1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021-2024 Intel Corporation 4 */ 5 6 #include <kunit/visibility.h> 7 #include <linux/pci.h> 8 9 #include <drm/drm_managed.h> 10 #include <drm/drm_print.h> 11 12 #include "regs/xe_bars.h" 13 #include "regs/xe_gt_regs.h" 14 #include "regs/xe_regs.h" 15 #include "xe_assert.h" 16 #include "xe_device.h" 17 #include "xe_force_wake.h" 18 #include "xe_gt_mcr.h" 19 #include "xe_gt_sriov_vf.h" 20 #include "xe_mmio.h" 21 #include "xe_module.h" 22 #include "xe_sriov.h" 23 #include "xe_ttm_vram_mgr.h" 24 #include "xe_vram.h" 25 #include "xe_vram_types.h" 26 27 #define BAR_SIZE_SHIFT 20 28 29 /* 30 * Release all the BARs that could influence/block LMEMBAR resizing, i.e. 31 * assigned IORESOURCE_MEM_64 BARs 32 */ 33 static void release_bars(struct pci_dev *pdev) 34 { 35 struct resource *res; 36 int i; 37 38 pci_dev_for_each_resource(pdev, res, i) { 39 /* Resource already un-assigned, do not reset it */ 40 if (!res->parent) 41 continue; 42 43 /* No need to release unrelated BARs */ 44 if (!(res->flags & IORESOURCE_MEM_64)) 45 continue; 46 47 pci_release_resource(pdev, i); 48 } 49 } 50 51 static void resize_bar(struct xe_device *xe, int resno, resource_size_t size) 52 { 53 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 54 int bar_size = pci_rebar_bytes_to_size(size); 55 int ret; 56 57 release_bars(pdev); 58 59 ret = pci_resize_resource(pdev, resno, bar_size); 60 if (ret) { 61 drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n", 62 resno, 1 << bar_size, ERR_PTR(ret)); 63 return; 64 } 65 66 drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size); 67 } 68 69 /* 70 * if force_vram_bar_size is set, attempt to set to the requested size 71 * else set to maximum possible size 72 */ 73 void xe_vram_resize_bar(struct xe_device *xe) 74 { 75 int force_vram_bar_size = xe_modparam.force_vram_bar_size; 76 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 77 struct pci_bus *root = pdev->bus; 78 resource_size_t current_size; 79 resource_size_t rebar_size; 80 struct resource *root_res; 81 u32 bar_size_mask; 82 u32 pci_cmd; 83 int i; 84 85 /* gather some relevant info */ 86 current_size = pci_resource_len(pdev, LMEM_BAR); 87 bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR); 88 89 if (!bar_size_mask) 90 return; 91 92 if (force_vram_bar_size < 0) 93 return; 94 95 /* set to a specific size? */ 96 if (force_vram_bar_size) { 97 u32 bar_size_bit; 98 99 rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M; 100 101 bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size)); 102 103 if (!bar_size_bit) { 104 drm_info(&xe->drm, 105 "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n", 106 (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20); 107 return; 108 } 109 110 rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT); 111 112 if (rebar_size == current_size) 113 return; 114 } else { 115 rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT); 116 117 /* only resize if larger than current */ 118 if (rebar_size <= current_size) 119 return; 120 } 121 122 drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n", 123 (u64)current_size >> 20, (u64)rebar_size >> 20); 124 125 while (root->parent) 126 root = root->parent; 127 128 pci_bus_for_each_resource(root, root_res, i) { 129 if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) && 130 (u64)root_res->start > 0x100000000ul) 131 break; 132 } 133 134 if (!root_res) { 135 drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n"); 136 return; 137 } 138 139 pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd); 140 pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY); 141 142 resize_bar(xe, LMEM_BAR, rebar_size); 143 144 pci_assign_unassigned_bus_resources(pdev->bus); 145 pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd); 146 } 147 148 static bool resource_is_valid(struct pci_dev *pdev, int bar) 149 { 150 if (!pci_resource_flags(pdev, bar)) 151 return false; 152 153 if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET) 154 return false; 155 156 if (!pci_resource_len(pdev, bar)) 157 return false; 158 159 return true; 160 } 161 162 static int determine_lmem_bar_size(struct xe_device *xe, struct xe_vram_region *lmem_bar) 163 { 164 struct pci_dev *pdev = to_pci_dev(xe->drm.dev); 165 166 if (!resource_is_valid(pdev, LMEM_BAR)) { 167 drm_err(&xe->drm, "pci resource is not valid\n"); 168 return -ENXIO; 169 } 170 171 lmem_bar->io_start = pci_resource_start(pdev, LMEM_BAR); 172 lmem_bar->io_size = pci_resource_len(pdev, LMEM_BAR); 173 if (!lmem_bar->io_size) 174 return -EIO; 175 176 /* XXX: Need to change when xe link code is ready */ 177 lmem_bar->dpa_base = 0; 178 179 /* set up a map to the total memory area. */ 180 lmem_bar->mapping = devm_ioremap_wc(&pdev->dev, lmem_bar->io_start, lmem_bar->io_size); 181 182 return 0; 183 } 184 185 static inline u64 get_flat_ccs_offset(struct xe_gt *gt, u64 tile_size) 186 { 187 struct xe_device *xe = gt_to_xe(gt); 188 u64 offset; 189 u32 reg; 190 191 if (GRAPHICS_VER(xe) >= 20) { 192 u64 ccs_size = tile_size / 512; 193 u64 offset_hi, offset_lo; 194 u32 nodes, num_enabled; 195 196 reg = xe_mmio_read32(>->mmio, MIRROR_FUSE3); 197 nodes = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, reg); 198 num_enabled = hweight32(nodes); /* Number of enabled l3 nodes */ 199 200 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER); 201 offset_lo = REG_FIELD_GET(XE2_FLAT_CCS_BASE_LOWER_ADDR_MASK, reg); 202 203 reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_UPPER); 204 offset_hi = REG_FIELD_GET(XE2_FLAT_CCS_BASE_UPPER_ADDR_MASK, reg); 205 206 offset = offset_hi << 32; /* HW view bits 39:32 */ 207 offset |= offset_lo << 6; /* HW view bits 31:6 */ 208 offset *= num_enabled; /* convert to SW view */ 209 offset = round_up(offset, SZ_128K); /* SW must round up to nearest 128K */ 210 211 /* We don't expect any holes */ 212 xe_assert_msg(xe, offset == (xe_mmio_read64_2x32(>_to_tile(gt)->mmio, GSMBASE) - 213 ccs_size), 214 "Hole between CCS and GSM.\n"); 215 } else { 216 reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR); 217 offset = (u64)REG_FIELD_GET(XEHP_FLAT_CCS_PTR, reg) * SZ_64K; 218 } 219 220 return offset; 221 } 222 223 /* 224 * tile_vram_size() - Collect vram size and offset information 225 * @tile: tile to get info for 226 * @vram_size: available vram (size - device reserved portions) 227 * @tile_size: actual vram size 228 * @tile_offset: physical start point in the vram address space 229 * 230 * There are 4 places for size information: 231 * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1) 232 * - TILEx size (actual vram size) 233 * - GSMBASE offset (TILEx - "stolen") 234 * - CSSBASE offset (TILEx - CSS space necessary) 235 * 236 * CSSBASE is always a lower/smaller offset then GSMBASE. 237 * 238 * The actual available size of memory is to the CCS or GSM base. 239 * NOTE: multi-tile bases will include the tile offset. 240 * 241 */ 242 static int tile_vram_size(struct xe_tile *tile, u64 *vram_size, 243 u64 *tile_size, u64 *tile_offset) 244 { 245 struct xe_device *xe = tile_to_xe(tile); 246 struct xe_gt *gt = tile->primary_gt; 247 unsigned int fw_ref; 248 u64 offset; 249 u32 reg; 250 251 if (IS_SRIOV_VF(xe)) { 252 struct xe_tile *t; 253 int id; 254 255 offset = 0; 256 for_each_tile(t, xe, id) 257 for_each_if(t->id < tile->id) 258 offset += xe_gt_sriov_vf_lmem(t->primary_gt); 259 260 *tile_size = xe_gt_sriov_vf_lmem(gt); 261 *vram_size = *tile_size; 262 *tile_offset = offset; 263 264 return 0; 265 } 266 267 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 268 if (!fw_ref) 269 return -ETIMEDOUT; 270 271 /* actual size */ 272 if (unlikely(xe->info.platform == XE_DG1)) { 273 *tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR); 274 *tile_offset = 0; 275 } else { 276 reg = xe_gt_mcr_unicast_read_any(gt, XEHP_TILE_ADDR_RANGE(gt->info.id)); 277 *tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G; 278 *tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G; 279 } 280 281 /* minus device usage */ 282 if (xe->info.has_flat_ccs) { 283 offset = get_flat_ccs_offset(gt, *tile_size); 284 } else { 285 offset = xe_mmio_read64_2x32(&tile->mmio, GSMBASE); 286 } 287 288 /* remove the tile offset so we have just the available size */ 289 *vram_size = offset - *tile_offset; 290 291 xe_force_wake_put(gt_to_fw(gt), fw_ref); 292 293 return 0; 294 } 295 296 static void vram_fini(void *arg) 297 { 298 struct xe_device *xe = arg; 299 struct xe_tile *tile; 300 int id; 301 302 xe->mem.vram->mapping = NULL; 303 304 for_each_tile(tile, xe, id) 305 tile->mem.vram->mapping = NULL; 306 } 307 308 struct xe_vram_region *xe_vram_region_alloc(struct xe_device *xe, u8 id, u32 placement) 309 { 310 struct xe_vram_region *vram; 311 struct drm_device *drm = &xe->drm; 312 313 xe_assert(xe, id < xe->info.tile_count); 314 315 vram = drmm_kzalloc(drm, sizeof(*vram), GFP_KERNEL); 316 if (!vram) 317 return NULL; 318 319 vram->xe = xe; 320 vram->id = id; 321 vram->placement = placement; 322 #if defined(CONFIG_DRM_XE_PAGEMAP) 323 vram->migrate = xe->tiles[id].migrate; 324 #endif 325 return vram; 326 } 327 328 static void print_vram_region_info(struct xe_device *xe, struct xe_vram_region *vram) 329 { 330 struct drm_device *drm = &xe->drm; 331 332 if (vram->io_size < vram->usable_size) 333 drm_info(drm, "Small BAR device\n"); 334 335 drm_info(drm, 336 "VRAM[%u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n", 337 vram->id, &vram->actual_physical_size, &vram->usable_size, &vram->io_size); 338 drm_info(drm, "VRAM[%u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n", 339 vram->id, &vram->dpa_base, vram->dpa_base + (u64)vram->actual_physical_size, 340 &vram->io_start, vram->io_start + (u64)vram->io_size); 341 } 342 343 static int vram_region_init(struct xe_device *xe, struct xe_vram_region *vram, 344 struct xe_vram_region *lmem_bar, u64 offset, u64 usable_size, 345 u64 region_size, resource_size_t remain_io_size) 346 { 347 /* Check if VRAM region is already initialized */ 348 if (vram->mapping) 349 return 0; 350 351 vram->actual_physical_size = region_size; 352 vram->io_start = lmem_bar->io_start + offset; 353 vram->io_size = min_t(u64, usable_size, remain_io_size); 354 355 if (!vram->io_size) { 356 drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n"); 357 return -ENODEV; 358 } 359 360 vram->dpa_base = lmem_bar->dpa_base + offset; 361 vram->mapping = lmem_bar->mapping + offset; 362 vram->usable_size = usable_size; 363 364 print_vram_region_info(xe, vram); 365 366 return 0; 367 } 368 369 /** 370 * xe_vram_probe() - Probe VRAM configuration 371 * @xe: the &xe_device 372 * 373 * Collect VRAM size and offset information for all tiles. 374 * 375 * Return: 0 on success, error code on failure 376 */ 377 int xe_vram_probe(struct xe_device *xe) 378 { 379 struct xe_tile *tile; 380 struct xe_vram_region lmem_bar; 381 resource_size_t remain_io_size; 382 u64 available_size = 0; 383 u64 total_size = 0; 384 int err; 385 u8 id; 386 387 if (!IS_DGFX(xe)) 388 return 0; 389 390 err = determine_lmem_bar_size(xe, &lmem_bar); 391 if (err) 392 return err; 393 drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &lmem_bar.io_start, &lmem_bar.io_size); 394 395 remain_io_size = lmem_bar.io_size; 396 397 for_each_tile(tile, xe, id) { 398 u64 region_size; 399 u64 usable_size; 400 u64 tile_offset; 401 402 err = tile_vram_size(tile, &usable_size, ®ion_size, &tile_offset); 403 if (err) 404 return err; 405 406 total_size += region_size; 407 available_size += usable_size; 408 409 err = vram_region_init(xe, tile->mem.vram, &lmem_bar, tile_offset, usable_size, 410 region_size, remain_io_size); 411 if (err) 412 return err; 413 414 if (total_size > lmem_bar.io_size) { 415 drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n", 416 &total_size, &lmem_bar.io_size); 417 } 418 419 remain_io_size -= min_t(u64, tile->mem.vram->actual_physical_size, remain_io_size); 420 } 421 422 err = vram_region_init(xe, xe->mem.vram, &lmem_bar, 0, available_size, total_size, 423 lmem_bar.io_size); 424 if (err) 425 return err; 426 427 return devm_add_action_or_reset(xe->drm.dev, vram_fini, xe); 428 } 429 430 /** 431 * xe_vram_region_io_start - Get the IO start of a VRAM region 432 * @vram: the VRAM region 433 * 434 * Return: the IO start of the VRAM region, or 0 if not valid 435 */ 436 resource_size_t xe_vram_region_io_start(const struct xe_vram_region *vram) 437 { 438 return vram ? vram->io_start : 0; 439 } 440 441 /** 442 * xe_vram_region_io_size - Get the IO size of a VRAM region 443 * @vram: the VRAM region 444 * 445 * Return: the IO size of the VRAM region, or 0 if not valid 446 */ 447 resource_size_t xe_vram_region_io_size(const struct xe_vram_region *vram) 448 { 449 return vram ? vram->io_size : 0; 450 } 451 452 /** 453 * xe_vram_region_dpa_base - Get the DPA base of a VRAM region 454 * @vram: the VRAM region 455 * 456 * Return: the DPA base of the VRAM region, or 0 if not valid 457 */ 458 resource_size_t xe_vram_region_dpa_base(const struct xe_vram_region *vram) 459 { 460 return vram ? vram->dpa_base : 0; 461 } 462 463 /** 464 * xe_vram_region_usable_size - Get the usable size of a VRAM region 465 * @vram: the VRAM region 466 * 467 * Return: the usable size of the VRAM region, or 0 if not valid 468 */ 469 resource_size_t xe_vram_region_usable_size(const struct xe_vram_region *vram) 470 { 471 return vram ? vram->usable_size : 0; 472 } 473 474 /** 475 * xe_vram_region_actual_physical_size - Get the actual physical size of a VRAM region 476 * @vram: the VRAM region 477 * 478 * Return: the actual physical size of the VRAM region, or 0 if not valid 479 */ 480 resource_size_t xe_vram_region_actual_physical_size(const struct xe_vram_region *vram) 481 { 482 return vram ? vram->actual_physical_size : 0; 483 } 484 EXPORT_SYMBOL_IF_KUNIT(xe_vram_region_actual_physical_size); 485