xref: /linux/drivers/gpu/drm/xe/xe_vm.c (revision a5766cd479fd212e9831ceef8e9ab630c91445ab)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_vm.h"
7 
8 #include <linux/dma-fence-array.h>
9 #include <linux/nospec.h>
10 
11 #include <drm/drm_exec.h>
12 #include <drm/drm_print.h>
13 #include <drm/ttm/ttm_execbuf_util.h>
14 #include <drm/ttm/ttm_tt.h>
15 #include <drm/xe_drm.h>
16 #include <linux/delay.h>
17 #include <linux/kthread.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 
21 #include "xe_assert.h"
22 #include "xe_bo.h"
23 #include "xe_device.h"
24 #include "xe_drm_client.h"
25 #include "xe_exec_queue.h"
26 #include "xe_gt.h"
27 #include "xe_gt_pagefault.h"
28 #include "xe_gt_tlb_invalidation.h"
29 #include "xe_migrate.h"
30 #include "xe_pat.h"
31 #include "xe_pm.h"
32 #include "xe_preempt_fence.h"
33 #include "xe_pt.h"
34 #include "xe_res_cursor.h"
35 #include "xe_sync.h"
36 #include "xe_trace.h"
37 #include "generated/xe_wa_oob.h"
38 #include "xe_wa.h"
39 
40 #define TEST_VM_ASYNC_OPS_ERROR
41 
42 static struct drm_gem_object *xe_vm_obj(struct xe_vm *vm)
43 {
44 	return vm->gpuvm.r_obj;
45 }
46 
47 /**
48  * xe_vma_userptr_check_repin() - Advisory check for repin needed
49  * @vma: The userptr vma
50  *
51  * Check if the userptr vma has been invalidated since last successful
52  * repin. The check is advisory only and can the function can be called
53  * without the vm->userptr.notifier_lock held. There is no guarantee that the
54  * vma userptr will remain valid after a lockless check, so typically
55  * the call needs to be followed by a proper check under the notifier_lock.
56  *
57  * Return: 0 if userptr vma is valid, -EAGAIN otherwise; repin recommended.
58  */
59 int xe_vma_userptr_check_repin(struct xe_vma *vma)
60 {
61 	return mmu_interval_check_retry(&vma->userptr.notifier,
62 					vma->userptr.notifier_seq) ?
63 		-EAGAIN : 0;
64 }
65 
66 int xe_vma_userptr_pin_pages(struct xe_vma *vma)
67 {
68 	struct xe_vm *vm = xe_vma_vm(vma);
69 	struct xe_device *xe = vm->xe;
70 	const unsigned long num_pages = xe_vma_size(vma) >> PAGE_SHIFT;
71 	struct page **pages;
72 	bool in_kthread = !current->mm;
73 	unsigned long notifier_seq;
74 	int pinned, ret, i;
75 	bool read_only = xe_vma_read_only(vma);
76 
77 	lockdep_assert_held(&vm->lock);
78 	xe_assert(xe, xe_vma_is_userptr(vma));
79 retry:
80 	if (vma->gpuva.flags & XE_VMA_DESTROYED)
81 		return 0;
82 
83 	notifier_seq = mmu_interval_read_begin(&vma->userptr.notifier);
84 	if (notifier_seq == vma->userptr.notifier_seq)
85 		return 0;
86 
87 	pages = kvmalloc_array(num_pages, sizeof(*pages), GFP_KERNEL);
88 	if (!pages)
89 		return -ENOMEM;
90 
91 	if (vma->userptr.sg) {
92 		dma_unmap_sgtable(xe->drm.dev,
93 				  vma->userptr.sg,
94 				  read_only ? DMA_TO_DEVICE :
95 				  DMA_BIDIRECTIONAL, 0);
96 		sg_free_table(vma->userptr.sg);
97 		vma->userptr.sg = NULL;
98 	}
99 
100 	pinned = ret = 0;
101 	if (in_kthread) {
102 		if (!mmget_not_zero(vma->userptr.notifier.mm)) {
103 			ret = -EFAULT;
104 			goto mm_closed;
105 		}
106 		kthread_use_mm(vma->userptr.notifier.mm);
107 	}
108 
109 	while (pinned < num_pages) {
110 		ret = get_user_pages_fast(xe_vma_userptr(vma) +
111 					  pinned * PAGE_SIZE,
112 					  num_pages - pinned,
113 					  read_only ? 0 : FOLL_WRITE,
114 					  &pages[pinned]);
115 		if (ret < 0) {
116 			if (in_kthread)
117 				ret = 0;
118 			break;
119 		}
120 
121 		pinned += ret;
122 		ret = 0;
123 	}
124 
125 	if (in_kthread) {
126 		kthread_unuse_mm(vma->userptr.notifier.mm);
127 		mmput(vma->userptr.notifier.mm);
128 	}
129 mm_closed:
130 	if (ret)
131 		goto out;
132 
133 	ret = sg_alloc_table_from_pages_segment(&vma->userptr.sgt, pages,
134 						pinned, 0,
135 						(u64)pinned << PAGE_SHIFT,
136 						xe_sg_segment_size(xe->drm.dev),
137 						GFP_KERNEL);
138 	if (ret) {
139 		vma->userptr.sg = NULL;
140 		goto out;
141 	}
142 	vma->userptr.sg = &vma->userptr.sgt;
143 
144 	ret = dma_map_sgtable(xe->drm.dev, vma->userptr.sg,
145 			      read_only ? DMA_TO_DEVICE :
146 			      DMA_BIDIRECTIONAL,
147 			      DMA_ATTR_SKIP_CPU_SYNC |
148 			      DMA_ATTR_NO_KERNEL_MAPPING);
149 	if (ret) {
150 		sg_free_table(vma->userptr.sg);
151 		vma->userptr.sg = NULL;
152 		goto out;
153 	}
154 
155 	for (i = 0; i < pinned; ++i) {
156 		if (!read_only) {
157 			lock_page(pages[i]);
158 			set_page_dirty(pages[i]);
159 			unlock_page(pages[i]);
160 		}
161 
162 		mark_page_accessed(pages[i]);
163 	}
164 
165 out:
166 	release_pages(pages, pinned);
167 	kvfree(pages);
168 
169 	if (!(ret < 0)) {
170 		vma->userptr.notifier_seq = notifier_seq;
171 		if (xe_vma_userptr_check_repin(vma) == -EAGAIN)
172 			goto retry;
173 	}
174 
175 	return ret < 0 ? ret : 0;
176 }
177 
178 static bool preempt_fences_waiting(struct xe_vm *vm)
179 {
180 	struct xe_exec_queue *q;
181 
182 	lockdep_assert_held(&vm->lock);
183 	xe_vm_assert_held(vm);
184 
185 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
186 		if (!q->compute.pfence ||
187 		    (q->compute.pfence && test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
188 						   &q->compute.pfence->flags))) {
189 			return true;
190 		}
191 	}
192 
193 	return false;
194 }
195 
196 static void free_preempt_fences(struct list_head *list)
197 {
198 	struct list_head *link, *next;
199 
200 	list_for_each_safe(link, next, list)
201 		xe_preempt_fence_free(to_preempt_fence_from_link(link));
202 }
203 
204 static int alloc_preempt_fences(struct xe_vm *vm, struct list_head *list,
205 				unsigned int *count)
206 {
207 	lockdep_assert_held(&vm->lock);
208 	xe_vm_assert_held(vm);
209 
210 	if (*count >= vm->preempt.num_exec_queues)
211 		return 0;
212 
213 	for (; *count < vm->preempt.num_exec_queues; ++(*count)) {
214 		struct xe_preempt_fence *pfence = xe_preempt_fence_alloc();
215 
216 		if (IS_ERR(pfence))
217 			return PTR_ERR(pfence);
218 
219 		list_move_tail(xe_preempt_fence_link(pfence), list);
220 	}
221 
222 	return 0;
223 }
224 
225 static int wait_for_existing_preempt_fences(struct xe_vm *vm)
226 {
227 	struct xe_exec_queue *q;
228 
229 	xe_vm_assert_held(vm);
230 
231 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
232 		if (q->compute.pfence) {
233 			long timeout = dma_fence_wait(q->compute.pfence, false);
234 
235 			if (timeout < 0)
236 				return -ETIME;
237 			dma_fence_put(q->compute.pfence);
238 			q->compute.pfence = NULL;
239 		}
240 	}
241 
242 	return 0;
243 }
244 
245 static bool xe_vm_is_idle(struct xe_vm *vm)
246 {
247 	struct xe_exec_queue *q;
248 
249 	xe_vm_assert_held(vm);
250 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
251 		if (!xe_exec_queue_is_idle(q))
252 			return false;
253 	}
254 
255 	return true;
256 }
257 
258 static void arm_preempt_fences(struct xe_vm *vm, struct list_head *list)
259 {
260 	struct list_head *link;
261 	struct xe_exec_queue *q;
262 
263 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
264 		struct dma_fence *fence;
265 
266 		link = list->next;
267 		xe_assert(vm->xe, link != list);
268 
269 		fence = xe_preempt_fence_arm(to_preempt_fence_from_link(link),
270 					     q, q->compute.context,
271 					     ++q->compute.seqno);
272 		dma_fence_put(q->compute.pfence);
273 		q->compute.pfence = fence;
274 	}
275 }
276 
277 static int add_preempt_fences(struct xe_vm *vm, struct xe_bo *bo)
278 {
279 	struct xe_exec_queue *q;
280 	int err;
281 
282 	if (!vm->preempt.num_exec_queues)
283 		return 0;
284 
285 	err = xe_bo_lock(bo, true);
286 	if (err)
287 		return err;
288 
289 	err = dma_resv_reserve_fences(bo->ttm.base.resv, vm->preempt.num_exec_queues);
290 	if (err)
291 		goto out_unlock;
292 
293 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link)
294 		if (q->compute.pfence) {
295 			dma_resv_add_fence(bo->ttm.base.resv,
296 					   q->compute.pfence,
297 					   DMA_RESV_USAGE_BOOKKEEP);
298 		}
299 
300 out_unlock:
301 	xe_bo_unlock(bo);
302 	return err;
303 }
304 
305 static void resume_and_reinstall_preempt_fences(struct xe_vm *vm,
306 						struct drm_exec *exec)
307 {
308 	struct xe_exec_queue *q;
309 
310 	lockdep_assert_held(&vm->lock);
311 	xe_vm_assert_held(vm);
312 
313 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
314 		q->ops->resume(q);
315 
316 		drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, q->compute.pfence,
317 					 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
318 	}
319 }
320 
321 int xe_vm_add_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
322 {
323 	struct drm_gpuvm_exec vm_exec = {
324 		.vm = &vm->gpuvm,
325 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT,
326 		.num_fences = 1,
327 	};
328 	struct drm_exec *exec = &vm_exec.exec;
329 	struct dma_fence *pfence;
330 	int err;
331 	bool wait;
332 
333 	xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm));
334 
335 	down_write(&vm->lock);
336 	err = drm_gpuvm_exec_lock(&vm_exec);
337 	if (err)
338 		goto out_up_write;
339 
340 	pfence = xe_preempt_fence_create(q, q->compute.context,
341 					 ++q->compute.seqno);
342 	if (!pfence) {
343 		err = -ENOMEM;
344 		goto out_fini;
345 	}
346 
347 	list_add(&q->compute.link, &vm->preempt.exec_queues);
348 	++vm->preempt.num_exec_queues;
349 	q->compute.pfence = pfence;
350 
351 	down_read(&vm->userptr.notifier_lock);
352 
353 	drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, pfence,
354 				 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
355 
356 	/*
357 	 * Check to see if a preemption on VM is in flight or userptr
358 	 * invalidation, if so trigger this preempt fence to sync state with
359 	 * other preempt fences on the VM.
360 	 */
361 	wait = __xe_vm_userptr_needs_repin(vm) || preempt_fences_waiting(vm);
362 	if (wait)
363 		dma_fence_enable_sw_signaling(pfence);
364 
365 	up_read(&vm->userptr.notifier_lock);
366 
367 out_fini:
368 	drm_exec_fini(exec);
369 out_up_write:
370 	up_write(&vm->lock);
371 
372 	return err;
373 }
374 
375 /**
376  * xe_vm_remove_compute_exec_queue() - Remove compute exec queue from VM
377  * @vm: The VM.
378  * @q: The exec_queue
379  */
380 void xe_vm_remove_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
381 {
382 	if (!xe_vm_in_preempt_fence_mode(vm))
383 		return;
384 
385 	down_write(&vm->lock);
386 	list_del(&q->compute.link);
387 	--vm->preempt.num_exec_queues;
388 	if (q->compute.pfence) {
389 		dma_fence_enable_sw_signaling(q->compute.pfence);
390 		dma_fence_put(q->compute.pfence);
391 		q->compute.pfence = NULL;
392 	}
393 	up_write(&vm->lock);
394 }
395 
396 /**
397  * __xe_vm_userptr_needs_repin() - Check whether the VM does have userptrs
398  * that need repinning.
399  * @vm: The VM.
400  *
401  * This function checks for whether the VM has userptrs that need repinning,
402  * and provides a release-type barrier on the userptr.notifier_lock after
403  * checking.
404  *
405  * Return: 0 if there are no userptrs needing repinning, -EAGAIN if there are.
406  */
407 int __xe_vm_userptr_needs_repin(struct xe_vm *vm)
408 {
409 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
410 
411 	return (list_empty(&vm->userptr.repin_list) &&
412 		list_empty(&vm->userptr.invalidated)) ? 0 : -EAGAIN;
413 }
414 
415 #define XE_VM_REBIND_RETRY_TIMEOUT_MS 1000
416 
417 static void xe_vm_kill(struct xe_vm *vm)
418 {
419 	struct xe_exec_queue *q;
420 
421 	lockdep_assert_held(&vm->lock);
422 
423 	xe_vm_lock(vm, false);
424 	vm->flags |= XE_VM_FLAG_BANNED;
425 	trace_xe_vm_kill(vm);
426 
427 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link)
428 		q->ops->kill(q);
429 	xe_vm_unlock(vm);
430 
431 	/* TODO: Inform user the VM is banned */
432 }
433 
434 /**
435  * xe_vm_validate_should_retry() - Whether to retry after a validate error.
436  * @exec: The drm_exec object used for locking before validation.
437  * @err: The error returned from ttm_bo_validate().
438  * @end: A ktime_t cookie that should be set to 0 before first use and
439  * that should be reused on subsequent calls.
440  *
441  * With multiple active VMs, under memory pressure, it is possible that
442  * ttm_bo_validate() run into -EDEADLK and in such case returns -ENOMEM.
443  * Until ttm properly handles locking in such scenarios, best thing the
444  * driver can do is retry with a timeout. Check if that is necessary, and
445  * if so unlock the drm_exec's objects while keeping the ticket to prepare
446  * for a rerun.
447  *
448  * Return: true if a retry after drm_exec_init() is recommended;
449  * false otherwise.
450  */
451 bool xe_vm_validate_should_retry(struct drm_exec *exec, int err, ktime_t *end)
452 {
453 	ktime_t cur;
454 
455 	if (err != -ENOMEM)
456 		return false;
457 
458 	cur = ktime_get();
459 	*end = *end ? : ktime_add_ms(cur, XE_VM_REBIND_RETRY_TIMEOUT_MS);
460 	if (!ktime_before(cur, *end))
461 		return false;
462 
463 	msleep(20);
464 	return true;
465 }
466 
467 static int xe_gpuvm_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
468 {
469 	struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
470 	struct drm_gpuva *gpuva;
471 	int ret;
472 
473 	lockdep_assert_held(&vm->lock);
474 	drm_gpuvm_bo_for_each_va(gpuva, vm_bo)
475 		list_move_tail(&gpuva_to_vma(gpuva)->combined_links.rebind,
476 			       &vm->rebind_list);
477 
478 	ret = xe_bo_validate(gem_to_xe_bo(vm_bo->obj), vm, false);
479 	if (ret)
480 		return ret;
481 
482 	vm_bo->evicted = false;
483 	return 0;
484 }
485 
486 static int xe_preempt_work_begin(struct drm_exec *exec, struct xe_vm *vm,
487 				 bool *done)
488 {
489 	int err;
490 
491 	/*
492 	 * 1 fence for each preempt fence plus a fence for each tile from a
493 	 * possible rebind
494 	 */
495 	err = drm_gpuvm_prepare_vm(&vm->gpuvm, exec, vm->preempt.num_exec_queues +
496 				   vm->xe->info.tile_count);
497 	if (err)
498 		return err;
499 
500 	if (xe_vm_is_idle(vm)) {
501 		vm->preempt.rebind_deactivated = true;
502 		*done = true;
503 		return 0;
504 	}
505 
506 	if (!preempt_fences_waiting(vm)) {
507 		*done = true;
508 		return 0;
509 	}
510 
511 	err = drm_gpuvm_prepare_objects(&vm->gpuvm, exec, vm->preempt.num_exec_queues);
512 	if (err)
513 		return err;
514 
515 	err = wait_for_existing_preempt_fences(vm);
516 	if (err)
517 		return err;
518 
519 	return drm_gpuvm_validate(&vm->gpuvm, exec);
520 }
521 
522 static void preempt_rebind_work_func(struct work_struct *w)
523 {
524 	struct xe_vm *vm = container_of(w, struct xe_vm, preempt.rebind_work);
525 	struct drm_exec exec;
526 	struct dma_fence *rebind_fence;
527 	unsigned int fence_count = 0;
528 	LIST_HEAD(preempt_fences);
529 	ktime_t end = 0;
530 	int err = 0;
531 	long wait;
532 	int __maybe_unused tries = 0;
533 
534 	xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm));
535 	trace_xe_vm_rebind_worker_enter(vm);
536 
537 	down_write(&vm->lock);
538 
539 	if (xe_vm_is_closed_or_banned(vm)) {
540 		up_write(&vm->lock);
541 		trace_xe_vm_rebind_worker_exit(vm);
542 		return;
543 	}
544 
545 retry:
546 	if (xe_vm_userptr_check_repin(vm)) {
547 		err = xe_vm_userptr_pin(vm);
548 		if (err)
549 			goto out_unlock_outer;
550 	}
551 
552 	drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
553 
554 	drm_exec_until_all_locked(&exec) {
555 		bool done = false;
556 
557 		err = xe_preempt_work_begin(&exec, vm, &done);
558 		drm_exec_retry_on_contention(&exec);
559 		if (err || done) {
560 			drm_exec_fini(&exec);
561 			if (err && xe_vm_validate_should_retry(&exec, err, &end))
562 				err = -EAGAIN;
563 
564 			goto out_unlock_outer;
565 		}
566 	}
567 
568 	err = alloc_preempt_fences(vm, &preempt_fences, &fence_count);
569 	if (err)
570 		goto out_unlock;
571 
572 	rebind_fence = xe_vm_rebind(vm, true);
573 	if (IS_ERR(rebind_fence)) {
574 		err = PTR_ERR(rebind_fence);
575 		goto out_unlock;
576 	}
577 
578 	if (rebind_fence) {
579 		dma_fence_wait(rebind_fence, false);
580 		dma_fence_put(rebind_fence);
581 	}
582 
583 	/* Wait on munmap style VM unbinds */
584 	wait = dma_resv_wait_timeout(xe_vm_resv(vm),
585 				     DMA_RESV_USAGE_KERNEL,
586 				     false, MAX_SCHEDULE_TIMEOUT);
587 	if (wait <= 0) {
588 		err = -ETIME;
589 		goto out_unlock;
590 	}
591 
592 #define retry_required(__tries, __vm) \
593 	(IS_ENABLED(CONFIG_DRM_XE_USERPTR_INVAL_INJECT) ? \
594 	(!(__tries)++ || __xe_vm_userptr_needs_repin(__vm)) : \
595 	__xe_vm_userptr_needs_repin(__vm))
596 
597 	down_read(&vm->userptr.notifier_lock);
598 	if (retry_required(tries, vm)) {
599 		up_read(&vm->userptr.notifier_lock);
600 		err = -EAGAIN;
601 		goto out_unlock;
602 	}
603 
604 #undef retry_required
605 
606 	spin_lock(&vm->xe->ttm.lru_lock);
607 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
608 	spin_unlock(&vm->xe->ttm.lru_lock);
609 
610 	/* Point of no return. */
611 	arm_preempt_fences(vm, &preempt_fences);
612 	resume_and_reinstall_preempt_fences(vm, &exec);
613 	up_read(&vm->userptr.notifier_lock);
614 
615 out_unlock:
616 	drm_exec_fini(&exec);
617 out_unlock_outer:
618 	if (err == -EAGAIN) {
619 		trace_xe_vm_rebind_worker_retry(vm);
620 		goto retry;
621 	}
622 
623 	if (err) {
624 		drm_warn(&vm->xe->drm, "VM worker error: %d\n", err);
625 		xe_vm_kill(vm);
626 	}
627 	up_write(&vm->lock);
628 
629 	free_preempt_fences(&preempt_fences);
630 
631 	trace_xe_vm_rebind_worker_exit(vm);
632 }
633 
634 static bool vma_userptr_invalidate(struct mmu_interval_notifier *mni,
635 				   const struct mmu_notifier_range *range,
636 				   unsigned long cur_seq)
637 {
638 	struct xe_vma *vma = container_of(mni, struct xe_vma, userptr.notifier);
639 	struct xe_vm *vm = xe_vma_vm(vma);
640 	struct dma_resv_iter cursor;
641 	struct dma_fence *fence;
642 	long err;
643 
644 	xe_assert(vm->xe, xe_vma_is_userptr(vma));
645 	trace_xe_vma_userptr_invalidate(vma);
646 
647 	if (!mmu_notifier_range_blockable(range))
648 		return false;
649 
650 	down_write(&vm->userptr.notifier_lock);
651 	mmu_interval_set_seq(mni, cur_seq);
652 
653 	/* No need to stop gpu access if the userptr is not yet bound. */
654 	if (!vma->userptr.initial_bind) {
655 		up_write(&vm->userptr.notifier_lock);
656 		return true;
657 	}
658 
659 	/*
660 	 * Tell exec and rebind worker they need to repin and rebind this
661 	 * userptr.
662 	 */
663 	if (!xe_vm_in_fault_mode(vm) &&
664 	    !(vma->gpuva.flags & XE_VMA_DESTROYED) && vma->tile_present) {
665 		spin_lock(&vm->userptr.invalidated_lock);
666 		list_move_tail(&vma->userptr.invalidate_link,
667 			       &vm->userptr.invalidated);
668 		spin_unlock(&vm->userptr.invalidated_lock);
669 	}
670 
671 	up_write(&vm->userptr.notifier_lock);
672 
673 	/*
674 	 * Preempt fences turn into schedule disables, pipeline these.
675 	 * Note that even in fault mode, we need to wait for binds and
676 	 * unbinds to complete, and those are attached as BOOKMARK fences
677 	 * to the vm.
678 	 */
679 	dma_resv_iter_begin(&cursor, xe_vm_resv(vm),
680 			    DMA_RESV_USAGE_BOOKKEEP);
681 	dma_resv_for_each_fence_unlocked(&cursor, fence)
682 		dma_fence_enable_sw_signaling(fence);
683 	dma_resv_iter_end(&cursor);
684 
685 	err = dma_resv_wait_timeout(xe_vm_resv(vm),
686 				    DMA_RESV_USAGE_BOOKKEEP,
687 				    false, MAX_SCHEDULE_TIMEOUT);
688 	XE_WARN_ON(err <= 0);
689 
690 	if (xe_vm_in_fault_mode(vm)) {
691 		err = xe_vm_invalidate_vma(vma);
692 		XE_WARN_ON(err);
693 	}
694 
695 	trace_xe_vma_userptr_invalidate_complete(vma);
696 
697 	return true;
698 }
699 
700 static const struct mmu_interval_notifier_ops vma_userptr_notifier_ops = {
701 	.invalidate = vma_userptr_invalidate,
702 };
703 
704 int xe_vm_userptr_pin(struct xe_vm *vm)
705 {
706 	struct xe_vma *vma, *next;
707 	int err = 0;
708 	LIST_HEAD(tmp_evict);
709 
710 	lockdep_assert_held_write(&vm->lock);
711 
712 	/* Collect invalidated userptrs */
713 	spin_lock(&vm->userptr.invalidated_lock);
714 	list_for_each_entry_safe(vma, next, &vm->userptr.invalidated,
715 				 userptr.invalidate_link) {
716 		list_del_init(&vma->userptr.invalidate_link);
717 		list_move_tail(&vma->combined_links.userptr,
718 			       &vm->userptr.repin_list);
719 	}
720 	spin_unlock(&vm->userptr.invalidated_lock);
721 
722 	/* Pin and move to temporary list */
723 	list_for_each_entry_safe(vma, next, &vm->userptr.repin_list,
724 				 combined_links.userptr) {
725 		err = xe_vma_userptr_pin_pages(vma);
726 		if (err < 0)
727 			return err;
728 
729 		list_move_tail(&vma->combined_links.userptr, &vm->rebind_list);
730 	}
731 
732 	return 0;
733 }
734 
735 /**
736  * xe_vm_userptr_check_repin() - Check whether the VM might have userptrs
737  * that need repinning.
738  * @vm: The VM.
739  *
740  * This function does an advisory check for whether the VM has userptrs that
741  * need repinning.
742  *
743  * Return: 0 if there are no indications of userptrs needing repinning,
744  * -EAGAIN if there are.
745  */
746 int xe_vm_userptr_check_repin(struct xe_vm *vm)
747 {
748 	return (list_empty_careful(&vm->userptr.repin_list) &&
749 		list_empty_careful(&vm->userptr.invalidated)) ? 0 : -EAGAIN;
750 }
751 
752 static struct dma_fence *
753 xe_vm_bind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
754 	       struct xe_sync_entry *syncs, u32 num_syncs,
755 	       bool first_op, bool last_op);
756 
757 struct dma_fence *xe_vm_rebind(struct xe_vm *vm, bool rebind_worker)
758 {
759 	struct dma_fence *fence = NULL;
760 	struct xe_vma *vma, *next;
761 
762 	lockdep_assert_held(&vm->lock);
763 	if (xe_vm_in_lr_mode(vm) && !rebind_worker)
764 		return NULL;
765 
766 	xe_vm_assert_held(vm);
767 	list_for_each_entry_safe(vma, next, &vm->rebind_list,
768 				 combined_links.rebind) {
769 		xe_assert(vm->xe, vma->tile_present);
770 
771 		list_del_init(&vma->combined_links.rebind);
772 		dma_fence_put(fence);
773 		if (rebind_worker)
774 			trace_xe_vma_rebind_worker(vma);
775 		else
776 			trace_xe_vma_rebind_exec(vma);
777 		fence = xe_vm_bind_vma(vma, NULL, NULL, 0, false, false);
778 		if (IS_ERR(fence))
779 			return fence;
780 	}
781 
782 	return fence;
783 }
784 
785 #define VMA_CREATE_FLAG_READ_ONLY	BIT(0)
786 #define VMA_CREATE_FLAG_IS_NULL		BIT(1)
787 
788 static struct xe_vma *xe_vma_create(struct xe_vm *vm,
789 				    struct xe_bo *bo,
790 				    u64 bo_offset_or_userptr,
791 				    u64 start, u64 end,
792 				    u16 pat_index, unsigned int flags)
793 {
794 	struct xe_vma *vma;
795 	struct xe_tile *tile;
796 	u8 id;
797 	bool read_only = (flags & VMA_CREATE_FLAG_READ_ONLY);
798 	bool is_null = (flags & VMA_CREATE_FLAG_IS_NULL);
799 
800 	xe_assert(vm->xe, start < end);
801 	xe_assert(vm->xe, end < vm->size);
802 
803 	if (!bo && !is_null)	/* userptr */
804 		vma = kzalloc(sizeof(*vma), GFP_KERNEL);
805 	else
806 		vma = kzalloc(sizeof(*vma) - sizeof(struct xe_userptr),
807 			      GFP_KERNEL);
808 	if (!vma) {
809 		vma = ERR_PTR(-ENOMEM);
810 		return vma;
811 	}
812 
813 	INIT_LIST_HEAD(&vma->combined_links.rebind);
814 
815 	INIT_LIST_HEAD(&vma->gpuva.gem.entry);
816 	vma->gpuva.vm = &vm->gpuvm;
817 	vma->gpuva.va.addr = start;
818 	vma->gpuva.va.range = end - start + 1;
819 	if (read_only)
820 		vma->gpuva.flags |= XE_VMA_READ_ONLY;
821 	if (is_null)
822 		vma->gpuva.flags |= DRM_GPUVA_SPARSE;
823 
824 	for_each_tile(tile, vm->xe, id)
825 		vma->tile_mask |= 0x1 << id;
826 
827 	if (GRAPHICS_VER(vm->xe) >= 20 || vm->xe->info.platform == XE_PVC)
828 		vma->gpuva.flags |= XE_VMA_ATOMIC_PTE_BIT;
829 
830 	vma->pat_index = pat_index;
831 
832 	if (bo) {
833 		struct drm_gpuvm_bo *vm_bo;
834 
835 		xe_bo_assert_held(bo);
836 
837 		vm_bo = drm_gpuvm_bo_obtain(vma->gpuva.vm, &bo->ttm.base);
838 		if (IS_ERR(vm_bo)) {
839 			kfree(vma);
840 			return ERR_CAST(vm_bo);
841 		}
842 
843 		drm_gpuvm_bo_extobj_add(vm_bo);
844 		drm_gem_object_get(&bo->ttm.base);
845 		vma->gpuva.gem.obj = &bo->ttm.base;
846 		vma->gpuva.gem.offset = bo_offset_or_userptr;
847 		drm_gpuva_link(&vma->gpuva, vm_bo);
848 		drm_gpuvm_bo_put(vm_bo);
849 	} else /* userptr or null */ {
850 		if (!is_null) {
851 			u64 size = end - start + 1;
852 			int err;
853 
854 			INIT_LIST_HEAD(&vma->userptr.invalidate_link);
855 			vma->gpuva.gem.offset = bo_offset_or_userptr;
856 
857 			err = mmu_interval_notifier_insert(&vma->userptr.notifier,
858 							   current->mm,
859 							   xe_vma_userptr(vma), size,
860 							   &vma_userptr_notifier_ops);
861 			if (err) {
862 				kfree(vma);
863 				vma = ERR_PTR(err);
864 				return vma;
865 			}
866 
867 			vma->userptr.notifier_seq = LONG_MAX;
868 		}
869 
870 		xe_vm_get(vm);
871 	}
872 
873 	return vma;
874 }
875 
876 static void xe_vma_destroy_late(struct xe_vma *vma)
877 {
878 	struct xe_vm *vm = xe_vma_vm(vma);
879 	struct xe_device *xe = vm->xe;
880 	bool read_only = xe_vma_read_only(vma);
881 
882 	if (xe_vma_is_userptr(vma)) {
883 		if (vma->userptr.sg) {
884 			dma_unmap_sgtable(xe->drm.dev,
885 					  vma->userptr.sg,
886 					  read_only ? DMA_TO_DEVICE :
887 					  DMA_BIDIRECTIONAL, 0);
888 			sg_free_table(vma->userptr.sg);
889 			vma->userptr.sg = NULL;
890 		}
891 
892 		/*
893 		 * Since userptr pages are not pinned, we can't remove
894 		 * the notifer until we're sure the GPU is not accessing
895 		 * them anymore
896 		 */
897 		mmu_interval_notifier_remove(&vma->userptr.notifier);
898 		xe_vm_put(vm);
899 	} else if (xe_vma_is_null(vma)) {
900 		xe_vm_put(vm);
901 	} else {
902 		xe_bo_put(xe_vma_bo(vma));
903 	}
904 
905 	kfree(vma);
906 }
907 
908 static void vma_destroy_work_func(struct work_struct *w)
909 {
910 	struct xe_vma *vma =
911 		container_of(w, struct xe_vma, destroy_work);
912 
913 	xe_vma_destroy_late(vma);
914 }
915 
916 static void vma_destroy_cb(struct dma_fence *fence,
917 			   struct dma_fence_cb *cb)
918 {
919 	struct xe_vma *vma = container_of(cb, struct xe_vma, destroy_cb);
920 
921 	INIT_WORK(&vma->destroy_work, vma_destroy_work_func);
922 	queue_work(system_unbound_wq, &vma->destroy_work);
923 }
924 
925 static void xe_vma_destroy(struct xe_vma *vma, struct dma_fence *fence)
926 {
927 	struct xe_vm *vm = xe_vma_vm(vma);
928 
929 	lockdep_assert_held_write(&vm->lock);
930 	xe_assert(vm->xe, list_empty(&vma->combined_links.destroy));
931 
932 	if (xe_vma_is_userptr(vma)) {
933 		xe_assert(vm->xe, vma->gpuva.flags & XE_VMA_DESTROYED);
934 
935 		spin_lock(&vm->userptr.invalidated_lock);
936 		list_del(&vma->userptr.invalidate_link);
937 		spin_unlock(&vm->userptr.invalidated_lock);
938 	} else if (!xe_vma_is_null(vma)) {
939 		xe_bo_assert_held(xe_vma_bo(vma));
940 
941 		drm_gpuva_unlink(&vma->gpuva);
942 	}
943 
944 	xe_vm_assert_held(vm);
945 	if (fence) {
946 		int ret = dma_fence_add_callback(fence, &vma->destroy_cb,
947 						 vma_destroy_cb);
948 
949 		if (ret) {
950 			XE_WARN_ON(ret != -ENOENT);
951 			xe_vma_destroy_late(vma);
952 		}
953 	} else {
954 		xe_vma_destroy_late(vma);
955 	}
956 }
957 
958 /**
959  * xe_vm_prepare_vma() - drm_exec utility to lock a vma
960  * @exec: The drm_exec object we're currently locking for.
961  * @vma: The vma for witch we want to lock the vm resv and any attached
962  * object's resv.
963  * @num_shared: The number of dma-fence slots to pre-allocate in the
964  * objects' reservation objects.
965  *
966  * Return: 0 on success, negative error code on error. In particular
967  * may return -EDEADLK on WW transaction contention and -EINTR if
968  * an interruptible wait is terminated by a signal.
969  */
970 int xe_vm_prepare_vma(struct drm_exec *exec, struct xe_vma *vma,
971 		      unsigned int num_shared)
972 {
973 	struct xe_vm *vm = xe_vma_vm(vma);
974 	struct xe_bo *bo = xe_vma_bo(vma);
975 	int err;
976 
977 	XE_WARN_ON(!vm);
978 	err = drm_exec_prepare_obj(exec, xe_vm_obj(vm), num_shared);
979 	if (!err && bo && !bo->vm)
980 		err = drm_exec_prepare_obj(exec, &bo->ttm.base, num_shared);
981 
982 	return err;
983 }
984 
985 static void xe_vma_destroy_unlocked(struct xe_vma *vma)
986 {
987 	struct drm_exec exec;
988 	int err;
989 
990 	drm_exec_init(&exec, 0, 0);
991 	drm_exec_until_all_locked(&exec) {
992 		err = xe_vm_prepare_vma(&exec, vma, 0);
993 		drm_exec_retry_on_contention(&exec);
994 		if (XE_WARN_ON(err))
995 			break;
996 	}
997 
998 	xe_vma_destroy(vma, NULL);
999 
1000 	drm_exec_fini(&exec);
1001 }
1002 
1003 struct xe_vma *
1004 xe_vm_find_overlapping_vma(struct xe_vm *vm, u64 start, u64 range)
1005 {
1006 	struct drm_gpuva *gpuva;
1007 
1008 	lockdep_assert_held(&vm->lock);
1009 
1010 	if (xe_vm_is_closed_or_banned(vm))
1011 		return NULL;
1012 
1013 	xe_assert(vm->xe, start + range <= vm->size);
1014 
1015 	gpuva = drm_gpuva_find_first(&vm->gpuvm, start, range);
1016 
1017 	return gpuva ? gpuva_to_vma(gpuva) : NULL;
1018 }
1019 
1020 static int xe_vm_insert_vma(struct xe_vm *vm, struct xe_vma *vma)
1021 {
1022 	int err;
1023 
1024 	xe_assert(vm->xe, xe_vma_vm(vma) == vm);
1025 	lockdep_assert_held(&vm->lock);
1026 
1027 	err = drm_gpuva_insert(&vm->gpuvm, &vma->gpuva);
1028 	XE_WARN_ON(err);	/* Shouldn't be possible */
1029 
1030 	return err;
1031 }
1032 
1033 static void xe_vm_remove_vma(struct xe_vm *vm, struct xe_vma *vma)
1034 {
1035 	xe_assert(vm->xe, xe_vma_vm(vma) == vm);
1036 	lockdep_assert_held(&vm->lock);
1037 
1038 	drm_gpuva_remove(&vma->gpuva);
1039 	if (vm->usm.last_fault_vma == vma)
1040 		vm->usm.last_fault_vma = NULL;
1041 }
1042 
1043 static struct drm_gpuva_op *xe_vm_op_alloc(void)
1044 {
1045 	struct xe_vma_op *op;
1046 
1047 	op = kzalloc(sizeof(*op), GFP_KERNEL);
1048 
1049 	if (unlikely(!op))
1050 		return NULL;
1051 
1052 	return &op->base;
1053 }
1054 
1055 static void xe_vm_free(struct drm_gpuvm *gpuvm);
1056 
1057 static struct drm_gpuvm_ops gpuvm_ops = {
1058 	.op_alloc = xe_vm_op_alloc,
1059 	.vm_bo_validate = xe_gpuvm_validate,
1060 	.vm_free = xe_vm_free,
1061 };
1062 
1063 static u64 pde_encode_pat_index(struct xe_device *xe, u16 pat_index)
1064 {
1065 	u64 pte = 0;
1066 
1067 	if (pat_index & BIT(0))
1068 		pte |= XE_PPGTT_PTE_PAT0;
1069 
1070 	if (pat_index & BIT(1))
1071 		pte |= XE_PPGTT_PTE_PAT1;
1072 
1073 	return pte;
1074 }
1075 
1076 static u64 pte_encode_pat_index(struct xe_device *xe, u16 pat_index,
1077 				u32 pt_level)
1078 {
1079 	u64 pte = 0;
1080 
1081 	if (pat_index & BIT(0))
1082 		pte |= XE_PPGTT_PTE_PAT0;
1083 
1084 	if (pat_index & BIT(1))
1085 		pte |= XE_PPGTT_PTE_PAT1;
1086 
1087 	if (pat_index & BIT(2)) {
1088 		if (pt_level)
1089 			pte |= XE_PPGTT_PDE_PDPE_PAT2;
1090 		else
1091 			pte |= XE_PPGTT_PTE_PAT2;
1092 	}
1093 
1094 	if (pat_index & BIT(3))
1095 		pte |= XELPG_PPGTT_PTE_PAT3;
1096 
1097 	if (pat_index & (BIT(4)))
1098 		pte |= XE2_PPGTT_PTE_PAT4;
1099 
1100 	return pte;
1101 }
1102 
1103 static u64 pte_encode_ps(u32 pt_level)
1104 {
1105 	XE_WARN_ON(pt_level > MAX_HUGEPTE_LEVEL);
1106 
1107 	if (pt_level == 1)
1108 		return XE_PDE_PS_2M;
1109 	else if (pt_level == 2)
1110 		return XE_PDPE_PS_1G;
1111 
1112 	return 0;
1113 }
1114 
1115 static u64 xelp_pde_encode_bo(struct xe_bo *bo, u64 bo_offset,
1116 			      const u16 pat_index)
1117 {
1118 	struct xe_device *xe = xe_bo_device(bo);
1119 	u64 pde;
1120 
1121 	pde = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
1122 	pde |= XE_PAGE_PRESENT | XE_PAGE_RW;
1123 	pde |= pde_encode_pat_index(xe, pat_index);
1124 
1125 	return pde;
1126 }
1127 
1128 static u64 xelp_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
1129 			      u16 pat_index, u32 pt_level)
1130 {
1131 	struct xe_device *xe = xe_bo_device(bo);
1132 	u64 pte;
1133 
1134 	pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
1135 	pte |= XE_PAGE_PRESENT | XE_PAGE_RW;
1136 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1137 	pte |= pte_encode_ps(pt_level);
1138 
1139 	if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
1140 		pte |= XE_PPGTT_PTE_DM;
1141 
1142 	return pte;
1143 }
1144 
1145 static u64 xelp_pte_encode_vma(u64 pte, struct xe_vma *vma,
1146 			       u16 pat_index, u32 pt_level)
1147 {
1148 	struct xe_device *xe = xe_vma_vm(vma)->xe;
1149 
1150 	pte |= XE_PAGE_PRESENT;
1151 
1152 	if (likely(!xe_vma_read_only(vma)))
1153 		pte |= XE_PAGE_RW;
1154 
1155 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1156 	pte |= pte_encode_ps(pt_level);
1157 
1158 	if (unlikely(xe_vma_is_null(vma)))
1159 		pte |= XE_PTE_NULL;
1160 
1161 	return pte;
1162 }
1163 
1164 static u64 xelp_pte_encode_addr(struct xe_device *xe, u64 addr,
1165 				u16 pat_index,
1166 				u32 pt_level, bool devmem, u64 flags)
1167 {
1168 	u64 pte;
1169 
1170 	/* Avoid passing random bits directly as flags */
1171 	xe_assert(xe, !(flags & ~XE_PTE_PS64));
1172 
1173 	pte = addr;
1174 	pte |= XE_PAGE_PRESENT | XE_PAGE_RW;
1175 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1176 	pte |= pte_encode_ps(pt_level);
1177 
1178 	if (devmem)
1179 		pte |= XE_PPGTT_PTE_DM;
1180 
1181 	pte |= flags;
1182 
1183 	return pte;
1184 }
1185 
1186 static const struct xe_pt_ops xelp_pt_ops = {
1187 	.pte_encode_bo = xelp_pte_encode_bo,
1188 	.pte_encode_vma = xelp_pte_encode_vma,
1189 	.pte_encode_addr = xelp_pte_encode_addr,
1190 	.pde_encode_bo = xelp_pde_encode_bo,
1191 };
1192 
1193 static void vm_destroy_work_func(struct work_struct *w);
1194 
1195 /**
1196  * xe_vm_create_scratch() - Setup a scratch memory pagetable tree for the
1197  * given tile and vm.
1198  * @xe: xe device.
1199  * @tile: tile to set up for.
1200  * @vm: vm to set up for.
1201  *
1202  * Sets up a pagetable tree with one page-table per level and a single
1203  * leaf PTE. All pagetable entries point to the single page-table or,
1204  * for MAX_HUGEPTE_LEVEL, a NULL huge PTE returning 0 on read and
1205  * writes become NOPs.
1206  *
1207  * Return: 0 on success, negative error code on error.
1208  */
1209 static int xe_vm_create_scratch(struct xe_device *xe, struct xe_tile *tile,
1210 				struct xe_vm *vm)
1211 {
1212 	u8 id = tile->id;
1213 	int i;
1214 
1215 	for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; i++) {
1216 		vm->scratch_pt[id][i] = xe_pt_create(vm, tile, i);
1217 		if (IS_ERR(vm->scratch_pt[id][i]))
1218 			return PTR_ERR(vm->scratch_pt[id][i]);
1219 
1220 		xe_pt_populate_empty(tile, vm, vm->scratch_pt[id][i]);
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static void xe_vm_free_scratch(struct xe_vm *vm)
1227 {
1228 	struct xe_tile *tile;
1229 	u8 id;
1230 
1231 	if (!xe_vm_has_scratch(vm))
1232 		return;
1233 
1234 	for_each_tile(tile, vm->xe, id) {
1235 		u32 i;
1236 
1237 		if (!vm->pt_root[id])
1238 			continue;
1239 
1240 		for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; ++i)
1241 			if (vm->scratch_pt[id][i])
1242 				xe_pt_destroy(vm->scratch_pt[id][i], vm->flags, NULL);
1243 	}
1244 }
1245 
1246 struct xe_vm *xe_vm_create(struct xe_device *xe, u32 flags)
1247 {
1248 	struct drm_gem_object *vm_resv_obj;
1249 	struct xe_vm *vm;
1250 	int err, number_tiles = 0;
1251 	struct xe_tile *tile;
1252 	u8 id;
1253 
1254 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
1255 	if (!vm)
1256 		return ERR_PTR(-ENOMEM);
1257 
1258 	vm->xe = xe;
1259 
1260 	vm->size = 1ull << xe->info.va_bits;
1261 
1262 	vm->flags = flags;
1263 
1264 	init_rwsem(&vm->lock);
1265 
1266 	INIT_LIST_HEAD(&vm->rebind_list);
1267 
1268 	INIT_LIST_HEAD(&vm->userptr.repin_list);
1269 	INIT_LIST_HEAD(&vm->userptr.invalidated);
1270 	init_rwsem(&vm->userptr.notifier_lock);
1271 	spin_lock_init(&vm->userptr.invalidated_lock);
1272 
1273 	INIT_WORK(&vm->destroy_work, vm_destroy_work_func);
1274 
1275 	INIT_LIST_HEAD(&vm->preempt.exec_queues);
1276 	vm->preempt.min_run_period_ms = 10;	/* FIXME: Wire up to uAPI */
1277 
1278 	for_each_tile(tile, xe, id)
1279 		xe_range_fence_tree_init(&vm->rftree[id]);
1280 
1281 	vm->pt_ops = &xelp_pt_ops;
1282 
1283 	if (!(flags & XE_VM_FLAG_MIGRATION))
1284 		xe_device_mem_access_get(xe);
1285 
1286 	vm_resv_obj = drm_gpuvm_resv_object_alloc(&xe->drm);
1287 	if (!vm_resv_obj) {
1288 		err = -ENOMEM;
1289 		goto err_no_resv;
1290 	}
1291 
1292 	drm_gpuvm_init(&vm->gpuvm, "Xe VM", DRM_GPUVM_RESV_PROTECTED, &xe->drm,
1293 		       vm_resv_obj, 0, vm->size, 0, 0, &gpuvm_ops);
1294 
1295 	drm_gem_object_put(vm_resv_obj);
1296 
1297 	err = dma_resv_lock_interruptible(xe_vm_resv(vm), NULL);
1298 	if (err)
1299 		goto err_close;
1300 
1301 	if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
1302 		vm->flags |= XE_VM_FLAG_64K;
1303 
1304 	for_each_tile(tile, xe, id) {
1305 		if (flags & XE_VM_FLAG_MIGRATION &&
1306 		    tile->id != XE_VM_FLAG_TILE_ID(flags))
1307 			continue;
1308 
1309 		vm->pt_root[id] = xe_pt_create(vm, tile, xe->info.vm_max_level);
1310 		if (IS_ERR(vm->pt_root[id])) {
1311 			err = PTR_ERR(vm->pt_root[id]);
1312 			vm->pt_root[id] = NULL;
1313 			goto err_unlock_close;
1314 		}
1315 	}
1316 
1317 	if (xe_vm_has_scratch(vm)) {
1318 		for_each_tile(tile, xe, id) {
1319 			if (!vm->pt_root[id])
1320 				continue;
1321 
1322 			err = xe_vm_create_scratch(xe, tile, vm);
1323 			if (err)
1324 				goto err_unlock_close;
1325 		}
1326 		vm->batch_invalidate_tlb = true;
1327 	}
1328 
1329 	if (flags & XE_VM_FLAG_LR_MODE) {
1330 		INIT_WORK(&vm->preempt.rebind_work, preempt_rebind_work_func);
1331 		vm->flags |= XE_VM_FLAG_LR_MODE;
1332 		vm->batch_invalidate_tlb = false;
1333 	}
1334 
1335 	/* Fill pt_root after allocating scratch tables */
1336 	for_each_tile(tile, xe, id) {
1337 		if (!vm->pt_root[id])
1338 			continue;
1339 
1340 		xe_pt_populate_empty(tile, vm, vm->pt_root[id]);
1341 	}
1342 	dma_resv_unlock(xe_vm_resv(vm));
1343 
1344 	/* Kernel migration VM shouldn't have a circular loop.. */
1345 	if (!(flags & XE_VM_FLAG_MIGRATION)) {
1346 		for_each_tile(tile, xe, id) {
1347 			struct xe_gt *gt = tile->primary_gt;
1348 			struct xe_vm *migrate_vm;
1349 			struct xe_exec_queue *q;
1350 			u32 create_flags = EXEC_QUEUE_FLAG_VM;
1351 
1352 			if (!vm->pt_root[id])
1353 				continue;
1354 
1355 			migrate_vm = xe_migrate_get_vm(tile->migrate);
1356 			q = xe_exec_queue_create_class(xe, gt, migrate_vm,
1357 						       XE_ENGINE_CLASS_COPY,
1358 						       create_flags);
1359 			xe_vm_put(migrate_vm);
1360 			if (IS_ERR(q)) {
1361 				err = PTR_ERR(q);
1362 				goto err_close;
1363 			}
1364 			vm->q[id] = q;
1365 			number_tiles++;
1366 		}
1367 	}
1368 
1369 	if (number_tiles > 1)
1370 		vm->composite_fence_ctx = dma_fence_context_alloc(1);
1371 
1372 	mutex_lock(&xe->usm.lock);
1373 	if (flags & XE_VM_FLAG_FAULT_MODE)
1374 		xe->usm.num_vm_in_fault_mode++;
1375 	else if (!(flags & XE_VM_FLAG_MIGRATION))
1376 		xe->usm.num_vm_in_non_fault_mode++;
1377 	mutex_unlock(&xe->usm.lock);
1378 
1379 	trace_xe_vm_create(vm);
1380 
1381 	return vm;
1382 
1383 err_unlock_close:
1384 	dma_resv_unlock(xe_vm_resv(vm));
1385 err_close:
1386 	xe_vm_close_and_put(vm);
1387 	return ERR_PTR(err);
1388 
1389 err_no_resv:
1390 	for_each_tile(tile, xe, id)
1391 		xe_range_fence_tree_fini(&vm->rftree[id]);
1392 	kfree(vm);
1393 	if (!(flags & XE_VM_FLAG_MIGRATION))
1394 		xe_device_mem_access_put(xe);
1395 	return ERR_PTR(err);
1396 }
1397 
1398 static void xe_vm_close(struct xe_vm *vm)
1399 {
1400 	down_write(&vm->lock);
1401 	vm->size = 0;
1402 	up_write(&vm->lock);
1403 }
1404 
1405 void xe_vm_close_and_put(struct xe_vm *vm)
1406 {
1407 	LIST_HEAD(contested);
1408 	struct xe_device *xe = vm->xe;
1409 	struct xe_tile *tile;
1410 	struct xe_vma *vma, *next_vma;
1411 	struct drm_gpuva *gpuva, *next;
1412 	u8 id;
1413 
1414 	xe_assert(xe, !vm->preempt.num_exec_queues);
1415 
1416 	xe_vm_close(vm);
1417 	if (xe_vm_in_preempt_fence_mode(vm))
1418 		flush_work(&vm->preempt.rebind_work);
1419 
1420 	down_write(&vm->lock);
1421 	for_each_tile(tile, xe, id) {
1422 		if (vm->q[id])
1423 			xe_exec_queue_last_fence_put(vm->q[id], vm);
1424 	}
1425 	up_write(&vm->lock);
1426 
1427 	for_each_tile(tile, xe, id) {
1428 		if (vm->q[id]) {
1429 			xe_exec_queue_kill(vm->q[id]);
1430 			xe_exec_queue_put(vm->q[id]);
1431 			vm->q[id] = NULL;
1432 		}
1433 	}
1434 
1435 	down_write(&vm->lock);
1436 	xe_vm_lock(vm, false);
1437 	drm_gpuvm_for_each_va_safe(gpuva, next, &vm->gpuvm) {
1438 		vma = gpuva_to_vma(gpuva);
1439 
1440 		if (xe_vma_has_no_bo(vma)) {
1441 			down_read(&vm->userptr.notifier_lock);
1442 			vma->gpuva.flags |= XE_VMA_DESTROYED;
1443 			up_read(&vm->userptr.notifier_lock);
1444 		}
1445 
1446 		xe_vm_remove_vma(vm, vma);
1447 
1448 		/* easy case, remove from VMA? */
1449 		if (xe_vma_has_no_bo(vma) || xe_vma_bo(vma)->vm) {
1450 			list_del_init(&vma->combined_links.rebind);
1451 			xe_vma_destroy(vma, NULL);
1452 			continue;
1453 		}
1454 
1455 		list_move_tail(&vma->combined_links.destroy, &contested);
1456 		vma->gpuva.flags |= XE_VMA_DESTROYED;
1457 	}
1458 
1459 	/*
1460 	 * All vm operations will add shared fences to resv.
1461 	 * The only exception is eviction for a shared object,
1462 	 * but even so, the unbind when evicted would still
1463 	 * install a fence to resv. Hence it's safe to
1464 	 * destroy the pagetables immediately.
1465 	 */
1466 	xe_vm_free_scratch(vm);
1467 
1468 	for_each_tile(tile, xe, id) {
1469 		if (vm->pt_root[id]) {
1470 			xe_pt_destroy(vm->pt_root[id], vm->flags, NULL);
1471 			vm->pt_root[id] = NULL;
1472 		}
1473 	}
1474 	xe_vm_unlock(vm);
1475 
1476 	/*
1477 	 * VM is now dead, cannot re-add nodes to vm->vmas if it's NULL
1478 	 * Since we hold a refcount to the bo, we can remove and free
1479 	 * the members safely without locking.
1480 	 */
1481 	list_for_each_entry_safe(vma, next_vma, &contested,
1482 				 combined_links.destroy) {
1483 		list_del_init(&vma->combined_links.destroy);
1484 		xe_vma_destroy_unlocked(vma);
1485 	}
1486 
1487 	up_write(&vm->lock);
1488 
1489 	mutex_lock(&xe->usm.lock);
1490 	if (vm->flags & XE_VM_FLAG_FAULT_MODE)
1491 		xe->usm.num_vm_in_fault_mode--;
1492 	else if (!(vm->flags & XE_VM_FLAG_MIGRATION))
1493 		xe->usm.num_vm_in_non_fault_mode--;
1494 	mutex_unlock(&xe->usm.lock);
1495 
1496 	for_each_tile(tile, xe, id)
1497 		xe_range_fence_tree_fini(&vm->rftree[id]);
1498 
1499 	xe_vm_put(vm);
1500 }
1501 
1502 static void vm_destroy_work_func(struct work_struct *w)
1503 {
1504 	struct xe_vm *vm =
1505 		container_of(w, struct xe_vm, destroy_work);
1506 	struct xe_device *xe = vm->xe;
1507 	struct xe_tile *tile;
1508 	u8 id;
1509 	void *lookup;
1510 
1511 	/* xe_vm_close_and_put was not called? */
1512 	xe_assert(xe, !vm->size);
1513 
1514 	if (!(vm->flags & XE_VM_FLAG_MIGRATION)) {
1515 		xe_device_mem_access_put(xe);
1516 
1517 		if (xe->info.has_asid && vm->usm.asid) {
1518 			mutex_lock(&xe->usm.lock);
1519 			lookup = xa_erase(&xe->usm.asid_to_vm, vm->usm.asid);
1520 			xe_assert(xe, lookup == vm);
1521 			mutex_unlock(&xe->usm.lock);
1522 		}
1523 	}
1524 
1525 	for_each_tile(tile, xe, id)
1526 		XE_WARN_ON(vm->pt_root[id]);
1527 
1528 	trace_xe_vm_free(vm);
1529 	dma_fence_put(vm->rebind_fence);
1530 	kfree(vm);
1531 }
1532 
1533 static void xe_vm_free(struct drm_gpuvm *gpuvm)
1534 {
1535 	struct xe_vm *vm = container_of(gpuvm, struct xe_vm, gpuvm);
1536 
1537 	/* To destroy the VM we need to be able to sleep */
1538 	queue_work(system_unbound_wq, &vm->destroy_work);
1539 }
1540 
1541 struct xe_vm *xe_vm_lookup(struct xe_file *xef, u32 id)
1542 {
1543 	struct xe_vm *vm;
1544 
1545 	mutex_lock(&xef->vm.lock);
1546 	vm = xa_load(&xef->vm.xa, id);
1547 	if (vm)
1548 		xe_vm_get(vm);
1549 	mutex_unlock(&xef->vm.lock);
1550 
1551 	return vm;
1552 }
1553 
1554 u64 xe_vm_pdp4_descriptor(struct xe_vm *vm, struct xe_tile *tile)
1555 {
1556 	return vm->pt_ops->pde_encode_bo(vm->pt_root[tile->id]->bo, 0,
1557 					 tile_to_xe(tile)->pat.idx[XE_CACHE_WB]);
1558 }
1559 
1560 static struct xe_exec_queue *
1561 to_wait_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
1562 {
1563 	return q ? q : vm->q[0];
1564 }
1565 
1566 static struct dma_fence *
1567 xe_vm_unbind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
1568 		 struct xe_sync_entry *syncs, u32 num_syncs,
1569 		 bool first_op, bool last_op)
1570 {
1571 	struct xe_vm *vm = xe_vma_vm(vma);
1572 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1573 	struct xe_tile *tile;
1574 	struct dma_fence *fence = NULL;
1575 	struct dma_fence **fences = NULL;
1576 	struct dma_fence_array *cf = NULL;
1577 	int cur_fence = 0, i;
1578 	int number_tiles = hweight8(vma->tile_present);
1579 	int err;
1580 	u8 id;
1581 
1582 	trace_xe_vma_unbind(vma);
1583 
1584 	if (number_tiles > 1) {
1585 		fences = kmalloc_array(number_tiles, sizeof(*fences),
1586 				       GFP_KERNEL);
1587 		if (!fences)
1588 			return ERR_PTR(-ENOMEM);
1589 	}
1590 
1591 	for_each_tile(tile, vm->xe, id) {
1592 		if (!(vma->tile_present & BIT(id)))
1593 			goto next;
1594 
1595 		fence = __xe_pt_unbind_vma(tile, vma, q ? q : vm->q[id],
1596 					   first_op ? syncs : NULL,
1597 					   first_op ? num_syncs : 0);
1598 		if (IS_ERR(fence)) {
1599 			err = PTR_ERR(fence);
1600 			goto err_fences;
1601 		}
1602 
1603 		if (fences)
1604 			fences[cur_fence++] = fence;
1605 
1606 next:
1607 		if (q && vm->pt_root[id] && !list_empty(&q->multi_gt_list))
1608 			q = list_next_entry(q, multi_gt_list);
1609 	}
1610 
1611 	if (fences) {
1612 		cf = dma_fence_array_create(number_tiles, fences,
1613 					    vm->composite_fence_ctx,
1614 					    vm->composite_fence_seqno++,
1615 					    false);
1616 		if (!cf) {
1617 			--vm->composite_fence_seqno;
1618 			err = -ENOMEM;
1619 			goto err_fences;
1620 		}
1621 	}
1622 
1623 	fence = cf ? &cf->base : !fence ?
1624 		xe_exec_queue_last_fence_get(wait_exec_queue, vm) : fence;
1625 	if (last_op) {
1626 		for (i = 0; i < num_syncs; i++)
1627 			xe_sync_entry_signal(&syncs[i], NULL, fence);
1628 	}
1629 
1630 	return fence;
1631 
1632 err_fences:
1633 	if (fences) {
1634 		while (cur_fence)
1635 			dma_fence_put(fences[--cur_fence]);
1636 		kfree(fences);
1637 	}
1638 
1639 	return ERR_PTR(err);
1640 }
1641 
1642 static struct dma_fence *
1643 xe_vm_bind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
1644 	       struct xe_sync_entry *syncs, u32 num_syncs,
1645 	       bool first_op, bool last_op)
1646 {
1647 	struct xe_tile *tile;
1648 	struct dma_fence *fence;
1649 	struct dma_fence **fences = NULL;
1650 	struct dma_fence_array *cf = NULL;
1651 	struct xe_vm *vm = xe_vma_vm(vma);
1652 	int cur_fence = 0, i;
1653 	int number_tiles = hweight8(vma->tile_mask);
1654 	int err;
1655 	u8 id;
1656 
1657 	trace_xe_vma_bind(vma);
1658 
1659 	if (number_tiles > 1) {
1660 		fences = kmalloc_array(number_tiles, sizeof(*fences),
1661 				       GFP_KERNEL);
1662 		if (!fences)
1663 			return ERR_PTR(-ENOMEM);
1664 	}
1665 
1666 	for_each_tile(tile, vm->xe, id) {
1667 		if (!(vma->tile_mask & BIT(id)))
1668 			goto next;
1669 
1670 		fence = __xe_pt_bind_vma(tile, vma, q ? q : vm->q[id],
1671 					 first_op ? syncs : NULL,
1672 					 first_op ? num_syncs : 0,
1673 					 vma->tile_present & BIT(id));
1674 		if (IS_ERR(fence)) {
1675 			err = PTR_ERR(fence);
1676 			goto err_fences;
1677 		}
1678 
1679 		if (fences)
1680 			fences[cur_fence++] = fence;
1681 
1682 next:
1683 		if (q && vm->pt_root[id] && !list_empty(&q->multi_gt_list))
1684 			q = list_next_entry(q, multi_gt_list);
1685 	}
1686 
1687 	if (fences) {
1688 		cf = dma_fence_array_create(number_tiles, fences,
1689 					    vm->composite_fence_ctx,
1690 					    vm->composite_fence_seqno++,
1691 					    false);
1692 		if (!cf) {
1693 			--vm->composite_fence_seqno;
1694 			err = -ENOMEM;
1695 			goto err_fences;
1696 		}
1697 	}
1698 
1699 	if (last_op) {
1700 		for (i = 0; i < num_syncs; i++)
1701 			xe_sync_entry_signal(&syncs[i], NULL,
1702 					     cf ? &cf->base : fence);
1703 	}
1704 
1705 	return cf ? &cf->base : fence;
1706 
1707 err_fences:
1708 	if (fences) {
1709 		while (cur_fence)
1710 			dma_fence_put(fences[--cur_fence]);
1711 		kfree(fences);
1712 	}
1713 
1714 	return ERR_PTR(err);
1715 }
1716 
1717 static int __xe_vm_bind(struct xe_vm *vm, struct xe_vma *vma,
1718 			struct xe_exec_queue *q, struct xe_sync_entry *syncs,
1719 			u32 num_syncs, bool immediate, bool first_op,
1720 			bool last_op)
1721 {
1722 	struct dma_fence *fence;
1723 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1724 
1725 	xe_vm_assert_held(vm);
1726 
1727 	if (immediate) {
1728 		fence = xe_vm_bind_vma(vma, q, syncs, num_syncs, first_op,
1729 				       last_op);
1730 		if (IS_ERR(fence))
1731 			return PTR_ERR(fence);
1732 	} else {
1733 		int i;
1734 
1735 		xe_assert(vm->xe, xe_vm_in_fault_mode(vm));
1736 
1737 		fence = xe_exec_queue_last_fence_get(wait_exec_queue, vm);
1738 		if (last_op) {
1739 			for (i = 0; i < num_syncs; i++)
1740 				xe_sync_entry_signal(&syncs[i], NULL, fence);
1741 		}
1742 	}
1743 
1744 	if (last_op)
1745 		xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence);
1746 	dma_fence_put(fence);
1747 
1748 	return 0;
1749 }
1750 
1751 static int xe_vm_bind(struct xe_vm *vm, struct xe_vma *vma, struct xe_exec_queue *q,
1752 		      struct xe_bo *bo, struct xe_sync_entry *syncs,
1753 		      u32 num_syncs, bool immediate, bool first_op,
1754 		      bool last_op)
1755 {
1756 	int err;
1757 
1758 	xe_vm_assert_held(vm);
1759 	xe_bo_assert_held(bo);
1760 
1761 	if (bo && immediate) {
1762 		err = xe_bo_validate(bo, vm, true);
1763 		if (err)
1764 			return err;
1765 	}
1766 
1767 	return __xe_vm_bind(vm, vma, q, syncs, num_syncs, immediate, first_op,
1768 			    last_op);
1769 }
1770 
1771 static int xe_vm_unbind(struct xe_vm *vm, struct xe_vma *vma,
1772 			struct xe_exec_queue *q, struct xe_sync_entry *syncs,
1773 			u32 num_syncs, bool first_op, bool last_op)
1774 {
1775 	struct dma_fence *fence;
1776 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1777 
1778 	xe_vm_assert_held(vm);
1779 	xe_bo_assert_held(xe_vma_bo(vma));
1780 
1781 	fence = xe_vm_unbind_vma(vma, q, syncs, num_syncs, first_op, last_op);
1782 	if (IS_ERR(fence))
1783 		return PTR_ERR(fence);
1784 
1785 	xe_vma_destroy(vma, fence);
1786 	if (last_op)
1787 		xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence);
1788 	dma_fence_put(fence);
1789 
1790 	return 0;
1791 }
1792 
1793 #define ALL_DRM_XE_VM_CREATE_FLAGS (DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE | \
1794 				    DRM_XE_VM_CREATE_FLAG_LR_MODE | \
1795 				    DRM_XE_VM_CREATE_FLAG_FAULT_MODE)
1796 
1797 int xe_vm_create_ioctl(struct drm_device *dev, void *data,
1798 		       struct drm_file *file)
1799 {
1800 	struct xe_device *xe = to_xe_device(dev);
1801 	struct xe_file *xef = to_xe_file(file);
1802 	struct drm_xe_vm_create *args = data;
1803 	struct xe_tile *tile;
1804 	struct xe_vm *vm;
1805 	u32 id, asid;
1806 	int err;
1807 	u32 flags = 0;
1808 
1809 	if (XE_IOCTL_DBG(xe, args->extensions))
1810 		return -EINVAL;
1811 
1812 	if (XE_WA(xe_root_mmio_gt(xe), 14016763929))
1813 		args->flags |= DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE;
1814 
1815 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE &&
1816 			 !xe->info.has_usm))
1817 		return -EINVAL;
1818 
1819 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1820 		return -EINVAL;
1821 
1822 	if (XE_IOCTL_DBG(xe, args->flags & ~ALL_DRM_XE_VM_CREATE_FLAGS))
1823 		return -EINVAL;
1824 
1825 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE &&
1826 			 args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE))
1827 		return -EINVAL;
1828 
1829 	if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE) &&
1830 			 args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE))
1831 		return -EINVAL;
1832 
1833 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE &&
1834 			 xe_device_in_non_fault_mode(xe)))
1835 		return -EINVAL;
1836 
1837 	if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE) &&
1838 			 xe_device_in_fault_mode(xe)))
1839 		return -EINVAL;
1840 
1841 	if (XE_IOCTL_DBG(xe, args->extensions))
1842 		return -EINVAL;
1843 
1844 	if (args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE)
1845 		flags |= XE_VM_FLAG_SCRATCH_PAGE;
1846 	if (args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE)
1847 		flags |= XE_VM_FLAG_LR_MODE;
1848 	if (args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE)
1849 		flags |= XE_VM_FLAG_FAULT_MODE;
1850 
1851 	vm = xe_vm_create(xe, flags);
1852 	if (IS_ERR(vm))
1853 		return PTR_ERR(vm);
1854 
1855 	mutex_lock(&xef->vm.lock);
1856 	err = xa_alloc(&xef->vm.xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1857 	mutex_unlock(&xef->vm.lock);
1858 	if (err)
1859 		goto err_close_and_put;
1860 
1861 	if (xe->info.has_asid) {
1862 		mutex_lock(&xe->usm.lock);
1863 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, vm,
1864 				      XA_LIMIT(1, XE_MAX_ASID - 1),
1865 				      &xe->usm.next_asid, GFP_KERNEL);
1866 		mutex_unlock(&xe->usm.lock);
1867 		if (err < 0)
1868 			goto err_free_id;
1869 
1870 		vm->usm.asid = asid;
1871 	}
1872 
1873 	args->vm_id = id;
1874 	vm->xef = xef;
1875 
1876 	/* Record BO memory for VM pagetable created against client */
1877 	for_each_tile(tile, xe, id)
1878 		if (vm->pt_root[id])
1879 			xe_drm_client_add_bo(vm->xef->client, vm->pt_root[id]->bo);
1880 
1881 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_MEM)
1882 	/* Warning: Security issue - never enable by default */
1883 	args->reserved[0] = xe_bo_main_addr(vm->pt_root[0]->bo, XE_PAGE_SIZE);
1884 #endif
1885 
1886 	return 0;
1887 
1888 err_free_id:
1889 	mutex_lock(&xef->vm.lock);
1890 	xa_erase(&xef->vm.xa, id);
1891 	mutex_unlock(&xef->vm.lock);
1892 err_close_and_put:
1893 	xe_vm_close_and_put(vm);
1894 
1895 	return err;
1896 }
1897 
1898 int xe_vm_destroy_ioctl(struct drm_device *dev, void *data,
1899 			struct drm_file *file)
1900 {
1901 	struct xe_device *xe = to_xe_device(dev);
1902 	struct xe_file *xef = to_xe_file(file);
1903 	struct drm_xe_vm_destroy *args = data;
1904 	struct xe_vm *vm;
1905 	int err = 0;
1906 
1907 	if (XE_IOCTL_DBG(xe, args->pad) ||
1908 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1909 		return -EINVAL;
1910 
1911 	mutex_lock(&xef->vm.lock);
1912 	vm = xa_load(&xef->vm.xa, args->vm_id);
1913 	if (XE_IOCTL_DBG(xe, !vm))
1914 		err = -ENOENT;
1915 	else if (XE_IOCTL_DBG(xe, vm->preempt.num_exec_queues))
1916 		err = -EBUSY;
1917 	else
1918 		xa_erase(&xef->vm.xa, args->vm_id);
1919 	mutex_unlock(&xef->vm.lock);
1920 
1921 	if (!err)
1922 		xe_vm_close_and_put(vm);
1923 
1924 	return err;
1925 }
1926 
1927 static const u32 region_to_mem_type[] = {
1928 	XE_PL_TT,
1929 	XE_PL_VRAM0,
1930 	XE_PL_VRAM1,
1931 };
1932 
1933 static int xe_vm_prefetch(struct xe_vm *vm, struct xe_vma *vma,
1934 			  struct xe_exec_queue *q, u32 region,
1935 			  struct xe_sync_entry *syncs, u32 num_syncs,
1936 			  bool first_op, bool last_op)
1937 {
1938 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1939 	int err;
1940 
1941 	xe_assert(vm->xe, region <= ARRAY_SIZE(region_to_mem_type));
1942 
1943 	if (!xe_vma_has_no_bo(vma)) {
1944 		err = xe_bo_migrate(xe_vma_bo(vma), region_to_mem_type[region]);
1945 		if (err)
1946 			return err;
1947 	}
1948 
1949 	if (vma->tile_mask != (vma->tile_present & ~vma->usm.tile_invalidated)) {
1950 		return xe_vm_bind(vm, vma, q, xe_vma_bo(vma), syncs, num_syncs,
1951 				  true, first_op, last_op);
1952 	} else {
1953 		int i;
1954 
1955 		/* Nothing to do, signal fences now */
1956 		if (last_op) {
1957 			for (i = 0; i < num_syncs; i++) {
1958 				struct dma_fence *fence =
1959 					xe_exec_queue_last_fence_get(wait_exec_queue, vm);
1960 
1961 				xe_sync_entry_signal(&syncs[i], NULL, fence);
1962 			}
1963 		}
1964 
1965 		return 0;
1966 	}
1967 }
1968 
1969 static void prep_vma_destroy(struct xe_vm *vm, struct xe_vma *vma,
1970 			     bool post_commit)
1971 {
1972 	down_read(&vm->userptr.notifier_lock);
1973 	vma->gpuva.flags |= XE_VMA_DESTROYED;
1974 	up_read(&vm->userptr.notifier_lock);
1975 	if (post_commit)
1976 		xe_vm_remove_vma(vm, vma);
1977 }
1978 
1979 #undef ULL
1980 #define ULL	unsigned long long
1981 
1982 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
1983 static void print_op(struct xe_device *xe, struct drm_gpuva_op *op)
1984 {
1985 	struct xe_vma *vma;
1986 
1987 	switch (op->op) {
1988 	case DRM_GPUVA_OP_MAP:
1989 		vm_dbg(&xe->drm, "MAP: addr=0x%016llx, range=0x%016llx",
1990 		       (ULL)op->map.va.addr, (ULL)op->map.va.range);
1991 		break;
1992 	case DRM_GPUVA_OP_REMAP:
1993 		vma = gpuva_to_vma(op->remap.unmap->va);
1994 		vm_dbg(&xe->drm, "REMAP:UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d",
1995 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma),
1996 		       op->remap.unmap->keep ? 1 : 0);
1997 		if (op->remap.prev)
1998 			vm_dbg(&xe->drm,
1999 			       "REMAP:PREV: addr=0x%016llx, range=0x%016llx",
2000 			       (ULL)op->remap.prev->va.addr,
2001 			       (ULL)op->remap.prev->va.range);
2002 		if (op->remap.next)
2003 			vm_dbg(&xe->drm,
2004 			       "REMAP:NEXT: addr=0x%016llx, range=0x%016llx",
2005 			       (ULL)op->remap.next->va.addr,
2006 			       (ULL)op->remap.next->va.range);
2007 		break;
2008 	case DRM_GPUVA_OP_UNMAP:
2009 		vma = gpuva_to_vma(op->unmap.va);
2010 		vm_dbg(&xe->drm, "UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d",
2011 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma),
2012 		       op->unmap.keep ? 1 : 0);
2013 		break;
2014 	case DRM_GPUVA_OP_PREFETCH:
2015 		vma = gpuva_to_vma(op->prefetch.va);
2016 		vm_dbg(&xe->drm, "PREFETCH: addr=0x%016llx, range=0x%016llx",
2017 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma));
2018 		break;
2019 	default:
2020 		drm_warn(&xe->drm, "NOT POSSIBLE");
2021 	}
2022 }
2023 #else
2024 static void print_op(struct xe_device *xe, struct drm_gpuva_op *op)
2025 {
2026 }
2027 #endif
2028 
2029 /*
2030  * Create operations list from IOCTL arguments, setup operations fields so parse
2031  * and commit steps are decoupled from IOCTL arguments. This step can fail.
2032  */
2033 static struct drm_gpuva_ops *
2034 vm_bind_ioctl_ops_create(struct xe_vm *vm, struct xe_bo *bo,
2035 			 u64 bo_offset_or_userptr, u64 addr, u64 range,
2036 			 u32 operation, u32 flags,
2037 			 u32 prefetch_region, u16 pat_index)
2038 {
2039 	struct drm_gem_object *obj = bo ? &bo->ttm.base : NULL;
2040 	struct drm_gpuva_ops *ops;
2041 	struct drm_gpuva_op *__op;
2042 	struct xe_vma_op *op;
2043 	struct drm_gpuvm_bo *vm_bo;
2044 	int err;
2045 
2046 	lockdep_assert_held_write(&vm->lock);
2047 
2048 	vm_dbg(&vm->xe->drm,
2049 	       "op=%d, addr=0x%016llx, range=0x%016llx, bo_offset_or_userptr=0x%016llx",
2050 	       operation, (ULL)addr, (ULL)range,
2051 	       (ULL)bo_offset_or_userptr);
2052 
2053 	switch (operation) {
2054 	case DRM_XE_VM_BIND_OP_MAP:
2055 	case DRM_XE_VM_BIND_OP_MAP_USERPTR:
2056 		ops = drm_gpuvm_sm_map_ops_create(&vm->gpuvm, addr, range,
2057 						  obj, bo_offset_or_userptr);
2058 		break;
2059 	case DRM_XE_VM_BIND_OP_UNMAP:
2060 		ops = drm_gpuvm_sm_unmap_ops_create(&vm->gpuvm, addr, range);
2061 		break;
2062 	case DRM_XE_VM_BIND_OP_PREFETCH:
2063 		ops = drm_gpuvm_prefetch_ops_create(&vm->gpuvm, addr, range);
2064 		break;
2065 	case DRM_XE_VM_BIND_OP_UNMAP_ALL:
2066 		xe_assert(vm->xe, bo);
2067 
2068 		err = xe_bo_lock(bo, true);
2069 		if (err)
2070 			return ERR_PTR(err);
2071 
2072 		vm_bo = drm_gpuvm_bo_obtain(&vm->gpuvm, obj);
2073 		if (IS_ERR(vm_bo)) {
2074 			xe_bo_unlock(bo);
2075 			return ERR_CAST(vm_bo);
2076 		}
2077 
2078 		ops = drm_gpuvm_bo_unmap_ops_create(vm_bo);
2079 		drm_gpuvm_bo_put(vm_bo);
2080 		xe_bo_unlock(bo);
2081 		break;
2082 	default:
2083 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2084 		ops = ERR_PTR(-EINVAL);
2085 	}
2086 	if (IS_ERR(ops))
2087 		return ops;
2088 
2089 #ifdef TEST_VM_ASYNC_OPS_ERROR
2090 	if (operation & FORCE_ASYNC_OP_ERROR) {
2091 		op = list_first_entry_or_null(&ops->list, struct xe_vma_op,
2092 					      base.entry);
2093 		if (op)
2094 			op->inject_error = true;
2095 	}
2096 #endif
2097 
2098 	drm_gpuva_for_each_op(__op, ops) {
2099 		struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2100 
2101 		if (__op->op == DRM_GPUVA_OP_MAP) {
2102 			op->map.immediate =
2103 				flags & DRM_XE_VM_BIND_FLAG_IMMEDIATE;
2104 			op->map.read_only =
2105 				flags & DRM_XE_VM_BIND_FLAG_READONLY;
2106 			op->map.is_null = flags & DRM_XE_VM_BIND_FLAG_NULL;
2107 			op->map.pat_index = pat_index;
2108 		} else if (__op->op == DRM_GPUVA_OP_PREFETCH) {
2109 			op->prefetch.region = prefetch_region;
2110 		}
2111 
2112 		print_op(vm->xe, __op);
2113 	}
2114 
2115 	return ops;
2116 }
2117 
2118 static struct xe_vma *new_vma(struct xe_vm *vm, struct drm_gpuva_op_map *op,
2119 			      u16 pat_index, unsigned int flags)
2120 {
2121 	struct xe_bo *bo = op->gem.obj ? gem_to_xe_bo(op->gem.obj) : NULL;
2122 	struct drm_exec exec;
2123 	struct xe_vma *vma;
2124 	int err;
2125 
2126 	lockdep_assert_held_write(&vm->lock);
2127 
2128 	if (bo) {
2129 		drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
2130 		drm_exec_until_all_locked(&exec) {
2131 			err = 0;
2132 			if (!bo->vm) {
2133 				err = drm_exec_lock_obj(&exec, xe_vm_obj(vm));
2134 				drm_exec_retry_on_contention(&exec);
2135 			}
2136 			if (!err) {
2137 				err = drm_exec_lock_obj(&exec, &bo->ttm.base);
2138 				drm_exec_retry_on_contention(&exec);
2139 			}
2140 			if (err) {
2141 				drm_exec_fini(&exec);
2142 				return ERR_PTR(err);
2143 			}
2144 		}
2145 	}
2146 	vma = xe_vma_create(vm, bo, op->gem.offset,
2147 			    op->va.addr, op->va.addr +
2148 			    op->va.range - 1, pat_index, flags);
2149 	if (bo)
2150 		drm_exec_fini(&exec);
2151 
2152 	if (xe_vma_is_userptr(vma)) {
2153 		err = xe_vma_userptr_pin_pages(vma);
2154 		if (err) {
2155 			prep_vma_destroy(vm, vma, false);
2156 			xe_vma_destroy_unlocked(vma);
2157 			return ERR_PTR(err);
2158 		}
2159 	} else if (!xe_vma_has_no_bo(vma) && !bo->vm) {
2160 		err = add_preempt_fences(vm, bo);
2161 		if (err) {
2162 			prep_vma_destroy(vm, vma, false);
2163 			xe_vma_destroy_unlocked(vma);
2164 			return ERR_PTR(err);
2165 		}
2166 	}
2167 
2168 	return vma;
2169 }
2170 
2171 static u64 xe_vma_max_pte_size(struct xe_vma *vma)
2172 {
2173 	if (vma->gpuva.flags & XE_VMA_PTE_1G)
2174 		return SZ_1G;
2175 	else if (vma->gpuva.flags & XE_VMA_PTE_2M)
2176 		return SZ_2M;
2177 
2178 	return SZ_4K;
2179 }
2180 
2181 static u64 xe_vma_set_pte_size(struct xe_vma *vma, u64 size)
2182 {
2183 	switch (size) {
2184 	case SZ_1G:
2185 		vma->gpuva.flags |= XE_VMA_PTE_1G;
2186 		break;
2187 	case SZ_2M:
2188 		vma->gpuva.flags |= XE_VMA_PTE_2M;
2189 		break;
2190 	}
2191 
2192 	return SZ_4K;
2193 }
2194 
2195 static int xe_vma_op_commit(struct xe_vm *vm, struct xe_vma_op *op)
2196 {
2197 	int err = 0;
2198 
2199 	lockdep_assert_held_write(&vm->lock);
2200 
2201 	switch (op->base.op) {
2202 	case DRM_GPUVA_OP_MAP:
2203 		err |= xe_vm_insert_vma(vm, op->map.vma);
2204 		if (!err)
2205 			op->flags |= XE_VMA_OP_COMMITTED;
2206 		break;
2207 	case DRM_GPUVA_OP_REMAP:
2208 	{
2209 		u8 tile_present =
2210 			gpuva_to_vma(op->base.remap.unmap->va)->tile_present;
2211 
2212 		prep_vma_destroy(vm, gpuva_to_vma(op->base.remap.unmap->va),
2213 				 true);
2214 		op->flags |= XE_VMA_OP_COMMITTED;
2215 
2216 		if (op->remap.prev) {
2217 			err |= xe_vm_insert_vma(vm, op->remap.prev);
2218 			if (!err)
2219 				op->flags |= XE_VMA_OP_PREV_COMMITTED;
2220 			if (!err && op->remap.skip_prev) {
2221 				op->remap.prev->tile_present =
2222 					tile_present;
2223 				op->remap.prev = NULL;
2224 			}
2225 		}
2226 		if (op->remap.next) {
2227 			err |= xe_vm_insert_vma(vm, op->remap.next);
2228 			if (!err)
2229 				op->flags |= XE_VMA_OP_NEXT_COMMITTED;
2230 			if (!err && op->remap.skip_next) {
2231 				op->remap.next->tile_present =
2232 					tile_present;
2233 				op->remap.next = NULL;
2234 			}
2235 		}
2236 
2237 		/* Adjust for partial unbind after removin VMA from VM */
2238 		if (!err) {
2239 			op->base.remap.unmap->va->va.addr = op->remap.start;
2240 			op->base.remap.unmap->va->va.range = op->remap.range;
2241 		}
2242 		break;
2243 	}
2244 	case DRM_GPUVA_OP_UNMAP:
2245 		prep_vma_destroy(vm, gpuva_to_vma(op->base.unmap.va), true);
2246 		op->flags |= XE_VMA_OP_COMMITTED;
2247 		break;
2248 	case DRM_GPUVA_OP_PREFETCH:
2249 		op->flags |= XE_VMA_OP_COMMITTED;
2250 		break;
2251 	default:
2252 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2253 	}
2254 
2255 	return err;
2256 }
2257 
2258 
2259 static int vm_bind_ioctl_ops_parse(struct xe_vm *vm, struct xe_exec_queue *q,
2260 				   struct drm_gpuva_ops *ops,
2261 				   struct xe_sync_entry *syncs, u32 num_syncs,
2262 				   struct list_head *ops_list, bool last)
2263 {
2264 	struct xe_vma_op *last_op = NULL;
2265 	struct drm_gpuva_op *__op;
2266 	int err = 0;
2267 
2268 	lockdep_assert_held_write(&vm->lock);
2269 
2270 	drm_gpuva_for_each_op(__op, ops) {
2271 		struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2272 		struct xe_vma *vma;
2273 		bool first = list_empty(ops_list);
2274 		unsigned int flags = 0;
2275 
2276 		INIT_LIST_HEAD(&op->link);
2277 		list_add_tail(&op->link, ops_list);
2278 
2279 		if (first) {
2280 			op->flags |= XE_VMA_OP_FIRST;
2281 			op->num_syncs = num_syncs;
2282 			op->syncs = syncs;
2283 		}
2284 
2285 		op->q = q;
2286 
2287 		switch (op->base.op) {
2288 		case DRM_GPUVA_OP_MAP:
2289 		{
2290 			flags |= op->map.read_only ?
2291 				VMA_CREATE_FLAG_READ_ONLY : 0;
2292 			flags |= op->map.is_null ?
2293 				VMA_CREATE_FLAG_IS_NULL : 0;
2294 
2295 			vma = new_vma(vm, &op->base.map, op->map.pat_index,
2296 				      flags);
2297 			if (IS_ERR(vma))
2298 				return PTR_ERR(vma);
2299 
2300 			op->map.vma = vma;
2301 			break;
2302 		}
2303 		case DRM_GPUVA_OP_REMAP:
2304 		{
2305 			struct xe_vma *old =
2306 				gpuva_to_vma(op->base.remap.unmap->va);
2307 
2308 			op->remap.start = xe_vma_start(old);
2309 			op->remap.range = xe_vma_size(old);
2310 
2311 			if (op->base.remap.prev) {
2312 				flags |= op->base.remap.unmap->va->flags &
2313 					XE_VMA_READ_ONLY ?
2314 					VMA_CREATE_FLAG_READ_ONLY : 0;
2315 				flags |= op->base.remap.unmap->va->flags &
2316 					DRM_GPUVA_SPARSE ?
2317 					VMA_CREATE_FLAG_IS_NULL : 0;
2318 
2319 				vma = new_vma(vm, op->base.remap.prev,
2320 					      old->pat_index, flags);
2321 				if (IS_ERR(vma))
2322 					return PTR_ERR(vma);
2323 
2324 				op->remap.prev = vma;
2325 
2326 				/*
2327 				 * Userptr creates a new SG mapping so
2328 				 * we must also rebind.
2329 				 */
2330 				op->remap.skip_prev = !xe_vma_is_userptr(old) &&
2331 					IS_ALIGNED(xe_vma_end(vma),
2332 						   xe_vma_max_pte_size(old));
2333 				if (op->remap.skip_prev) {
2334 					xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old));
2335 					op->remap.range -=
2336 						xe_vma_end(vma) -
2337 						xe_vma_start(old);
2338 					op->remap.start = xe_vma_end(vma);
2339 				}
2340 			}
2341 
2342 			if (op->base.remap.next) {
2343 				flags |= op->base.remap.unmap->va->flags &
2344 					XE_VMA_READ_ONLY ?
2345 					VMA_CREATE_FLAG_READ_ONLY : 0;
2346 				flags |= op->base.remap.unmap->va->flags &
2347 					DRM_GPUVA_SPARSE ?
2348 					VMA_CREATE_FLAG_IS_NULL : 0;
2349 
2350 				vma = new_vma(vm, op->base.remap.next,
2351 					      old->pat_index, flags);
2352 				if (IS_ERR(vma))
2353 					return PTR_ERR(vma);
2354 
2355 				op->remap.next = vma;
2356 
2357 				/*
2358 				 * Userptr creates a new SG mapping so
2359 				 * we must also rebind.
2360 				 */
2361 				op->remap.skip_next = !xe_vma_is_userptr(old) &&
2362 					IS_ALIGNED(xe_vma_start(vma),
2363 						   xe_vma_max_pte_size(old));
2364 				if (op->remap.skip_next) {
2365 					xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old));
2366 					op->remap.range -=
2367 						xe_vma_end(old) -
2368 						xe_vma_start(vma);
2369 				}
2370 			}
2371 			break;
2372 		}
2373 		case DRM_GPUVA_OP_UNMAP:
2374 		case DRM_GPUVA_OP_PREFETCH:
2375 			/* Nothing to do */
2376 			break;
2377 		default:
2378 			drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2379 		}
2380 
2381 		last_op = op;
2382 
2383 		err = xe_vma_op_commit(vm, op);
2384 		if (err)
2385 			return err;
2386 	}
2387 
2388 	/* FIXME: Unhandled corner case */
2389 	XE_WARN_ON(!last_op && last && !list_empty(ops_list));
2390 
2391 	if (!last_op)
2392 		return 0;
2393 
2394 	last_op->ops = ops;
2395 	if (last) {
2396 		last_op->flags |= XE_VMA_OP_LAST;
2397 		last_op->num_syncs = num_syncs;
2398 		last_op->syncs = syncs;
2399 	}
2400 
2401 	return 0;
2402 }
2403 
2404 static int op_execute(struct drm_exec *exec, struct xe_vm *vm,
2405 		      struct xe_vma *vma, struct xe_vma_op *op)
2406 {
2407 	int err;
2408 
2409 	lockdep_assert_held_write(&vm->lock);
2410 
2411 	err = xe_vm_prepare_vma(exec, vma, 1);
2412 	if (err)
2413 		return err;
2414 
2415 	xe_vm_assert_held(vm);
2416 	xe_bo_assert_held(xe_vma_bo(vma));
2417 
2418 	switch (op->base.op) {
2419 	case DRM_GPUVA_OP_MAP:
2420 		err = xe_vm_bind(vm, vma, op->q, xe_vma_bo(vma),
2421 				 op->syncs, op->num_syncs,
2422 				 op->map.immediate || !xe_vm_in_fault_mode(vm),
2423 				 op->flags & XE_VMA_OP_FIRST,
2424 				 op->flags & XE_VMA_OP_LAST);
2425 		break;
2426 	case DRM_GPUVA_OP_REMAP:
2427 	{
2428 		bool prev = !!op->remap.prev;
2429 		bool next = !!op->remap.next;
2430 
2431 		if (!op->remap.unmap_done) {
2432 			if (prev || next)
2433 				vma->gpuva.flags |= XE_VMA_FIRST_REBIND;
2434 			err = xe_vm_unbind(vm, vma, op->q, op->syncs,
2435 					   op->num_syncs,
2436 					   op->flags & XE_VMA_OP_FIRST,
2437 					   op->flags & XE_VMA_OP_LAST &&
2438 					   !prev && !next);
2439 			if (err)
2440 				break;
2441 			op->remap.unmap_done = true;
2442 		}
2443 
2444 		if (prev) {
2445 			op->remap.prev->gpuva.flags |= XE_VMA_LAST_REBIND;
2446 			err = xe_vm_bind(vm, op->remap.prev, op->q,
2447 					 xe_vma_bo(op->remap.prev), op->syncs,
2448 					 op->num_syncs, true, false,
2449 					 op->flags & XE_VMA_OP_LAST && !next);
2450 			op->remap.prev->gpuva.flags &= ~XE_VMA_LAST_REBIND;
2451 			if (err)
2452 				break;
2453 			op->remap.prev = NULL;
2454 		}
2455 
2456 		if (next) {
2457 			op->remap.next->gpuva.flags |= XE_VMA_LAST_REBIND;
2458 			err = xe_vm_bind(vm, op->remap.next, op->q,
2459 					 xe_vma_bo(op->remap.next),
2460 					 op->syncs, op->num_syncs,
2461 					 true, false,
2462 					 op->flags & XE_VMA_OP_LAST);
2463 			op->remap.next->gpuva.flags &= ~XE_VMA_LAST_REBIND;
2464 			if (err)
2465 				break;
2466 			op->remap.next = NULL;
2467 		}
2468 
2469 		break;
2470 	}
2471 	case DRM_GPUVA_OP_UNMAP:
2472 		err = xe_vm_unbind(vm, vma, op->q, op->syncs,
2473 				   op->num_syncs, op->flags & XE_VMA_OP_FIRST,
2474 				   op->flags & XE_VMA_OP_LAST);
2475 		break;
2476 	case DRM_GPUVA_OP_PREFETCH:
2477 		err = xe_vm_prefetch(vm, vma, op->q, op->prefetch.region,
2478 				     op->syncs, op->num_syncs,
2479 				     op->flags & XE_VMA_OP_FIRST,
2480 				     op->flags & XE_VMA_OP_LAST);
2481 		break;
2482 	default:
2483 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2484 	}
2485 
2486 	if (err)
2487 		trace_xe_vma_fail(vma);
2488 
2489 	return err;
2490 }
2491 
2492 static int __xe_vma_op_execute(struct xe_vm *vm, struct xe_vma *vma,
2493 			       struct xe_vma_op *op)
2494 {
2495 	struct drm_exec exec;
2496 	int err;
2497 
2498 retry_userptr:
2499 	drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
2500 	drm_exec_until_all_locked(&exec) {
2501 		err = op_execute(&exec, vm, vma, op);
2502 		drm_exec_retry_on_contention(&exec);
2503 		if (err)
2504 			break;
2505 	}
2506 	drm_exec_fini(&exec);
2507 
2508 	if (err == -EAGAIN && xe_vma_is_userptr(vma)) {
2509 		lockdep_assert_held_write(&vm->lock);
2510 		err = xe_vma_userptr_pin_pages(vma);
2511 		if (!err)
2512 			goto retry_userptr;
2513 
2514 		trace_xe_vma_fail(vma);
2515 	}
2516 
2517 	return err;
2518 }
2519 
2520 static int xe_vma_op_execute(struct xe_vm *vm, struct xe_vma_op *op)
2521 {
2522 	int ret = 0;
2523 
2524 	lockdep_assert_held_write(&vm->lock);
2525 
2526 #ifdef TEST_VM_ASYNC_OPS_ERROR
2527 	if (op->inject_error) {
2528 		op->inject_error = false;
2529 		return -ENOMEM;
2530 	}
2531 #endif
2532 
2533 	switch (op->base.op) {
2534 	case DRM_GPUVA_OP_MAP:
2535 		ret = __xe_vma_op_execute(vm, op->map.vma, op);
2536 		break;
2537 	case DRM_GPUVA_OP_REMAP:
2538 	{
2539 		struct xe_vma *vma;
2540 
2541 		if (!op->remap.unmap_done)
2542 			vma = gpuva_to_vma(op->base.remap.unmap->va);
2543 		else if (op->remap.prev)
2544 			vma = op->remap.prev;
2545 		else
2546 			vma = op->remap.next;
2547 
2548 		ret = __xe_vma_op_execute(vm, vma, op);
2549 		break;
2550 	}
2551 	case DRM_GPUVA_OP_UNMAP:
2552 		ret = __xe_vma_op_execute(vm, gpuva_to_vma(op->base.unmap.va),
2553 					  op);
2554 		break;
2555 	case DRM_GPUVA_OP_PREFETCH:
2556 		ret = __xe_vma_op_execute(vm,
2557 					  gpuva_to_vma(op->base.prefetch.va),
2558 					  op);
2559 		break;
2560 	default:
2561 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2562 	}
2563 
2564 	return ret;
2565 }
2566 
2567 static void xe_vma_op_cleanup(struct xe_vm *vm, struct xe_vma_op *op)
2568 {
2569 	bool last = op->flags & XE_VMA_OP_LAST;
2570 
2571 	if (last) {
2572 		while (op->num_syncs--)
2573 			xe_sync_entry_cleanup(&op->syncs[op->num_syncs]);
2574 		kfree(op->syncs);
2575 		if (op->q)
2576 			xe_exec_queue_put(op->q);
2577 	}
2578 	if (!list_empty(&op->link))
2579 		list_del(&op->link);
2580 	if (op->ops)
2581 		drm_gpuva_ops_free(&vm->gpuvm, op->ops);
2582 	if (last)
2583 		xe_vm_put(vm);
2584 }
2585 
2586 static void xe_vma_op_unwind(struct xe_vm *vm, struct xe_vma_op *op,
2587 			     bool post_commit, bool prev_post_commit,
2588 			     bool next_post_commit)
2589 {
2590 	lockdep_assert_held_write(&vm->lock);
2591 
2592 	switch (op->base.op) {
2593 	case DRM_GPUVA_OP_MAP:
2594 		if (op->map.vma) {
2595 			prep_vma_destroy(vm, op->map.vma, post_commit);
2596 			xe_vma_destroy_unlocked(op->map.vma);
2597 		}
2598 		break;
2599 	case DRM_GPUVA_OP_UNMAP:
2600 	{
2601 		struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2602 
2603 		if (vma) {
2604 			down_read(&vm->userptr.notifier_lock);
2605 			vma->gpuva.flags &= ~XE_VMA_DESTROYED;
2606 			up_read(&vm->userptr.notifier_lock);
2607 			if (post_commit)
2608 				xe_vm_insert_vma(vm, vma);
2609 		}
2610 		break;
2611 	}
2612 	case DRM_GPUVA_OP_REMAP:
2613 	{
2614 		struct xe_vma *vma = gpuva_to_vma(op->base.remap.unmap->va);
2615 
2616 		if (op->remap.prev) {
2617 			prep_vma_destroy(vm, op->remap.prev, prev_post_commit);
2618 			xe_vma_destroy_unlocked(op->remap.prev);
2619 		}
2620 		if (op->remap.next) {
2621 			prep_vma_destroy(vm, op->remap.next, next_post_commit);
2622 			xe_vma_destroy_unlocked(op->remap.next);
2623 		}
2624 		if (vma) {
2625 			down_read(&vm->userptr.notifier_lock);
2626 			vma->gpuva.flags &= ~XE_VMA_DESTROYED;
2627 			up_read(&vm->userptr.notifier_lock);
2628 			if (post_commit)
2629 				xe_vm_insert_vma(vm, vma);
2630 		}
2631 		break;
2632 	}
2633 	case DRM_GPUVA_OP_PREFETCH:
2634 		/* Nothing to do */
2635 		break;
2636 	default:
2637 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2638 	}
2639 }
2640 
2641 static void vm_bind_ioctl_ops_unwind(struct xe_vm *vm,
2642 				     struct drm_gpuva_ops **ops,
2643 				     int num_ops_list)
2644 {
2645 	int i;
2646 
2647 	for (i = num_ops_list - 1; i; ++i) {
2648 		struct drm_gpuva_ops *__ops = ops[i];
2649 		struct drm_gpuva_op *__op;
2650 
2651 		if (!__ops)
2652 			continue;
2653 
2654 		drm_gpuva_for_each_op_reverse(__op, __ops) {
2655 			struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2656 
2657 			xe_vma_op_unwind(vm, op,
2658 					 op->flags & XE_VMA_OP_COMMITTED,
2659 					 op->flags & XE_VMA_OP_PREV_COMMITTED,
2660 					 op->flags & XE_VMA_OP_NEXT_COMMITTED);
2661 		}
2662 
2663 		drm_gpuva_ops_free(&vm->gpuvm, __ops);
2664 	}
2665 }
2666 
2667 static int vm_bind_ioctl_ops_execute(struct xe_vm *vm,
2668 				     struct list_head *ops_list)
2669 {
2670 	struct xe_vma_op *op, *next;
2671 	int err;
2672 
2673 	lockdep_assert_held_write(&vm->lock);
2674 
2675 	list_for_each_entry_safe(op, next, ops_list, link) {
2676 		err = xe_vma_op_execute(vm, op);
2677 		if (err) {
2678 			drm_warn(&vm->xe->drm, "VM op(%d) failed with %d",
2679 				 op->base.op, err);
2680 			/*
2681 			 * FIXME: Killing VM rather than proper error handling
2682 			 */
2683 			xe_vm_kill(vm);
2684 			return -ENOSPC;
2685 		}
2686 		xe_vma_op_cleanup(vm, op);
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 #ifdef TEST_VM_ASYNC_OPS_ERROR
2693 #define SUPPORTED_FLAGS	\
2694 	(FORCE_ASYNC_OP_ERROR | DRM_XE_VM_BIND_FLAG_READONLY | \
2695 	 DRM_XE_VM_BIND_FLAG_IMMEDIATE | DRM_XE_VM_BIND_FLAG_NULL | 0xffff)
2696 #else
2697 #define SUPPORTED_FLAGS	\
2698 	(DRM_XE_VM_BIND_FLAG_READONLY | \
2699 	 DRM_XE_VM_BIND_FLAG_IMMEDIATE | DRM_XE_VM_BIND_FLAG_NULL | \
2700 	 0xffff)
2701 #endif
2702 #define XE_64K_PAGE_MASK 0xffffull
2703 #define ALL_DRM_XE_SYNCS_FLAGS (DRM_XE_SYNCS_FLAG_WAIT_FOR_OP)
2704 
2705 #define MAX_BINDS	512	/* FIXME: Picking random upper limit */
2706 
2707 static int vm_bind_ioctl_check_args(struct xe_device *xe,
2708 				    struct drm_xe_vm_bind *args,
2709 				    struct drm_xe_vm_bind_op **bind_ops)
2710 {
2711 	int err;
2712 	int i;
2713 
2714 	if (XE_IOCTL_DBG(xe, args->pad || args->pad2) ||
2715 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2716 		return -EINVAL;
2717 
2718 	if (XE_IOCTL_DBG(xe, args->extensions) ||
2719 	    XE_IOCTL_DBG(xe, args->num_binds > MAX_BINDS))
2720 		return -EINVAL;
2721 
2722 	if (args->num_binds > 1) {
2723 		u64 __user *bind_user =
2724 			u64_to_user_ptr(args->vector_of_binds);
2725 
2726 		*bind_ops = kmalloc(sizeof(struct drm_xe_vm_bind_op) *
2727 				    args->num_binds, GFP_KERNEL);
2728 		if (!*bind_ops)
2729 			return -ENOMEM;
2730 
2731 		err = __copy_from_user(*bind_ops, bind_user,
2732 				       sizeof(struct drm_xe_vm_bind_op) *
2733 				       args->num_binds);
2734 		if (XE_IOCTL_DBG(xe, err)) {
2735 			err = -EFAULT;
2736 			goto free_bind_ops;
2737 		}
2738 	} else {
2739 		*bind_ops = &args->bind;
2740 	}
2741 
2742 	for (i = 0; i < args->num_binds; ++i) {
2743 		u64 range = (*bind_ops)[i].range;
2744 		u64 addr = (*bind_ops)[i].addr;
2745 		u32 op = (*bind_ops)[i].op;
2746 		u32 flags = (*bind_ops)[i].flags;
2747 		u32 obj = (*bind_ops)[i].obj;
2748 		u64 obj_offset = (*bind_ops)[i].obj_offset;
2749 		u32 prefetch_region = (*bind_ops)[i].prefetch_mem_region_instance;
2750 		bool is_null = flags & DRM_XE_VM_BIND_FLAG_NULL;
2751 		u16 pat_index = (*bind_ops)[i].pat_index;
2752 		u16 coh_mode;
2753 
2754 		if (XE_IOCTL_DBG(xe, pat_index >= xe->pat.n_entries)) {
2755 			err = -EINVAL;
2756 			goto free_bind_ops;
2757 		}
2758 
2759 		pat_index = array_index_nospec(pat_index, xe->pat.n_entries);
2760 		(*bind_ops)[i].pat_index = pat_index;
2761 		coh_mode = xe_pat_index_get_coh_mode(xe, pat_index);
2762 		if (XE_IOCTL_DBG(xe, !coh_mode)) { /* hw reserved */
2763 			err = -EINVAL;
2764 			goto free_bind_ops;
2765 		}
2766 
2767 		if (XE_WARN_ON(coh_mode > XE_COH_AT_LEAST_1WAY)) {
2768 			err = -EINVAL;
2769 			goto free_bind_ops;
2770 		}
2771 
2772 		if (XE_IOCTL_DBG(xe, op > DRM_XE_VM_BIND_OP_PREFETCH) ||
2773 		    XE_IOCTL_DBG(xe, flags & ~SUPPORTED_FLAGS) ||
2774 		    XE_IOCTL_DBG(xe, obj && is_null) ||
2775 		    XE_IOCTL_DBG(xe, obj_offset && is_null) ||
2776 		    XE_IOCTL_DBG(xe, op != DRM_XE_VM_BIND_OP_MAP &&
2777 				 is_null) ||
2778 		    XE_IOCTL_DBG(xe, !obj &&
2779 				 op == DRM_XE_VM_BIND_OP_MAP &&
2780 				 !is_null) ||
2781 		    XE_IOCTL_DBG(xe, !obj &&
2782 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2783 		    XE_IOCTL_DBG(xe, addr &&
2784 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2785 		    XE_IOCTL_DBG(xe, range &&
2786 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2787 		    XE_IOCTL_DBG(xe, obj &&
2788 				 op == DRM_XE_VM_BIND_OP_MAP_USERPTR) ||
2789 		    XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE &&
2790 				 op == DRM_XE_VM_BIND_OP_MAP_USERPTR) ||
2791 		    XE_IOCTL_DBG(xe, obj &&
2792 				 op == DRM_XE_VM_BIND_OP_PREFETCH) ||
2793 		    XE_IOCTL_DBG(xe, prefetch_region &&
2794 				 op != DRM_XE_VM_BIND_OP_PREFETCH) ||
2795 		    XE_IOCTL_DBG(xe, !(BIT(prefetch_region) &
2796 				       xe->info.mem_region_mask)) ||
2797 		    XE_IOCTL_DBG(xe, obj &&
2798 				 op == DRM_XE_VM_BIND_OP_UNMAP)) {
2799 			err = -EINVAL;
2800 			goto free_bind_ops;
2801 		}
2802 
2803 		if (XE_IOCTL_DBG(xe, obj_offset & ~PAGE_MASK) ||
2804 		    XE_IOCTL_DBG(xe, addr & ~PAGE_MASK) ||
2805 		    XE_IOCTL_DBG(xe, range & ~PAGE_MASK) ||
2806 		    XE_IOCTL_DBG(xe, !range &&
2807 				 op != DRM_XE_VM_BIND_OP_UNMAP_ALL)) {
2808 			err = -EINVAL;
2809 			goto free_bind_ops;
2810 		}
2811 	}
2812 
2813 	return 0;
2814 
2815 free_bind_ops:
2816 	if (args->num_binds > 1)
2817 		kfree(*bind_ops);
2818 	return err;
2819 }
2820 
2821 static int vm_bind_ioctl_signal_fences(struct xe_vm *vm,
2822 				       struct xe_exec_queue *q,
2823 				       struct xe_sync_entry *syncs,
2824 				       int num_syncs)
2825 {
2826 	struct dma_fence *fence;
2827 	int i, err = 0;
2828 
2829 	fence = xe_sync_in_fence_get(syncs, num_syncs,
2830 				     to_wait_exec_queue(vm, q), vm);
2831 	if (IS_ERR(fence))
2832 		return PTR_ERR(fence);
2833 
2834 	for (i = 0; i < num_syncs; i++)
2835 		xe_sync_entry_signal(&syncs[i], NULL, fence);
2836 
2837 	xe_exec_queue_last_fence_set(to_wait_exec_queue(vm, q), vm,
2838 				     fence);
2839 	dma_fence_put(fence);
2840 
2841 	return err;
2842 }
2843 
2844 int xe_vm_bind_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2845 {
2846 	struct xe_device *xe = to_xe_device(dev);
2847 	struct xe_file *xef = to_xe_file(file);
2848 	struct drm_xe_vm_bind *args = data;
2849 	struct drm_xe_sync __user *syncs_user;
2850 	struct xe_bo **bos = NULL;
2851 	struct drm_gpuva_ops **ops = NULL;
2852 	struct xe_vm *vm;
2853 	struct xe_exec_queue *q = NULL;
2854 	u32 num_syncs;
2855 	struct xe_sync_entry *syncs = NULL;
2856 	struct drm_xe_vm_bind_op *bind_ops;
2857 	LIST_HEAD(ops_list);
2858 	int err;
2859 	int i;
2860 
2861 	err = vm_bind_ioctl_check_args(xe, args, &bind_ops);
2862 	if (err)
2863 		return err;
2864 
2865 	if (args->exec_queue_id) {
2866 		q = xe_exec_queue_lookup(xef, args->exec_queue_id);
2867 		if (XE_IOCTL_DBG(xe, !q)) {
2868 			err = -ENOENT;
2869 			goto free_objs;
2870 		}
2871 
2872 		if (XE_IOCTL_DBG(xe, !(q->flags & EXEC_QUEUE_FLAG_VM))) {
2873 			err = -EINVAL;
2874 			goto put_exec_queue;
2875 		}
2876 	}
2877 
2878 	vm = xe_vm_lookup(xef, args->vm_id);
2879 	if (XE_IOCTL_DBG(xe, !vm)) {
2880 		err = -EINVAL;
2881 		goto put_exec_queue;
2882 	}
2883 
2884 	err = down_write_killable(&vm->lock);
2885 	if (err)
2886 		goto put_vm;
2887 
2888 	if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
2889 		err = -ENOENT;
2890 		goto release_vm_lock;
2891 	}
2892 
2893 	for (i = 0; i < args->num_binds; ++i) {
2894 		u64 range = bind_ops[i].range;
2895 		u64 addr = bind_ops[i].addr;
2896 
2897 		if (XE_IOCTL_DBG(xe, range > vm->size) ||
2898 		    XE_IOCTL_DBG(xe, addr > vm->size - range)) {
2899 			err = -EINVAL;
2900 			goto release_vm_lock;
2901 		}
2902 	}
2903 
2904 	if (args->num_binds) {
2905 		bos = kcalloc(args->num_binds, sizeof(*bos), GFP_KERNEL);
2906 		if (!bos) {
2907 			err = -ENOMEM;
2908 			goto release_vm_lock;
2909 		}
2910 
2911 		ops = kcalloc(args->num_binds, sizeof(*ops), GFP_KERNEL);
2912 		if (!ops) {
2913 			err = -ENOMEM;
2914 			goto release_vm_lock;
2915 		}
2916 	}
2917 
2918 	for (i = 0; i < args->num_binds; ++i) {
2919 		struct drm_gem_object *gem_obj;
2920 		u64 range = bind_ops[i].range;
2921 		u64 addr = bind_ops[i].addr;
2922 		u32 obj = bind_ops[i].obj;
2923 		u64 obj_offset = bind_ops[i].obj_offset;
2924 		u16 pat_index = bind_ops[i].pat_index;
2925 		u16 coh_mode;
2926 
2927 		if (!obj)
2928 			continue;
2929 
2930 		gem_obj = drm_gem_object_lookup(file, obj);
2931 		if (XE_IOCTL_DBG(xe, !gem_obj)) {
2932 			err = -ENOENT;
2933 			goto put_obj;
2934 		}
2935 		bos[i] = gem_to_xe_bo(gem_obj);
2936 
2937 		if (XE_IOCTL_DBG(xe, range > bos[i]->size) ||
2938 		    XE_IOCTL_DBG(xe, obj_offset >
2939 				 bos[i]->size - range)) {
2940 			err = -EINVAL;
2941 			goto put_obj;
2942 		}
2943 
2944 		if (bos[i]->flags & XE_BO_INTERNAL_64K) {
2945 			if (XE_IOCTL_DBG(xe, obj_offset &
2946 					 XE_64K_PAGE_MASK) ||
2947 			    XE_IOCTL_DBG(xe, addr & XE_64K_PAGE_MASK) ||
2948 			    XE_IOCTL_DBG(xe, range & XE_64K_PAGE_MASK)) {
2949 				err = -EINVAL;
2950 				goto put_obj;
2951 			}
2952 		}
2953 
2954 		coh_mode = xe_pat_index_get_coh_mode(xe, pat_index);
2955 		if (bos[i]->cpu_caching) {
2956 			if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE &&
2957 					 bos[i]->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) {
2958 				err = -EINVAL;
2959 				goto put_obj;
2960 			}
2961 		} else if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE)) {
2962 			/*
2963 			 * Imported dma-buf from a different device should
2964 			 * require 1way or 2way coherency since we don't know
2965 			 * how it was mapped on the CPU. Just assume is it
2966 			 * potentially cached on CPU side.
2967 			 */
2968 			err = -EINVAL;
2969 			goto put_obj;
2970 		}
2971 	}
2972 
2973 	if (args->num_syncs) {
2974 		syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL);
2975 		if (!syncs) {
2976 			err = -ENOMEM;
2977 			goto put_obj;
2978 		}
2979 	}
2980 
2981 	syncs_user = u64_to_user_ptr(args->syncs);
2982 	for (num_syncs = 0; num_syncs < args->num_syncs; num_syncs++) {
2983 		err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs],
2984 					  &syncs_user[num_syncs],
2985 					  (xe_vm_in_lr_mode(vm) ?
2986 					   SYNC_PARSE_FLAG_LR_MODE : 0) |
2987 					  (!args->num_binds ?
2988 					   SYNC_PARSE_FLAG_DISALLOW_USER_FENCE : 0));
2989 		if (err)
2990 			goto free_syncs;
2991 	}
2992 
2993 	if (!args->num_binds) {
2994 		err = -ENODATA;
2995 		goto free_syncs;
2996 	}
2997 
2998 	for (i = 0; i < args->num_binds; ++i) {
2999 		u64 range = bind_ops[i].range;
3000 		u64 addr = bind_ops[i].addr;
3001 		u32 op = bind_ops[i].op;
3002 		u32 flags = bind_ops[i].flags;
3003 		u64 obj_offset = bind_ops[i].obj_offset;
3004 		u32 prefetch_region = bind_ops[i].prefetch_mem_region_instance;
3005 		u16 pat_index = bind_ops[i].pat_index;
3006 
3007 		ops[i] = vm_bind_ioctl_ops_create(vm, bos[i], obj_offset,
3008 						  addr, range, op, flags,
3009 						  prefetch_region, pat_index);
3010 		if (IS_ERR(ops[i])) {
3011 			err = PTR_ERR(ops[i]);
3012 			ops[i] = NULL;
3013 			goto unwind_ops;
3014 		}
3015 
3016 		err = vm_bind_ioctl_ops_parse(vm, q, ops[i], syncs, num_syncs,
3017 					      &ops_list,
3018 					      i == args->num_binds - 1);
3019 		if (err)
3020 			goto unwind_ops;
3021 	}
3022 
3023 	/* Nothing to do */
3024 	if (list_empty(&ops_list)) {
3025 		err = -ENODATA;
3026 		goto unwind_ops;
3027 	}
3028 
3029 	xe_vm_get(vm);
3030 	if (q)
3031 		xe_exec_queue_get(q);
3032 
3033 	err = vm_bind_ioctl_ops_execute(vm, &ops_list);
3034 
3035 	up_write(&vm->lock);
3036 
3037 	if (q)
3038 		xe_exec_queue_put(q);
3039 	xe_vm_put(vm);
3040 
3041 	for (i = 0; bos && i < args->num_binds; ++i)
3042 		xe_bo_put(bos[i]);
3043 
3044 	kfree(bos);
3045 	kfree(ops);
3046 	if (args->num_binds > 1)
3047 		kfree(bind_ops);
3048 
3049 	return err;
3050 
3051 unwind_ops:
3052 	vm_bind_ioctl_ops_unwind(vm, ops, args->num_binds);
3053 free_syncs:
3054 	if (err == -ENODATA)
3055 		err = vm_bind_ioctl_signal_fences(vm, q, syncs, num_syncs);
3056 	while (num_syncs--)
3057 		xe_sync_entry_cleanup(&syncs[num_syncs]);
3058 
3059 	kfree(syncs);
3060 put_obj:
3061 	for (i = 0; i < args->num_binds; ++i)
3062 		xe_bo_put(bos[i]);
3063 release_vm_lock:
3064 	up_write(&vm->lock);
3065 put_vm:
3066 	xe_vm_put(vm);
3067 put_exec_queue:
3068 	if (q)
3069 		xe_exec_queue_put(q);
3070 free_objs:
3071 	kfree(bos);
3072 	kfree(ops);
3073 	if (args->num_binds > 1)
3074 		kfree(bind_ops);
3075 	return err;
3076 }
3077 
3078 /**
3079  * xe_vm_lock() - Lock the vm's dma_resv object
3080  * @vm: The struct xe_vm whose lock is to be locked
3081  * @intr: Whether to perform any wait interruptible
3082  *
3083  * Return: 0 on success, -EINTR if @intr is true and the wait for a
3084  * contended lock was interrupted. If @intr is false, the function
3085  * always returns 0.
3086  */
3087 int xe_vm_lock(struct xe_vm *vm, bool intr)
3088 {
3089 	if (intr)
3090 		return dma_resv_lock_interruptible(xe_vm_resv(vm), NULL);
3091 
3092 	return dma_resv_lock(xe_vm_resv(vm), NULL);
3093 }
3094 
3095 /**
3096  * xe_vm_unlock() - Unlock the vm's dma_resv object
3097  * @vm: The struct xe_vm whose lock is to be released.
3098  *
3099  * Unlock a buffer object lock that was locked by xe_vm_lock().
3100  */
3101 void xe_vm_unlock(struct xe_vm *vm)
3102 {
3103 	dma_resv_unlock(xe_vm_resv(vm));
3104 }
3105 
3106 /**
3107  * xe_vm_invalidate_vma - invalidate GPU mappings for VMA without a lock
3108  * @vma: VMA to invalidate
3109  *
3110  * Walks a list of page tables leaves which it memset the entries owned by this
3111  * VMA to zero, invalidates the TLBs, and block until TLBs invalidation is
3112  * complete.
3113  *
3114  * Returns 0 for success, negative error code otherwise.
3115  */
3116 int xe_vm_invalidate_vma(struct xe_vma *vma)
3117 {
3118 	struct xe_device *xe = xe_vma_vm(vma)->xe;
3119 	struct xe_tile *tile;
3120 	u32 tile_needs_invalidate = 0;
3121 	int seqno[XE_MAX_TILES_PER_DEVICE];
3122 	u8 id;
3123 	int ret;
3124 
3125 	xe_assert(xe, xe_vm_in_fault_mode(xe_vma_vm(vma)));
3126 	xe_assert(xe, !xe_vma_is_null(vma));
3127 	trace_xe_vma_usm_invalidate(vma);
3128 
3129 	/* Check that we don't race with page-table updates */
3130 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
3131 		if (xe_vma_is_userptr(vma)) {
3132 			WARN_ON_ONCE(!mmu_interval_check_retry
3133 				     (&vma->userptr.notifier,
3134 				      vma->userptr.notifier_seq));
3135 			WARN_ON_ONCE(!dma_resv_test_signaled(xe_vm_resv(xe_vma_vm(vma)),
3136 							     DMA_RESV_USAGE_BOOKKEEP));
3137 
3138 		} else {
3139 			xe_bo_assert_held(xe_vma_bo(vma));
3140 		}
3141 	}
3142 
3143 	for_each_tile(tile, xe, id) {
3144 		if (xe_pt_zap_ptes(tile, vma)) {
3145 			tile_needs_invalidate |= BIT(id);
3146 			xe_device_wmb(xe);
3147 			/*
3148 			 * FIXME: We potentially need to invalidate multiple
3149 			 * GTs within the tile
3150 			 */
3151 			seqno[id] = xe_gt_tlb_invalidation_vma(tile->primary_gt, NULL, vma);
3152 			if (seqno[id] < 0)
3153 				return seqno[id];
3154 		}
3155 	}
3156 
3157 	for_each_tile(tile, xe, id) {
3158 		if (tile_needs_invalidate & BIT(id)) {
3159 			ret = xe_gt_tlb_invalidation_wait(tile->primary_gt, seqno[id]);
3160 			if (ret < 0)
3161 				return ret;
3162 		}
3163 	}
3164 
3165 	vma->usm.tile_invalidated = vma->tile_mask;
3166 
3167 	return 0;
3168 }
3169 
3170 int xe_analyze_vm(struct drm_printer *p, struct xe_vm *vm, int gt_id)
3171 {
3172 	struct drm_gpuva *gpuva;
3173 	bool is_vram;
3174 	uint64_t addr;
3175 
3176 	if (!down_read_trylock(&vm->lock)) {
3177 		drm_printf(p, " Failed to acquire VM lock to dump capture");
3178 		return 0;
3179 	}
3180 	if (vm->pt_root[gt_id]) {
3181 		addr = xe_bo_addr(vm->pt_root[gt_id]->bo, 0, XE_PAGE_SIZE);
3182 		is_vram = xe_bo_is_vram(vm->pt_root[gt_id]->bo);
3183 		drm_printf(p, " VM root: A:0x%llx %s\n", addr,
3184 			   is_vram ? "VRAM" : "SYS");
3185 	}
3186 
3187 	drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) {
3188 		struct xe_vma *vma = gpuva_to_vma(gpuva);
3189 		bool is_userptr = xe_vma_is_userptr(vma);
3190 		bool is_null = xe_vma_is_null(vma);
3191 
3192 		if (is_null) {
3193 			addr = 0;
3194 		} else if (is_userptr) {
3195 			struct xe_res_cursor cur;
3196 
3197 			if (vma->userptr.sg) {
3198 				xe_res_first_sg(vma->userptr.sg, 0, XE_PAGE_SIZE,
3199 						&cur);
3200 				addr = xe_res_dma(&cur);
3201 			} else {
3202 				addr = 0;
3203 			}
3204 		} else {
3205 			addr = __xe_bo_addr(xe_vma_bo(vma), 0, XE_PAGE_SIZE);
3206 			is_vram = xe_bo_is_vram(xe_vma_bo(vma));
3207 		}
3208 		drm_printf(p, " [%016llx-%016llx] S:0x%016llx A:%016llx %s\n",
3209 			   xe_vma_start(vma), xe_vma_end(vma) - 1,
3210 			   xe_vma_size(vma),
3211 			   addr, is_null ? "NULL" : is_userptr ? "USR" :
3212 			   is_vram ? "VRAM" : "SYS");
3213 	}
3214 	up_read(&vm->lock);
3215 
3216 	return 0;
3217 }
3218