xref: /linux/drivers/gpu/drm/xe/xe_vm.c (revision ca93bf607a44c1f009283dac4af7df0d9ae5e357)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_vm.h"
7 
8 #include <linux/dma-fence-array.h>
9 #include <linux/nospec.h>
10 
11 #include <drm/drm_exec.h>
12 #include <drm/drm_print.h>
13 #include <drm/ttm/ttm_execbuf_util.h>
14 #include <drm/ttm/ttm_tt.h>
15 #include <drm/xe_drm.h>
16 #include <linux/delay.h>
17 #include <linux/kthread.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 
21 #include "xe_assert.h"
22 #include "xe_bo.h"
23 #include "xe_device.h"
24 #include "xe_drm_client.h"
25 #include "xe_exec_queue.h"
26 #include "xe_gt.h"
27 #include "xe_gt_pagefault.h"
28 #include "xe_gt_tlb_invalidation.h"
29 #include "xe_migrate.h"
30 #include "xe_pat.h"
31 #include "xe_pm.h"
32 #include "xe_preempt_fence.h"
33 #include "xe_pt.h"
34 #include "xe_res_cursor.h"
35 #include "xe_sync.h"
36 #include "xe_trace.h"
37 #include "generated/xe_wa_oob.h"
38 #include "xe_wa.h"
39 
40 static struct drm_gem_object *xe_vm_obj(struct xe_vm *vm)
41 {
42 	return vm->gpuvm.r_obj;
43 }
44 
45 /**
46  * xe_vma_userptr_check_repin() - Advisory check for repin needed
47  * @uvma: The userptr vma
48  *
49  * Check if the userptr vma has been invalidated since last successful
50  * repin. The check is advisory only and can the function can be called
51  * without the vm->userptr.notifier_lock held. There is no guarantee that the
52  * vma userptr will remain valid after a lockless check, so typically
53  * the call needs to be followed by a proper check under the notifier_lock.
54  *
55  * Return: 0 if userptr vma is valid, -EAGAIN otherwise; repin recommended.
56  */
57 int xe_vma_userptr_check_repin(struct xe_userptr_vma *uvma)
58 {
59 	return mmu_interval_check_retry(&uvma->userptr.notifier,
60 					uvma->userptr.notifier_seq) ?
61 		-EAGAIN : 0;
62 }
63 
64 int xe_vma_userptr_pin_pages(struct xe_userptr_vma *uvma)
65 {
66 	struct xe_userptr *userptr = &uvma->userptr;
67 	struct xe_vma *vma = &uvma->vma;
68 	struct xe_vm *vm = xe_vma_vm(vma);
69 	struct xe_device *xe = vm->xe;
70 	const unsigned long num_pages = xe_vma_size(vma) >> PAGE_SHIFT;
71 	struct page **pages;
72 	bool in_kthread = !current->mm;
73 	unsigned long notifier_seq;
74 	int pinned, ret, i;
75 	bool read_only = xe_vma_read_only(vma);
76 
77 	lockdep_assert_held(&vm->lock);
78 	xe_assert(xe, xe_vma_is_userptr(vma));
79 retry:
80 	if (vma->gpuva.flags & XE_VMA_DESTROYED)
81 		return 0;
82 
83 	notifier_seq = mmu_interval_read_begin(&userptr->notifier);
84 	if (notifier_seq == userptr->notifier_seq)
85 		return 0;
86 
87 	pages = kvmalloc_array(num_pages, sizeof(*pages), GFP_KERNEL);
88 	if (!pages)
89 		return -ENOMEM;
90 
91 	if (userptr->sg) {
92 		dma_unmap_sgtable(xe->drm.dev,
93 				  userptr->sg,
94 				  read_only ? DMA_TO_DEVICE :
95 				  DMA_BIDIRECTIONAL, 0);
96 		sg_free_table(userptr->sg);
97 		userptr->sg = NULL;
98 	}
99 
100 	pinned = ret = 0;
101 	if (in_kthread) {
102 		if (!mmget_not_zero(userptr->notifier.mm)) {
103 			ret = -EFAULT;
104 			goto mm_closed;
105 		}
106 		kthread_use_mm(userptr->notifier.mm);
107 	}
108 
109 	while (pinned < num_pages) {
110 		ret = get_user_pages_fast(xe_vma_userptr(vma) +
111 					  pinned * PAGE_SIZE,
112 					  num_pages - pinned,
113 					  read_only ? 0 : FOLL_WRITE,
114 					  &pages[pinned]);
115 		if (ret < 0)
116 			break;
117 
118 		pinned += ret;
119 		ret = 0;
120 	}
121 
122 	if (in_kthread) {
123 		kthread_unuse_mm(userptr->notifier.mm);
124 		mmput(userptr->notifier.mm);
125 	}
126 mm_closed:
127 	if (ret)
128 		goto out;
129 
130 	ret = sg_alloc_table_from_pages_segment(&userptr->sgt, pages,
131 						pinned, 0,
132 						(u64)pinned << PAGE_SHIFT,
133 						xe_sg_segment_size(xe->drm.dev),
134 						GFP_KERNEL);
135 	if (ret) {
136 		userptr->sg = NULL;
137 		goto out;
138 	}
139 	userptr->sg = &userptr->sgt;
140 
141 	ret = dma_map_sgtable(xe->drm.dev, userptr->sg,
142 			      read_only ? DMA_TO_DEVICE :
143 			      DMA_BIDIRECTIONAL,
144 			      DMA_ATTR_SKIP_CPU_SYNC |
145 			      DMA_ATTR_NO_KERNEL_MAPPING);
146 	if (ret) {
147 		sg_free_table(userptr->sg);
148 		userptr->sg = NULL;
149 		goto out;
150 	}
151 
152 	for (i = 0; i < pinned; ++i) {
153 		if (!read_only) {
154 			lock_page(pages[i]);
155 			set_page_dirty(pages[i]);
156 			unlock_page(pages[i]);
157 		}
158 
159 		mark_page_accessed(pages[i]);
160 	}
161 
162 out:
163 	release_pages(pages, pinned);
164 	kvfree(pages);
165 
166 	if (!(ret < 0)) {
167 		userptr->notifier_seq = notifier_seq;
168 		if (xe_vma_userptr_check_repin(uvma) == -EAGAIN)
169 			goto retry;
170 	}
171 
172 	return ret < 0 ? ret : 0;
173 }
174 
175 static bool preempt_fences_waiting(struct xe_vm *vm)
176 {
177 	struct xe_exec_queue *q;
178 
179 	lockdep_assert_held(&vm->lock);
180 	xe_vm_assert_held(vm);
181 
182 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
183 		if (!q->compute.pfence ||
184 		    (q->compute.pfence && test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
185 						   &q->compute.pfence->flags))) {
186 			return true;
187 		}
188 	}
189 
190 	return false;
191 }
192 
193 static void free_preempt_fences(struct list_head *list)
194 {
195 	struct list_head *link, *next;
196 
197 	list_for_each_safe(link, next, list)
198 		xe_preempt_fence_free(to_preempt_fence_from_link(link));
199 }
200 
201 static int alloc_preempt_fences(struct xe_vm *vm, struct list_head *list,
202 				unsigned int *count)
203 {
204 	lockdep_assert_held(&vm->lock);
205 	xe_vm_assert_held(vm);
206 
207 	if (*count >= vm->preempt.num_exec_queues)
208 		return 0;
209 
210 	for (; *count < vm->preempt.num_exec_queues; ++(*count)) {
211 		struct xe_preempt_fence *pfence = xe_preempt_fence_alloc();
212 
213 		if (IS_ERR(pfence))
214 			return PTR_ERR(pfence);
215 
216 		list_move_tail(xe_preempt_fence_link(pfence), list);
217 	}
218 
219 	return 0;
220 }
221 
222 static int wait_for_existing_preempt_fences(struct xe_vm *vm)
223 {
224 	struct xe_exec_queue *q;
225 
226 	xe_vm_assert_held(vm);
227 
228 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
229 		if (q->compute.pfence) {
230 			long timeout = dma_fence_wait(q->compute.pfence, false);
231 
232 			if (timeout < 0)
233 				return -ETIME;
234 			dma_fence_put(q->compute.pfence);
235 			q->compute.pfence = NULL;
236 		}
237 	}
238 
239 	return 0;
240 }
241 
242 static bool xe_vm_is_idle(struct xe_vm *vm)
243 {
244 	struct xe_exec_queue *q;
245 
246 	xe_vm_assert_held(vm);
247 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
248 		if (!xe_exec_queue_is_idle(q))
249 			return false;
250 	}
251 
252 	return true;
253 }
254 
255 static void arm_preempt_fences(struct xe_vm *vm, struct list_head *list)
256 {
257 	struct list_head *link;
258 	struct xe_exec_queue *q;
259 
260 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
261 		struct dma_fence *fence;
262 
263 		link = list->next;
264 		xe_assert(vm->xe, link != list);
265 
266 		fence = xe_preempt_fence_arm(to_preempt_fence_from_link(link),
267 					     q, q->compute.context,
268 					     ++q->compute.seqno);
269 		dma_fence_put(q->compute.pfence);
270 		q->compute.pfence = fence;
271 	}
272 }
273 
274 static int add_preempt_fences(struct xe_vm *vm, struct xe_bo *bo)
275 {
276 	struct xe_exec_queue *q;
277 	int err;
278 
279 	if (!vm->preempt.num_exec_queues)
280 		return 0;
281 
282 	err = xe_bo_lock(bo, true);
283 	if (err)
284 		return err;
285 
286 	err = dma_resv_reserve_fences(bo->ttm.base.resv, vm->preempt.num_exec_queues);
287 	if (err)
288 		goto out_unlock;
289 
290 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link)
291 		if (q->compute.pfence) {
292 			dma_resv_add_fence(bo->ttm.base.resv,
293 					   q->compute.pfence,
294 					   DMA_RESV_USAGE_BOOKKEEP);
295 		}
296 
297 out_unlock:
298 	xe_bo_unlock(bo);
299 	return err;
300 }
301 
302 static void resume_and_reinstall_preempt_fences(struct xe_vm *vm,
303 						struct drm_exec *exec)
304 {
305 	struct xe_exec_queue *q;
306 
307 	lockdep_assert_held(&vm->lock);
308 	xe_vm_assert_held(vm);
309 
310 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
311 		q->ops->resume(q);
312 
313 		drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, q->compute.pfence,
314 					 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
315 	}
316 }
317 
318 int xe_vm_add_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
319 {
320 	struct drm_gpuvm_exec vm_exec = {
321 		.vm = &vm->gpuvm,
322 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT,
323 		.num_fences = 1,
324 	};
325 	struct drm_exec *exec = &vm_exec.exec;
326 	struct dma_fence *pfence;
327 	int err;
328 	bool wait;
329 
330 	xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm));
331 
332 	down_write(&vm->lock);
333 	err = drm_gpuvm_exec_lock(&vm_exec);
334 	if (err)
335 		goto out_up_write;
336 
337 	pfence = xe_preempt_fence_create(q, q->compute.context,
338 					 ++q->compute.seqno);
339 	if (!pfence) {
340 		err = -ENOMEM;
341 		goto out_fini;
342 	}
343 
344 	list_add(&q->compute.link, &vm->preempt.exec_queues);
345 	++vm->preempt.num_exec_queues;
346 	q->compute.pfence = pfence;
347 
348 	down_read(&vm->userptr.notifier_lock);
349 
350 	drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, pfence,
351 				 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
352 
353 	/*
354 	 * Check to see if a preemption on VM is in flight or userptr
355 	 * invalidation, if so trigger this preempt fence to sync state with
356 	 * other preempt fences on the VM.
357 	 */
358 	wait = __xe_vm_userptr_needs_repin(vm) || preempt_fences_waiting(vm);
359 	if (wait)
360 		dma_fence_enable_sw_signaling(pfence);
361 
362 	up_read(&vm->userptr.notifier_lock);
363 
364 out_fini:
365 	drm_exec_fini(exec);
366 out_up_write:
367 	up_write(&vm->lock);
368 
369 	return err;
370 }
371 
372 /**
373  * xe_vm_remove_compute_exec_queue() - Remove compute exec queue from VM
374  * @vm: The VM.
375  * @q: The exec_queue
376  */
377 void xe_vm_remove_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
378 {
379 	if (!xe_vm_in_preempt_fence_mode(vm))
380 		return;
381 
382 	down_write(&vm->lock);
383 	list_del(&q->compute.link);
384 	--vm->preempt.num_exec_queues;
385 	if (q->compute.pfence) {
386 		dma_fence_enable_sw_signaling(q->compute.pfence);
387 		dma_fence_put(q->compute.pfence);
388 		q->compute.pfence = NULL;
389 	}
390 	up_write(&vm->lock);
391 }
392 
393 /**
394  * __xe_vm_userptr_needs_repin() - Check whether the VM does have userptrs
395  * that need repinning.
396  * @vm: The VM.
397  *
398  * This function checks for whether the VM has userptrs that need repinning,
399  * and provides a release-type barrier on the userptr.notifier_lock after
400  * checking.
401  *
402  * Return: 0 if there are no userptrs needing repinning, -EAGAIN if there are.
403  */
404 int __xe_vm_userptr_needs_repin(struct xe_vm *vm)
405 {
406 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
407 
408 	return (list_empty(&vm->userptr.repin_list) &&
409 		list_empty(&vm->userptr.invalidated)) ? 0 : -EAGAIN;
410 }
411 
412 #define XE_VM_REBIND_RETRY_TIMEOUT_MS 1000
413 
414 static void xe_vm_kill(struct xe_vm *vm)
415 {
416 	struct xe_exec_queue *q;
417 
418 	lockdep_assert_held(&vm->lock);
419 
420 	xe_vm_lock(vm, false);
421 	vm->flags |= XE_VM_FLAG_BANNED;
422 	trace_xe_vm_kill(vm);
423 
424 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link)
425 		q->ops->kill(q);
426 	xe_vm_unlock(vm);
427 
428 	/* TODO: Inform user the VM is banned */
429 }
430 
431 /**
432  * xe_vm_validate_should_retry() - Whether to retry after a validate error.
433  * @exec: The drm_exec object used for locking before validation.
434  * @err: The error returned from ttm_bo_validate().
435  * @end: A ktime_t cookie that should be set to 0 before first use and
436  * that should be reused on subsequent calls.
437  *
438  * With multiple active VMs, under memory pressure, it is possible that
439  * ttm_bo_validate() run into -EDEADLK and in such case returns -ENOMEM.
440  * Until ttm properly handles locking in such scenarios, best thing the
441  * driver can do is retry with a timeout. Check if that is necessary, and
442  * if so unlock the drm_exec's objects while keeping the ticket to prepare
443  * for a rerun.
444  *
445  * Return: true if a retry after drm_exec_init() is recommended;
446  * false otherwise.
447  */
448 bool xe_vm_validate_should_retry(struct drm_exec *exec, int err, ktime_t *end)
449 {
450 	ktime_t cur;
451 
452 	if (err != -ENOMEM)
453 		return false;
454 
455 	cur = ktime_get();
456 	*end = *end ? : ktime_add_ms(cur, XE_VM_REBIND_RETRY_TIMEOUT_MS);
457 	if (!ktime_before(cur, *end))
458 		return false;
459 
460 	msleep(20);
461 	return true;
462 }
463 
464 static int xe_gpuvm_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
465 {
466 	struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
467 	struct drm_gpuva *gpuva;
468 	int ret;
469 
470 	lockdep_assert_held(&vm->lock);
471 	drm_gpuvm_bo_for_each_va(gpuva, vm_bo)
472 		list_move_tail(&gpuva_to_vma(gpuva)->combined_links.rebind,
473 			       &vm->rebind_list);
474 
475 	ret = xe_bo_validate(gem_to_xe_bo(vm_bo->obj), vm, false);
476 	if (ret)
477 		return ret;
478 
479 	vm_bo->evicted = false;
480 	return 0;
481 }
482 
483 static int xe_preempt_work_begin(struct drm_exec *exec, struct xe_vm *vm,
484 				 bool *done)
485 {
486 	int err;
487 
488 	/*
489 	 * 1 fence for each preempt fence plus a fence for each tile from a
490 	 * possible rebind
491 	 */
492 	err = drm_gpuvm_prepare_vm(&vm->gpuvm, exec, vm->preempt.num_exec_queues +
493 				   vm->xe->info.tile_count);
494 	if (err)
495 		return err;
496 
497 	if (xe_vm_is_idle(vm)) {
498 		vm->preempt.rebind_deactivated = true;
499 		*done = true;
500 		return 0;
501 	}
502 
503 	if (!preempt_fences_waiting(vm)) {
504 		*done = true;
505 		return 0;
506 	}
507 
508 	err = drm_gpuvm_prepare_objects(&vm->gpuvm, exec, vm->preempt.num_exec_queues);
509 	if (err)
510 		return err;
511 
512 	err = wait_for_existing_preempt_fences(vm);
513 	if (err)
514 		return err;
515 
516 	return drm_gpuvm_validate(&vm->gpuvm, exec);
517 }
518 
519 static void preempt_rebind_work_func(struct work_struct *w)
520 {
521 	struct xe_vm *vm = container_of(w, struct xe_vm, preempt.rebind_work);
522 	struct drm_exec exec;
523 	struct dma_fence *rebind_fence;
524 	unsigned int fence_count = 0;
525 	LIST_HEAD(preempt_fences);
526 	ktime_t end = 0;
527 	int err = 0;
528 	long wait;
529 	int __maybe_unused tries = 0;
530 
531 	xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm));
532 	trace_xe_vm_rebind_worker_enter(vm);
533 
534 	down_write(&vm->lock);
535 
536 	if (xe_vm_is_closed_or_banned(vm)) {
537 		up_write(&vm->lock);
538 		trace_xe_vm_rebind_worker_exit(vm);
539 		return;
540 	}
541 
542 retry:
543 	if (xe_vm_userptr_check_repin(vm)) {
544 		err = xe_vm_userptr_pin(vm);
545 		if (err)
546 			goto out_unlock_outer;
547 	}
548 
549 	drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
550 
551 	drm_exec_until_all_locked(&exec) {
552 		bool done = false;
553 
554 		err = xe_preempt_work_begin(&exec, vm, &done);
555 		drm_exec_retry_on_contention(&exec);
556 		if (err || done) {
557 			drm_exec_fini(&exec);
558 			if (err && xe_vm_validate_should_retry(&exec, err, &end))
559 				err = -EAGAIN;
560 
561 			goto out_unlock_outer;
562 		}
563 	}
564 
565 	err = alloc_preempt_fences(vm, &preempt_fences, &fence_count);
566 	if (err)
567 		goto out_unlock;
568 
569 	rebind_fence = xe_vm_rebind(vm, true);
570 	if (IS_ERR(rebind_fence)) {
571 		err = PTR_ERR(rebind_fence);
572 		goto out_unlock;
573 	}
574 
575 	if (rebind_fence) {
576 		dma_fence_wait(rebind_fence, false);
577 		dma_fence_put(rebind_fence);
578 	}
579 
580 	/* Wait on munmap style VM unbinds */
581 	wait = dma_resv_wait_timeout(xe_vm_resv(vm),
582 				     DMA_RESV_USAGE_KERNEL,
583 				     false, MAX_SCHEDULE_TIMEOUT);
584 	if (wait <= 0) {
585 		err = -ETIME;
586 		goto out_unlock;
587 	}
588 
589 #define retry_required(__tries, __vm) \
590 	(IS_ENABLED(CONFIG_DRM_XE_USERPTR_INVAL_INJECT) ? \
591 	(!(__tries)++ || __xe_vm_userptr_needs_repin(__vm)) : \
592 	__xe_vm_userptr_needs_repin(__vm))
593 
594 	down_read(&vm->userptr.notifier_lock);
595 	if (retry_required(tries, vm)) {
596 		up_read(&vm->userptr.notifier_lock);
597 		err = -EAGAIN;
598 		goto out_unlock;
599 	}
600 
601 #undef retry_required
602 
603 	spin_lock(&vm->xe->ttm.lru_lock);
604 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
605 	spin_unlock(&vm->xe->ttm.lru_lock);
606 
607 	/* Point of no return. */
608 	arm_preempt_fences(vm, &preempt_fences);
609 	resume_and_reinstall_preempt_fences(vm, &exec);
610 	up_read(&vm->userptr.notifier_lock);
611 
612 out_unlock:
613 	drm_exec_fini(&exec);
614 out_unlock_outer:
615 	if (err == -EAGAIN) {
616 		trace_xe_vm_rebind_worker_retry(vm);
617 		goto retry;
618 	}
619 
620 	if (err) {
621 		drm_warn(&vm->xe->drm, "VM worker error: %d\n", err);
622 		xe_vm_kill(vm);
623 	}
624 	up_write(&vm->lock);
625 
626 	free_preempt_fences(&preempt_fences);
627 
628 	trace_xe_vm_rebind_worker_exit(vm);
629 }
630 
631 static bool vma_userptr_invalidate(struct mmu_interval_notifier *mni,
632 				   const struct mmu_notifier_range *range,
633 				   unsigned long cur_seq)
634 {
635 	struct xe_userptr *userptr = container_of(mni, typeof(*userptr), notifier);
636 	struct xe_userptr_vma *uvma = container_of(userptr, typeof(*uvma), userptr);
637 	struct xe_vma *vma = &uvma->vma;
638 	struct xe_vm *vm = xe_vma_vm(vma);
639 	struct dma_resv_iter cursor;
640 	struct dma_fence *fence;
641 	long err;
642 
643 	xe_assert(vm->xe, xe_vma_is_userptr(vma));
644 	trace_xe_vma_userptr_invalidate(vma);
645 
646 	if (!mmu_notifier_range_blockable(range))
647 		return false;
648 
649 	down_write(&vm->userptr.notifier_lock);
650 	mmu_interval_set_seq(mni, cur_seq);
651 
652 	/* No need to stop gpu access if the userptr is not yet bound. */
653 	if (!userptr->initial_bind) {
654 		up_write(&vm->userptr.notifier_lock);
655 		return true;
656 	}
657 
658 	/*
659 	 * Tell exec and rebind worker they need to repin and rebind this
660 	 * userptr.
661 	 */
662 	if (!xe_vm_in_fault_mode(vm) &&
663 	    !(vma->gpuva.flags & XE_VMA_DESTROYED) && vma->tile_present) {
664 		spin_lock(&vm->userptr.invalidated_lock);
665 		list_move_tail(&userptr->invalidate_link,
666 			       &vm->userptr.invalidated);
667 		spin_unlock(&vm->userptr.invalidated_lock);
668 	}
669 
670 	up_write(&vm->userptr.notifier_lock);
671 
672 	/*
673 	 * Preempt fences turn into schedule disables, pipeline these.
674 	 * Note that even in fault mode, we need to wait for binds and
675 	 * unbinds to complete, and those are attached as BOOKMARK fences
676 	 * to the vm.
677 	 */
678 	dma_resv_iter_begin(&cursor, xe_vm_resv(vm),
679 			    DMA_RESV_USAGE_BOOKKEEP);
680 	dma_resv_for_each_fence_unlocked(&cursor, fence)
681 		dma_fence_enable_sw_signaling(fence);
682 	dma_resv_iter_end(&cursor);
683 
684 	err = dma_resv_wait_timeout(xe_vm_resv(vm),
685 				    DMA_RESV_USAGE_BOOKKEEP,
686 				    false, MAX_SCHEDULE_TIMEOUT);
687 	XE_WARN_ON(err <= 0);
688 
689 	if (xe_vm_in_fault_mode(vm)) {
690 		err = xe_vm_invalidate_vma(vma);
691 		XE_WARN_ON(err);
692 	}
693 
694 	trace_xe_vma_userptr_invalidate_complete(vma);
695 
696 	return true;
697 }
698 
699 static const struct mmu_interval_notifier_ops vma_userptr_notifier_ops = {
700 	.invalidate = vma_userptr_invalidate,
701 };
702 
703 int xe_vm_userptr_pin(struct xe_vm *vm)
704 {
705 	struct xe_userptr_vma *uvma, *next;
706 	int err = 0;
707 	LIST_HEAD(tmp_evict);
708 
709 	lockdep_assert_held_write(&vm->lock);
710 
711 	/* Collect invalidated userptrs */
712 	spin_lock(&vm->userptr.invalidated_lock);
713 	list_for_each_entry_safe(uvma, next, &vm->userptr.invalidated,
714 				 userptr.invalidate_link) {
715 		list_del_init(&uvma->userptr.invalidate_link);
716 		list_move_tail(&uvma->userptr.repin_link,
717 			       &vm->userptr.repin_list);
718 	}
719 	spin_unlock(&vm->userptr.invalidated_lock);
720 
721 	/* Pin and move to temporary list */
722 	list_for_each_entry_safe(uvma, next, &vm->userptr.repin_list,
723 				 userptr.repin_link) {
724 		err = xe_vma_userptr_pin_pages(uvma);
725 		if (err < 0)
726 			return err;
727 
728 		list_del_init(&uvma->userptr.repin_link);
729 		list_move_tail(&uvma->vma.combined_links.rebind, &vm->rebind_list);
730 	}
731 
732 	return 0;
733 }
734 
735 /**
736  * xe_vm_userptr_check_repin() - Check whether the VM might have userptrs
737  * that need repinning.
738  * @vm: The VM.
739  *
740  * This function does an advisory check for whether the VM has userptrs that
741  * need repinning.
742  *
743  * Return: 0 if there are no indications of userptrs needing repinning,
744  * -EAGAIN if there are.
745  */
746 int xe_vm_userptr_check_repin(struct xe_vm *vm)
747 {
748 	return (list_empty_careful(&vm->userptr.repin_list) &&
749 		list_empty_careful(&vm->userptr.invalidated)) ? 0 : -EAGAIN;
750 }
751 
752 static struct dma_fence *
753 xe_vm_bind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
754 	       struct xe_sync_entry *syncs, u32 num_syncs,
755 	       bool first_op, bool last_op);
756 
757 struct dma_fence *xe_vm_rebind(struct xe_vm *vm, bool rebind_worker)
758 {
759 	struct dma_fence *fence = NULL;
760 	struct xe_vma *vma, *next;
761 
762 	lockdep_assert_held(&vm->lock);
763 	if (xe_vm_in_lr_mode(vm) && !rebind_worker)
764 		return NULL;
765 
766 	xe_vm_assert_held(vm);
767 	list_for_each_entry_safe(vma, next, &vm->rebind_list,
768 				 combined_links.rebind) {
769 		xe_assert(vm->xe, vma->tile_present);
770 
771 		list_del_init(&vma->combined_links.rebind);
772 		dma_fence_put(fence);
773 		if (rebind_worker)
774 			trace_xe_vma_rebind_worker(vma);
775 		else
776 			trace_xe_vma_rebind_exec(vma);
777 		fence = xe_vm_bind_vma(vma, NULL, NULL, 0, false, false);
778 		if (IS_ERR(fence))
779 			return fence;
780 	}
781 
782 	return fence;
783 }
784 
785 static void xe_vma_free(struct xe_vma *vma)
786 {
787 	if (xe_vma_is_userptr(vma))
788 		kfree(to_userptr_vma(vma));
789 	else
790 		kfree(vma);
791 }
792 
793 #define VMA_CREATE_FLAG_READ_ONLY	BIT(0)
794 #define VMA_CREATE_FLAG_IS_NULL		BIT(1)
795 
796 static struct xe_vma *xe_vma_create(struct xe_vm *vm,
797 				    struct xe_bo *bo,
798 				    u64 bo_offset_or_userptr,
799 				    u64 start, u64 end,
800 				    u16 pat_index, unsigned int flags)
801 {
802 	struct xe_vma *vma;
803 	struct xe_tile *tile;
804 	u8 id;
805 	bool read_only = (flags & VMA_CREATE_FLAG_READ_ONLY);
806 	bool is_null = (flags & VMA_CREATE_FLAG_IS_NULL);
807 
808 	xe_assert(vm->xe, start < end);
809 	xe_assert(vm->xe, end < vm->size);
810 
811 	/*
812 	 * Allocate and ensure that the xe_vma_is_userptr() return
813 	 * matches what was allocated.
814 	 */
815 	if (!bo && !is_null) {
816 		struct xe_userptr_vma *uvma = kzalloc(sizeof(*uvma), GFP_KERNEL);
817 
818 		if (!uvma)
819 			return ERR_PTR(-ENOMEM);
820 
821 		vma = &uvma->vma;
822 	} else {
823 		vma = kzalloc(sizeof(*vma), GFP_KERNEL);
824 		if (!vma)
825 			return ERR_PTR(-ENOMEM);
826 
827 		if (is_null)
828 			vma->gpuva.flags |= DRM_GPUVA_SPARSE;
829 		if (bo)
830 			vma->gpuva.gem.obj = &bo->ttm.base;
831 	}
832 
833 	INIT_LIST_HEAD(&vma->combined_links.rebind);
834 
835 	INIT_LIST_HEAD(&vma->gpuva.gem.entry);
836 	vma->gpuva.vm = &vm->gpuvm;
837 	vma->gpuva.va.addr = start;
838 	vma->gpuva.va.range = end - start + 1;
839 	if (read_only)
840 		vma->gpuva.flags |= XE_VMA_READ_ONLY;
841 
842 	for_each_tile(tile, vm->xe, id)
843 		vma->tile_mask |= 0x1 << id;
844 
845 	if (GRAPHICS_VER(vm->xe) >= 20 || vm->xe->info.platform == XE_PVC)
846 		vma->gpuva.flags |= XE_VMA_ATOMIC_PTE_BIT;
847 
848 	vma->pat_index = pat_index;
849 
850 	if (bo) {
851 		struct drm_gpuvm_bo *vm_bo;
852 
853 		xe_bo_assert_held(bo);
854 
855 		vm_bo = drm_gpuvm_bo_obtain(vma->gpuva.vm, &bo->ttm.base);
856 		if (IS_ERR(vm_bo)) {
857 			xe_vma_free(vma);
858 			return ERR_CAST(vm_bo);
859 		}
860 
861 		drm_gpuvm_bo_extobj_add(vm_bo);
862 		drm_gem_object_get(&bo->ttm.base);
863 		vma->gpuva.gem.offset = bo_offset_or_userptr;
864 		drm_gpuva_link(&vma->gpuva, vm_bo);
865 		drm_gpuvm_bo_put(vm_bo);
866 	} else /* userptr or null */ {
867 		if (!is_null) {
868 			struct xe_userptr *userptr = &to_userptr_vma(vma)->userptr;
869 			u64 size = end - start + 1;
870 			int err;
871 
872 			INIT_LIST_HEAD(&userptr->invalidate_link);
873 			INIT_LIST_HEAD(&userptr->repin_link);
874 			vma->gpuva.gem.offset = bo_offset_or_userptr;
875 
876 			err = mmu_interval_notifier_insert(&userptr->notifier,
877 							   current->mm,
878 							   xe_vma_userptr(vma), size,
879 							   &vma_userptr_notifier_ops);
880 			if (err) {
881 				xe_vma_free(vma);
882 				return ERR_PTR(err);
883 			}
884 
885 			userptr->notifier_seq = LONG_MAX;
886 		}
887 
888 		xe_vm_get(vm);
889 	}
890 
891 	return vma;
892 }
893 
894 static void xe_vma_destroy_late(struct xe_vma *vma)
895 {
896 	struct xe_vm *vm = xe_vma_vm(vma);
897 	struct xe_device *xe = vm->xe;
898 	bool read_only = xe_vma_read_only(vma);
899 
900 	if (xe_vma_is_userptr(vma)) {
901 		struct xe_userptr *userptr = &to_userptr_vma(vma)->userptr;
902 
903 		if (userptr->sg) {
904 			dma_unmap_sgtable(xe->drm.dev,
905 					  userptr->sg,
906 					  read_only ? DMA_TO_DEVICE :
907 					  DMA_BIDIRECTIONAL, 0);
908 			sg_free_table(userptr->sg);
909 			userptr->sg = NULL;
910 		}
911 
912 		/*
913 		 * Since userptr pages are not pinned, we can't remove
914 		 * the notifer until we're sure the GPU is not accessing
915 		 * them anymore
916 		 */
917 		mmu_interval_notifier_remove(&userptr->notifier);
918 		xe_vm_put(vm);
919 	} else if (xe_vma_is_null(vma)) {
920 		xe_vm_put(vm);
921 	} else {
922 		xe_bo_put(xe_vma_bo(vma));
923 	}
924 
925 	xe_vma_free(vma);
926 }
927 
928 static void vma_destroy_work_func(struct work_struct *w)
929 {
930 	struct xe_vma *vma =
931 		container_of(w, struct xe_vma, destroy_work);
932 
933 	xe_vma_destroy_late(vma);
934 }
935 
936 static void vma_destroy_cb(struct dma_fence *fence,
937 			   struct dma_fence_cb *cb)
938 {
939 	struct xe_vma *vma = container_of(cb, struct xe_vma, destroy_cb);
940 
941 	INIT_WORK(&vma->destroy_work, vma_destroy_work_func);
942 	queue_work(system_unbound_wq, &vma->destroy_work);
943 }
944 
945 static void xe_vma_destroy(struct xe_vma *vma, struct dma_fence *fence)
946 {
947 	struct xe_vm *vm = xe_vma_vm(vma);
948 
949 	lockdep_assert_held_write(&vm->lock);
950 	xe_assert(vm->xe, list_empty(&vma->combined_links.destroy));
951 
952 	if (xe_vma_is_userptr(vma)) {
953 		xe_assert(vm->xe, vma->gpuva.flags & XE_VMA_DESTROYED);
954 
955 		spin_lock(&vm->userptr.invalidated_lock);
956 		list_del(&to_userptr_vma(vma)->userptr.invalidate_link);
957 		spin_unlock(&vm->userptr.invalidated_lock);
958 	} else if (!xe_vma_is_null(vma)) {
959 		xe_bo_assert_held(xe_vma_bo(vma));
960 
961 		drm_gpuva_unlink(&vma->gpuva);
962 	}
963 
964 	xe_vm_assert_held(vm);
965 	if (fence) {
966 		int ret = dma_fence_add_callback(fence, &vma->destroy_cb,
967 						 vma_destroy_cb);
968 
969 		if (ret) {
970 			XE_WARN_ON(ret != -ENOENT);
971 			xe_vma_destroy_late(vma);
972 		}
973 	} else {
974 		xe_vma_destroy_late(vma);
975 	}
976 }
977 
978 /**
979  * xe_vm_prepare_vma() - drm_exec utility to lock a vma
980  * @exec: The drm_exec object we're currently locking for.
981  * @vma: The vma for witch we want to lock the vm resv and any attached
982  * object's resv.
983  * @num_shared: The number of dma-fence slots to pre-allocate in the
984  * objects' reservation objects.
985  *
986  * Return: 0 on success, negative error code on error. In particular
987  * may return -EDEADLK on WW transaction contention and -EINTR if
988  * an interruptible wait is terminated by a signal.
989  */
990 int xe_vm_prepare_vma(struct drm_exec *exec, struct xe_vma *vma,
991 		      unsigned int num_shared)
992 {
993 	struct xe_vm *vm = xe_vma_vm(vma);
994 	struct xe_bo *bo = xe_vma_bo(vma);
995 	int err;
996 
997 	XE_WARN_ON(!vm);
998 	err = drm_exec_prepare_obj(exec, xe_vm_obj(vm), num_shared);
999 	if (!err && bo && !bo->vm)
1000 		err = drm_exec_prepare_obj(exec, &bo->ttm.base, num_shared);
1001 
1002 	return err;
1003 }
1004 
1005 static void xe_vma_destroy_unlocked(struct xe_vma *vma)
1006 {
1007 	struct drm_exec exec;
1008 	int err;
1009 
1010 	drm_exec_init(&exec, 0, 0);
1011 	drm_exec_until_all_locked(&exec) {
1012 		err = xe_vm_prepare_vma(&exec, vma, 0);
1013 		drm_exec_retry_on_contention(&exec);
1014 		if (XE_WARN_ON(err))
1015 			break;
1016 	}
1017 
1018 	xe_vma_destroy(vma, NULL);
1019 
1020 	drm_exec_fini(&exec);
1021 }
1022 
1023 struct xe_vma *
1024 xe_vm_find_overlapping_vma(struct xe_vm *vm, u64 start, u64 range)
1025 {
1026 	struct drm_gpuva *gpuva;
1027 
1028 	lockdep_assert_held(&vm->lock);
1029 
1030 	if (xe_vm_is_closed_or_banned(vm))
1031 		return NULL;
1032 
1033 	xe_assert(vm->xe, start + range <= vm->size);
1034 
1035 	gpuva = drm_gpuva_find_first(&vm->gpuvm, start, range);
1036 
1037 	return gpuva ? gpuva_to_vma(gpuva) : NULL;
1038 }
1039 
1040 static int xe_vm_insert_vma(struct xe_vm *vm, struct xe_vma *vma)
1041 {
1042 	int err;
1043 
1044 	xe_assert(vm->xe, xe_vma_vm(vma) == vm);
1045 	lockdep_assert_held(&vm->lock);
1046 
1047 	err = drm_gpuva_insert(&vm->gpuvm, &vma->gpuva);
1048 	XE_WARN_ON(err);	/* Shouldn't be possible */
1049 
1050 	return err;
1051 }
1052 
1053 static void xe_vm_remove_vma(struct xe_vm *vm, struct xe_vma *vma)
1054 {
1055 	xe_assert(vm->xe, xe_vma_vm(vma) == vm);
1056 	lockdep_assert_held(&vm->lock);
1057 
1058 	drm_gpuva_remove(&vma->gpuva);
1059 	if (vm->usm.last_fault_vma == vma)
1060 		vm->usm.last_fault_vma = NULL;
1061 }
1062 
1063 static struct drm_gpuva_op *xe_vm_op_alloc(void)
1064 {
1065 	struct xe_vma_op *op;
1066 
1067 	op = kzalloc(sizeof(*op), GFP_KERNEL);
1068 
1069 	if (unlikely(!op))
1070 		return NULL;
1071 
1072 	return &op->base;
1073 }
1074 
1075 static void xe_vm_free(struct drm_gpuvm *gpuvm);
1076 
1077 static struct drm_gpuvm_ops gpuvm_ops = {
1078 	.op_alloc = xe_vm_op_alloc,
1079 	.vm_bo_validate = xe_gpuvm_validate,
1080 	.vm_free = xe_vm_free,
1081 };
1082 
1083 static u64 pde_encode_pat_index(struct xe_device *xe, u16 pat_index)
1084 {
1085 	u64 pte = 0;
1086 
1087 	if (pat_index & BIT(0))
1088 		pte |= XE_PPGTT_PTE_PAT0;
1089 
1090 	if (pat_index & BIT(1))
1091 		pte |= XE_PPGTT_PTE_PAT1;
1092 
1093 	return pte;
1094 }
1095 
1096 static u64 pte_encode_pat_index(struct xe_device *xe, u16 pat_index,
1097 				u32 pt_level)
1098 {
1099 	u64 pte = 0;
1100 
1101 	if (pat_index & BIT(0))
1102 		pte |= XE_PPGTT_PTE_PAT0;
1103 
1104 	if (pat_index & BIT(1))
1105 		pte |= XE_PPGTT_PTE_PAT1;
1106 
1107 	if (pat_index & BIT(2)) {
1108 		if (pt_level)
1109 			pte |= XE_PPGTT_PDE_PDPE_PAT2;
1110 		else
1111 			pte |= XE_PPGTT_PTE_PAT2;
1112 	}
1113 
1114 	if (pat_index & BIT(3))
1115 		pte |= XELPG_PPGTT_PTE_PAT3;
1116 
1117 	if (pat_index & (BIT(4)))
1118 		pte |= XE2_PPGTT_PTE_PAT4;
1119 
1120 	return pte;
1121 }
1122 
1123 static u64 pte_encode_ps(u32 pt_level)
1124 {
1125 	XE_WARN_ON(pt_level > MAX_HUGEPTE_LEVEL);
1126 
1127 	if (pt_level == 1)
1128 		return XE_PDE_PS_2M;
1129 	else if (pt_level == 2)
1130 		return XE_PDPE_PS_1G;
1131 
1132 	return 0;
1133 }
1134 
1135 static u64 xelp_pde_encode_bo(struct xe_bo *bo, u64 bo_offset,
1136 			      const u16 pat_index)
1137 {
1138 	struct xe_device *xe = xe_bo_device(bo);
1139 	u64 pde;
1140 
1141 	pde = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
1142 	pde |= XE_PAGE_PRESENT | XE_PAGE_RW;
1143 	pde |= pde_encode_pat_index(xe, pat_index);
1144 
1145 	return pde;
1146 }
1147 
1148 static u64 xelp_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
1149 			      u16 pat_index, u32 pt_level)
1150 {
1151 	struct xe_device *xe = xe_bo_device(bo);
1152 	u64 pte;
1153 
1154 	pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
1155 	pte |= XE_PAGE_PRESENT | XE_PAGE_RW;
1156 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1157 	pte |= pte_encode_ps(pt_level);
1158 
1159 	if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
1160 		pte |= XE_PPGTT_PTE_DM;
1161 
1162 	return pte;
1163 }
1164 
1165 static u64 xelp_pte_encode_vma(u64 pte, struct xe_vma *vma,
1166 			       u16 pat_index, u32 pt_level)
1167 {
1168 	struct xe_device *xe = xe_vma_vm(vma)->xe;
1169 
1170 	pte |= XE_PAGE_PRESENT;
1171 
1172 	if (likely(!xe_vma_read_only(vma)))
1173 		pte |= XE_PAGE_RW;
1174 
1175 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1176 	pte |= pte_encode_ps(pt_level);
1177 
1178 	if (unlikely(xe_vma_is_null(vma)))
1179 		pte |= XE_PTE_NULL;
1180 
1181 	return pte;
1182 }
1183 
1184 static u64 xelp_pte_encode_addr(struct xe_device *xe, u64 addr,
1185 				u16 pat_index,
1186 				u32 pt_level, bool devmem, u64 flags)
1187 {
1188 	u64 pte;
1189 
1190 	/* Avoid passing random bits directly as flags */
1191 	xe_assert(xe, !(flags & ~XE_PTE_PS64));
1192 
1193 	pte = addr;
1194 	pte |= XE_PAGE_PRESENT | XE_PAGE_RW;
1195 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1196 	pte |= pte_encode_ps(pt_level);
1197 
1198 	if (devmem)
1199 		pte |= XE_PPGTT_PTE_DM;
1200 
1201 	pte |= flags;
1202 
1203 	return pte;
1204 }
1205 
1206 static const struct xe_pt_ops xelp_pt_ops = {
1207 	.pte_encode_bo = xelp_pte_encode_bo,
1208 	.pte_encode_vma = xelp_pte_encode_vma,
1209 	.pte_encode_addr = xelp_pte_encode_addr,
1210 	.pde_encode_bo = xelp_pde_encode_bo,
1211 };
1212 
1213 static void vm_destroy_work_func(struct work_struct *w);
1214 
1215 /**
1216  * xe_vm_create_scratch() - Setup a scratch memory pagetable tree for the
1217  * given tile and vm.
1218  * @xe: xe device.
1219  * @tile: tile to set up for.
1220  * @vm: vm to set up for.
1221  *
1222  * Sets up a pagetable tree with one page-table per level and a single
1223  * leaf PTE. All pagetable entries point to the single page-table or,
1224  * for MAX_HUGEPTE_LEVEL, a NULL huge PTE returning 0 on read and
1225  * writes become NOPs.
1226  *
1227  * Return: 0 on success, negative error code on error.
1228  */
1229 static int xe_vm_create_scratch(struct xe_device *xe, struct xe_tile *tile,
1230 				struct xe_vm *vm)
1231 {
1232 	u8 id = tile->id;
1233 	int i;
1234 
1235 	for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; i++) {
1236 		vm->scratch_pt[id][i] = xe_pt_create(vm, tile, i);
1237 		if (IS_ERR(vm->scratch_pt[id][i]))
1238 			return PTR_ERR(vm->scratch_pt[id][i]);
1239 
1240 		xe_pt_populate_empty(tile, vm, vm->scratch_pt[id][i]);
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 static void xe_vm_free_scratch(struct xe_vm *vm)
1247 {
1248 	struct xe_tile *tile;
1249 	u8 id;
1250 
1251 	if (!xe_vm_has_scratch(vm))
1252 		return;
1253 
1254 	for_each_tile(tile, vm->xe, id) {
1255 		u32 i;
1256 
1257 		if (!vm->pt_root[id])
1258 			continue;
1259 
1260 		for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; ++i)
1261 			if (vm->scratch_pt[id][i])
1262 				xe_pt_destroy(vm->scratch_pt[id][i], vm->flags, NULL);
1263 	}
1264 }
1265 
1266 struct xe_vm *xe_vm_create(struct xe_device *xe, u32 flags)
1267 {
1268 	struct drm_gem_object *vm_resv_obj;
1269 	struct xe_vm *vm;
1270 	int err, number_tiles = 0;
1271 	struct xe_tile *tile;
1272 	u8 id;
1273 
1274 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
1275 	if (!vm)
1276 		return ERR_PTR(-ENOMEM);
1277 
1278 	vm->xe = xe;
1279 
1280 	vm->size = 1ull << xe->info.va_bits;
1281 
1282 	vm->flags = flags;
1283 
1284 	init_rwsem(&vm->lock);
1285 
1286 	INIT_LIST_HEAD(&vm->rebind_list);
1287 
1288 	INIT_LIST_HEAD(&vm->userptr.repin_list);
1289 	INIT_LIST_HEAD(&vm->userptr.invalidated);
1290 	init_rwsem(&vm->userptr.notifier_lock);
1291 	spin_lock_init(&vm->userptr.invalidated_lock);
1292 
1293 	INIT_WORK(&vm->destroy_work, vm_destroy_work_func);
1294 
1295 	INIT_LIST_HEAD(&vm->preempt.exec_queues);
1296 	vm->preempt.min_run_period_ms = 10;	/* FIXME: Wire up to uAPI */
1297 
1298 	for_each_tile(tile, xe, id)
1299 		xe_range_fence_tree_init(&vm->rftree[id]);
1300 
1301 	vm->pt_ops = &xelp_pt_ops;
1302 
1303 	if (!(flags & XE_VM_FLAG_MIGRATION))
1304 		xe_device_mem_access_get(xe);
1305 
1306 	vm_resv_obj = drm_gpuvm_resv_object_alloc(&xe->drm);
1307 	if (!vm_resv_obj) {
1308 		err = -ENOMEM;
1309 		goto err_no_resv;
1310 	}
1311 
1312 	drm_gpuvm_init(&vm->gpuvm, "Xe VM", DRM_GPUVM_RESV_PROTECTED, &xe->drm,
1313 		       vm_resv_obj, 0, vm->size, 0, 0, &gpuvm_ops);
1314 
1315 	drm_gem_object_put(vm_resv_obj);
1316 
1317 	err = dma_resv_lock_interruptible(xe_vm_resv(vm), NULL);
1318 	if (err)
1319 		goto err_close;
1320 
1321 	if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
1322 		vm->flags |= XE_VM_FLAG_64K;
1323 
1324 	for_each_tile(tile, xe, id) {
1325 		if (flags & XE_VM_FLAG_MIGRATION &&
1326 		    tile->id != XE_VM_FLAG_TILE_ID(flags))
1327 			continue;
1328 
1329 		vm->pt_root[id] = xe_pt_create(vm, tile, xe->info.vm_max_level);
1330 		if (IS_ERR(vm->pt_root[id])) {
1331 			err = PTR_ERR(vm->pt_root[id]);
1332 			vm->pt_root[id] = NULL;
1333 			goto err_unlock_close;
1334 		}
1335 	}
1336 
1337 	if (xe_vm_has_scratch(vm)) {
1338 		for_each_tile(tile, xe, id) {
1339 			if (!vm->pt_root[id])
1340 				continue;
1341 
1342 			err = xe_vm_create_scratch(xe, tile, vm);
1343 			if (err)
1344 				goto err_unlock_close;
1345 		}
1346 		vm->batch_invalidate_tlb = true;
1347 	}
1348 
1349 	if (flags & XE_VM_FLAG_LR_MODE) {
1350 		INIT_WORK(&vm->preempt.rebind_work, preempt_rebind_work_func);
1351 		vm->flags |= XE_VM_FLAG_LR_MODE;
1352 		vm->batch_invalidate_tlb = false;
1353 	}
1354 
1355 	/* Fill pt_root after allocating scratch tables */
1356 	for_each_tile(tile, xe, id) {
1357 		if (!vm->pt_root[id])
1358 			continue;
1359 
1360 		xe_pt_populate_empty(tile, vm, vm->pt_root[id]);
1361 	}
1362 	dma_resv_unlock(xe_vm_resv(vm));
1363 
1364 	/* Kernel migration VM shouldn't have a circular loop.. */
1365 	if (!(flags & XE_VM_FLAG_MIGRATION)) {
1366 		for_each_tile(tile, xe, id) {
1367 			struct xe_gt *gt = tile->primary_gt;
1368 			struct xe_vm *migrate_vm;
1369 			struct xe_exec_queue *q;
1370 			u32 create_flags = EXEC_QUEUE_FLAG_VM;
1371 
1372 			if (!vm->pt_root[id])
1373 				continue;
1374 
1375 			migrate_vm = xe_migrate_get_vm(tile->migrate);
1376 			q = xe_exec_queue_create_class(xe, gt, migrate_vm,
1377 						       XE_ENGINE_CLASS_COPY,
1378 						       create_flags);
1379 			xe_vm_put(migrate_vm);
1380 			if (IS_ERR(q)) {
1381 				err = PTR_ERR(q);
1382 				goto err_close;
1383 			}
1384 			vm->q[id] = q;
1385 			number_tiles++;
1386 		}
1387 	}
1388 
1389 	if (number_tiles > 1)
1390 		vm->composite_fence_ctx = dma_fence_context_alloc(1);
1391 
1392 	mutex_lock(&xe->usm.lock);
1393 	if (flags & XE_VM_FLAG_FAULT_MODE)
1394 		xe->usm.num_vm_in_fault_mode++;
1395 	else if (!(flags & XE_VM_FLAG_MIGRATION))
1396 		xe->usm.num_vm_in_non_fault_mode++;
1397 	mutex_unlock(&xe->usm.lock);
1398 
1399 	trace_xe_vm_create(vm);
1400 
1401 	return vm;
1402 
1403 err_unlock_close:
1404 	dma_resv_unlock(xe_vm_resv(vm));
1405 err_close:
1406 	xe_vm_close_and_put(vm);
1407 	return ERR_PTR(err);
1408 
1409 err_no_resv:
1410 	for_each_tile(tile, xe, id)
1411 		xe_range_fence_tree_fini(&vm->rftree[id]);
1412 	kfree(vm);
1413 	if (!(flags & XE_VM_FLAG_MIGRATION))
1414 		xe_device_mem_access_put(xe);
1415 	return ERR_PTR(err);
1416 }
1417 
1418 static void xe_vm_close(struct xe_vm *vm)
1419 {
1420 	down_write(&vm->lock);
1421 	vm->size = 0;
1422 	up_write(&vm->lock);
1423 }
1424 
1425 void xe_vm_close_and_put(struct xe_vm *vm)
1426 {
1427 	LIST_HEAD(contested);
1428 	struct xe_device *xe = vm->xe;
1429 	struct xe_tile *tile;
1430 	struct xe_vma *vma, *next_vma;
1431 	struct drm_gpuva *gpuva, *next;
1432 	u8 id;
1433 
1434 	xe_assert(xe, !vm->preempt.num_exec_queues);
1435 
1436 	xe_vm_close(vm);
1437 	if (xe_vm_in_preempt_fence_mode(vm))
1438 		flush_work(&vm->preempt.rebind_work);
1439 
1440 	down_write(&vm->lock);
1441 	for_each_tile(tile, xe, id) {
1442 		if (vm->q[id])
1443 			xe_exec_queue_last_fence_put(vm->q[id], vm);
1444 	}
1445 	up_write(&vm->lock);
1446 
1447 	for_each_tile(tile, xe, id) {
1448 		if (vm->q[id]) {
1449 			xe_exec_queue_kill(vm->q[id]);
1450 			xe_exec_queue_put(vm->q[id]);
1451 			vm->q[id] = NULL;
1452 		}
1453 	}
1454 
1455 	down_write(&vm->lock);
1456 	xe_vm_lock(vm, false);
1457 	drm_gpuvm_for_each_va_safe(gpuva, next, &vm->gpuvm) {
1458 		vma = gpuva_to_vma(gpuva);
1459 
1460 		if (xe_vma_has_no_bo(vma)) {
1461 			down_read(&vm->userptr.notifier_lock);
1462 			vma->gpuva.flags |= XE_VMA_DESTROYED;
1463 			up_read(&vm->userptr.notifier_lock);
1464 		}
1465 
1466 		xe_vm_remove_vma(vm, vma);
1467 
1468 		/* easy case, remove from VMA? */
1469 		if (xe_vma_has_no_bo(vma) || xe_vma_bo(vma)->vm) {
1470 			list_del_init(&vma->combined_links.rebind);
1471 			xe_vma_destroy(vma, NULL);
1472 			continue;
1473 		}
1474 
1475 		list_move_tail(&vma->combined_links.destroy, &contested);
1476 		vma->gpuva.flags |= XE_VMA_DESTROYED;
1477 	}
1478 
1479 	/*
1480 	 * All vm operations will add shared fences to resv.
1481 	 * The only exception is eviction for a shared object,
1482 	 * but even so, the unbind when evicted would still
1483 	 * install a fence to resv. Hence it's safe to
1484 	 * destroy the pagetables immediately.
1485 	 */
1486 	xe_vm_free_scratch(vm);
1487 
1488 	for_each_tile(tile, xe, id) {
1489 		if (vm->pt_root[id]) {
1490 			xe_pt_destroy(vm->pt_root[id], vm->flags, NULL);
1491 			vm->pt_root[id] = NULL;
1492 		}
1493 	}
1494 	xe_vm_unlock(vm);
1495 
1496 	/*
1497 	 * VM is now dead, cannot re-add nodes to vm->vmas if it's NULL
1498 	 * Since we hold a refcount to the bo, we can remove and free
1499 	 * the members safely without locking.
1500 	 */
1501 	list_for_each_entry_safe(vma, next_vma, &contested,
1502 				 combined_links.destroy) {
1503 		list_del_init(&vma->combined_links.destroy);
1504 		xe_vma_destroy_unlocked(vma);
1505 	}
1506 
1507 	up_write(&vm->lock);
1508 
1509 	mutex_lock(&xe->usm.lock);
1510 	if (vm->flags & XE_VM_FLAG_FAULT_MODE)
1511 		xe->usm.num_vm_in_fault_mode--;
1512 	else if (!(vm->flags & XE_VM_FLAG_MIGRATION))
1513 		xe->usm.num_vm_in_non_fault_mode--;
1514 	mutex_unlock(&xe->usm.lock);
1515 
1516 	for_each_tile(tile, xe, id)
1517 		xe_range_fence_tree_fini(&vm->rftree[id]);
1518 
1519 	xe_vm_put(vm);
1520 }
1521 
1522 static void vm_destroy_work_func(struct work_struct *w)
1523 {
1524 	struct xe_vm *vm =
1525 		container_of(w, struct xe_vm, destroy_work);
1526 	struct xe_device *xe = vm->xe;
1527 	struct xe_tile *tile;
1528 	u8 id;
1529 	void *lookup;
1530 
1531 	/* xe_vm_close_and_put was not called? */
1532 	xe_assert(xe, !vm->size);
1533 
1534 	if (!(vm->flags & XE_VM_FLAG_MIGRATION)) {
1535 		xe_device_mem_access_put(xe);
1536 
1537 		if (xe->info.has_asid && vm->usm.asid) {
1538 			mutex_lock(&xe->usm.lock);
1539 			lookup = xa_erase(&xe->usm.asid_to_vm, vm->usm.asid);
1540 			xe_assert(xe, lookup == vm);
1541 			mutex_unlock(&xe->usm.lock);
1542 		}
1543 	}
1544 
1545 	for_each_tile(tile, xe, id)
1546 		XE_WARN_ON(vm->pt_root[id]);
1547 
1548 	trace_xe_vm_free(vm);
1549 	dma_fence_put(vm->rebind_fence);
1550 	kfree(vm);
1551 }
1552 
1553 static void xe_vm_free(struct drm_gpuvm *gpuvm)
1554 {
1555 	struct xe_vm *vm = container_of(gpuvm, struct xe_vm, gpuvm);
1556 
1557 	/* To destroy the VM we need to be able to sleep */
1558 	queue_work(system_unbound_wq, &vm->destroy_work);
1559 }
1560 
1561 struct xe_vm *xe_vm_lookup(struct xe_file *xef, u32 id)
1562 {
1563 	struct xe_vm *vm;
1564 
1565 	mutex_lock(&xef->vm.lock);
1566 	vm = xa_load(&xef->vm.xa, id);
1567 	if (vm)
1568 		xe_vm_get(vm);
1569 	mutex_unlock(&xef->vm.lock);
1570 
1571 	return vm;
1572 }
1573 
1574 u64 xe_vm_pdp4_descriptor(struct xe_vm *vm, struct xe_tile *tile)
1575 {
1576 	return vm->pt_ops->pde_encode_bo(vm->pt_root[tile->id]->bo, 0,
1577 					 tile_to_xe(tile)->pat.idx[XE_CACHE_WB]);
1578 }
1579 
1580 static struct xe_exec_queue *
1581 to_wait_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
1582 {
1583 	return q ? q : vm->q[0];
1584 }
1585 
1586 static struct dma_fence *
1587 xe_vm_unbind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
1588 		 struct xe_sync_entry *syncs, u32 num_syncs,
1589 		 bool first_op, bool last_op)
1590 {
1591 	struct xe_vm *vm = xe_vma_vm(vma);
1592 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1593 	struct xe_tile *tile;
1594 	struct dma_fence *fence = NULL;
1595 	struct dma_fence **fences = NULL;
1596 	struct dma_fence_array *cf = NULL;
1597 	int cur_fence = 0, i;
1598 	int number_tiles = hweight8(vma->tile_present);
1599 	int err;
1600 	u8 id;
1601 
1602 	trace_xe_vma_unbind(vma);
1603 
1604 	if (number_tiles > 1) {
1605 		fences = kmalloc_array(number_tiles, sizeof(*fences),
1606 				       GFP_KERNEL);
1607 		if (!fences)
1608 			return ERR_PTR(-ENOMEM);
1609 	}
1610 
1611 	for_each_tile(tile, vm->xe, id) {
1612 		if (!(vma->tile_present & BIT(id)))
1613 			goto next;
1614 
1615 		fence = __xe_pt_unbind_vma(tile, vma, q ? q : vm->q[id],
1616 					   first_op ? syncs : NULL,
1617 					   first_op ? num_syncs : 0);
1618 		if (IS_ERR(fence)) {
1619 			err = PTR_ERR(fence);
1620 			goto err_fences;
1621 		}
1622 
1623 		if (fences)
1624 			fences[cur_fence++] = fence;
1625 
1626 next:
1627 		if (q && vm->pt_root[id] && !list_empty(&q->multi_gt_list))
1628 			q = list_next_entry(q, multi_gt_list);
1629 	}
1630 
1631 	if (fences) {
1632 		cf = dma_fence_array_create(number_tiles, fences,
1633 					    vm->composite_fence_ctx,
1634 					    vm->composite_fence_seqno++,
1635 					    false);
1636 		if (!cf) {
1637 			--vm->composite_fence_seqno;
1638 			err = -ENOMEM;
1639 			goto err_fences;
1640 		}
1641 	}
1642 
1643 	fence = cf ? &cf->base : !fence ?
1644 		xe_exec_queue_last_fence_get(wait_exec_queue, vm) : fence;
1645 	if (last_op) {
1646 		for (i = 0; i < num_syncs; i++)
1647 			xe_sync_entry_signal(&syncs[i], NULL, fence);
1648 	}
1649 
1650 	return fence;
1651 
1652 err_fences:
1653 	if (fences) {
1654 		while (cur_fence)
1655 			dma_fence_put(fences[--cur_fence]);
1656 		kfree(fences);
1657 	}
1658 
1659 	return ERR_PTR(err);
1660 }
1661 
1662 static struct dma_fence *
1663 xe_vm_bind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
1664 	       struct xe_sync_entry *syncs, u32 num_syncs,
1665 	       bool first_op, bool last_op)
1666 {
1667 	struct xe_tile *tile;
1668 	struct dma_fence *fence;
1669 	struct dma_fence **fences = NULL;
1670 	struct dma_fence_array *cf = NULL;
1671 	struct xe_vm *vm = xe_vma_vm(vma);
1672 	int cur_fence = 0, i;
1673 	int number_tiles = hweight8(vma->tile_mask);
1674 	int err;
1675 	u8 id;
1676 
1677 	trace_xe_vma_bind(vma);
1678 
1679 	if (number_tiles > 1) {
1680 		fences = kmalloc_array(number_tiles, sizeof(*fences),
1681 				       GFP_KERNEL);
1682 		if (!fences)
1683 			return ERR_PTR(-ENOMEM);
1684 	}
1685 
1686 	for_each_tile(tile, vm->xe, id) {
1687 		if (!(vma->tile_mask & BIT(id)))
1688 			goto next;
1689 
1690 		fence = __xe_pt_bind_vma(tile, vma, q ? q : vm->q[id],
1691 					 first_op ? syncs : NULL,
1692 					 first_op ? num_syncs : 0,
1693 					 vma->tile_present & BIT(id));
1694 		if (IS_ERR(fence)) {
1695 			err = PTR_ERR(fence);
1696 			goto err_fences;
1697 		}
1698 
1699 		if (fences)
1700 			fences[cur_fence++] = fence;
1701 
1702 next:
1703 		if (q && vm->pt_root[id] && !list_empty(&q->multi_gt_list))
1704 			q = list_next_entry(q, multi_gt_list);
1705 	}
1706 
1707 	if (fences) {
1708 		cf = dma_fence_array_create(number_tiles, fences,
1709 					    vm->composite_fence_ctx,
1710 					    vm->composite_fence_seqno++,
1711 					    false);
1712 		if (!cf) {
1713 			--vm->composite_fence_seqno;
1714 			err = -ENOMEM;
1715 			goto err_fences;
1716 		}
1717 	}
1718 
1719 	if (last_op) {
1720 		for (i = 0; i < num_syncs; i++)
1721 			xe_sync_entry_signal(&syncs[i], NULL,
1722 					     cf ? &cf->base : fence);
1723 	}
1724 
1725 	return cf ? &cf->base : fence;
1726 
1727 err_fences:
1728 	if (fences) {
1729 		while (cur_fence)
1730 			dma_fence_put(fences[--cur_fence]);
1731 		kfree(fences);
1732 	}
1733 
1734 	return ERR_PTR(err);
1735 }
1736 
1737 static int __xe_vm_bind(struct xe_vm *vm, struct xe_vma *vma,
1738 			struct xe_exec_queue *q, struct xe_sync_entry *syncs,
1739 			u32 num_syncs, bool immediate, bool first_op,
1740 			bool last_op)
1741 {
1742 	struct dma_fence *fence;
1743 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1744 
1745 	xe_vm_assert_held(vm);
1746 
1747 	if (immediate) {
1748 		fence = xe_vm_bind_vma(vma, q, syncs, num_syncs, first_op,
1749 				       last_op);
1750 		if (IS_ERR(fence))
1751 			return PTR_ERR(fence);
1752 	} else {
1753 		int i;
1754 
1755 		xe_assert(vm->xe, xe_vm_in_fault_mode(vm));
1756 
1757 		fence = xe_exec_queue_last_fence_get(wait_exec_queue, vm);
1758 		if (last_op) {
1759 			for (i = 0; i < num_syncs; i++)
1760 				xe_sync_entry_signal(&syncs[i], NULL, fence);
1761 		}
1762 	}
1763 
1764 	if (last_op)
1765 		xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence);
1766 	dma_fence_put(fence);
1767 
1768 	return 0;
1769 }
1770 
1771 static int xe_vm_bind(struct xe_vm *vm, struct xe_vma *vma, struct xe_exec_queue *q,
1772 		      struct xe_bo *bo, struct xe_sync_entry *syncs,
1773 		      u32 num_syncs, bool immediate, bool first_op,
1774 		      bool last_op)
1775 {
1776 	int err;
1777 
1778 	xe_vm_assert_held(vm);
1779 	xe_bo_assert_held(bo);
1780 
1781 	if (bo && immediate) {
1782 		err = xe_bo_validate(bo, vm, true);
1783 		if (err)
1784 			return err;
1785 	}
1786 
1787 	return __xe_vm_bind(vm, vma, q, syncs, num_syncs, immediate, first_op,
1788 			    last_op);
1789 }
1790 
1791 static int xe_vm_unbind(struct xe_vm *vm, struct xe_vma *vma,
1792 			struct xe_exec_queue *q, struct xe_sync_entry *syncs,
1793 			u32 num_syncs, bool first_op, bool last_op)
1794 {
1795 	struct dma_fence *fence;
1796 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1797 
1798 	xe_vm_assert_held(vm);
1799 	xe_bo_assert_held(xe_vma_bo(vma));
1800 
1801 	fence = xe_vm_unbind_vma(vma, q, syncs, num_syncs, first_op, last_op);
1802 	if (IS_ERR(fence))
1803 		return PTR_ERR(fence);
1804 
1805 	xe_vma_destroy(vma, fence);
1806 	if (last_op)
1807 		xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence);
1808 	dma_fence_put(fence);
1809 
1810 	return 0;
1811 }
1812 
1813 #define ALL_DRM_XE_VM_CREATE_FLAGS (DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE | \
1814 				    DRM_XE_VM_CREATE_FLAG_LR_MODE | \
1815 				    DRM_XE_VM_CREATE_FLAG_FAULT_MODE)
1816 
1817 int xe_vm_create_ioctl(struct drm_device *dev, void *data,
1818 		       struct drm_file *file)
1819 {
1820 	struct xe_device *xe = to_xe_device(dev);
1821 	struct xe_file *xef = to_xe_file(file);
1822 	struct drm_xe_vm_create *args = data;
1823 	struct xe_tile *tile;
1824 	struct xe_vm *vm;
1825 	u32 id, asid;
1826 	int err;
1827 	u32 flags = 0;
1828 
1829 	if (XE_IOCTL_DBG(xe, args->extensions))
1830 		return -EINVAL;
1831 
1832 	if (XE_WA(xe_root_mmio_gt(xe), 14016763929))
1833 		args->flags |= DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE;
1834 
1835 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE &&
1836 			 !xe->info.has_usm))
1837 		return -EINVAL;
1838 
1839 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1840 		return -EINVAL;
1841 
1842 	if (XE_IOCTL_DBG(xe, args->flags & ~ALL_DRM_XE_VM_CREATE_FLAGS))
1843 		return -EINVAL;
1844 
1845 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE &&
1846 			 args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE))
1847 		return -EINVAL;
1848 
1849 	if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE) &&
1850 			 args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE))
1851 		return -EINVAL;
1852 
1853 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE &&
1854 			 xe_device_in_non_fault_mode(xe)))
1855 		return -EINVAL;
1856 
1857 	if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE) &&
1858 			 xe_device_in_fault_mode(xe)))
1859 		return -EINVAL;
1860 
1861 	if (XE_IOCTL_DBG(xe, args->extensions))
1862 		return -EINVAL;
1863 
1864 	if (args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE)
1865 		flags |= XE_VM_FLAG_SCRATCH_PAGE;
1866 	if (args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE)
1867 		flags |= XE_VM_FLAG_LR_MODE;
1868 	if (args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE)
1869 		flags |= XE_VM_FLAG_FAULT_MODE;
1870 
1871 	vm = xe_vm_create(xe, flags);
1872 	if (IS_ERR(vm))
1873 		return PTR_ERR(vm);
1874 
1875 	mutex_lock(&xef->vm.lock);
1876 	err = xa_alloc(&xef->vm.xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1877 	mutex_unlock(&xef->vm.lock);
1878 	if (err)
1879 		goto err_close_and_put;
1880 
1881 	if (xe->info.has_asid) {
1882 		mutex_lock(&xe->usm.lock);
1883 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, vm,
1884 				      XA_LIMIT(1, XE_MAX_ASID - 1),
1885 				      &xe->usm.next_asid, GFP_KERNEL);
1886 		mutex_unlock(&xe->usm.lock);
1887 		if (err < 0)
1888 			goto err_free_id;
1889 
1890 		vm->usm.asid = asid;
1891 	}
1892 
1893 	args->vm_id = id;
1894 	vm->xef = xef;
1895 
1896 	/* Record BO memory for VM pagetable created against client */
1897 	for_each_tile(tile, xe, id)
1898 		if (vm->pt_root[id])
1899 			xe_drm_client_add_bo(vm->xef->client, vm->pt_root[id]->bo);
1900 
1901 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_MEM)
1902 	/* Warning: Security issue - never enable by default */
1903 	args->reserved[0] = xe_bo_main_addr(vm->pt_root[0]->bo, XE_PAGE_SIZE);
1904 #endif
1905 
1906 	return 0;
1907 
1908 err_free_id:
1909 	mutex_lock(&xef->vm.lock);
1910 	xa_erase(&xef->vm.xa, id);
1911 	mutex_unlock(&xef->vm.lock);
1912 err_close_and_put:
1913 	xe_vm_close_and_put(vm);
1914 
1915 	return err;
1916 }
1917 
1918 int xe_vm_destroy_ioctl(struct drm_device *dev, void *data,
1919 			struct drm_file *file)
1920 {
1921 	struct xe_device *xe = to_xe_device(dev);
1922 	struct xe_file *xef = to_xe_file(file);
1923 	struct drm_xe_vm_destroy *args = data;
1924 	struct xe_vm *vm;
1925 	int err = 0;
1926 
1927 	if (XE_IOCTL_DBG(xe, args->pad) ||
1928 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1929 		return -EINVAL;
1930 
1931 	mutex_lock(&xef->vm.lock);
1932 	vm = xa_load(&xef->vm.xa, args->vm_id);
1933 	if (XE_IOCTL_DBG(xe, !vm))
1934 		err = -ENOENT;
1935 	else if (XE_IOCTL_DBG(xe, vm->preempt.num_exec_queues))
1936 		err = -EBUSY;
1937 	else
1938 		xa_erase(&xef->vm.xa, args->vm_id);
1939 	mutex_unlock(&xef->vm.lock);
1940 
1941 	if (!err)
1942 		xe_vm_close_and_put(vm);
1943 
1944 	return err;
1945 }
1946 
1947 static const u32 region_to_mem_type[] = {
1948 	XE_PL_TT,
1949 	XE_PL_VRAM0,
1950 	XE_PL_VRAM1,
1951 };
1952 
1953 static int xe_vm_prefetch(struct xe_vm *vm, struct xe_vma *vma,
1954 			  struct xe_exec_queue *q, u32 region,
1955 			  struct xe_sync_entry *syncs, u32 num_syncs,
1956 			  bool first_op, bool last_op)
1957 {
1958 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1959 	int err;
1960 
1961 	xe_assert(vm->xe, region <= ARRAY_SIZE(region_to_mem_type));
1962 
1963 	if (!xe_vma_has_no_bo(vma)) {
1964 		err = xe_bo_migrate(xe_vma_bo(vma), region_to_mem_type[region]);
1965 		if (err)
1966 			return err;
1967 	}
1968 
1969 	if (vma->tile_mask != (vma->tile_present & ~vma->usm.tile_invalidated)) {
1970 		return xe_vm_bind(vm, vma, q, xe_vma_bo(vma), syncs, num_syncs,
1971 				  true, first_op, last_op);
1972 	} else {
1973 		int i;
1974 
1975 		/* Nothing to do, signal fences now */
1976 		if (last_op) {
1977 			for (i = 0; i < num_syncs; i++) {
1978 				struct dma_fence *fence =
1979 					xe_exec_queue_last_fence_get(wait_exec_queue, vm);
1980 
1981 				xe_sync_entry_signal(&syncs[i], NULL, fence);
1982 				dma_fence_put(fence);
1983 			}
1984 		}
1985 
1986 		return 0;
1987 	}
1988 }
1989 
1990 static void prep_vma_destroy(struct xe_vm *vm, struct xe_vma *vma,
1991 			     bool post_commit)
1992 {
1993 	down_read(&vm->userptr.notifier_lock);
1994 	vma->gpuva.flags |= XE_VMA_DESTROYED;
1995 	up_read(&vm->userptr.notifier_lock);
1996 	if (post_commit)
1997 		xe_vm_remove_vma(vm, vma);
1998 }
1999 
2000 #undef ULL
2001 #define ULL	unsigned long long
2002 
2003 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
2004 static void print_op(struct xe_device *xe, struct drm_gpuva_op *op)
2005 {
2006 	struct xe_vma *vma;
2007 
2008 	switch (op->op) {
2009 	case DRM_GPUVA_OP_MAP:
2010 		vm_dbg(&xe->drm, "MAP: addr=0x%016llx, range=0x%016llx",
2011 		       (ULL)op->map.va.addr, (ULL)op->map.va.range);
2012 		break;
2013 	case DRM_GPUVA_OP_REMAP:
2014 		vma = gpuva_to_vma(op->remap.unmap->va);
2015 		vm_dbg(&xe->drm, "REMAP:UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d",
2016 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma),
2017 		       op->remap.unmap->keep ? 1 : 0);
2018 		if (op->remap.prev)
2019 			vm_dbg(&xe->drm,
2020 			       "REMAP:PREV: addr=0x%016llx, range=0x%016llx",
2021 			       (ULL)op->remap.prev->va.addr,
2022 			       (ULL)op->remap.prev->va.range);
2023 		if (op->remap.next)
2024 			vm_dbg(&xe->drm,
2025 			       "REMAP:NEXT: addr=0x%016llx, range=0x%016llx",
2026 			       (ULL)op->remap.next->va.addr,
2027 			       (ULL)op->remap.next->va.range);
2028 		break;
2029 	case DRM_GPUVA_OP_UNMAP:
2030 		vma = gpuva_to_vma(op->unmap.va);
2031 		vm_dbg(&xe->drm, "UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d",
2032 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma),
2033 		       op->unmap.keep ? 1 : 0);
2034 		break;
2035 	case DRM_GPUVA_OP_PREFETCH:
2036 		vma = gpuva_to_vma(op->prefetch.va);
2037 		vm_dbg(&xe->drm, "PREFETCH: addr=0x%016llx, range=0x%016llx",
2038 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma));
2039 		break;
2040 	default:
2041 		drm_warn(&xe->drm, "NOT POSSIBLE");
2042 	}
2043 }
2044 #else
2045 static void print_op(struct xe_device *xe, struct drm_gpuva_op *op)
2046 {
2047 }
2048 #endif
2049 
2050 /*
2051  * Create operations list from IOCTL arguments, setup operations fields so parse
2052  * and commit steps are decoupled from IOCTL arguments. This step can fail.
2053  */
2054 static struct drm_gpuva_ops *
2055 vm_bind_ioctl_ops_create(struct xe_vm *vm, struct xe_bo *bo,
2056 			 u64 bo_offset_or_userptr, u64 addr, u64 range,
2057 			 u32 operation, u32 flags,
2058 			 u32 prefetch_region, u16 pat_index)
2059 {
2060 	struct drm_gem_object *obj = bo ? &bo->ttm.base : NULL;
2061 	struct drm_gpuva_ops *ops;
2062 	struct drm_gpuva_op *__op;
2063 	struct drm_gpuvm_bo *vm_bo;
2064 	int err;
2065 
2066 	lockdep_assert_held_write(&vm->lock);
2067 
2068 	vm_dbg(&vm->xe->drm,
2069 	       "op=%d, addr=0x%016llx, range=0x%016llx, bo_offset_or_userptr=0x%016llx",
2070 	       operation, (ULL)addr, (ULL)range,
2071 	       (ULL)bo_offset_or_userptr);
2072 
2073 	switch (operation) {
2074 	case DRM_XE_VM_BIND_OP_MAP:
2075 	case DRM_XE_VM_BIND_OP_MAP_USERPTR:
2076 		ops = drm_gpuvm_sm_map_ops_create(&vm->gpuvm, addr, range,
2077 						  obj, bo_offset_or_userptr);
2078 		break;
2079 	case DRM_XE_VM_BIND_OP_UNMAP:
2080 		ops = drm_gpuvm_sm_unmap_ops_create(&vm->gpuvm, addr, range);
2081 		break;
2082 	case DRM_XE_VM_BIND_OP_PREFETCH:
2083 		ops = drm_gpuvm_prefetch_ops_create(&vm->gpuvm, addr, range);
2084 		break;
2085 	case DRM_XE_VM_BIND_OP_UNMAP_ALL:
2086 		xe_assert(vm->xe, bo);
2087 
2088 		err = xe_bo_lock(bo, true);
2089 		if (err)
2090 			return ERR_PTR(err);
2091 
2092 		vm_bo = drm_gpuvm_bo_obtain(&vm->gpuvm, obj);
2093 		if (IS_ERR(vm_bo)) {
2094 			xe_bo_unlock(bo);
2095 			return ERR_CAST(vm_bo);
2096 		}
2097 
2098 		ops = drm_gpuvm_bo_unmap_ops_create(vm_bo);
2099 		drm_gpuvm_bo_put(vm_bo);
2100 		xe_bo_unlock(bo);
2101 		break;
2102 	default:
2103 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2104 		ops = ERR_PTR(-EINVAL);
2105 	}
2106 	if (IS_ERR(ops))
2107 		return ops;
2108 
2109 	drm_gpuva_for_each_op(__op, ops) {
2110 		struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2111 
2112 		if (__op->op == DRM_GPUVA_OP_MAP) {
2113 			op->map.immediate =
2114 				flags & DRM_XE_VM_BIND_FLAG_IMMEDIATE;
2115 			op->map.read_only =
2116 				flags & DRM_XE_VM_BIND_FLAG_READONLY;
2117 			op->map.is_null = flags & DRM_XE_VM_BIND_FLAG_NULL;
2118 			op->map.pat_index = pat_index;
2119 		} else if (__op->op == DRM_GPUVA_OP_PREFETCH) {
2120 			op->prefetch.region = prefetch_region;
2121 		}
2122 
2123 		print_op(vm->xe, __op);
2124 	}
2125 
2126 	return ops;
2127 }
2128 
2129 static struct xe_vma *new_vma(struct xe_vm *vm, struct drm_gpuva_op_map *op,
2130 			      u16 pat_index, unsigned int flags)
2131 {
2132 	struct xe_bo *bo = op->gem.obj ? gem_to_xe_bo(op->gem.obj) : NULL;
2133 	struct drm_exec exec;
2134 	struct xe_vma *vma;
2135 	int err;
2136 
2137 	lockdep_assert_held_write(&vm->lock);
2138 
2139 	if (bo) {
2140 		drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
2141 		drm_exec_until_all_locked(&exec) {
2142 			err = 0;
2143 			if (!bo->vm) {
2144 				err = drm_exec_lock_obj(&exec, xe_vm_obj(vm));
2145 				drm_exec_retry_on_contention(&exec);
2146 			}
2147 			if (!err) {
2148 				err = drm_exec_lock_obj(&exec, &bo->ttm.base);
2149 				drm_exec_retry_on_contention(&exec);
2150 			}
2151 			if (err) {
2152 				drm_exec_fini(&exec);
2153 				return ERR_PTR(err);
2154 			}
2155 		}
2156 	}
2157 	vma = xe_vma_create(vm, bo, op->gem.offset,
2158 			    op->va.addr, op->va.addr +
2159 			    op->va.range - 1, pat_index, flags);
2160 	if (bo)
2161 		drm_exec_fini(&exec);
2162 
2163 	if (xe_vma_is_userptr(vma)) {
2164 		err = xe_vma_userptr_pin_pages(to_userptr_vma(vma));
2165 		if (err) {
2166 			prep_vma_destroy(vm, vma, false);
2167 			xe_vma_destroy_unlocked(vma);
2168 			return ERR_PTR(err);
2169 		}
2170 	} else if (!xe_vma_has_no_bo(vma) && !bo->vm) {
2171 		err = add_preempt_fences(vm, bo);
2172 		if (err) {
2173 			prep_vma_destroy(vm, vma, false);
2174 			xe_vma_destroy_unlocked(vma);
2175 			return ERR_PTR(err);
2176 		}
2177 	}
2178 
2179 	return vma;
2180 }
2181 
2182 static u64 xe_vma_max_pte_size(struct xe_vma *vma)
2183 {
2184 	if (vma->gpuva.flags & XE_VMA_PTE_1G)
2185 		return SZ_1G;
2186 	else if (vma->gpuva.flags & XE_VMA_PTE_2M)
2187 		return SZ_2M;
2188 	else if (vma->gpuva.flags & XE_VMA_PTE_4K)
2189 		return SZ_4K;
2190 
2191 	return SZ_1G;	/* Uninitialized, used max size */
2192 }
2193 
2194 static u64 xe_vma_set_pte_size(struct xe_vma *vma, u64 size)
2195 {
2196 	switch (size) {
2197 	case SZ_1G:
2198 		vma->gpuva.flags |= XE_VMA_PTE_1G;
2199 		break;
2200 	case SZ_2M:
2201 		vma->gpuva.flags |= XE_VMA_PTE_2M;
2202 		break;
2203 	}
2204 
2205 	return SZ_4K;
2206 }
2207 
2208 static int xe_vma_op_commit(struct xe_vm *vm, struct xe_vma_op *op)
2209 {
2210 	int err = 0;
2211 
2212 	lockdep_assert_held_write(&vm->lock);
2213 
2214 	switch (op->base.op) {
2215 	case DRM_GPUVA_OP_MAP:
2216 		err |= xe_vm_insert_vma(vm, op->map.vma);
2217 		if (!err)
2218 			op->flags |= XE_VMA_OP_COMMITTED;
2219 		break;
2220 	case DRM_GPUVA_OP_REMAP:
2221 	{
2222 		u8 tile_present =
2223 			gpuva_to_vma(op->base.remap.unmap->va)->tile_present;
2224 
2225 		prep_vma_destroy(vm, gpuva_to_vma(op->base.remap.unmap->va),
2226 				 true);
2227 		op->flags |= XE_VMA_OP_COMMITTED;
2228 
2229 		if (op->remap.prev) {
2230 			err |= xe_vm_insert_vma(vm, op->remap.prev);
2231 			if (!err)
2232 				op->flags |= XE_VMA_OP_PREV_COMMITTED;
2233 			if (!err && op->remap.skip_prev) {
2234 				op->remap.prev->tile_present =
2235 					tile_present;
2236 				op->remap.prev = NULL;
2237 			}
2238 		}
2239 		if (op->remap.next) {
2240 			err |= xe_vm_insert_vma(vm, op->remap.next);
2241 			if (!err)
2242 				op->flags |= XE_VMA_OP_NEXT_COMMITTED;
2243 			if (!err && op->remap.skip_next) {
2244 				op->remap.next->tile_present =
2245 					tile_present;
2246 				op->remap.next = NULL;
2247 			}
2248 		}
2249 
2250 		/* Adjust for partial unbind after removin VMA from VM */
2251 		if (!err) {
2252 			op->base.remap.unmap->va->va.addr = op->remap.start;
2253 			op->base.remap.unmap->va->va.range = op->remap.range;
2254 		}
2255 		break;
2256 	}
2257 	case DRM_GPUVA_OP_UNMAP:
2258 		prep_vma_destroy(vm, gpuva_to_vma(op->base.unmap.va), true);
2259 		op->flags |= XE_VMA_OP_COMMITTED;
2260 		break;
2261 	case DRM_GPUVA_OP_PREFETCH:
2262 		op->flags |= XE_VMA_OP_COMMITTED;
2263 		break;
2264 	default:
2265 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2266 	}
2267 
2268 	return err;
2269 }
2270 
2271 
2272 static int vm_bind_ioctl_ops_parse(struct xe_vm *vm, struct xe_exec_queue *q,
2273 				   struct drm_gpuva_ops *ops,
2274 				   struct xe_sync_entry *syncs, u32 num_syncs,
2275 				   struct list_head *ops_list, bool last)
2276 {
2277 	struct xe_vma_op *last_op = NULL;
2278 	struct drm_gpuva_op *__op;
2279 	int err = 0;
2280 
2281 	lockdep_assert_held_write(&vm->lock);
2282 
2283 	drm_gpuva_for_each_op(__op, ops) {
2284 		struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2285 		struct xe_vma *vma;
2286 		bool first = list_empty(ops_list);
2287 		unsigned int flags = 0;
2288 
2289 		INIT_LIST_HEAD(&op->link);
2290 		list_add_tail(&op->link, ops_list);
2291 
2292 		if (first) {
2293 			op->flags |= XE_VMA_OP_FIRST;
2294 			op->num_syncs = num_syncs;
2295 			op->syncs = syncs;
2296 		}
2297 
2298 		op->q = q;
2299 
2300 		switch (op->base.op) {
2301 		case DRM_GPUVA_OP_MAP:
2302 		{
2303 			flags |= op->map.read_only ?
2304 				VMA_CREATE_FLAG_READ_ONLY : 0;
2305 			flags |= op->map.is_null ?
2306 				VMA_CREATE_FLAG_IS_NULL : 0;
2307 
2308 			vma = new_vma(vm, &op->base.map, op->map.pat_index,
2309 				      flags);
2310 			if (IS_ERR(vma))
2311 				return PTR_ERR(vma);
2312 
2313 			op->map.vma = vma;
2314 			break;
2315 		}
2316 		case DRM_GPUVA_OP_REMAP:
2317 		{
2318 			struct xe_vma *old =
2319 				gpuva_to_vma(op->base.remap.unmap->va);
2320 
2321 			op->remap.start = xe_vma_start(old);
2322 			op->remap.range = xe_vma_size(old);
2323 
2324 			if (op->base.remap.prev) {
2325 				flags |= op->base.remap.unmap->va->flags &
2326 					XE_VMA_READ_ONLY ?
2327 					VMA_CREATE_FLAG_READ_ONLY : 0;
2328 				flags |= op->base.remap.unmap->va->flags &
2329 					DRM_GPUVA_SPARSE ?
2330 					VMA_CREATE_FLAG_IS_NULL : 0;
2331 
2332 				vma = new_vma(vm, op->base.remap.prev,
2333 					      old->pat_index, flags);
2334 				if (IS_ERR(vma))
2335 					return PTR_ERR(vma);
2336 
2337 				op->remap.prev = vma;
2338 
2339 				/*
2340 				 * Userptr creates a new SG mapping so
2341 				 * we must also rebind.
2342 				 */
2343 				op->remap.skip_prev = !xe_vma_is_userptr(old) &&
2344 					IS_ALIGNED(xe_vma_end(vma),
2345 						   xe_vma_max_pte_size(old));
2346 				if (op->remap.skip_prev) {
2347 					xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old));
2348 					op->remap.range -=
2349 						xe_vma_end(vma) -
2350 						xe_vma_start(old);
2351 					op->remap.start = xe_vma_end(vma);
2352 				}
2353 			}
2354 
2355 			if (op->base.remap.next) {
2356 				flags |= op->base.remap.unmap->va->flags &
2357 					XE_VMA_READ_ONLY ?
2358 					VMA_CREATE_FLAG_READ_ONLY : 0;
2359 				flags |= op->base.remap.unmap->va->flags &
2360 					DRM_GPUVA_SPARSE ?
2361 					VMA_CREATE_FLAG_IS_NULL : 0;
2362 
2363 				vma = new_vma(vm, op->base.remap.next,
2364 					      old->pat_index, flags);
2365 				if (IS_ERR(vma))
2366 					return PTR_ERR(vma);
2367 
2368 				op->remap.next = vma;
2369 
2370 				/*
2371 				 * Userptr creates a new SG mapping so
2372 				 * we must also rebind.
2373 				 */
2374 				op->remap.skip_next = !xe_vma_is_userptr(old) &&
2375 					IS_ALIGNED(xe_vma_start(vma),
2376 						   xe_vma_max_pte_size(old));
2377 				if (op->remap.skip_next) {
2378 					xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old));
2379 					op->remap.range -=
2380 						xe_vma_end(old) -
2381 						xe_vma_start(vma);
2382 				}
2383 			}
2384 			break;
2385 		}
2386 		case DRM_GPUVA_OP_UNMAP:
2387 		case DRM_GPUVA_OP_PREFETCH:
2388 			/* Nothing to do */
2389 			break;
2390 		default:
2391 			drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2392 		}
2393 
2394 		last_op = op;
2395 
2396 		err = xe_vma_op_commit(vm, op);
2397 		if (err)
2398 			return err;
2399 	}
2400 
2401 	/* FIXME: Unhandled corner case */
2402 	XE_WARN_ON(!last_op && last && !list_empty(ops_list));
2403 
2404 	if (!last_op)
2405 		return 0;
2406 
2407 	last_op->ops = ops;
2408 	if (last) {
2409 		last_op->flags |= XE_VMA_OP_LAST;
2410 		last_op->num_syncs = num_syncs;
2411 		last_op->syncs = syncs;
2412 	}
2413 
2414 	return 0;
2415 }
2416 
2417 static int op_execute(struct drm_exec *exec, struct xe_vm *vm,
2418 		      struct xe_vma *vma, struct xe_vma_op *op)
2419 {
2420 	int err;
2421 
2422 	lockdep_assert_held_write(&vm->lock);
2423 
2424 	err = xe_vm_prepare_vma(exec, vma, 1);
2425 	if (err)
2426 		return err;
2427 
2428 	xe_vm_assert_held(vm);
2429 	xe_bo_assert_held(xe_vma_bo(vma));
2430 
2431 	switch (op->base.op) {
2432 	case DRM_GPUVA_OP_MAP:
2433 		err = xe_vm_bind(vm, vma, op->q, xe_vma_bo(vma),
2434 				 op->syncs, op->num_syncs,
2435 				 op->map.immediate || !xe_vm_in_fault_mode(vm),
2436 				 op->flags & XE_VMA_OP_FIRST,
2437 				 op->flags & XE_VMA_OP_LAST);
2438 		break;
2439 	case DRM_GPUVA_OP_REMAP:
2440 	{
2441 		bool prev = !!op->remap.prev;
2442 		bool next = !!op->remap.next;
2443 
2444 		if (!op->remap.unmap_done) {
2445 			if (prev || next)
2446 				vma->gpuva.flags |= XE_VMA_FIRST_REBIND;
2447 			err = xe_vm_unbind(vm, vma, op->q, op->syncs,
2448 					   op->num_syncs,
2449 					   op->flags & XE_VMA_OP_FIRST,
2450 					   op->flags & XE_VMA_OP_LAST &&
2451 					   !prev && !next);
2452 			if (err)
2453 				break;
2454 			op->remap.unmap_done = true;
2455 		}
2456 
2457 		if (prev) {
2458 			op->remap.prev->gpuva.flags |= XE_VMA_LAST_REBIND;
2459 			err = xe_vm_bind(vm, op->remap.prev, op->q,
2460 					 xe_vma_bo(op->remap.prev), op->syncs,
2461 					 op->num_syncs, true, false,
2462 					 op->flags & XE_VMA_OP_LAST && !next);
2463 			op->remap.prev->gpuva.flags &= ~XE_VMA_LAST_REBIND;
2464 			if (err)
2465 				break;
2466 			op->remap.prev = NULL;
2467 		}
2468 
2469 		if (next) {
2470 			op->remap.next->gpuva.flags |= XE_VMA_LAST_REBIND;
2471 			err = xe_vm_bind(vm, op->remap.next, op->q,
2472 					 xe_vma_bo(op->remap.next),
2473 					 op->syncs, op->num_syncs,
2474 					 true, false,
2475 					 op->flags & XE_VMA_OP_LAST);
2476 			op->remap.next->gpuva.flags &= ~XE_VMA_LAST_REBIND;
2477 			if (err)
2478 				break;
2479 			op->remap.next = NULL;
2480 		}
2481 
2482 		break;
2483 	}
2484 	case DRM_GPUVA_OP_UNMAP:
2485 		err = xe_vm_unbind(vm, vma, op->q, op->syncs,
2486 				   op->num_syncs, op->flags & XE_VMA_OP_FIRST,
2487 				   op->flags & XE_VMA_OP_LAST);
2488 		break;
2489 	case DRM_GPUVA_OP_PREFETCH:
2490 		err = xe_vm_prefetch(vm, vma, op->q, op->prefetch.region,
2491 				     op->syncs, op->num_syncs,
2492 				     op->flags & XE_VMA_OP_FIRST,
2493 				     op->flags & XE_VMA_OP_LAST);
2494 		break;
2495 	default:
2496 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2497 	}
2498 
2499 	if (err)
2500 		trace_xe_vma_fail(vma);
2501 
2502 	return err;
2503 }
2504 
2505 static int __xe_vma_op_execute(struct xe_vm *vm, struct xe_vma *vma,
2506 			       struct xe_vma_op *op)
2507 {
2508 	struct drm_exec exec;
2509 	int err;
2510 
2511 retry_userptr:
2512 	drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
2513 	drm_exec_until_all_locked(&exec) {
2514 		err = op_execute(&exec, vm, vma, op);
2515 		drm_exec_retry_on_contention(&exec);
2516 		if (err)
2517 			break;
2518 	}
2519 	drm_exec_fini(&exec);
2520 
2521 	if (err == -EAGAIN) {
2522 		lockdep_assert_held_write(&vm->lock);
2523 
2524 		if (op->base.op == DRM_GPUVA_OP_REMAP) {
2525 			if (!op->remap.unmap_done)
2526 				vma = gpuva_to_vma(op->base.remap.unmap->va);
2527 			else if (op->remap.prev)
2528 				vma = op->remap.prev;
2529 			else
2530 				vma = op->remap.next;
2531 		}
2532 
2533 		if (xe_vma_is_userptr(vma)) {
2534 			err = xe_vma_userptr_pin_pages(to_userptr_vma(vma));
2535 			if (!err)
2536 				goto retry_userptr;
2537 
2538 			trace_xe_vma_fail(vma);
2539 		}
2540 	}
2541 
2542 	return err;
2543 }
2544 
2545 static int xe_vma_op_execute(struct xe_vm *vm, struct xe_vma_op *op)
2546 {
2547 	int ret = 0;
2548 
2549 	lockdep_assert_held_write(&vm->lock);
2550 
2551 	switch (op->base.op) {
2552 	case DRM_GPUVA_OP_MAP:
2553 		ret = __xe_vma_op_execute(vm, op->map.vma, op);
2554 		break;
2555 	case DRM_GPUVA_OP_REMAP:
2556 	{
2557 		struct xe_vma *vma;
2558 
2559 		if (!op->remap.unmap_done)
2560 			vma = gpuva_to_vma(op->base.remap.unmap->va);
2561 		else if (op->remap.prev)
2562 			vma = op->remap.prev;
2563 		else
2564 			vma = op->remap.next;
2565 
2566 		ret = __xe_vma_op_execute(vm, vma, op);
2567 		break;
2568 	}
2569 	case DRM_GPUVA_OP_UNMAP:
2570 		ret = __xe_vma_op_execute(vm, gpuva_to_vma(op->base.unmap.va),
2571 					  op);
2572 		break;
2573 	case DRM_GPUVA_OP_PREFETCH:
2574 		ret = __xe_vma_op_execute(vm,
2575 					  gpuva_to_vma(op->base.prefetch.va),
2576 					  op);
2577 		break;
2578 	default:
2579 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2580 	}
2581 
2582 	return ret;
2583 }
2584 
2585 static void xe_vma_op_cleanup(struct xe_vm *vm, struct xe_vma_op *op)
2586 {
2587 	bool last = op->flags & XE_VMA_OP_LAST;
2588 
2589 	if (last) {
2590 		while (op->num_syncs--)
2591 			xe_sync_entry_cleanup(&op->syncs[op->num_syncs]);
2592 		kfree(op->syncs);
2593 		if (op->q)
2594 			xe_exec_queue_put(op->q);
2595 	}
2596 	if (!list_empty(&op->link))
2597 		list_del(&op->link);
2598 	if (op->ops)
2599 		drm_gpuva_ops_free(&vm->gpuvm, op->ops);
2600 	if (last)
2601 		xe_vm_put(vm);
2602 }
2603 
2604 static void xe_vma_op_unwind(struct xe_vm *vm, struct xe_vma_op *op,
2605 			     bool post_commit, bool prev_post_commit,
2606 			     bool next_post_commit)
2607 {
2608 	lockdep_assert_held_write(&vm->lock);
2609 
2610 	switch (op->base.op) {
2611 	case DRM_GPUVA_OP_MAP:
2612 		if (op->map.vma) {
2613 			prep_vma_destroy(vm, op->map.vma, post_commit);
2614 			xe_vma_destroy_unlocked(op->map.vma);
2615 		}
2616 		break;
2617 	case DRM_GPUVA_OP_UNMAP:
2618 	{
2619 		struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2620 
2621 		if (vma) {
2622 			down_read(&vm->userptr.notifier_lock);
2623 			vma->gpuva.flags &= ~XE_VMA_DESTROYED;
2624 			up_read(&vm->userptr.notifier_lock);
2625 			if (post_commit)
2626 				xe_vm_insert_vma(vm, vma);
2627 		}
2628 		break;
2629 	}
2630 	case DRM_GPUVA_OP_REMAP:
2631 	{
2632 		struct xe_vma *vma = gpuva_to_vma(op->base.remap.unmap->va);
2633 
2634 		if (op->remap.prev) {
2635 			prep_vma_destroy(vm, op->remap.prev, prev_post_commit);
2636 			xe_vma_destroy_unlocked(op->remap.prev);
2637 		}
2638 		if (op->remap.next) {
2639 			prep_vma_destroy(vm, op->remap.next, next_post_commit);
2640 			xe_vma_destroy_unlocked(op->remap.next);
2641 		}
2642 		if (vma) {
2643 			down_read(&vm->userptr.notifier_lock);
2644 			vma->gpuva.flags &= ~XE_VMA_DESTROYED;
2645 			up_read(&vm->userptr.notifier_lock);
2646 			if (post_commit)
2647 				xe_vm_insert_vma(vm, vma);
2648 		}
2649 		break;
2650 	}
2651 	case DRM_GPUVA_OP_PREFETCH:
2652 		/* Nothing to do */
2653 		break;
2654 	default:
2655 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2656 	}
2657 }
2658 
2659 static void vm_bind_ioctl_ops_unwind(struct xe_vm *vm,
2660 				     struct drm_gpuva_ops **ops,
2661 				     int num_ops_list)
2662 {
2663 	int i;
2664 
2665 	for (i = num_ops_list - 1; i >= 0; --i) {
2666 		struct drm_gpuva_ops *__ops = ops[i];
2667 		struct drm_gpuva_op *__op;
2668 
2669 		if (!__ops)
2670 			continue;
2671 
2672 		drm_gpuva_for_each_op_reverse(__op, __ops) {
2673 			struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2674 
2675 			xe_vma_op_unwind(vm, op,
2676 					 op->flags & XE_VMA_OP_COMMITTED,
2677 					 op->flags & XE_VMA_OP_PREV_COMMITTED,
2678 					 op->flags & XE_VMA_OP_NEXT_COMMITTED);
2679 		}
2680 
2681 		drm_gpuva_ops_free(&vm->gpuvm, __ops);
2682 	}
2683 }
2684 
2685 static int vm_bind_ioctl_ops_execute(struct xe_vm *vm,
2686 				     struct list_head *ops_list)
2687 {
2688 	struct xe_vma_op *op, *next;
2689 	int err;
2690 
2691 	lockdep_assert_held_write(&vm->lock);
2692 
2693 	list_for_each_entry_safe(op, next, ops_list, link) {
2694 		err = xe_vma_op_execute(vm, op);
2695 		if (err) {
2696 			drm_warn(&vm->xe->drm, "VM op(%d) failed with %d",
2697 				 op->base.op, err);
2698 			/*
2699 			 * FIXME: Killing VM rather than proper error handling
2700 			 */
2701 			xe_vm_kill(vm);
2702 			return -ENOSPC;
2703 		}
2704 		xe_vma_op_cleanup(vm, op);
2705 	}
2706 
2707 	return 0;
2708 }
2709 
2710 #define SUPPORTED_FLAGS	\
2711 	(DRM_XE_VM_BIND_FLAG_READONLY | \
2712 	 DRM_XE_VM_BIND_FLAG_IMMEDIATE | DRM_XE_VM_BIND_FLAG_NULL)
2713 #define XE_64K_PAGE_MASK 0xffffull
2714 #define ALL_DRM_XE_SYNCS_FLAGS (DRM_XE_SYNCS_FLAG_WAIT_FOR_OP)
2715 
2716 #define MAX_BINDS	512	/* FIXME: Picking random upper limit */
2717 
2718 static int vm_bind_ioctl_check_args(struct xe_device *xe,
2719 				    struct drm_xe_vm_bind *args,
2720 				    struct drm_xe_vm_bind_op **bind_ops)
2721 {
2722 	int err;
2723 	int i;
2724 
2725 	if (XE_IOCTL_DBG(xe, args->pad || args->pad2) ||
2726 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2727 		return -EINVAL;
2728 
2729 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2730 	    XE_IOCTL_DBG(xe, args->num_binds > MAX_BINDS))
2731 		return -EINVAL;
2732 
2733 	if (args->num_binds > 1) {
2734 		u64 __user *bind_user =
2735 			u64_to_user_ptr(args->vector_of_binds);
2736 
2737 		*bind_ops = kmalloc(sizeof(struct drm_xe_vm_bind_op) *
2738 				    args->num_binds, GFP_KERNEL);
2739 		if (!*bind_ops)
2740 			return -ENOMEM;
2741 
2742 		err = __copy_from_user(*bind_ops, bind_user,
2743 				       sizeof(struct drm_xe_vm_bind_op) *
2744 				       args->num_binds);
2745 		if (XE_IOCTL_DBG(xe, err)) {
2746 			err = -EFAULT;
2747 			goto free_bind_ops;
2748 		}
2749 	} else {
2750 		*bind_ops = &args->bind;
2751 	}
2752 
2753 	for (i = 0; i < args->num_binds; ++i) {
2754 		u64 range = (*bind_ops)[i].range;
2755 		u64 addr = (*bind_ops)[i].addr;
2756 		u32 op = (*bind_ops)[i].op;
2757 		u32 flags = (*bind_ops)[i].flags;
2758 		u32 obj = (*bind_ops)[i].obj;
2759 		u64 obj_offset = (*bind_ops)[i].obj_offset;
2760 		u32 prefetch_region = (*bind_ops)[i].prefetch_mem_region_instance;
2761 		bool is_null = flags & DRM_XE_VM_BIND_FLAG_NULL;
2762 		u16 pat_index = (*bind_ops)[i].pat_index;
2763 		u16 coh_mode;
2764 
2765 		if (XE_IOCTL_DBG(xe, pat_index >= xe->pat.n_entries)) {
2766 			err = -EINVAL;
2767 			goto free_bind_ops;
2768 		}
2769 
2770 		pat_index = array_index_nospec(pat_index, xe->pat.n_entries);
2771 		(*bind_ops)[i].pat_index = pat_index;
2772 		coh_mode = xe_pat_index_get_coh_mode(xe, pat_index);
2773 		if (XE_IOCTL_DBG(xe, !coh_mode)) { /* hw reserved */
2774 			err = -EINVAL;
2775 			goto free_bind_ops;
2776 		}
2777 
2778 		if (XE_WARN_ON(coh_mode > XE_COH_AT_LEAST_1WAY)) {
2779 			err = -EINVAL;
2780 			goto free_bind_ops;
2781 		}
2782 
2783 		if (XE_IOCTL_DBG(xe, op > DRM_XE_VM_BIND_OP_PREFETCH) ||
2784 		    XE_IOCTL_DBG(xe, flags & ~SUPPORTED_FLAGS) ||
2785 		    XE_IOCTL_DBG(xe, obj && is_null) ||
2786 		    XE_IOCTL_DBG(xe, obj_offset && is_null) ||
2787 		    XE_IOCTL_DBG(xe, op != DRM_XE_VM_BIND_OP_MAP &&
2788 				 is_null) ||
2789 		    XE_IOCTL_DBG(xe, !obj &&
2790 				 op == DRM_XE_VM_BIND_OP_MAP &&
2791 				 !is_null) ||
2792 		    XE_IOCTL_DBG(xe, !obj &&
2793 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2794 		    XE_IOCTL_DBG(xe, addr &&
2795 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2796 		    XE_IOCTL_DBG(xe, range &&
2797 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2798 		    XE_IOCTL_DBG(xe, obj &&
2799 				 op == DRM_XE_VM_BIND_OP_MAP_USERPTR) ||
2800 		    XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE &&
2801 				 op == DRM_XE_VM_BIND_OP_MAP_USERPTR) ||
2802 		    XE_IOCTL_DBG(xe, obj &&
2803 				 op == DRM_XE_VM_BIND_OP_PREFETCH) ||
2804 		    XE_IOCTL_DBG(xe, prefetch_region &&
2805 				 op != DRM_XE_VM_BIND_OP_PREFETCH) ||
2806 		    XE_IOCTL_DBG(xe, !(BIT(prefetch_region) &
2807 				       xe->info.mem_region_mask)) ||
2808 		    XE_IOCTL_DBG(xe, obj &&
2809 				 op == DRM_XE_VM_BIND_OP_UNMAP)) {
2810 			err = -EINVAL;
2811 			goto free_bind_ops;
2812 		}
2813 
2814 		if (XE_IOCTL_DBG(xe, obj_offset & ~PAGE_MASK) ||
2815 		    XE_IOCTL_DBG(xe, addr & ~PAGE_MASK) ||
2816 		    XE_IOCTL_DBG(xe, range & ~PAGE_MASK) ||
2817 		    XE_IOCTL_DBG(xe, !range &&
2818 				 op != DRM_XE_VM_BIND_OP_UNMAP_ALL)) {
2819 			err = -EINVAL;
2820 			goto free_bind_ops;
2821 		}
2822 	}
2823 
2824 	return 0;
2825 
2826 free_bind_ops:
2827 	if (args->num_binds > 1)
2828 		kfree(*bind_ops);
2829 	return err;
2830 }
2831 
2832 static int vm_bind_ioctl_signal_fences(struct xe_vm *vm,
2833 				       struct xe_exec_queue *q,
2834 				       struct xe_sync_entry *syncs,
2835 				       int num_syncs)
2836 {
2837 	struct dma_fence *fence;
2838 	int i, err = 0;
2839 
2840 	fence = xe_sync_in_fence_get(syncs, num_syncs,
2841 				     to_wait_exec_queue(vm, q), vm);
2842 	if (IS_ERR(fence))
2843 		return PTR_ERR(fence);
2844 
2845 	for (i = 0; i < num_syncs; i++)
2846 		xe_sync_entry_signal(&syncs[i], NULL, fence);
2847 
2848 	xe_exec_queue_last_fence_set(to_wait_exec_queue(vm, q), vm,
2849 				     fence);
2850 	dma_fence_put(fence);
2851 
2852 	return err;
2853 }
2854 
2855 int xe_vm_bind_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2856 {
2857 	struct xe_device *xe = to_xe_device(dev);
2858 	struct xe_file *xef = to_xe_file(file);
2859 	struct drm_xe_vm_bind *args = data;
2860 	struct drm_xe_sync __user *syncs_user;
2861 	struct xe_bo **bos = NULL;
2862 	struct drm_gpuva_ops **ops = NULL;
2863 	struct xe_vm *vm;
2864 	struct xe_exec_queue *q = NULL;
2865 	u32 num_syncs, num_ufence = 0;
2866 	struct xe_sync_entry *syncs = NULL;
2867 	struct drm_xe_vm_bind_op *bind_ops;
2868 	LIST_HEAD(ops_list);
2869 	int err;
2870 	int i;
2871 
2872 	err = vm_bind_ioctl_check_args(xe, args, &bind_ops);
2873 	if (err)
2874 		return err;
2875 
2876 	if (args->exec_queue_id) {
2877 		q = xe_exec_queue_lookup(xef, args->exec_queue_id);
2878 		if (XE_IOCTL_DBG(xe, !q)) {
2879 			err = -ENOENT;
2880 			goto free_objs;
2881 		}
2882 
2883 		if (XE_IOCTL_DBG(xe, !(q->flags & EXEC_QUEUE_FLAG_VM))) {
2884 			err = -EINVAL;
2885 			goto put_exec_queue;
2886 		}
2887 	}
2888 
2889 	vm = xe_vm_lookup(xef, args->vm_id);
2890 	if (XE_IOCTL_DBG(xe, !vm)) {
2891 		err = -EINVAL;
2892 		goto put_exec_queue;
2893 	}
2894 
2895 	err = down_write_killable(&vm->lock);
2896 	if (err)
2897 		goto put_vm;
2898 
2899 	if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
2900 		err = -ENOENT;
2901 		goto release_vm_lock;
2902 	}
2903 
2904 	for (i = 0; i < args->num_binds; ++i) {
2905 		u64 range = bind_ops[i].range;
2906 		u64 addr = bind_ops[i].addr;
2907 
2908 		if (XE_IOCTL_DBG(xe, range > vm->size) ||
2909 		    XE_IOCTL_DBG(xe, addr > vm->size - range)) {
2910 			err = -EINVAL;
2911 			goto release_vm_lock;
2912 		}
2913 	}
2914 
2915 	if (args->num_binds) {
2916 		bos = kcalloc(args->num_binds, sizeof(*bos), GFP_KERNEL);
2917 		if (!bos) {
2918 			err = -ENOMEM;
2919 			goto release_vm_lock;
2920 		}
2921 
2922 		ops = kcalloc(args->num_binds, sizeof(*ops), GFP_KERNEL);
2923 		if (!ops) {
2924 			err = -ENOMEM;
2925 			goto release_vm_lock;
2926 		}
2927 	}
2928 
2929 	for (i = 0; i < args->num_binds; ++i) {
2930 		struct drm_gem_object *gem_obj;
2931 		u64 range = bind_ops[i].range;
2932 		u64 addr = bind_ops[i].addr;
2933 		u32 obj = bind_ops[i].obj;
2934 		u64 obj_offset = bind_ops[i].obj_offset;
2935 		u16 pat_index = bind_ops[i].pat_index;
2936 		u16 coh_mode;
2937 
2938 		if (!obj)
2939 			continue;
2940 
2941 		gem_obj = drm_gem_object_lookup(file, obj);
2942 		if (XE_IOCTL_DBG(xe, !gem_obj)) {
2943 			err = -ENOENT;
2944 			goto put_obj;
2945 		}
2946 		bos[i] = gem_to_xe_bo(gem_obj);
2947 
2948 		if (XE_IOCTL_DBG(xe, range > bos[i]->size) ||
2949 		    XE_IOCTL_DBG(xe, obj_offset >
2950 				 bos[i]->size - range)) {
2951 			err = -EINVAL;
2952 			goto put_obj;
2953 		}
2954 
2955 		if (bos[i]->flags & XE_BO_INTERNAL_64K) {
2956 			if (XE_IOCTL_DBG(xe, obj_offset &
2957 					 XE_64K_PAGE_MASK) ||
2958 			    XE_IOCTL_DBG(xe, addr & XE_64K_PAGE_MASK) ||
2959 			    XE_IOCTL_DBG(xe, range & XE_64K_PAGE_MASK)) {
2960 				err = -EINVAL;
2961 				goto put_obj;
2962 			}
2963 		}
2964 
2965 		coh_mode = xe_pat_index_get_coh_mode(xe, pat_index);
2966 		if (bos[i]->cpu_caching) {
2967 			if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE &&
2968 					 bos[i]->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) {
2969 				err = -EINVAL;
2970 				goto put_obj;
2971 			}
2972 		} else if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE)) {
2973 			/*
2974 			 * Imported dma-buf from a different device should
2975 			 * require 1way or 2way coherency since we don't know
2976 			 * how it was mapped on the CPU. Just assume is it
2977 			 * potentially cached on CPU side.
2978 			 */
2979 			err = -EINVAL;
2980 			goto put_obj;
2981 		}
2982 	}
2983 
2984 	if (args->num_syncs) {
2985 		syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL);
2986 		if (!syncs) {
2987 			err = -ENOMEM;
2988 			goto put_obj;
2989 		}
2990 	}
2991 
2992 	syncs_user = u64_to_user_ptr(args->syncs);
2993 	for (num_syncs = 0; num_syncs < args->num_syncs; num_syncs++) {
2994 		err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs],
2995 					  &syncs_user[num_syncs],
2996 					  (xe_vm_in_lr_mode(vm) ?
2997 					   SYNC_PARSE_FLAG_LR_MODE : 0) |
2998 					  (!args->num_binds ?
2999 					   SYNC_PARSE_FLAG_DISALLOW_USER_FENCE : 0));
3000 		if (err)
3001 			goto free_syncs;
3002 
3003 		if (xe_sync_is_ufence(&syncs[num_syncs]))
3004 			num_ufence++;
3005 	}
3006 
3007 	if (XE_IOCTL_DBG(xe, num_ufence > 1)) {
3008 		err = -EINVAL;
3009 		goto free_syncs;
3010 	}
3011 
3012 	if (!args->num_binds) {
3013 		err = -ENODATA;
3014 		goto free_syncs;
3015 	}
3016 
3017 	for (i = 0; i < args->num_binds; ++i) {
3018 		u64 range = bind_ops[i].range;
3019 		u64 addr = bind_ops[i].addr;
3020 		u32 op = bind_ops[i].op;
3021 		u32 flags = bind_ops[i].flags;
3022 		u64 obj_offset = bind_ops[i].obj_offset;
3023 		u32 prefetch_region = bind_ops[i].prefetch_mem_region_instance;
3024 		u16 pat_index = bind_ops[i].pat_index;
3025 
3026 		ops[i] = vm_bind_ioctl_ops_create(vm, bos[i], obj_offset,
3027 						  addr, range, op, flags,
3028 						  prefetch_region, pat_index);
3029 		if (IS_ERR(ops[i])) {
3030 			err = PTR_ERR(ops[i]);
3031 			ops[i] = NULL;
3032 			goto unwind_ops;
3033 		}
3034 
3035 		err = vm_bind_ioctl_ops_parse(vm, q, ops[i], syncs, num_syncs,
3036 					      &ops_list,
3037 					      i == args->num_binds - 1);
3038 		if (err)
3039 			goto unwind_ops;
3040 	}
3041 
3042 	/* Nothing to do */
3043 	if (list_empty(&ops_list)) {
3044 		err = -ENODATA;
3045 		goto unwind_ops;
3046 	}
3047 
3048 	xe_vm_get(vm);
3049 	if (q)
3050 		xe_exec_queue_get(q);
3051 
3052 	err = vm_bind_ioctl_ops_execute(vm, &ops_list);
3053 
3054 	up_write(&vm->lock);
3055 
3056 	if (q)
3057 		xe_exec_queue_put(q);
3058 	xe_vm_put(vm);
3059 
3060 	for (i = 0; bos && i < args->num_binds; ++i)
3061 		xe_bo_put(bos[i]);
3062 
3063 	kfree(bos);
3064 	kfree(ops);
3065 	if (args->num_binds > 1)
3066 		kfree(bind_ops);
3067 
3068 	return err;
3069 
3070 unwind_ops:
3071 	vm_bind_ioctl_ops_unwind(vm, ops, args->num_binds);
3072 free_syncs:
3073 	if (err == -ENODATA)
3074 		err = vm_bind_ioctl_signal_fences(vm, q, syncs, num_syncs);
3075 	while (num_syncs--)
3076 		xe_sync_entry_cleanup(&syncs[num_syncs]);
3077 
3078 	kfree(syncs);
3079 put_obj:
3080 	for (i = 0; i < args->num_binds; ++i)
3081 		xe_bo_put(bos[i]);
3082 release_vm_lock:
3083 	up_write(&vm->lock);
3084 put_vm:
3085 	xe_vm_put(vm);
3086 put_exec_queue:
3087 	if (q)
3088 		xe_exec_queue_put(q);
3089 free_objs:
3090 	kfree(bos);
3091 	kfree(ops);
3092 	if (args->num_binds > 1)
3093 		kfree(bind_ops);
3094 	return err;
3095 }
3096 
3097 /**
3098  * xe_vm_lock() - Lock the vm's dma_resv object
3099  * @vm: The struct xe_vm whose lock is to be locked
3100  * @intr: Whether to perform any wait interruptible
3101  *
3102  * Return: 0 on success, -EINTR if @intr is true and the wait for a
3103  * contended lock was interrupted. If @intr is false, the function
3104  * always returns 0.
3105  */
3106 int xe_vm_lock(struct xe_vm *vm, bool intr)
3107 {
3108 	if (intr)
3109 		return dma_resv_lock_interruptible(xe_vm_resv(vm), NULL);
3110 
3111 	return dma_resv_lock(xe_vm_resv(vm), NULL);
3112 }
3113 
3114 /**
3115  * xe_vm_unlock() - Unlock the vm's dma_resv object
3116  * @vm: The struct xe_vm whose lock is to be released.
3117  *
3118  * Unlock a buffer object lock that was locked by xe_vm_lock().
3119  */
3120 void xe_vm_unlock(struct xe_vm *vm)
3121 {
3122 	dma_resv_unlock(xe_vm_resv(vm));
3123 }
3124 
3125 /**
3126  * xe_vm_invalidate_vma - invalidate GPU mappings for VMA without a lock
3127  * @vma: VMA to invalidate
3128  *
3129  * Walks a list of page tables leaves which it memset the entries owned by this
3130  * VMA to zero, invalidates the TLBs, and block until TLBs invalidation is
3131  * complete.
3132  *
3133  * Returns 0 for success, negative error code otherwise.
3134  */
3135 int xe_vm_invalidate_vma(struct xe_vma *vma)
3136 {
3137 	struct xe_device *xe = xe_vma_vm(vma)->xe;
3138 	struct xe_tile *tile;
3139 	u32 tile_needs_invalidate = 0;
3140 	int seqno[XE_MAX_TILES_PER_DEVICE];
3141 	u8 id;
3142 	int ret;
3143 
3144 	xe_assert(xe, xe_vm_in_fault_mode(xe_vma_vm(vma)));
3145 	xe_assert(xe, !xe_vma_is_null(vma));
3146 	trace_xe_vma_usm_invalidate(vma);
3147 
3148 	/* Check that we don't race with page-table updates */
3149 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
3150 		if (xe_vma_is_userptr(vma)) {
3151 			WARN_ON_ONCE(!mmu_interval_check_retry
3152 				     (&to_userptr_vma(vma)->userptr.notifier,
3153 				      to_userptr_vma(vma)->userptr.notifier_seq));
3154 			WARN_ON_ONCE(!dma_resv_test_signaled(xe_vm_resv(xe_vma_vm(vma)),
3155 							     DMA_RESV_USAGE_BOOKKEEP));
3156 
3157 		} else {
3158 			xe_bo_assert_held(xe_vma_bo(vma));
3159 		}
3160 	}
3161 
3162 	for_each_tile(tile, xe, id) {
3163 		if (xe_pt_zap_ptes(tile, vma)) {
3164 			tile_needs_invalidate |= BIT(id);
3165 			xe_device_wmb(xe);
3166 			/*
3167 			 * FIXME: We potentially need to invalidate multiple
3168 			 * GTs within the tile
3169 			 */
3170 			seqno[id] = xe_gt_tlb_invalidation_vma(tile->primary_gt, NULL, vma);
3171 			if (seqno[id] < 0)
3172 				return seqno[id];
3173 		}
3174 	}
3175 
3176 	for_each_tile(tile, xe, id) {
3177 		if (tile_needs_invalidate & BIT(id)) {
3178 			ret = xe_gt_tlb_invalidation_wait(tile->primary_gt, seqno[id]);
3179 			if (ret < 0)
3180 				return ret;
3181 		}
3182 	}
3183 
3184 	vma->usm.tile_invalidated = vma->tile_mask;
3185 
3186 	return 0;
3187 }
3188 
3189 int xe_analyze_vm(struct drm_printer *p, struct xe_vm *vm, int gt_id)
3190 {
3191 	struct drm_gpuva *gpuva;
3192 	bool is_vram;
3193 	uint64_t addr;
3194 
3195 	if (!down_read_trylock(&vm->lock)) {
3196 		drm_printf(p, " Failed to acquire VM lock to dump capture");
3197 		return 0;
3198 	}
3199 	if (vm->pt_root[gt_id]) {
3200 		addr = xe_bo_addr(vm->pt_root[gt_id]->bo, 0, XE_PAGE_SIZE);
3201 		is_vram = xe_bo_is_vram(vm->pt_root[gt_id]->bo);
3202 		drm_printf(p, " VM root: A:0x%llx %s\n", addr,
3203 			   is_vram ? "VRAM" : "SYS");
3204 	}
3205 
3206 	drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) {
3207 		struct xe_vma *vma = gpuva_to_vma(gpuva);
3208 		bool is_userptr = xe_vma_is_userptr(vma);
3209 		bool is_null = xe_vma_is_null(vma);
3210 
3211 		if (is_null) {
3212 			addr = 0;
3213 		} else if (is_userptr) {
3214 			struct sg_table *sg = to_userptr_vma(vma)->userptr.sg;
3215 			struct xe_res_cursor cur;
3216 
3217 			if (sg) {
3218 				xe_res_first_sg(sg, 0, XE_PAGE_SIZE, &cur);
3219 				addr = xe_res_dma(&cur);
3220 			} else {
3221 				addr = 0;
3222 			}
3223 		} else {
3224 			addr = __xe_bo_addr(xe_vma_bo(vma), 0, XE_PAGE_SIZE);
3225 			is_vram = xe_bo_is_vram(xe_vma_bo(vma));
3226 		}
3227 		drm_printf(p, " [%016llx-%016llx] S:0x%016llx A:%016llx %s\n",
3228 			   xe_vma_start(vma), xe_vma_end(vma) - 1,
3229 			   xe_vma_size(vma),
3230 			   addr, is_null ? "NULL" : is_userptr ? "USR" :
3231 			   is_vram ? "VRAM" : "SYS");
3232 	}
3233 	up_read(&vm->lock);
3234 
3235 	return 0;
3236 }
3237