT_BGR24,
257 		.bpp    = 24,
258 	}, {
259 		.fourcc	= V4L2_PIX_FMT_RGB32,
260 		.bpp    = 32,
261 	}, {
262 		.fourcc	= V4L2_PIX_FMT_BGR32,
263 		.bpp    = 32,
264 	}, {
265 		.fourcc	= V4L2_PIX_FMT_XRGB32,
266 		.bpp    = 32,
267 	}, {
268 		.fourcc	= V4L2_PIX_FMT_XBGR32,
269 		.bpp    = 32,
270 	}, {
271 		.fourcc	= V4L2_PIX_FMT_BGRX32,
272 		.bpp    = 32,
273 	}, {
274 		.fourcc	= V4L2_PIX_FMT_RGBX32,
275 		.bpp    = 32,
276 	}, {
277 		.fourcc	= V4L2_PIX_FMT_YUYV,
278 		.bpp    = 16,
279 		.uv_width_dec = 2,
280 		.uv_height_dec = 1,
281 	}, {
282 		.fourcc	= V4L2_PIX_FMT_UYVY,
283 		.bpp    = 16,
284 		.uv_width_dec = 2,
285 		.uv_height_dec = 1,
286 	}, {
287 		.fourcc	= V4L2_PIX_FMT_YUV420,
288 		.bpp    = 12,
289 		.planar = true,
290 		.uv_width_dec = 2,
291 		.uv_height_dec = 2,
292 	}, {
293 		.fourcc	= V4L2_PIX_FMT_YVU420,
294 		.bpp    = 12,
295 		.planar = true,
296 		.uv_width_dec = 2,
297 		.uv_height_dec = 2,
298 		.uv_swapped = true,
299 	}, {
300 		.fourcc = V4L2_PIX_FMT_NV12,
301 		.bpp    = 12,
302 		.planar = true,
303 		.uv_width_dec = 2,
304 		.uv_height_dec = 2,
305 		.uv_packed = true,
306 	}, {
307 		.fourcc = V4L2_PIX_FMT_YUV422P,
308 		.bpp    = 16,
309 		.planar = true,
310 		.uv_width_dec = 2,
311 		.uv_height_dec = 1,
312 	}, {
313 		.fourcc = V4L2_PIX_FMT_NV16,
314 		.bpp    = 16,
315 		.planar = true,
316 		.uv_width_dec = 2,
317 		.uv_height_dec = 1,
318 		.uv_packed = true,
319 	},
320 };
321 
322 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
323 {
324 	const struct ipu_image_pixfmt *ret = NULL;
325 	unsigned int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
328 		if (image_convert_formats[i].fourcc == fourcc) {
329 			ret = &image_convert_formats[i];
330 			break;
331 		}
332 	}
333 
334 	return ret;
335 }
336 
337 static void dump_format(struct ipu_image_convert_ctx *ctx,
338 			struct ipu_image_convert_image *ic_image)
339 {
340 	struct ipu_image_convert_chan *chan = ctx->chan;
341 	struct ipu_image_convert_priv *priv = chan->priv;
342 
343 	dev_dbg(priv->ipu->dev,
344 		"task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
345 		chan->ic_task, ctx,
346 		ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
347 		ic_image->base.pix.width, ic_image->base.pix.height,
348 		ic_image->num_cols, ic_image->num_rows,
349 		ic_image->fmt->fourcc & 0xff,
350 		(ic_image->fmt->fourcc >> 8) & 0xff,
351 		(ic_image->fmt->fourcc >> 16) & 0xff,
352 		(ic_image->fmt->fourcc >> 24) & 0xff);
353 }
354 
355 int ipu_image_convert_enum_format(int index, u32 *fourcc)
356 {
357 	const struct ipu_image_pixfmt *fmt;
358 
359 	if (index >= (int)ARRAY_SIZE(image_convert_formats))
360 		return -EINVAL;
361 
362 	/* Format found */
363 	fmt = &image_convert_formats[index];
364 	*fourcc = fmt->fourcc;
365 	return 0;
366 }
367 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
368 
369 static void free_dma_buf(struct ipu_image_convert_priv *priv,
370 			 struct ipu_image_convert_dma_buf *buf)
371 {
372 	if (buf->virt)
373 		dma_free_coherent(priv->ipu->dev,
374 				  buf->len, buf->virt, buf->phys);
375 	buf->virt = NULL;
376 	buf->phys = 0;
377 }
378 
379 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
380 			 struct ipu_image_convert_dma_buf *buf,
381 			 int size)
382 {
383 	buf->len = PAGE_ALIGN(size);
384 	buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
385 				       GFP_DMA | GFP_KERNEL);
386 	if (!buf->virt) {
387 		dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
388 		return -ENOMEM;
389 	}
390 
391 	return 0;
392 }
393 
394 static inline int num_stripes(int dim)
395 {
396 	return (dim - 1) / 1024 + 1;
397 }
398 
399 /*
400  * Calculate downsizing coefficients, which are the same for all tiles,
401  * and initial bilinear resizing coefficients, which are used to find the
402  * best seam positions.
403  * Also determine the number of tiles necessary to guarantee that no tile
404  * is larger than 1024 pixels in either dimension at the output and between
405  * IC downsizing and main processing sections.
406  */
407 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
408 					  struct ipu_image *in,
409 					  struct ipu_image *out)
410 {
411 	u32 downsized_width = in->rect.width;
412 	u32 downsized_height = in->rect.height;
413 	u32 downsize_coeff_v = 0;
414 	u32 downsize_coeff_h = 0;
415 	u32 resized_width = out->rect.width;
416 	u32 resized_height = out->rect.height;
417 	u32 resize_coeff_h;
418 	u32 resize_coeff_v;
419 	u32 cols;
420 	u32 rows;
421 
422 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
423 		resized_width = out->rect.height;
424 		resized_height = out->rect.width;
425 	}
426 
427 	/* Do not let invalid input lead to an endless loop below */
428 	if (WARN_ON(resized_width == 0 || resized_height == 0))
429 		return -EINVAL;
430 
431 	while (downsized_width >= resized_width * 2) {
432 		downsized_width >>= 1;
433 		downsize_coeff_h++;
434 	}
435 
436 	while (downsized_height >= resized_height * 2) {
437 		downsized_height >>= 1;
438 		downsize_coeff_v++;
439 	}
440 
441 	/*
442 	 * Calculate the bilinear resizing coefficients that could be used if
443 	 * we were converting with a single tile. The bottom right output pixel
444 	 * should sample as close as possible to the bottom right input pixel
445 	 * out of the decimator, but not overshoot it:
446 	 */
447 	resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
448 	resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
449 
450 	/*
451 	 * Both the output of the IC downsizing section before being passed to
452 	 * the IC main processing section and the final output of the IC main
453 	 * processing section must be <= 1024 pixels in both dimensions.
454 	 */
455 	cols = num_stripes(max_t(u32, downsized_width, resized_width));
456 	rows = num_stripes(max_t(u32, downsized_height, resized_height));
457 
458 	dev_dbg(ctx->chan->priv->ipu->dev,
459 		"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
460 		__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
461 		resize_coeff_v, cols, rows);
462 
463 	if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
464 	    resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
465 		return -EINVAL;
466 
467 	ctx->downsize_coeff_h = downsize_coeff_h;
468 	ctx->downsize_coeff_v = downsize_coeff_v;
469 	ctx->image_resize_coeff_h = resize_coeff_h;
470 	ctx->image_resize_coeff_v = resize_coeff_v;
471 	ctx->in.num_cols = cols;
472 	ctx->in.num_rows = rows;
473 
474 	return 0;
475 }
476 
477 #define round_closest(x, y) round_down((x) + (y)/2, (y))
478 
479 /*
480  * Find the best aligned seam position for the given column / row index.
481  * Rotation and image offsets are out of scope.
482  *
483  * @index: column / row index, used to calculate valid interval
484  * @in_edge: input right / bottom edge
485  * @out_edge: output right / bottom edge
486  * @in_align: input alignment, either horizontal 8-byte line start address
487  *            alignment, or pixel alignment due to image format
488  * @out_align: output alignment, either horizontal 8-byte line start address
489  *             alignment, or pixel alignment due to image format or rotator
490  *             block size
491  * @in_burst: horizontal input burst size in case of horizontal flip
492  * @out_burst: horizontal output burst size or rotator block size
493  * @downsize_coeff: downsizing section coefficient
494  * @resize_coeff: main processing section resizing coefficient
495  * @_in_seam: aligned input seam position return value
496  * @_out_seam: aligned output seam position return value
497  */
498 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
499 			   unsigned int index,
500 			   unsigned int in_edge,
501 			   unsigned int out_edge,
502 			   unsigned int in_align,
503 			   unsigned int out_align,
504 			   unsigned int in_burst,
505 			   unsigned int out_burst,
506 			   unsigned int downsize_coeff,
507 			   unsigned int resize_coeff,
508 			   u32 *_in_seam,
509 			   u32 *_out_seam)
510 {
511 	struct device *dev = ctx->chan->priv->ipu->dev;
512 	unsigned int out_pos;
513 	/* Input / output seam position candidates */
514 	unsigned int out_seam = 0;
515 	unsigned int in_seam = 0;
516 	unsigned int min_diff = UINT_MAX;
517 	unsigned int out_start;
518 	unsigned int out_end;
519 	unsigned int in_start;
520 	unsigned int in_end;
521 
522 	/* Start within 1024 pixels of the right / bottom edge */
523 	out_start = max_t(int, index * out_align, out_edge - 1024);
524 	/* End before having to add more columns to the left / rows above */
525 	out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
526 
527 	/*
528 	 * Limit input seam position to make sure that the downsized input tile
529 	 * to the right or bottom does not exceed 1024 pixels.
530 	 */
531 	in_start = max_t(int, index * in_align,
532 			 in_edge - (1024 << downsize_coeff));
533 	in_end = min_t(unsigned int, in_edge,
534 		       index * (1024 << downsize_coeff) + 1);
535 
536 	/*
537 	 * Output tiles must start at a multiple of 8 bytes horizontally and
538 	 * possibly at an even line horizontally depending on the pixel format.
539 	 * Only consider output aligned positions for the seam.
540 	 */
541 	out_start = round_up(out_start, out_align);
542 	for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
543 		unsigned int in_pos;
544 		unsigned int in_pos_aligned;
545 		unsigned int in_pos_rounded;
546 		unsigned int abs_diff;
547 
548 		/*
549 		 * Tiles in the right row / bottom column may not be allowed to
550 		 * overshoot horizontally / vertically. out_burst may be the
551 		 * actual DMA burst size, or the rotator block size.
552 		 */
553 		if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
554 			continue;
555 
556 		/*
557 		 * Input sample position, corresponding to out_pos, 19.13 fixed
558 		 * point.
559 		 */
560 		in_pos = (out_pos * resize_coeff) << downsize_coeff;
561 		/*
562 		 * The closest input sample position that we could actually
563 		 * start the input tile at, 19.13 fixed point.
564 		 */
565 		in_pos_aligned = round_closest(in_pos, 8192U * in_align);
566 		/* Convert 19.13 fixed point to integer */
567 		in_pos_rounded = in_pos_aligned / 8192U;
568 
569 		if (in_pos_rounded < in_start)
570 			continue;
571 		if (in_pos_rounded >= in_end)
572 			break;
573 
574 		if ((in_burst > 1) &&
575 		    (in_edge - in_pos_rounded) % in_burst)
576 			continue;
577 
578 		if (in_pos < in_pos_aligned)
579 			abs_diff = in_pos_aligned - in_pos;
580 		else
581 			abs_diff = in_pos - in_pos_aligned;
582 
583 		if (abs_diff < min_diff) {
584 			in_seam = in_pos_rounded;
585 			out_seam = out_pos;
586 			min_diff = abs_diff;
587 		}
588 	}
589 
590 	*_out_seam = out_seam;
591 	*_in_seam = in_seam;
592 
593 	dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
594 		__func__, out_seam, out_align, out_start, out_end,
595 		in_seam, in_align, in_start, in_end, min_diff / 8192,
596 		DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
597 }
598 
599 /*
600  * Tile left edges are required to be aligned to multiples of 8 bytes
601  * by the IDMAC.
602  */
603 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
604 {
605 	if (fmt->planar)
606 		return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
607 	else
608 		return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
609 }
610 
611 /*
612  * Tile top edge alignment is only limited by chroma subsampling.
613  */
614 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
615 {
616 	return fmt->uv_height_dec > 1 ? 2 : 1;
617 }
618 
619 static inline u32 tile_width_align(enum ipu_image_convert_type type,
620 				   const struct ipu_image_pixfmt *fmt,
621 				   enum ipu_rotate_mode rot_mode)
622 {
623 	if (type == IMAGE_CONVERT_IN) {
624 		/*
625 		 * The IC burst reads 8 pixels at a time. Reading beyond the
626 		 * end of the line is usually acceptable. Those pixels are
627 		 * ignored, unless the IC has to write the scaled line in
628 		 * reverse.
629 		 */
630 		return (!ipu_rot_mode_is_irt(rot_mode) &&
631 			(rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
632 	}
633 
634 	/*
635 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
636 	 * formats to guarantee 8-byte aligned line start addresses in the
637 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
638 	 * for all other formats.
639 	 */
640 	return (ipu_rot_mode_is_irt(rot_mode) &&
641 		fmt->planar && !fmt->uv_packed) ?
642 		8 * fmt->uv_width_dec : 8;
643 }
644 
645 static inline u32 tile_height_align(enum ipu_image_convert_type type,
646 				    const struct ipu_image_pixfmt *fmt,
647 				    enum ipu_rotate_mode rot_mode)
648 {
649 	if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
650 		return 2;
651 
652 	/*
653 	 * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
654 	 * formats to guarantee 8-byte aligned line start addresses in the
655 	 * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
656 	 * for all other formats.
657 	 */
658 	return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
659 }
660 
661 /*
662  * Fill in left position and width and for all tiles in an input column, and
663  * for all corresponding output tiles. If the 90° rotator is used, the output
664  * tiles are in a row, and output tile top position and height are set.
665  */
666 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
667 			     unsigned int col,
668 			     struct ipu_image_convert_image *in,
669 			     unsigned int in_left, unsigned int in_width,
670 			     struct ipu_image_convert_image *out,
671 			     unsigned int out_left, unsigned int out_width)
672 {
673 	unsigned int row, tile_idx;
674 	struct ipu_image_tile *in_tile, *out_tile;
675 
676 	for (row = 0; row < in->num_rows; row++) {
677 		tile_idx = in->num_cols * row + col;
678 		in_tile = &in->tile[tile_idx];
679 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
680 
681 		in_tile->left = in_left;
682 		in_tile->width = in_width;
683 
684 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
685 			out_tile->top = out_left;
686 			out_tile->height = out_width;
687 		} else {
688 			out_tile->left = out_left;
689 			out_tile->width = out_width;
690 		}
691 	}
692 }
693 
694 /*
695  * Fill in top position and height and for all tiles in an input row, and
696  * for all corresponding output tiles. If the 90° rotator is used, the output
697  * tiles are in a column, and output tile left position and width are set.
698  */
699 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
700 			  struct ipu_image_convert_image *in,
701 			  unsigned int in_top, unsigned int in_height,
702 			  struct ipu_image_convert_image *out,
703 			  unsigned int out_top, unsigned int out_height)
704 {
705 	unsigned int col, tile_idx;
706 	struct ipu_image_tile *in_tile, *out_tile;
707 
708 	for (col = 0; col < in->num_cols; col++) {
709 		tile_idx = in->num_cols * row + col;
710 		in_tile = &in->tile[tile_idx];
711 		out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
712 
713 		in_tile->top = in_top;
714 		in_tile->height = in_height;
715 
716 		if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
717 			out_tile->left = out_top;
718 			out_tile->width = out_height;
719 		} else {
720 			out_tile->top = out_top;
721 			out_tile->height = out_height;
722 		}
723 	}
724 }
725 
726 /*
727  * Find the best horizontal and vertical seam positions to split into tiles.
728  * Minimize the fractional part of the input sampling position for the
729  * top / left pixels of each tile.
730  */
731 static void find_seams(struct ipu_image_convert_ctx *ctx,
732 		       struct ipu_image_convert_image *in,
733 		       struct ipu_image_convert_image *out)
734 {
735 	struct device *dev = ctx->chan->priv->ipu->dev;
736 	unsigned int resized_width = out->base.rect.width;
737 	unsigned int resized_height = out->base.rect.height;
738 	unsigned int col;
739 	unsigned int row;
740 	unsigned int in_left_align = tile_left_align(in->fmt);
741 	unsigned int in_top_align = tile_top_align(in->fmt);
742 	unsigned int out_left_align = tile_left_align(out->fmt);
743 	unsigned int out_top_align = tile_top_align(out->fmt);
744 	unsigned int out_width_align = tile_width_align(out->type, out->fmt,
745 							ctx->rot_mode);
746 	unsigned int out_height_align = tile_height_align(out->type, out->fmt,
747 							  ctx->rot_mode);
748 	unsigned int in_right = in->base.rect.width;
749 	unsigned int in_bottom = in->base.rect.height;
750 	unsigned int out_right = out->base.rect.width;
751 	unsigned int out_bottom = out->base.rect.height;
752 	unsigned int flipped_out_left;
753 	unsigned int flipped_out_top;
754 
755 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
756 		/* Switch width/height and align top left to IRT block size */
757 		resized_width = out->base.rect.height;
758 		resized_height = out->base.rect.width;
759 		out_left_align = out_height_align;
760 		out_top_align = out_width_align;
761 		out_width_align = out_left_align;
762 		out_height_align = out_top_align;
763 		out_right = out->base.rect.height;
764 		out_bottom = out->base.rect.width;
765 	}
766 
767 	for (col = in->num_cols - 1; col > 0; col--) {
768 		bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
769 					  !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
770 		bool allow_out_overshoot = (col < in->num_cols - 1) &&
771 					   !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
772 		unsigned int in_left;
773 		unsigned int out_left;
774 
775 		/*
776 		 * Align input width to burst length if the scaling step flips
777 		 * horizontally.
778 		 */
779 
780 		find_best_seam(ctx, col,
781 			       in_right, out_right,
782 			       in_left_align, out_left_align,
783 			       allow_in_overshoot ? 1 : 8 /* burst length */,
784 			       allow_out_overshoot ? 1 : out_width_align,
785 			       ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
786 			       &in_left, &out_left);
787 
788 		if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
789 			flipped_out_left = resized_width - out_right;
790 		else
791 			flipped_out_left = out_left;
792 
793 		fill_tile_column(ctx, col, in, in_left, in_right - in_left,
794 				 out, flipped_out_left, out_right - out_left);
795 
796 		dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
797 			in_left, in_right - in_left,
798 			flipped_out_left, out_right - out_left);
799 
800 		in_right = in_left;
801 		out_right = out_left;
802 	}
803 
804 	flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
805 			   resized_width - out_right : 0;
806 
807 	fill_tile_column(ctx, 0, in, 0, in_right,
808 			 out, flipped_out_left, out_right);
809 
810 	dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
811 		in_right, flipped_out_left, out_right);
812 
813 	for (row = in->num_rows - 1; row > 0; row--) {
814 		bool allow_overshoot = row < in->num_rows - 1;
815 		unsigned int in_top;
816 		unsigned int out_top;
817 
818 		find_best_seam(ctx, row,
819 			       in_bottom, out_bottom,
820 			       in_top_align, out_top_align,
821 			       1, allow_overshoot ? 1 : out_height_align,
822 			       ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
823 			       &in_top, &out_top);
824 
825 		if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
826 		    ipu_rot_mode_is_irt(ctx->rot_mode))
827 			flipped_out_top = resized_height - out_bottom;
828 		else
829 			flipped_out_top = out_top;
830 
831 		fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
832 			      out, flipped_out_top, out_bottom - out_top);
833 
834 		dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
835 			in_top, in_bottom - in_top,
836 			flipped_out_top, out_bottom - out_top);
837 
838 		in_bottom = in_top;
839 		out_bottom = out_top;
840 	}
841 
842 	if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
843 	    ipu_rot_mode_is_irt(ctx->rot_mode))
844 		flipped_out_top = resized_height - out_bottom;
845 	else
846 		flipped_out_top = 0;
847 
848 	fill_tile_row(ctx, 0, in, 0, in_bottom,
849 		      out, flipped_out_top, out_bottom);
850 
851 	dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
852 		in_bottom, flipped_out_top, out_bottom);
853 }
854 
855 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
856 				struct ipu_image_convert_image *image)
857 {
858 	struct ipu_image_convert_chan *chan = ctx->chan;
859 	struct ipu_image_convert_priv *priv = chan->priv;
860 	unsigned int max_width = 1024;
861 	unsigned int max_height = 1024;
862 	unsigned int i;
863 
864 	if (image->type == IMAGE_CONVERT_IN) {
865 		/* Up to 4096x4096 input tile size */
866 		max_width <<= ctx->downsize_coeff_h;
867 		max_height <<= ctx->downsize_coeff_v;
868 	}
869 
870 	for (i = 0; i < ctx->num_tiles; i++) {
871 		struct ipu_image_tile *tile;
872 		const unsigned int row = i / image->num_cols;
873 		const unsigned int col = i % image->num_cols;
874 
875 		if (image->type == IMAGE_CONVERT_OUT)
876 			tile = &image->tile[ctx->out_tile_map[i]];
877 		else
878 			tile = &image->tile[i];
879 
880 		tile->size = ((tile->height * image->fmt->bpp) >> 3) *
881 			tile->width;
882 
883 		if (image->fmt->planar) {
884 			tile->stride = tile->width;
885 			tile->rot_stride = tile->height;
886 		} else {
887 			tile->stride =
888 				(image->fmt->bpp * tile->width) >> 3;
889 			tile->rot_stride =
890 				(image->fmt->bpp * tile->height) >> 3;
891 		}
892 
893 		dev_dbg(priv->ipu->dev,
894 			"task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
895 			chan->ic_task, ctx,
896 			image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
897 			row, col,
898 			tile->width, tile->height, tile->left, tile->top);
899 
900 		if (!tile->width || tile->width > max_width ||
901 		    !tile->height || tile->height > max_height) {
902 			dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
903 				image->type == IMAGE_CONVERT_IN ? "input" :
904 				"output", tile->width, tile->height);
905 			return -EINVAL;
906 		}
907 	}
908 
909 	return 0;
910 }
911 
912 /*
913  * Use the rotation transformation to find the tile coordinates
914  * (row, col) of a tile in the destination frame that corresponds
915  * to the given tile coordinates of a source frame. The destination
916  * coordinate is then converted to a tile index.
917  */
918 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
919 				int src_row, int src_col)
920 {
921 	struct ipu_image_convert_chan *chan = ctx->chan;
922 	struct ipu_image_convert_priv *priv = chan->priv;
923 	struct ipu_image_convert_image *s_image = &ctx->in;
924 	struct ipu_image_convert_image *d_image = &ctx->out;
925 	int dst_row, dst_col;
926 
927 	/* with no rotation it's a 1:1 mapping */
928 	if (ctx->rot_mode == IPU_ROTATE_NONE)
929 		return src_row * s_image->num_cols + src_col;
930 
931 	/*
932 	 * before doing the transform, first we have to translate
933 	 * source row,col for an origin in the center of s_image
934 	 */
935 	src_row = src_row * 2 - (s_image->num_rows - 1);
936 	src_col = src_col * 2 - (s_image->num_cols - 1);
937 
938 	/* do the rotation transform */
939 	if (ctx->rot_mode & IPU_ROT_BIT_90) {
940 		dst_col = -src_row;
941 		dst_row = src_col;
942 	} else {
943 		dst_col = src_col;
944 		dst_row = src_row;
945 	}
946 
947 	/* apply flip */
948 	if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
949 		dst_col = -dst_col;
950 	if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
951 		dst_row = -dst_row;
952 
953 	dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
954 		chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
955 
956 	/*
957 	 * finally translate dest row,col using an origin in upper
958 	 * left of d_image
959 	 */
960 	dst_row += d_image->num_rows - 1;
961 	dst_col += d_image->num_cols - 1;
962 	dst_row /= 2;
963 	dst_col /= 2;
964 
965 	return dst_row * d_image->num_cols + dst_col;
966 }
967 
968 /*
969  * Fill the out_tile_map[] with transformed destination tile indeces.
970  */
971 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
972 {
973 	struct ipu_image_convert_image *s_image = &ctx->in;
974 	unsigned int row, col, tile = 0;
975 
976 	for (row = 0; row < s_image->num_rows; row++) {
977 		for (col = 0; col < s_image->num_cols; col++) {
978 			ctx->out_tile_map[tile] =
979 				transform_tile_index(ctx, row, col);
980 			tile++;
981 		}
982 	}
983 }
984 
985 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
986 				    struct ipu_image_convert_image *image)
987 {
988 	struct ipu_image_convert_chan *chan = ctx->chan;
989 	struct ipu_image_convert_priv *priv = chan->priv;
990 	const struct ipu_image_pixfmt *fmt = image->fmt;
991 	unsigned int row, col, tile = 0;
992 	u32 H, top, y_stride, uv_stride;
993 	u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
994 	u32 y_row_off, y_col_off, y_off;
995 	u32 y_size, uv_size;
996 
997 	/* setup some convenience vars */
998 	H = image->base.pix.height;
999 
1000 	y_stride = image->stride;
1001 	uv_stride = y_stride / fmt->uv_width_dec;
1002 	if (fmt->uv_packed)
1003 		uv_stride *= 2;
1004 
1005 	y_size = H * y_stride;
1006 	uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
1007 
1008 	for (row = 0; row < image->num_rows; row++) {
1009 		top = image->tile[tile].top;
1010 		y_row_off = top * y_stride;
1011 		uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
1012 
1013 		for (col = 0; col < image->num_cols; col++) {
1014 			y_col_off = image->tile[tile].left;
1015 			uv_col_off = y_col_off / fmt->uv_width_dec;
1016 			if (fmt->uv_packed)
1017 				uv_col_off *= 2;
1018 
1019 			y_off = y_row_off + y_col_off;
1020 			uv_off = uv_row_off + uv_col_off;
1021 
1022 			u_off = y_size - y_off + uv_off;
1023 			v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1024 			if (fmt->uv_swapped) {
1025 				tmp = u_off;
1026 				u_off = v_off;
1027 				v_off = tmp;
1028 			}
1029 
1030 			image->tile[tile].offset = y_off;
1031 			image->tile[tile].u_off = u_off;
1032 			image->tile[tile++].v_off = v_off;
1033 
1034 			if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1035 				dev_err(priv->ipu->dev,
1036 					"task %u: ctx %p: %s@[%d,%d]: "
1037 					"y_off %08x, u_off %08x, v_off %08x\n",
1038 					chan->ic_task, ctx,
1039 					image->type == IMAGE_CONVERT_IN ?
1040 					"Input" : "Output", row, col,
1041 					y_off, u_off, v_off);
1042 				return -EINVAL;
1043 			}
1044 		}
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1051 				    struct ipu_image_convert_image *image)
1052 {
1053 	struct ipu_image_convert_chan *chan = ctx->chan;
1054 	struct ipu_image_convert_priv *priv = chan->priv;
1055 	const struct ipu_image_pixfmt *fmt = image->fmt;
1056 	unsigned int row, col, tile = 0;
1057 	u32 bpp, stride, offset;
1058 	u32 row_off, col_off;
1059 
1060 	/* setup some convenience vars */
1061 	stride = image->stride;
1062 	bpp = fmt->bpp;
1063 
1064 	for (row = 0; row < image->num_rows; row++) {
1065 		row_off = image->tile[tile].top * stride;
1066 
1067 		for (col = 0; col < image->num_cols; col++) {
1068 			col_off = (image->tile[tile].left * bpp) >> 3;
1069 
1070 			offset = row_off + col_off;
1071 
1072 			image->tile[tile].offset = offset;
1073 			image->tile[tile].u_off = 0;
1074 			image->tile[tile++].v_off = 0;
1075 
1076 			if (offset & 0x7) {
1077 				dev_err(priv->ipu->dev,
1078 					"task %u: ctx %p: %s@[%d,%d]: "
1079 					"phys %08x\n",
1080 					chan->ic_task, ctx,
1081 					image->type == IMAGE_CONVERT_IN ?
1082 					"Input" : "Output", row, col,
1083 					row_off + col_off);
1084 				return -EINVAL;
1085 			}
1086 		}
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1093 			      struct ipu_image_convert_image *image)
1094 {
1095 	if (image->fmt->planar)
1096 		return calc_tile_offsets_planar(ctx, image);
1097 
1098 	return calc_tile_offsets_packed(ctx, image);
1099 }
1100 
1101 /*
1102  * Calculate the resizing ratio for the IC main processing section given input
1103  * size, fixed downsizing coefficient, and output size.
1104  * Either round to closest for the next tile's first pixel to minimize seams
1105  * and distortion (for all but right column / bottom row), or round down to
1106  * avoid sampling beyond the edges of the input image for this tile's last
1107  * pixel.
1108  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1109  */
1110 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1111 			     u32 output_size, bool allow_overshoot)
1112 {
1113 	u32 downsized = input_size >> downsize_coeff;
1114 
1115 	if (allow_overshoot)
1116 		return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1117 	else
1118 		return 8192 * (downsized - 1) / (output_size - 1);
1119 }
1120 
1121 /*
1122  * Slightly modify resize coefficients per tile to hide the bilinear
1123  * interpolator reset at tile borders, shifting the right / bottom edge
1124  * by up to a half input pixel. This removes noticeable seams between
1125  * tiles at higher upscaling factors.
1126  */
1127 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1128 {
1129 	struct ipu_image_convert_chan *chan = ctx->chan;
1130 	struct ipu_image_convert_priv *priv = chan->priv;
1131 	struct ipu_image_tile *in_tile, *out_tile;
1132 	unsigned int col, row, tile_idx;
1133 	unsigned int last_output;
1134 
1135 	for (col = 0; col < ctx->in.num_cols; col++) {
1136 		bool closest = (col < ctx->in.num_cols - 1) &&
1137 			       !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1138 		u32 resized_width;
1139 		u32 resize_coeff_h;
1140 		u32 in_width;
1141 
1142 		tile_idx = col;
1143 		in_tile = &ctx->in.tile[tile_idx];
1144 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1145 
1146 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1147 			resized_width = out_tile->height;
1148 		else
1149 			resized_width = out_tile->width;
1150 
1151 		resize_coeff_h = calc_resize_coeff(in_tile->width,
1152 						   ctx->downsize_coeff_h,
1153 						   resized_width, closest);
1154 
1155 		dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1156 			__func__, col, resize_coeff_h);
1157 
1158 		/*
1159 		 * With the horizontal scaling factor known, round up resized
1160 		 * width (output width or height) to burst size.
1161 		 */
1162 		resized_width = round_up(resized_width, 8);
1163 
1164 		/*
1165 		 * Calculate input width from the last accessed input pixel
1166 		 * given resized width and scaling coefficients. Round up to
1167 		 * burst size.
1168 		 */
1169 		last_output = resized_width - 1;
1170 		if (closest && ((last_output * resize_coeff_h) % 8192))
1171 			last_output++;
1172 		in_width = round_up(
1173 			(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1174 			<< ctx->downsize_coeff_h, 8);
1175 
1176 		for (row = 0; row < ctx->in.num_rows; row++) {
1177 			tile_idx = row * ctx->in.num_cols + col;
1178 			in_tile = &ctx->in.tile[tile_idx];
1179 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1180 
1181 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1182 				out_tile->height = resized_width;
1183 			else
1184 				out_tile->width = resized_width;
1185 
1186 			in_tile->width = in_width;
1187 		}
1188 
1189 		ctx->resize_coeffs_h[col] = resize_coeff_h;
1190 	}
1191 
1192 	for (row = 0; row < ctx->in.num_rows; row++) {
1193 		bool closest = (row < ctx->in.num_rows - 1) &&
1194 			       !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1195 		u32 resized_height;
1196 		u32 resize_coeff_v;
1197 		u32 in_height;
1198 
1199 		tile_idx = row * ctx->in.num_cols;
1200 		in_tile = &ctx->in.tile[tile_idx];
1201 		out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1202 
1203 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1204 			resized_height = out_tile->width;
1205 		else
1206 			resized_height = out_tile->height;
1207 
1208 		resize_coeff_v = calc_resize_coeff(in_tile->height,
1209 						   ctx->downsize_coeff_v,
1210 						   resized_height, closest);
1211 
1212 		dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1213 			__func__, row, resize_coeff_v);
1214 
1215 		/*
1216 		 * With the vertical scaling factor known, round up resized
1217 		 * height (output width or height) to IDMAC limitations.
1218 		 */
1219 		resized_height = round_up(resized_height, 2);
1220 
1221 		/*
1222 		 * Calculate input width from the last accessed input pixel
1223 		 * given resized height and scaling coefficients. Align to
1224 		 * IDMAC restrictions.
1225 		 */
1226 		last_output = resized_height - 1;
1227 		if (closest && ((last_output * resize_coeff_v) % 8192))
1228 			last_output++;
1229 		in_height = round_up(
1230 			(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1231 			<< ctx->downsize_coeff_v, 2);
1232 
1233 		for (col = 0; col < ctx->in.num_cols; col++) {
1234 			tile_idx = row * ctx->in.num_cols + col;
1235 			in_tile = &ctx->in.tile[tile_idx];
1236 			out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1237 
1238 			if (ipu_rot_mode_is_irt(ctx->rot_mode))
1239 				out_tile->width = resized_height;
1240 			else
1241 				out_tile->height = resized_height;
1242 
1243 			in_tile->height = in_height;
1244 		}
1245 
1246 		ctx->resize_coeffs_v[row] = resize_coeff_v;
1247 	}
1248 }
1249 
1250 /*
1251  * return the number of runs in given queue (pending_q or done_q)
1252  * for this context. hold irqlock when calling.
1253  */
1254 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1255 			 struct list_head *q)
1256 {
1257 	struct ipu_image_convert_run *run;
1258 	int count = 0;
1259 
1260 	lockdep_assert_held(&ctx->chan->irqlock);
1261 
1262 	list_for_each_entry(run, q, list) {
1263 		if (run->ctx == ctx)
1264 			count++;
1265 	}
1266 
1267 	return count;
1268 }
1269 
1270 static void convert_stop(struct ipu_image_convert_run *run)
1271 {
1272 	struct ipu_image_convert_ctx *ctx = run->ctx;
1273 	struct ipu_image_convert_chan *chan = ctx->chan;
1274 	struct ipu_image_convert_priv *priv = chan->priv;
1275 
1276 	dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1277 		__func__, chan->ic_task, ctx, run);
1278 
1279 	/* disable IC tasks and the channels */
1280 	ipu_ic_task_disable(chan->ic);
1281 	ipu_idmac_disable_channel(chan->in_chan);
1282 	ipu_idmac_disable_channel(chan->out_chan);
1283 
1284 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1285 		ipu_idmac_disable_channel(chan->rotation_in_chan);
1286 		ipu_idmac_disable_channel(chan->rotation_out_chan);
1287 		ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1288 	}
1289 
1290 	ipu_ic_disable(chan->ic);
1291 }
1292 
1293 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1294 			       struct ipuv3_channel *channel,
1295 			       struct ipu_image_convert_image *image,
1296 			       enum ipu_rotate_mode rot_mode,
1297 			       bool rot_swap_width_height,
1298 			       unsigned int tile)
1299 {
1300 	struct ipu_image_convert_chan *chan = ctx->chan;
1301 	unsigned int burst_size;
1302 	u32 width, height, stride;
1303 	dma_addr_t addr0, addr1 = 0;
1304 	struct ipu_image tile_image;
1305 	unsigned int tile_idx[2];
1306 
1307 	if (image->type == IMAGE_CONVERT_OUT) {
1308 		tile_idx[0] = ctx->out_tile_map[tile];
1309 		tile_idx[1] = ctx->out_tile_map[1];
1310 	} else {
1311 		tile_idx[0] = tile;
1312 		tile_idx[1] = 1;
1313 	}
1314 
1315 	if (rot_swap_width_height) {
1316 		width = image->tile[tile_idx[0]].height;
1317 		height = image->tile[tile_idx[0]].width;
1318 		stride = image->tile[tile_idx[0]].rot_stride;
1319 		addr0 = ctx->rot_intermediate[0].phys;
1320 		if (ctx->double_buffering)
1321 			addr1 = ctx->rot_intermediate[1].phys;
1322 	} else {
1323 		width = image->tile[tile_idx[0]].width;
1324 		height = image->tile[tile_idx[0]].height;
1325 		stride = image->stride;
1326 		addr0 = image->base.phys0 +
1327 			image->tile[tile_idx[0]].offset;
1328 		if (ctx->double_buffering)
1329 			addr1 = image->base.phys0 +
1330 				image->tile[tile_idx[1]].offset;
1331 	}
1332 
1333 	ipu_cpmem_zero(channel);
1334 
1335 	memset(&tile_image, 0, sizeof(tile_image));
1336 	tile_image.pix.width = tile_image.rect.width = width;
1337 	tile_image.pix.height = tile_image.rect.height = height;
1338 	tile_image.pix.bytesperline = stride;
1339 	tile_image.pix.pixelformat =  image->fmt->fourcc;
1340 	tile_image.phys0 = addr0;
1341 	tile_image.phys1 = addr1;
1342 	if (image->fmt->planar && !rot_swap_width_height) {
1343 		tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1344 		tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1345 	}
1346 
1347 	ipu_cpmem_set_image(channel, &tile_image);
1348 
1349 	if (rot_mode)
1350 		ipu_cpmem_set_rotation(channel, rot_mode);
1351 
1352 	/*
1353 	 * Skip writing U and V components to odd rows in the output
1354 	 * channels for planar 4:2:0.
1355 	 */
1356 	if ((channel == chan->out_chan ||
1357 	     channel == chan->rotation_out_chan) &&
1358 	    image->fmt->planar && image->fmt->uv_height_dec == 2)
1359 		ipu_cpmem_skip_odd_chroma_rows(channel);
1360 
1361 	if (channel == chan->rotation_in_chan ||
1362 	    channel == chan->rotation_out_chan) {
1363 		burst_size = 8;
1364 		ipu_cpmem_set_block_mode(channel);
1365 	} else
1366 		burst_size = (width % 16) ? 8 : 16;
1367 
1368 	ipu_cpmem_set_burstsize(channel, burst_size);
1369 
1370 	ipu_ic_task_idma_init(chan->ic, channel, width, height,
1371 			      burst_size, rot_mode);
1372 
1373 	/*
1374 	 * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1375 	 * only do this when there is no PRG present.
1376 	 */
1377 	if (!channel->ipu->prg_priv)
1378 		ipu_cpmem_set_axi_id(channel, 1);
1379 
1380 	ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1381 }
1382 
1383 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1384 {
1385 	struct ipu_image_convert_ctx *ctx = run->ctx;
1386 	struct ipu_image_convert_chan *chan = ctx->chan;
1387 	struct ipu_image_convert_priv *priv = chan->priv;
1388 	struct ipu_image_convert_image *s_image = &ctx->in;
1389 	struct ipu_image_convert_image *d_image = &ctx->out;
1390 	unsigned int dst_tile = ctx->out_tile_map[tile];
1391 	unsigned int dest_width, dest_height;
1392 	unsigned int col, row;
1393 	u32 rsc;
1394 	int ret;
1395 
1396 	dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1397 		__func__, chan->ic_task, ctx, run, tile, dst_tile);
1398 
1399 	/* clear EOF irq mask */
1400 	ctx->eof_mask = 0;
1401 
1402 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1403 		/* swap width/height for resizer */
1404 		dest_width = d_image->tile[dst_tile].height;
1405 		dest_height = d_image->tile[dst_tile].width;
1406 	} else {
1407 		dest_width = d_image->tile[dst_tile].width;
1408 		dest_height = d_image->tile[dst_tile].height;
1409 	}
1410 
1411 	row = tile / s_image->num_cols;
1412 	col = tile % s_image->num_cols;
1413 
1414 	rsc =  (ctx->downsize_coeff_v << 30) |
1415 	       (ctx->resize_coeffs_v[row] << 16) |
1416 	       (ctx->downsize_coeff_h << 14) |
1417 	       (ctx->resize_coeffs_h[col]);
1418 
1419 	dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1420 		__func__, s_image->tile[tile].width,
1421 		s_image->tile[tile].height, dest_width, dest_height, rsc);
1422 
1423 	/* setup the IC resizer and CSC */
1424 	ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1425 				   s_image->tile[tile].width,
1426 				   s_image->tile[tile].height,
1427 				   dest_width,
1428 				   dest_height,
1429 				   rsc);
1430 	if (ret) {
1431 		dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1432 		return ret;
1433 	}
1434 
1435 	/* init the source MEM-->IC PP IDMAC channel */
1436 	init_idmac_channel(ctx, chan->in_chan, s_image,
1437 			   IPU_ROTATE_NONE, false, tile);
1438 
1439 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1440 		/* init the IC PP-->MEM IDMAC channel */
1441 		init_idmac_channel(ctx, chan->out_chan, d_image,
1442 				   IPU_ROTATE_NONE, true, tile);
1443 
1444 		/* init the MEM-->IC PP ROT IDMAC channel */
1445 		init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1446 				   ctx->rot_mode, true, tile);
1447 
1448 		/* init the destination IC PP ROT-->MEM IDMAC channel */
1449 		init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1450 				   IPU_ROTATE_NONE, false, tile);
1451 
1452 		/* now link IC PP-->MEM to MEM-->IC PP ROT */
1453 		ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1454 	} else {
1455 		/* init the destination IC PP-->MEM IDMAC channel */
1456 		init_idmac_channel(ctx, chan->out_chan, d_image,
1457 				   ctx->rot_mode, false, tile);
1458 	}
1459 
1460 	/* enable the IC */
1461 	ipu_ic_enable(chan->ic);
1462 
1463 	/* set buffers ready */
1464 	ipu_idmac_select_buffer(chan->in_chan, 0);
1465 	ipu_idmac_select_buffer(chan->out_chan, 0);
1466 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1467 		ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1468 	if (ctx->double_buffering) {
1469 		ipu_idmac_select_buffer(chan->in_chan, 1);
1470 		ipu_idmac_select_buffer(chan->out_chan, 1);
1471 		if (ipu_rot_mode_is_irt(ctx->rot_mode))
1472 			ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1473 	}
1474 
1475 	/* enable the channels! */
1476 	ipu_idmac_enable_channel(chan->in_chan);
1477 	ipu_idmac_enable_channel(chan->out_chan);
1478 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1479 		ipu_idmac_enable_channel(chan->rotation_in_chan);
1480 		ipu_idmac_enable_channel(chan->rotation_out_chan);
1481 	}
1482 
1483 	ipu_ic_task_enable(chan->ic);
1484 
1485 	ipu_cpmem_dump(chan->in_chan);
1486 	ipu_cpmem_dump(chan->out_chan);
1487 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1488 		ipu_cpmem_dump(chan->rotation_in_chan);
1489 		ipu_cpmem_dump(chan->rotation_out_chan);
1490 	}
1491 
1492 	ipu_dump(priv->ipu);
1493 
1494 	return 0;
1495 }
1496 
1497 /* hold irqlock when calling */
1498 static int do_run(struct ipu_image_convert_run *run)
1499 {
1500 	struct ipu_image_convert_ctx *ctx = run->ctx;
1501 	struct ipu_image_convert_chan *chan = ctx->chan;
1502 
1503 	lockdep_assert_held(&chan->irqlock);
1504 
1505 	ctx->in.base.phys0 = run->in_phys;
1506 	ctx->out.base.phys0 = run->out_phys;
1507 
1508 	ctx->cur_buf_num = 0;
1509 	ctx->next_tile = 1;
1510 
1511 	/* remove run from pending_q and set as current */
1512 	list_del(&run->list);
1513 	chan->current_run = run;
1514 
1515 	return convert_start(run, 0);
1516 }
1517 
1518 /* hold irqlock when calling */
1519 static void run_next(struct ipu_image_convert_chan *chan)
1520 {
1521 	struct ipu_image_convert_priv *priv = chan->priv;
1522 	struct ipu_image_convert_run *run, *tmp;
1523 	int ret;
1524 
1525 	lockdep_assert_held(&chan->irqlock);
1526 
1527 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1528 		/* skip contexts that are aborting */
1529 		if (run->ctx->aborting) {
1530 			dev_dbg(priv->ipu->dev,
1531 				"%s: task %u: skipping aborting ctx %p run %p\n",
1532 				__func__, chan->ic_task, run->ctx, run);
1533 			continue;
1534 		}
1535 
1536 		ret = do_run(run);
1537 		if (!ret)
1538 			break;
1539 
1540 		/*
1541 		 * something went wrong with start, add the run
1542 		 * to done q and continue to the next run in the
1543 		 * pending q.
1544 		 */
1545 		run->status = ret;
1546 		list_add_tail(&run->list, &chan->done_q);
1547 		chan->current_run = NULL;
1548 	}
1549 }
1550 
1551 static void empty_done_q(struct ipu_image_convert_chan *chan)
1552 {
1553 	struct ipu_image_convert_priv *priv = chan->priv;
1554 	struct ipu_image_convert_run *run;
1555 	unsigned long flags;
1556 
1557 	spin_lock_irqsave(&chan->irqlock, flags);
1558 
1559 	while (!list_empty(&chan->done_q)) {
1560 		run = list_entry(chan->done_q.next,
1561 				 struct ipu_image_convert_run,
1562 				 list);
1563 
1564 		list_del(&run->list);
1565 
1566 		dev_dbg(priv->ipu->dev,
1567 			"%s: task %u: completing ctx %p run %p with %d\n",
1568 			__func__, chan->ic_task, run->ctx, run, run->status);
1569 
1570 		/* call the completion callback and free the run */
1571 		spin_unlock_irqrestore(&chan->irqlock, flags);
1572 		run->ctx->complete(run, run->ctx->complete_context);
1573 		spin_lock_irqsave(&chan->irqlock, flags);
1574 	}
1575 
1576 	spin_unlock_irqrestore(&chan->irqlock, flags);
1577 }
1578 
1579 /*
1580  * the bottom half thread clears out the done_q, calling the
1581  * completion handler for each.
1582  */
1583 static irqreturn_t do_bh(int irq, void *dev_id)
1584 {
1585 	struct ipu_image_convert_chan *chan = dev_id;
1586 	struct ipu_image_convert_priv *priv = chan->priv;
1587 	struct ipu_image_convert_ctx *ctx;
1588 	unsigned long flags;
1589 
1590 	dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1591 		chan->ic_task);
1592 
1593 	empty_done_q(chan);
1594 
1595 	spin_lock_irqsave(&chan->irqlock, flags);
1596 
1597 	/*
1598 	 * the done_q is cleared out, signal any contexts
1599 	 * that are aborting that abort can complete.
1600 	 */
1601 	list_for_each_entry(ctx, &chan->ctx_list, list) {
1602 		if (ctx->aborting) {
1603 			dev_dbg(priv->ipu->dev,
1604 				"%s: task %u: signaling abort for ctx %p\n",
1605 				__func__, chan->ic_task, ctx);
1606 			complete_all(&ctx->aborted);
1607 		}
1608 	}
1609 
1610 	spin_unlock_irqrestore(&chan->irqlock, flags);
1611 
1612 	dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1613 		chan->ic_task);
1614 
1615 	return IRQ_HANDLED;
1616 }
1617 
1618 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1619 {
1620 	unsigned int cur_tile = ctx->next_tile - 1;
1621 	unsigned int next_tile = ctx->next_tile;
1622 
1623 	if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1624 	    ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1625 	    ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1626 	    ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1627 	    ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1628 	    ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1629 	    ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1630 	    ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1631 		return true;
1632 
1633 	return false;
1634 }
1635 
1636 /* hold irqlock when calling */
1637 static irqreturn_t do_tile_complete(struct ipu_image_convert_run *run)
1638 {
1639 	struct ipu_image_convert_ctx *ctx = run->ctx;
1640 	struct ipu_image_convert_chan *chan = ctx->chan;
1641 	struct ipu_image_tile *src_tile, *dst_tile;
1642 	struct ipu_image_convert_image *s_image = &ctx->in;
1643 	struct ipu_image_convert_image *d_image = &ctx->out;
1644 	struct ipuv3_channel *outch;
1645 	unsigned int dst_idx;
1646 
1647 	lockdep_assert_held(&chan->irqlock);
1648 
1649 	outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1650 		chan->rotation_out_chan : chan->out_chan;
1651 
1652 	/*
1653 	 * It is difficult to stop the channel DMA before the channels
1654 	 * enter the paused state. Without double-buffering the channels
1655 	 * are always in a paused state when the EOF irq occurs, so it
1656 	 * is safe to stop the channels now. For double-buffering we
1657 	 * just ignore the abort until the operation completes, when it
1658 	 * is safe to shut down.
1659 	 */
1660 	if (ctx->aborting && !ctx->double_buffering) {
1661 		convert_stop(run);
1662 		run->status = -EIO;
1663 		goto done;
1664 	}
1665 
1666 	if (ctx->next_tile == ctx->num_tiles) {
1667 		/*
1668 		 * the conversion is complete
1669 		 */
1670 		convert_stop(run);
1671 		run->status = 0;
1672 		goto done;
1673 	}
1674 
1675 	/*
1676 	 * not done, place the next tile buffers.
1677 	 */
1678 	if (!ctx->double_buffering) {
1679 		if (ic_settings_changed(ctx)) {
1680 			convert_stop(run);
1681 			convert_start(run, ctx->next_tile);
1682 		} else {
1683 			src_tile = &s_image->tile[ctx->next_tile];
1684 			dst_idx = ctx->out_tile_map[ctx->next_tile];
1685 			dst_tile = &d_image->tile[dst_idx];
1686 
1687 			ipu_cpmem_set_buffer(chan->in_chan, 0,
1688 					     s_image->base.phys0 +
1689 					     src_tile->offset);
1690 			ipu_cpmem_set_buffer(outch, 0,
1691 					     d_image->base.phys0 +
1692 					     dst_tile->offset);
1693 			if (s_image->fmt->planar)
1694 				ipu_cpmem_set_uv_offset(chan->in_chan,
1695 							src_tile->u_off,
1696 							src_tile->v_off);
1697 			if (d_image->fmt->planar)
1698 				ipu_cpmem_set_uv_offset(outch,
1699 							dst_tile->u_off,
1700 							dst_tile->v_off);
1701 
1702 			ipu_idmac_select_buffer(chan->in_chan, 0);
1703 			ipu_idmac_select_buffer(outch, 0);
1704 		}
1705 	} else if (ctx->next_tile < ctx->num_tiles - 1) {
1706 
1707 		src_tile = &s_image->tile[ctx->next_tile + 1];
1708 		dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1709 		dst_tile = &d_image->tile[dst_idx];
1710 
1711 		ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1712 				     s_image->base.phys0 + src_tile->offset);
1713 		ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1714 				     d_image->base.phys0 + dst_tile->offset);
1715 
1716 		ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1717 		ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1718 
1719 		ctx->cur_buf_num ^= 1;
1720 	}
1721 
1722 	ctx->eof_mask = 0; /* clear EOF irq mask for next tile */
1723 	ctx->next_tile++;
1724 	return IRQ_HANDLED;
1725 done:
1726 	list_add_tail(&run->list, &chan->done_q);
1727 	chan->current_run = NULL;
1728 	run_next(chan);
1729 	return IRQ_WAKE_THREAD;
1730 }
1731 
1732 static irqreturn_t eof_irq(int irq, void *data)
1733 {
1734 	struct ipu_image_convert_chan *chan = data;
1735 	struct ipu_image_convert_priv *priv = chan->priv;
1736 	struct ipu_image_convert_ctx *ctx;
1737 	struct ipu_image_convert_run *run;
1738 	irqreturn_t ret = IRQ_HANDLED;
1739 	bool tile_complete = false;
1740 	unsigned long flags;
1741 
1742 	spin_lock_irqsave(&chan->irqlock, flags);
1743 
1744 	/* get current run and its context */
1745 	run = chan->current_run;
1746 	if (!run) {
1747 		ret = IRQ_NONE;
1748 		goto out;
1749 	}
1750 
1751 	ctx = run->ctx;
1752 
1753 	if (irq == chan->in_eof_irq) {
1754 		ctx->eof_mask |= EOF_IRQ_IN;
1755 	} else if (irq == chan->out_eof_irq) {
1756 		ctx->eof_mask |= EOF_IRQ_OUT;
1757 	} else if (irq == chan->rot_in_eof_irq ||
1758 		   irq == chan->rot_out_eof_irq) {
1759 		if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1760 			/* this was NOT a rotation op, shouldn't happen */
1761 			dev_err(priv->ipu->dev,
1762 				"Unexpected rotation interrupt\n");
1763 			goto out;
1764 		}
1765 		ctx->eof_mask |= (irq == chan->rot_in_eof_irq) ?
1766 			EOF_IRQ_ROT_IN : EOF_IRQ_ROT_OUT;
1767 	} else {
1768 		dev_err(priv->ipu->dev, "Received unknown irq %d\n", irq);
1769 		ret = IRQ_NONE;
1770 		goto out;
1771 	}
1772 
1773 	if (ipu_rot_mode_is_irt(ctx->rot_mode))
1774 		tile_complete =	(ctx->eof_mask == EOF_IRQ_ROT_COMPLETE);
1775 	else
1776 		tile_complete = (ctx->eof_mask == EOF_IRQ_COMPLETE);
1777 
1778 	if (tile_complete)
1779 		ret = do_tile_complete(run);
1780 out:
1781 	spin_unlock_irqrestore(&chan->irqlock, flags);
1782 	return ret;
1783 }
1784 
1785 /*
1786  * try to force the completion of runs for this ctx. Called when
1787  * abort wait times out in ipu_image_convert_abort().
1788  */
1789 static void force_abort(struct ipu_image_convert_ctx *ctx)
1790 {
1791 	struct ipu_image_convert_chan *chan = ctx->chan;
1792 	struct ipu_image_convert_run *run;
1793 	unsigned long flags;
1794 
1795 	spin_lock_irqsave(&chan->irqlock, flags);
1796 
1797 	run = chan->current_run;
1798 	if (run && run->ctx == ctx) {
1799 		convert_stop(run);
1800 		run->status = -EIO;
1801 		list_add_tail(&run->list, &chan->done_q);
1802 		chan->current_run = NULL;
1803 		run_next(chan);
1804 	}
1805 
1806 	spin_unlock_irqrestore(&chan->irqlock, flags);
1807 
1808 	empty_done_q(chan);
1809 }
1810 
1811 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1812 {
1813 	if (chan->in_eof_irq >= 0)
1814 		free_irq(chan->in_eof_irq, chan);
1815 	if (chan->rot_in_eof_irq >= 0)
1816 		free_irq(chan->rot_in_eof_irq, chan);
1817 	if (chan->out_eof_irq >= 0)
1818 		free_irq(chan->out_eof_irq, chan);
1819 	if (chan->rot_out_eof_irq >= 0)
1820 		free_irq(chan->rot_out_eof_irq, chan);
1821 
1822 	if (!IS_ERR_OR_NULL(chan->in_chan))
1823 		ipu_idmac_put(chan->in_chan);
1824 	if (!IS_ERR_OR_NULL(chan->out_chan))
1825 		ipu_idmac_put(chan->out_chan);
1826 	if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1827 		ipu_idmac_put(chan->rotation_in_chan);
1828 	if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1829 		ipu_idmac_put(chan->rotation_out_chan);
1830 	if (!IS_ERR_OR_NULL(chan->ic))
1831 		ipu_ic_put(chan->ic);
1832 
1833 	chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1834 		chan->rotation_out_chan = NULL;
1835 	chan->in_eof_irq = -1;
1836 	chan->rot_in_eof_irq = -1;
1837 	chan->out_eof_irq = -1;
1838 	chan->rot_out_eof_irq = -1;
1839 }
1840 
1841 static int get_eof_irq(struct ipu_image_convert_chan *chan,
1842 		       struct ipuv3_channel *channel)
1843 {
1844 	struct ipu_image_convert_priv *priv = chan->priv;
1845 	int ret, irq;
1846 
1847 	irq = ipu_idmac_channel_irq(priv->ipu, channel, IPU_IRQ_EOF);
1848 
1849 	ret = request_threaded_irq(irq, eof_irq, do_bh, 0, "ipu-ic", chan);
1850 	if (ret < 0) {
1851 		dev_err(priv->ipu->dev, "could not acquire irq %d\n", irq);
1852 		return ret;
1853 	}
1854 
1855 	return irq;
1856 }
1857 
1858 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1859 {
1860 	const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1861 	struct ipu_image_convert_priv *priv = chan->priv;
1862 	int ret;
1863 
1864 	/* get IC */
1865 	chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1866 	if (IS_ERR(chan->ic)) {
1867 		dev_err(priv->ipu->dev, "could not acquire IC\n");
1868 		ret = PTR_ERR(chan->ic);
1869 		goto err;
1870 	}
1871 
1872 	/* get IDMAC channels */
1873 	chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1874 	chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1875 	if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1876 		dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1877 		ret = -EBUSY;
1878 		goto err;
1879 	}
1880 
1881 	chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1882 	chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1883 	if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1884 		dev_err(priv->ipu->dev,
1885 			"could not acquire idmac rotation channels\n");
1886 		ret = -EBUSY;
1887 		goto err;
1888 	}
1889 
1890 	/* acquire the EOF interrupts */
1891 	ret = get_eof_irq(chan, chan->in_chan);
1892 	if (ret < 0) {
1893 		chan->in_eof_irq = -1;
1894 		goto err;
1895 	}
1896 	chan->in_eof_irq = ret;
1897 
1898 	ret = get_eof_irq(chan, chan->rotation_in_chan);
1899 	if (ret < 0) {
1900 		chan->rot_in_eof_irq = -1;
1901 		goto err;
1902 	}
1903 	chan->rot_in_eof_irq = ret;
1904 
1905 	ret = get_eof_irq(chan, chan->out_chan);
1906 	if (ret < 0) {
1907 		chan->out_eof_irq = -1;
1908 		goto err;
1909 	}
1910 	chan->out_eof_irq = ret;
1911 
1912 	ret = get_eof_irq(chan, chan->rotation_out_chan);
1913 	if (ret < 0) {
1914 		chan->rot_out_eof_irq = -1;
1915 		goto err;
1916 	}
1917 	chan->rot_out_eof_irq = ret;
1918 
1919 	return 0;
1920 err:
1921 	release_ipu_resources(chan);
1922 	return ret;
1923 }
1924 
1925 static int fill_image(struct ipu_image_convert_ctx *ctx,
1926 		      struct ipu_image_convert_image *ic_image,
1927 		      struct ipu_image *image,
1928 		      enum ipu_image_convert_type type)
1929 {
1930 	struct ipu_image_convert_priv *priv = ctx->chan->priv;
1931 
1932 	ic_image->base = *image;
1933 	ic_image->type = type;
1934 
1935 	ic_image->fmt = get_format(image->pix.pixelformat);
1936 	if (!ic_image->fmt) {
1937 		dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1938 			type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1939 		return -EINVAL;
1940 	}
1941 
1942 	if (ic_image->fmt->planar)
1943 		ic_image->stride = ic_image->base.pix.width;
1944 	else
1945 		ic_image->stride  = ic_image->base.pix.bytesperline;
1946 
1947 	return 0;
1948 }
1949 
1950 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1951 static unsigned int clamp_align(unsigned int x, unsigned int min,
1952 				unsigned int max, unsigned int align)
1953 {
1954 	/* Bits that must be zero to be aligned */
1955 	unsigned int mask = ~((1 << align) - 1);
1956 
1957 	/* Clamp to aligned min and max */
1958 	x = clamp(x, (min + ~mask) & mask, max & mask);
1959 
1960 	/* Round to nearest aligned value */
1961 	if (align)
1962 		x = (x + (1 << (align - 1))) & mask;
1963 
1964 	return x;
1965 }
1966 
1967 /* Adjusts input/output images to IPU restrictions */
1968 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1969 			      enum ipu_rotate_mode rot_mode)
1970 {
1971 	const struct ipu_image_pixfmt *infmt, *outfmt;
1972 	u32 w_align_out, h_align_out;
1973 	u32 w_align_in, h_align_in;
1974 
1975 	infmt = get_format(in->pix.pixelformat);
1976 	outfmt = get_format(out->pix.pixelformat);
1977 
1978 	/* set some default pixel formats if needed */
1979 	if (!infmt) {
1980 		in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1981 		infmt = get_format(V4L2_PIX_FMT_RGB24);
1982 	}
1983 	if (!outfmt) {
1984 		out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1985 		outfmt = get_format(V4L2_PIX_FMT_RGB24);
1986 	}
1987 
1988 	/* image converter does not handle fields */
1989 	in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1990 
1991 	/* resizer cannot downsize more than 4:1 */
1992 	if (ipu_rot_mode_is_irt(rot_mode)) {
1993 		out->pix.height = max_t(__u32, out->pix.height,
1994 					in->pix.width / 4);
1995 		out->pix.width = max_t(__u32, out->pix.width,
1996 				       in->pix.height / 4);
1997 	} else {
1998 		out->pix.width = max_t(__u32, out->pix.width,
1999 				       in->pix.width / 4);
2000 		out->pix.height = max_t(__u32, out->pix.height,
2001 					in->pix.height / 4);
2002 	}
2003 
2004 	/* align input width/height */
2005 	w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
2006 					    rot_mode));
2007 	h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
2008 					     rot_mode));
2009 	in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
2010 				    w_align_in);
2011 	in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
2012 				     h_align_in);
2013 
2014 	/* align output width/height */
2015 	w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
2016 					     rot_mode));
2017 	h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
2018 					      rot_mode));
2019 	out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
2020 				     w_align_out);
2021 	out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
2022 				      h_align_out);
2023 
2024 	/* set input/output strides and image sizes */
2025 	in->pix.bytesperline = infmt->planar ?
2026 		clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
2027 			    w_align_in) :
2028 		clamp_align((in->pix.width * infmt->bpp) >> 3,
2029 			    ((2 << w_align_in) * infmt->bpp) >> 3,
2030 			    (MAX_W * infmt->bpp) >> 3,
2031 			    w_align_in);
2032 	in->pix.sizeimage = infmt->planar ?
2033 		(in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
2034 		in->pix.height * in->pix.bytesperline;
2035 	out->pix.bytesperline = outfmt->planar ? out->pix.width :
2036 		(out->pix.width * outfmt->bpp) >> 3;
2037 	out->pix.sizeimage = outfmt->planar ?
2038 		(out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2039 		out->pix.height * out->pix.bytesperline;
2040 }
2041 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2042 
2043 /*
2044  * this is used by ipu_image_convert_prepare() to verify set input and
2045  * output images are valid before starting the conversion. Clients can
2046  * also call it before calling ipu_image_convert_prepare().
2047  */
2048 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2049 			     enum ipu_rotate_mode rot_mode)
2050 {
2051 	struct ipu_image testin, testout;
2052 
2053 	testin = *in;
2054 	testout = *out;
2055 
2056 	ipu_image_convert_adjust(&testin, &testout, rot_mode);
2057 
2058 	if (testin.pix.width != in->pix.width ||
2059 	    testin.pix.height != in->pix.height ||
2060 	    testout.pix.width != out->pix.width ||
2061 	    testout.pix.height != out->pix.height)
2062 		return -EINVAL;
2063 
2064 	return 0;
2065 }
2066 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2067 
2068 /*
2069  * Call ipu_image_convert_prepare() to prepare for the conversion of
2070  * given images and rotation mode. Returns a new conversion context.
2071  */
2072 struct ipu_image_convert_ctx *
2073 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2074 			  struct ipu_image *in, struct ipu_image *out,
2075 			  enum ipu_rotate_mode rot_mode,
2076 			  ipu_image_convert_cb_t complete,
2077 			  void *complete_context)
2078 {
2079 	struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2080 	struct ipu_image_convert_image *s_image, *d_image;
2081 	struct ipu_image_convert_chan *chan;
2082 	struct ipu_image_convert_ctx *ctx;
2083 	unsigned long flags;
2084 	unsigned int i;
2085 	bool get_res;
2086 	int ret;
2087 
2088 	if (!in || !out || !complete ||
2089 	    (ic_task != IC_TASK_VIEWFINDER &&
2090 	     ic_task != IC_TASK_POST_PROCESSOR))
2091 		return ERR_PTR(-EINVAL);
2092 
2093 	/* verify the in/out images before continuing */
2094 	ret = ipu_image_convert_verify(in, out, rot_mode);
2095 	if (ret) {
2096 		dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2097 			__func__);
2098 		return ERR_PTR(ret);
2099 	}
2100 
2101 	chan = &priv->chan[ic_task];
2102 
2103 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2104 	if (!ctx)
2105 		return ERR_PTR(-ENOMEM);
2106 
2107 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2108 		chan->ic_task, ctx);
2109 
2110 	ctx->chan = chan;
2111 	init_completion(&ctx->aborted);
2112 
2113 	ctx->rot_mode = rot_mode;
2114 
2115 	/* Sets ctx->in.num_rows/cols as well */
2116 	ret = calc_image_resize_coefficients(ctx, in, out);
2117 	if (ret)
2118 		goto out_free;
2119 
2120 	s_image = &ctx->in;
2121 	d_image = &ctx->out;
2122 
2123 	/* set tiling and rotation */
2124 	if (ipu_rot_mode_is_irt(rot_mode)) {
2125 		d_image->num_rows = s_image->num_cols;
2126 		d_image->num_cols = s_image->num_rows;
2127 	} else {
2128 		d_image->num_rows = s_image->num_rows;
2129 		d_image->num_cols = s_image->num_cols;
2130 	}
2131 
2132 	ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2133 
2134 	ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2135 	if (ret)
2136 		goto out_free;
2137 	ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2138 	if (ret)
2139 		goto out_free;
2140 
2141 	calc_out_tile_map(ctx);
2142 
2143 	find_seams(ctx, s_image, d_image);
2144 
2145 	ret = calc_tile_dimensions(ctx, s_image);
2146 	if (ret)
2147 		goto out_free;
2148 
2149 	ret = calc_tile_offsets(ctx, s_image);
2150 	if (ret)
2151 		goto out_free;
2152 
2153 	calc_tile_dimensions(ctx, d_image);
2154 	ret = calc_tile_offsets(ctx, d_image);
2155 	if (ret)
2156 		goto out_free;
2157 
2158 	calc_tile_resize_coefficients(ctx);
2159 
2160 	ret = ipu_ic_calc_csc(&ctx->csc,
2161 			s_image->base.pix.ycbcr_enc,
2162 			s_image->base.pix.quantization,
2163 			ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2164 			d_image->base.pix.ycbcr_enc,
2165 			d_image->base.pix.quantization,
2166 			ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2167 	if (ret)
2168 		goto out_free;
2169 
2170 	dump_format(ctx, s_image);
2171 	dump_format(ctx, d_image);
2172 
2173 	ctx->complete = complete;
2174 	ctx->complete_context = complete_context;
2175 
2176 	/*
2177 	 * Can we use double-buffering for this operation? If there is
2178 	 * only one tile (the whole image can be converted in a single
2179 	 * operation) there's no point in using double-buffering. Also,
2180 	 * the IPU's IDMAC channels allow only a single U and V plane
2181 	 * offset shared between both buffers, but these offsets change
2182 	 * for every tile, and therefore would have to be updated for
2183 	 * each buffer which is not possible. So double-buffering is
2184 	 * impossible when either the source or destination images are
2185 	 * a planar format (YUV420, YUV422P, etc.). Further, differently
2186 	 * sized tiles or different resizing coefficients per tile
2187 	 * prevent double-buffering as well.
2188 	 */
2189 	ctx->double_buffering = (ctx->num_tiles > 1 &&
2190 				 !s_image->fmt->planar &&
2191 				 !d_image->fmt->planar);
2192 	for (i = 1; i < ctx->num_tiles; i++) {
2193 		if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2194 		    ctx->in.tile[i].height != ctx->in.tile[0].height ||
2195 		    ctx->out.tile[i].width != ctx->out.tile[0].width ||
2196 		    ctx->out.tile[i].height != ctx->out.tile[0].height) {
2197 			ctx->double_buffering = false;
2198 			break;
2199 		}
2200 	}
2201 	for (i = 1; i < ctx->in.num_cols; i++) {
2202 		if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2203 			ctx->double_buffering = false;
2204 			break;
2205 		}
2206 	}
2207 	for (i = 1; i < ctx->in.num_rows; i++) {
2208 		if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2209 			ctx->double_buffering = false;
2210 			break;
2211 		}
2212 	}
2213 
2214 	if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2215 		unsigned long intermediate_size = d_image->tile[0].size;
2216 
2217 		for (i = 1; i < ctx->num_tiles; i++) {
2218 			if (d_image->tile[i].size > intermediate_size)
2219 				intermediate_size = d_image->tile[i].size;
2220 		}
2221 
2222 		ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2223 				    intermediate_size);
2224 		if (ret)
2225 			goto out_free;
2226 		if (ctx->double_buffering) {
2227 			ret = alloc_dma_buf(priv,
2228 					    &ctx->rot_intermediate[1],
2229 					    intermediate_size);
2230 			if (ret)
2231 				goto out_free_dmabuf0;
2232 		}
2233 	}
2234 
2235 	spin_lock_irqsave(&chan->irqlock, flags);
2236 
2237 	get_res = list_empty(&chan->ctx_list);
2238 
2239 	list_add_tail(&ctx->list, &chan->ctx_list);
2240 
2241 	spin_unlock_irqrestore(&chan->irqlock, flags);
2242 
2243 	if (get_res) {
2244 		ret = get_ipu_resources(chan);
2245 		if (ret)
2246 			goto out_free_dmabuf1;
2247 	}
2248 
2249 	return ctx;
2250 
2251 out_free_dmabuf1:
2252 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2253 	spin_lock_irqsave(&chan->irqlock, flags);
2254 	list_del(&ctx->list);
2255 	spin_unlock_irqrestore(&chan->irqlock, flags);
2256 out_free_dmabuf0:
2257 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2258 out_free:
2259 	kfree(ctx);
2260 	return ERR_PTR(ret);
2261 }
2262 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2263 
2264 /*
2265  * Carry out a single image conversion run. Only the physaddr's of the input
2266  * and output image buffers are needed. The conversion context must have
2267  * been created previously with ipu_image_convert_prepare().
2268  */
2269 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2270 {
2271 	struct ipu_image_convert_chan *chan;
2272 	struct ipu_image_convert_priv *priv;
2273 	struct ipu_image_convert_ctx *ctx;
2274 	unsigned long flags;
2275 	int ret = 0;
2276 
2277 	if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2278 		return -EINVAL;
2279 
2280 	ctx = run->ctx;
2281 	chan = ctx->chan;
2282 	priv = chan->priv;
2283 
2284 	dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2285 		chan->ic_task, ctx, run);
2286 
2287 	INIT_LIST_HEAD(&run->list);
2288 
2289 	spin_lock_irqsave(&chan->irqlock, flags);
2290 
2291 	if (ctx->aborting) {
2292 		ret = -EIO;
2293 		goto unlock;
2294 	}
2295 
2296 	list_add_tail(&run->list, &chan->pending_q);
2297 
2298 	if (!chan->current_run) {
2299 		ret = do_run(run);
2300 		if (ret)
2301 			chan->current_run = NULL;
2302 	}
2303 unlock:
2304 	spin_unlock_irqrestore(&chan->irqlock, flags);
2305 	return ret;
2306 }
2307 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2308 
2309 /* Abort any active or pending conversions for this context */
2310 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2311 {
2312 	struct ipu_image_convert_chan *chan = ctx->chan;
2313 	struct ipu_image_convert_priv *priv = chan->priv;
2314 	struct ipu_image_convert_run *run, *active_run, *tmp;
2315 	unsigned long flags;
2316 	int run_count, ret;
2317 
2318 	spin_lock_irqsave(&chan->irqlock, flags);
2319 
2320 	/* move all remaining pending runs in this context to done_q */
2321 	list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2322 		if (run->ctx != ctx)
2323 			continue;
2324 		run->status = -EIO;
2325 		list_move_tail(&run->list, &chan->done_q);
2326 	}
2327 
2328 	run_count = get_run_count(ctx, &chan->done_q);
2329 	active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2330 		chan->current_run : NULL;
2331 
2332 	if (active_run)
2333 		reinit_completion(&ctx->aborted);
2334 
2335 	ctx->aborting = true;
2336 
2337 	spin_unlock_irqrestore(&chan->irqlock, flags);
2338 
2339 	if (!run_count && !active_run) {
2340 		dev_dbg(priv->ipu->dev,
2341 			"%s: task %u: no abort needed for ctx %p\n",
2342 			__func__, chan->ic_task, ctx);
2343 		return;
2344 	}
2345 
2346 	if (!active_run) {
2347 		empty_done_q(chan);
2348 		return;
2349 	}
2350 
2351 	dev_dbg(priv->ipu->dev,
2352 		"%s: task %u: wait for completion: %d runs\n",
2353 		__func__, chan->ic_task, run_count);
2354 
2355 	ret = wait_for_completion_timeout(&ctx->aborted,
2356 					  msecs_to_jiffies(10000));
2357 	if (ret == 0) {
2358 		dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2359 		force_abort(ctx);
2360 	}
2361 }
2362 
2363 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2364 {
2365 	__ipu_image_convert_abort(ctx);
2366 	ctx->aborting = false;
2367 }
2368 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2369 
2370 /* Unprepare image conversion context */
2371 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2372 {
2373 	struct ipu_image_convert_chan *chan = ctx->chan;
2374 	struct ipu_image_convert_priv *priv = chan->priv;
2375 	unsigned long flags;
2376 	bool put_res;
2377 
2378 	/* make sure no runs are hanging around */
2379 	__ipu_image_convert_abort(ctx);
2380 
2381 	dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2382 		chan->ic_task, ctx);
2383 
2384 	spin_lock_irqsave(&chan->irqlock, flags);
2385 
2386 	list_del(&ctx->list);
2387 
2388 	put_res = list_empty(&chan->ctx_list);
2389 
2390 	spin_unlock_irqrestore(&chan->irqlock, flags);
2391 
2392 	if (put_res)
2393 		release_ipu_resources(chan);
2394 
2395 	free_dma_buf(priv, &ctx->rot_intermediate[1]);
2396 	free_dma_buf(priv, &ctx->rot_intermediate[0]);
2397 
2398 	kfree(ctx);
2399 }
2400 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2401 
2402 /*
2403  * "Canned" asynchronous single image conversion. Allocates and returns
2404  * a new conversion run.  On successful return the caller must free the
2405  * run and call ipu_image_convert_unprepare() after conversion completes.
2406  */
2407 struct ipu_image_convert_run *
2408 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2409 		  struct ipu_image *in, struct ipu_image *out,
2410 		  enum ipu_rotate_mode rot_mode,
2411 		  ipu_image_convert_cb_t complete,
2412 		  void *complete_context)
2413 {
2414 	struct ipu_image_convert_ctx *ctx;
2415 	struct ipu_image_convert_run *run;
2416 	int ret;
2417 
2418 	ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2419 					complete, complete_context);
2420 	if (IS_ERR(ctx))
2421 		return ERR_CAST(ctx);
2422 
2423 	run = kzalloc(sizeof(*run), GFP_KERNEL);
2424 	if (!run) {
2425 		ipu_image_convert_unprepare(ctx);
2426 		return ERR_PTR(-ENOMEM);
2427 	}
2428 
2429 	run->ctx = ctx;
2430 	run->in_phys = in->phys0;
2431 	run->out_phys = out->phys0;
2432 
2433 	ret = ipu_image_convert_queue(run);
2434 	if (ret) {
2435 		ipu_image_convert_unprepare(ctx);
2436 		kfree(run);
2437 		return ERR_PTR(ret);
2438 	}
2439 
2440 	return run;
2441 }
2442 EXPORT_SYMBOL_GPL(ipu_image_convert);
2443 
2444 /* "Canned" synchronous single image conversion */
2445 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2446 					void *data)
2447 {
2448 	struct completion *comp = data;
2449 
2450 	complete(comp);
2451 }
2452 
2453 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2454 			   struct ipu_image *in, struct ipu_image *out,
2455 			   enum ipu_rotate_mode rot_mode)
2456 {
2457 	struct ipu_image_convert_run *run;
2458 	struct completion comp;
2459 	int ret;
2460 
2461 	init_completion(&comp);
2462 
2463 	run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2464 				image_convert_sync_complete, &comp);
2465 	if (IS_ERR(run))
2466 		return PTR_ERR(run);
2467 
2468 	ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2469 	ret = (ret == 0) ? -ETIMEDOUT : 0;
2470 
2471 	ipu_image_convert_unprepare(run->ctx);
2472 	kfree(run);
2473 
2474 	return ret;
2475 }
2476 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2477 
2478 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2479 {
2480 	struct ipu_image_convert_priv *priv;
2481 	int i;
2482 
2483 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2484 	if (!priv)
2485 		return -ENOMEM;
2486 
2487 	ipu->image_convert_priv = priv;
2488 	priv->ipu = ipu;
2489 
2490 	for (i = 0; i < IC_NUM_TASKS; i++) {
2491 		struct ipu_image_convert_chan *chan = &priv->chan[i];
2492 
2493 		chan->ic_task = i;
2494 		chan->priv = priv;
2495 		chan->dma_ch = &image_convert_dma_chan[i];
2496 		chan->in_eof_irq = -1;
2497 		chan->rot_in_eof_irq = -1;
2498 		chan->out_eof_irq = -1;
2499 		chan->rot_out_eof_irq = -1;
2500 
2501 		spin_lock_init(&chan->irqlock);
2502 		INIT_LIST_HEAD(&chan->ctx_list);
2503 		INIT_LIST_HEAD(&chan->pending_q);
2504 		INIT_LIST_HEAD(&chan->done_q);
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 void ipu_image_convert_exit(struct ipu_soc *ipu)
2511 {
2512 }
2513