xref: /linux/drivers/gpu/drm/xe/xe_vram.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021-2024 Intel Corporation
4  */
5 
6 #include <kunit/visibility.h>
7 #include <linux/pci.h>
8 
9 #include <drm/drm_managed.h>
10 #include <drm/drm_print.h>
11 
12 #include "regs/xe_bars.h"
13 #include "regs/xe_gt_regs.h"
14 #include "regs/xe_regs.h"
15 #include "xe_assert.h"
16 #include "xe_bo.h"
17 #include "xe_device.h"
18 #include "xe_force_wake.h"
19 #include "xe_gt_mcr.h"
20 #include "xe_mmio.h"
21 #include "xe_module.h"
22 #include "xe_sriov.h"
23 #include "xe_tile_sriov_vf.h"
24 #include "xe_ttm_vram_mgr.h"
25 #include "xe_vram.h"
26 #include "xe_vram_types.h"
27 
28 #define BAR_SIZE_SHIFT 20
29 
30 /*
31  * Release all the BARs that could influence/block LMEMBAR resizing, i.e.
32  * assigned IORESOURCE_MEM_64 BARs
33  */
34 static void release_bars(struct pci_dev *pdev)
35 {
36 	struct resource *res;
37 	int i;
38 
39 	pci_dev_for_each_resource(pdev, res, i) {
40 		/* Resource already un-assigned, do not reset it */
41 		if (!res->parent)
42 			continue;
43 
44 		/* No need to release unrelated BARs */
45 		if (!(res->flags & IORESOURCE_MEM_64))
46 			continue;
47 
48 		pci_release_resource(pdev, i);
49 	}
50 }
51 
52 static void resize_bar(struct xe_device *xe, int resno, resource_size_t size)
53 {
54 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
55 	int bar_size = pci_rebar_bytes_to_size(size);
56 	int ret;
57 
58 	release_bars(pdev);
59 
60 	ret = pci_resize_resource(pdev, resno, bar_size);
61 	if (ret) {
62 		drm_info(&xe->drm, "Failed to resize BAR%d to %dM (%pe). Consider enabling 'Resizable BAR' support in your BIOS\n",
63 			 resno, 1 << bar_size, ERR_PTR(ret));
64 		return;
65 	}
66 
67 	drm_info(&xe->drm, "BAR%d resized to %dM\n", resno, 1 << bar_size);
68 }
69 
70 /*
71  * if force_vram_bar_size is set, attempt to set to the requested size
72  * else set to maximum possible size
73  */
74 void xe_vram_resize_bar(struct xe_device *xe)
75 {
76 	int force_vram_bar_size = xe_modparam.force_vram_bar_size;
77 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
78 	struct pci_bus *root = pdev->bus;
79 	resource_size_t current_size;
80 	resource_size_t rebar_size;
81 	struct resource *root_res;
82 	u32 bar_size_mask;
83 	u32 pci_cmd;
84 	int i;
85 
86 	/* gather some relevant info */
87 	current_size = pci_resource_len(pdev, LMEM_BAR);
88 	bar_size_mask = pci_rebar_get_possible_sizes(pdev, LMEM_BAR);
89 
90 	if (!bar_size_mask)
91 		return;
92 
93 	if (force_vram_bar_size < 0)
94 		return;
95 
96 	/* set to a specific size? */
97 	if (force_vram_bar_size) {
98 		u32 bar_size_bit;
99 
100 		rebar_size = force_vram_bar_size * (resource_size_t)SZ_1M;
101 
102 		bar_size_bit = bar_size_mask & BIT(pci_rebar_bytes_to_size(rebar_size));
103 
104 		if (!bar_size_bit) {
105 			drm_info(&xe->drm,
106 				 "Requested size: %lluMiB is not supported by rebar sizes: 0x%x. Leaving default: %lluMiB\n",
107 				 (u64)rebar_size >> 20, bar_size_mask, (u64)current_size >> 20);
108 			return;
109 		}
110 
111 		rebar_size = 1ULL << (__fls(bar_size_bit) + BAR_SIZE_SHIFT);
112 
113 		if (rebar_size == current_size)
114 			return;
115 	} else {
116 		rebar_size = 1ULL << (__fls(bar_size_mask) + BAR_SIZE_SHIFT);
117 
118 		/* only resize if larger than current */
119 		if (rebar_size <= current_size)
120 			return;
121 	}
122 
123 	drm_info(&xe->drm, "Attempting to resize bar from %lluMiB -> %lluMiB\n",
124 		 (u64)current_size >> 20, (u64)rebar_size >> 20);
125 
126 	while (root->parent)
127 		root = root->parent;
128 
129 	pci_bus_for_each_resource(root, root_res, i) {
130 		if (root_res && root_res->flags & (IORESOURCE_MEM | IORESOURCE_MEM_64) &&
131 		    (u64)root_res->start > 0x100000000ul)
132 			break;
133 	}
134 
135 	if (!root_res) {
136 		drm_info(&xe->drm, "Can't resize VRAM BAR - platform support is missing. Consider enabling 'Resizable BAR' support in your BIOS\n");
137 		return;
138 	}
139 
140 	pci_read_config_dword(pdev, PCI_COMMAND, &pci_cmd);
141 	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd & ~PCI_COMMAND_MEMORY);
142 
143 	resize_bar(xe, LMEM_BAR, rebar_size);
144 
145 	pci_assign_unassigned_bus_resources(pdev->bus);
146 	pci_write_config_dword(pdev, PCI_COMMAND, pci_cmd);
147 }
148 
149 static bool resource_is_valid(struct pci_dev *pdev, int bar)
150 {
151 	if (!pci_resource_flags(pdev, bar))
152 		return false;
153 
154 	if (pci_resource_flags(pdev, bar) & IORESOURCE_UNSET)
155 		return false;
156 
157 	if (!pci_resource_len(pdev, bar))
158 		return false;
159 
160 	return true;
161 }
162 
163 static int determine_lmem_bar_size(struct xe_device *xe, struct xe_vram_region *lmem_bar)
164 {
165 	struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
166 
167 	if (!resource_is_valid(pdev, LMEM_BAR)) {
168 		drm_err(&xe->drm, "pci resource is not valid\n");
169 		return -ENXIO;
170 	}
171 
172 	lmem_bar->io_start = pci_resource_start(pdev, LMEM_BAR);
173 	lmem_bar->io_size = pci_resource_len(pdev, LMEM_BAR);
174 	if (!lmem_bar->io_size)
175 		return -EIO;
176 
177 	/* XXX: Need to change when xe link code is ready */
178 	lmem_bar->dpa_base = 0;
179 
180 	/* set up a map to the total memory area. */
181 	lmem_bar->mapping = devm_ioremap_wc(&pdev->dev, lmem_bar->io_start, lmem_bar->io_size);
182 
183 	return 0;
184 }
185 
186 static int get_flat_ccs_offset(struct xe_gt *gt, u64 tile_size, u64 *poffset)
187 {
188 	struct xe_device *xe = gt_to_xe(gt);
189 	unsigned int fw_ref;
190 	u64 offset;
191 	u32 reg;
192 
193 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
194 	if (!fw_ref)
195 		return -ETIMEDOUT;
196 
197 	if (GRAPHICS_VER(xe) >= 20) {
198 		u64 ccs_size = tile_size / 512;
199 		u64 offset_hi, offset_lo;
200 		u32 nodes, num_enabled;
201 
202 		reg = xe_mmio_read32(&gt->mmio, MIRROR_FUSE3);
203 		nodes = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, reg);
204 		num_enabled = hweight32(nodes); /* Number of enabled l3 nodes */
205 
206 		reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
207 		offset_lo = REG_FIELD_GET(XE2_FLAT_CCS_BASE_LOWER_ADDR_MASK, reg);
208 
209 		reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_UPPER);
210 		offset_hi = REG_FIELD_GET(XE2_FLAT_CCS_BASE_UPPER_ADDR_MASK, reg);
211 
212 		offset = offset_hi << 32; /* HW view bits 39:32 */
213 		offset |= offset_lo << 6; /* HW view bits 31:6 */
214 		offset *= num_enabled; /* convert to SW view */
215 		offset = round_up(offset, SZ_128K); /* SW must round up to nearest 128K */
216 
217 		/* We don't expect any holes */
218 		xe_assert_msg(xe, offset == (xe_mmio_read64_2x32(&gt_to_tile(gt)->mmio, GSMBASE) -
219 					     ccs_size),
220 			      "Hole between CCS and GSM.\n");
221 	} else {
222 		reg = xe_gt_mcr_unicast_read_any(gt, XEHP_FLAT_CCS_BASE_ADDR);
223 		offset = (u64)REG_FIELD_GET(XEHP_FLAT_CCS_PTR, reg) * SZ_64K;
224 	}
225 
226 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
227 	*poffset = offset;
228 
229 	return 0;
230 }
231 
232 /*
233  * tile_vram_size() - Collect vram size and offset information
234  * @tile: tile to get info for
235  * @vram_size: available vram (size - device reserved portions)
236  * @tile_size: actual vram size
237  * @tile_offset: physical start point in the vram address space
238  *
239  * There are 4 places for size information:
240  * - io size (from pci_resource_len of LMEM bar) (only used for small bar and DG1)
241  * - TILEx size (actual vram size)
242  * - GSMBASE offset (TILEx - "stolen")
243  * - CSSBASE offset (TILEx - CSS space necessary)
244  *
245  * CSSBASE is always a lower/smaller offset then GSMBASE.
246  *
247  * The actual available size of memory is to the CCS or GSM base.
248  * NOTE: multi-tile bases will include the tile offset.
249  *
250  */
251 static int tile_vram_size(struct xe_tile *tile, u64 *vram_size,
252 			  u64 *tile_size, u64 *tile_offset)
253 {
254 	struct xe_device *xe = tile_to_xe(tile);
255 	struct xe_gt *gt = tile->primary_gt;
256 	u64 offset;
257 	u32 reg;
258 
259 	if (IS_SRIOV_VF(xe)) {
260 		struct xe_tile *t;
261 		int id;
262 
263 		offset = 0;
264 		for_each_tile(t, xe, id)
265 			for_each_if(t->id < tile->id)
266 				offset += xe_tile_sriov_vf_lmem(t);
267 
268 		*tile_size = xe_tile_sriov_vf_lmem(tile);
269 		*vram_size = *tile_size;
270 		*tile_offset = offset;
271 
272 		return 0;
273 	}
274 
275 	/* actual size */
276 	if (unlikely(xe->info.platform == XE_DG1)) {
277 		*tile_size = pci_resource_len(to_pci_dev(xe->drm.dev), LMEM_BAR);
278 		*tile_offset = 0;
279 	} else {
280 		reg = xe_mmio_read32(&tile->mmio, SG_TILE_ADDR_RANGE(tile->id));
281 		*tile_size = (u64)REG_FIELD_GET(GENMASK(14, 8), reg) * SZ_1G;
282 		*tile_offset = (u64)REG_FIELD_GET(GENMASK(7, 1), reg) * SZ_1G;
283 	}
284 
285 	/* minus device usage */
286 	if (xe->info.has_flat_ccs) {
287 		int ret = get_flat_ccs_offset(gt, *tile_size, &offset);
288 
289 		if (ret)
290 			return ret;
291 	} else {
292 		offset = xe_mmio_read64_2x32(&tile->mmio, GSMBASE);
293 	}
294 
295 	/* remove the tile offset so we have just the available size */
296 	*vram_size = offset - *tile_offset;
297 
298 	return 0;
299 }
300 
301 static void vram_fini(void *arg)
302 {
303 	struct xe_device *xe = arg;
304 	struct xe_tile *tile;
305 	int id;
306 
307 	xe->mem.vram->mapping = NULL;
308 
309 	for_each_tile(tile, xe, id) {
310 		tile->mem.vram->mapping = NULL;
311 		if (tile->mem.kernel_vram)
312 			tile->mem.kernel_vram->mapping = NULL;
313 	}
314 }
315 
316 struct xe_vram_region *xe_vram_region_alloc(struct xe_device *xe, u8 id, u32 placement)
317 {
318 	struct xe_vram_region *vram;
319 	struct drm_device *drm = &xe->drm;
320 
321 	xe_assert(xe, id < xe->info.tile_count);
322 
323 	vram = drmm_kzalloc(drm, sizeof(*vram), GFP_KERNEL);
324 	if (!vram)
325 		return NULL;
326 
327 	vram->xe = xe;
328 	vram->id = id;
329 	vram->placement = placement;
330 #if defined(CONFIG_DRM_XE_PAGEMAP)
331 	vram->migrate = xe->tiles[id].migrate;
332 #endif
333 	return vram;
334 }
335 
336 static void print_vram_region_info(struct xe_device *xe, struct xe_vram_region *vram)
337 {
338 	struct drm_device *drm = &xe->drm;
339 
340 	if (vram->io_size < vram->usable_size)
341 		drm_info(drm, "Small BAR device\n");
342 
343 	drm_info(drm,
344 		 "VRAM[%u]: Actual physical size %pa, usable size exclude stolen %pa, CPU accessible size %pa\n",
345 		 vram->id, &vram->actual_physical_size, &vram->usable_size, &vram->io_size);
346 	drm_info(drm, "VRAM[%u]: DPA range: [%pa-%llx], io range: [%pa-%llx]\n",
347 		 vram->id, &vram->dpa_base, vram->dpa_base + (u64)vram->actual_physical_size,
348 		 &vram->io_start, vram->io_start + (u64)vram->io_size);
349 }
350 
351 static int vram_region_init(struct xe_device *xe, struct xe_vram_region *vram,
352 			    struct xe_vram_region *lmem_bar, u64 offset, u64 usable_size,
353 			    u64 region_size, resource_size_t remain_io_size)
354 {
355 	/* Check if VRAM region is already initialized */
356 	if (vram->mapping)
357 		return 0;
358 
359 	vram->actual_physical_size = region_size;
360 	vram->io_start = lmem_bar->io_start + offset;
361 	vram->io_size = min_t(u64, usable_size, remain_io_size);
362 
363 	if (!vram->io_size) {
364 		drm_err(&xe->drm, "Tile without any CPU visible VRAM. Aborting.\n");
365 		return -ENODEV;
366 	}
367 
368 	vram->dpa_base = lmem_bar->dpa_base + offset;
369 	vram->mapping = lmem_bar->mapping + offset;
370 	vram->usable_size = usable_size;
371 
372 	print_vram_region_info(xe, vram);
373 
374 	return 0;
375 }
376 
377 /**
378  * xe_vram_probe() - Probe VRAM configuration
379  * @xe: the &xe_device
380  *
381  * Collect VRAM size and offset information for all tiles.
382  *
383  * Return: 0 on success, error code on failure
384  */
385 int xe_vram_probe(struct xe_device *xe)
386 {
387 	struct xe_tile *tile;
388 	struct xe_vram_region lmem_bar;
389 	resource_size_t remain_io_size;
390 	u64 available_size = 0;
391 	u64 total_size = 0;
392 	int err;
393 	u8 id;
394 
395 	if (!IS_DGFX(xe))
396 		return 0;
397 
398 	err = determine_lmem_bar_size(xe, &lmem_bar);
399 	if (err)
400 		return err;
401 	drm_info(&xe->drm, "VISIBLE VRAM: %pa, %pa\n", &lmem_bar.io_start, &lmem_bar.io_size);
402 
403 	remain_io_size = lmem_bar.io_size;
404 
405 	for_each_tile(tile, xe, id) {
406 		u64 region_size;
407 		u64 usable_size;
408 		u64 tile_offset;
409 
410 		err = tile_vram_size(tile, &usable_size, &region_size, &tile_offset);
411 		if (err)
412 			return err;
413 
414 		total_size += region_size;
415 		available_size += usable_size;
416 
417 		err = vram_region_init(xe, tile->mem.vram, &lmem_bar, tile_offset, usable_size,
418 				       region_size, remain_io_size);
419 		if (err)
420 			return err;
421 
422 		if (total_size > lmem_bar.io_size) {
423 			drm_info(&xe->drm, "VRAM: %pa is larger than resource %pa\n",
424 				 &total_size, &lmem_bar.io_size);
425 		}
426 
427 		remain_io_size -= min_t(u64, tile->mem.vram->actual_physical_size, remain_io_size);
428 	}
429 
430 	err = vram_region_init(xe, xe->mem.vram, &lmem_bar, 0, available_size, total_size,
431 			       lmem_bar.io_size);
432 	if (err)
433 		return err;
434 
435 	return devm_add_action_or_reset(xe->drm.dev, vram_fini, xe);
436 }
437 
438 /**
439  * xe_vram_region_io_start - Get the IO start of a VRAM region
440  * @vram: the VRAM region
441  *
442  * Return: the IO start of the VRAM region, or 0 if not valid
443  */
444 resource_size_t xe_vram_region_io_start(const struct xe_vram_region *vram)
445 {
446 	return vram ? vram->io_start : 0;
447 }
448 
449 /**
450  * xe_vram_region_io_size - Get the IO size of a VRAM region
451  * @vram: the VRAM region
452  *
453  * Return: the IO size of the VRAM region, or 0 if not valid
454  */
455 resource_size_t xe_vram_region_io_size(const struct xe_vram_region *vram)
456 {
457 	return vram ? vram->io_size : 0;
458 }
459 
460 /**
461  * xe_vram_region_dpa_base - Get the DPA base of a VRAM region
462  * @vram: the VRAM region
463  *
464  * Return: the DPA base of the VRAM region, or 0 if not valid
465  */
466 resource_size_t xe_vram_region_dpa_base(const struct xe_vram_region *vram)
467 {
468 	return vram ? vram->dpa_base : 0;
469 }
470 
471 /**
472  * xe_vram_region_usable_size - Get the usable size of a VRAM region
473  * @vram: the VRAM region
474  *
475  * Return: the usable size of the VRAM region, or 0 if not valid
476  */
477 resource_size_t xe_vram_region_usable_size(const struct xe_vram_region *vram)
478 {
479 	return vram ? vram->usable_size : 0;
480 }
481 
482 /**
483  * xe_vram_region_actual_physical_size - Get the actual physical size of a VRAM region
484  * @vram: the VRAM region
485  *
486  * Return: the actual physical size of the VRAM region, or 0 if not valid
487  */
488 resource_size_t xe_vram_region_actual_physical_size(const struct xe_vram_region *vram)
489 {
490 	return vram ? vram->actual_physical_size : 0;
491 }
492 EXPORT_SYMBOL_IF_KUNIT(xe_vram_region_actual_physical_size);
493