1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2021 Intel Corporation 4 */ 5 6 #include "xe_vm.h" 7 8 #include <linux/dma-fence-array.h> 9 #include <linux/nospec.h> 10 11 #include <drm/drm_drv.h> 12 #include <drm/drm_exec.h> 13 #include <drm/drm_print.h> 14 #include <drm/ttm/ttm_tt.h> 15 #include <uapi/drm/xe_drm.h> 16 #include <linux/ascii85.h> 17 #include <linux/delay.h> 18 #include <linux/kthread.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 22 #include <generated/xe_wa_oob.h> 23 24 #include "regs/xe_gtt_defs.h" 25 #include "xe_assert.h" 26 #include "xe_bo.h" 27 #include "xe_device.h" 28 #include "xe_drm_client.h" 29 #include "xe_exec_queue.h" 30 #include "xe_gt_pagefault.h" 31 #include "xe_gt_tlb_invalidation.h" 32 #include "xe_migrate.h" 33 #include "xe_pat.h" 34 #include "xe_pm.h" 35 #include "xe_preempt_fence.h" 36 #include "xe_pt.h" 37 #include "xe_pxp.h" 38 #include "xe_res_cursor.h" 39 #include "xe_svm.h" 40 #include "xe_sync.h" 41 #include "xe_trace_bo.h" 42 #include "xe_wa.h" 43 #include "xe_hmm.h" 44 45 static struct drm_gem_object *xe_vm_obj(struct xe_vm *vm) 46 { 47 return vm->gpuvm.r_obj; 48 } 49 50 /** 51 * xe_vma_userptr_check_repin() - Advisory check for repin needed 52 * @uvma: The userptr vma 53 * 54 * Check if the userptr vma has been invalidated since last successful 55 * repin. The check is advisory only and can the function can be called 56 * without the vm->userptr.notifier_lock held. There is no guarantee that the 57 * vma userptr will remain valid after a lockless check, so typically 58 * the call needs to be followed by a proper check under the notifier_lock. 59 * 60 * Return: 0 if userptr vma is valid, -EAGAIN otherwise; repin recommended. 61 */ 62 int xe_vma_userptr_check_repin(struct xe_userptr_vma *uvma) 63 { 64 return mmu_interval_check_retry(&uvma->userptr.notifier, 65 uvma->userptr.notifier_seq) ? 66 -EAGAIN : 0; 67 } 68 69 int xe_vma_userptr_pin_pages(struct xe_userptr_vma *uvma) 70 { 71 struct xe_vma *vma = &uvma->vma; 72 struct xe_vm *vm = xe_vma_vm(vma); 73 struct xe_device *xe = vm->xe; 74 75 lockdep_assert_held(&vm->lock); 76 xe_assert(xe, xe_vma_is_userptr(vma)); 77 78 return xe_hmm_userptr_populate_range(uvma, false); 79 } 80 81 static bool preempt_fences_waiting(struct xe_vm *vm) 82 { 83 struct xe_exec_queue *q; 84 85 lockdep_assert_held(&vm->lock); 86 xe_vm_assert_held(vm); 87 88 list_for_each_entry(q, &vm->preempt.exec_queues, lr.link) { 89 if (!q->lr.pfence || 90 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 91 &q->lr.pfence->flags)) { 92 return true; 93 } 94 } 95 96 return false; 97 } 98 99 static void free_preempt_fences(struct list_head *list) 100 { 101 struct list_head *link, *next; 102 103 list_for_each_safe(link, next, list) 104 xe_preempt_fence_free(to_preempt_fence_from_link(link)); 105 } 106 107 static int alloc_preempt_fences(struct xe_vm *vm, struct list_head *list, 108 unsigned int *count) 109 { 110 lockdep_assert_held(&vm->lock); 111 xe_vm_assert_held(vm); 112 113 if (*count >= vm->preempt.num_exec_queues) 114 return 0; 115 116 for (; *count < vm->preempt.num_exec_queues; ++(*count)) { 117 struct xe_preempt_fence *pfence = xe_preempt_fence_alloc(); 118 119 if (IS_ERR(pfence)) 120 return PTR_ERR(pfence); 121 122 list_move_tail(xe_preempt_fence_link(pfence), list); 123 } 124 125 return 0; 126 } 127 128 static int wait_for_existing_preempt_fences(struct xe_vm *vm) 129 { 130 struct xe_exec_queue *q; 131 132 xe_vm_assert_held(vm); 133 134 list_for_each_entry(q, &vm->preempt.exec_queues, lr.link) { 135 if (q->lr.pfence) { 136 long timeout = dma_fence_wait(q->lr.pfence, false); 137 138 /* Only -ETIME on fence indicates VM needs to be killed */ 139 if (timeout < 0 || q->lr.pfence->error == -ETIME) 140 return -ETIME; 141 142 dma_fence_put(q->lr.pfence); 143 q->lr.pfence = NULL; 144 } 145 } 146 147 return 0; 148 } 149 150 static bool xe_vm_is_idle(struct xe_vm *vm) 151 { 152 struct xe_exec_queue *q; 153 154 xe_vm_assert_held(vm); 155 list_for_each_entry(q, &vm->preempt.exec_queues, lr.link) { 156 if (!xe_exec_queue_is_idle(q)) 157 return false; 158 } 159 160 return true; 161 } 162 163 static void arm_preempt_fences(struct xe_vm *vm, struct list_head *list) 164 { 165 struct list_head *link; 166 struct xe_exec_queue *q; 167 168 list_for_each_entry(q, &vm->preempt.exec_queues, lr.link) { 169 struct dma_fence *fence; 170 171 link = list->next; 172 xe_assert(vm->xe, link != list); 173 174 fence = xe_preempt_fence_arm(to_preempt_fence_from_link(link), 175 q, q->lr.context, 176 ++q->lr.seqno); 177 dma_fence_put(q->lr.pfence); 178 q->lr.pfence = fence; 179 } 180 } 181 182 static int add_preempt_fences(struct xe_vm *vm, struct xe_bo *bo) 183 { 184 struct xe_exec_queue *q; 185 int err; 186 187 xe_bo_assert_held(bo); 188 189 if (!vm->preempt.num_exec_queues) 190 return 0; 191 192 err = dma_resv_reserve_fences(bo->ttm.base.resv, vm->preempt.num_exec_queues); 193 if (err) 194 return err; 195 196 list_for_each_entry(q, &vm->preempt.exec_queues, lr.link) 197 if (q->lr.pfence) { 198 dma_resv_add_fence(bo->ttm.base.resv, 199 q->lr.pfence, 200 DMA_RESV_USAGE_BOOKKEEP); 201 } 202 203 return 0; 204 } 205 206 static void resume_and_reinstall_preempt_fences(struct xe_vm *vm, 207 struct drm_exec *exec) 208 { 209 struct xe_exec_queue *q; 210 211 lockdep_assert_held(&vm->lock); 212 xe_vm_assert_held(vm); 213 214 list_for_each_entry(q, &vm->preempt.exec_queues, lr.link) { 215 q->ops->resume(q); 216 217 drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, q->lr.pfence, 218 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP); 219 } 220 } 221 222 int xe_vm_add_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q) 223 { 224 struct drm_gpuvm_exec vm_exec = { 225 .vm = &vm->gpuvm, 226 .flags = DRM_EXEC_INTERRUPTIBLE_WAIT, 227 .num_fences = 1, 228 }; 229 struct drm_exec *exec = &vm_exec.exec; 230 struct dma_fence *pfence; 231 int err; 232 bool wait; 233 234 xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm)); 235 236 down_write(&vm->lock); 237 err = drm_gpuvm_exec_lock(&vm_exec); 238 if (err) 239 goto out_up_write; 240 241 pfence = xe_preempt_fence_create(q, q->lr.context, 242 ++q->lr.seqno); 243 if (!pfence) { 244 err = -ENOMEM; 245 goto out_fini; 246 } 247 248 list_add(&q->lr.link, &vm->preempt.exec_queues); 249 ++vm->preempt.num_exec_queues; 250 q->lr.pfence = pfence; 251 252 down_read(&vm->userptr.notifier_lock); 253 254 drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, pfence, 255 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP); 256 257 /* 258 * Check to see if a preemption on VM is in flight or userptr 259 * invalidation, if so trigger this preempt fence to sync state with 260 * other preempt fences on the VM. 261 */ 262 wait = __xe_vm_userptr_needs_repin(vm) || preempt_fences_waiting(vm); 263 if (wait) 264 dma_fence_enable_sw_signaling(pfence); 265 266 up_read(&vm->userptr.notifier_lock); 267 268 out_fini: 269 drm_exec_fini(exec); 270 out_up_write: 271 up_write(&vm->lock); 272 273 return err; 274 } 275 ALLOW_ERROR_INJECTION(xe_vm_add_compute_exec_queue, ERRNO); 276 277 /** 278 * xe_vm_remove_compute_exec_queue() - Remove compute exec queue from VM 279 * @vm: The VM. 280 * @q: The exec_queue 281 * 282 * Note that this function might be called multiple times on the same queue. 283 */ 284 void xe_vm_remove_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q) 285 { 286 if (!xe_vm_in_preempt_fence_mode(vm)) 287 return; 288 289 down_write(&vm->lock); 290 if (!list_empty(&q->lr.link)) { 291 list_del_init(&q->lr.link); 292 --vm->preempt.num_exec_queues; 293 } 294 if (q->lr.pfence) { 295 dma_fence_enable_sw_signaling(q->lr.pfence); 296 dma_fence_put(q->lr.pfence); 297 q->lr.pfence = NULL; 298 } 299 up_write(&vm->lock); 300 } 301 302 /** 303 * __xe_vm_userptr_needs_repin() - Check whether the VM does have userptrs 304 * that need repinning. 305 * @vm: The VM. 306 * 307 * This function checks for whether the VM has userptrs that need repinning, 308 * and provides a release-type barrier on the userptr.notifier_lock after 309 * checking. 310 * 311 * Return: 0 if there are no userptrs needing repinning, -EAGAIN if there are. 312 */ 313 int __xe_vm_userptr_needs_repin(struct xe_vm *vm) 314 { 315 lockdep_assert_held_read(&vm->userptr.notifier_lock); 316 317 return (list_empty(&vm->userptr.repin_list) && 318 list_empty(&vm->userptr.invalidated)) ? 0 : -EAGAIN; 319 } 320 321 #define XE_VM_REBIND_RETRY_TIMEOUT_MS 1000 322 323 /** 324 * xe_vm_kill() - VM Kill 325 * @vm: The VM. 326 * @unlocked: Flag indicates the VM's dma-resv is not held 327 * 328 * Kill the VM by setting banned flag indicated VM is no longer available for 329 * use. If in preempt fence mode, also kill all exec queue attached to the VM. 330 */ 331 void xe_vm_kill(struct xe_vm *vm, bool unlocked) 332 { 333 struct xe_exec_queue *q; 334 335 lockdep_assert_held(&vm->lock); 336 337 if (unlocked) 338 xe_vm_lock(vm, false); 339 340 vm->flags |= XE_VM_FLAG_BANNED; 341 trace_xe_vm_kill(vm); 342 343 list_for_each_entry(q, &vm->preempt.exec_queues, lr.link) 344 q->ops->kill(q); 345 346 if (unlocked) 347 xe_vm_unlock(vm); 348 349 /* TODO: Inform user the VM is banned */ 350 } 351 352 /** 353 * xe_vm_validate_should_retry() - Whether to retry after a validate error. 354 * @exec: The drm_exec object used for locking before validation. 355 * @err: The error returned from ttm_bo_validate(). 356 * @end: A ktime_t cookie that should be set to 0 before first use and 357 * that should be reused on subsequent calls. 358 * 359 * With multiple active VMs, under memory pressure, it is possible that 360 * ttm_bo_validate() run into -EDEADLK and in such case returns -ENOMEM. 361 * Until ttm properly handles locking in such scenarios, best thing the 362 * driver can do is retry with a timeout. Check if that is necessary, and 363 * if so unlock the drm_exec's objects while keeping the ticket to prepare 364 * for a rerun. 365 * 366 * Return: true if a retry after drm_exec_init() is recommended; 367 * false otherwise. 368 */ 369 bool xe_vm_validate_should_retry(struct drm_exec *exec, int err, ktime_t *end) 370 { 371 ktime_t cur; 372 373 if (err != -ENOMEM) 374 return false; 375 376 cur = ktime_get(); 377 *end = *end ? : ktime_add_ms(cur, XE_VM_REBIND_RETRY_TIMEOUT_MS); 378 if (!ktime_before(cur, *end)) 379 return false; 380 381 msleep(20); 382 return true; 383 } 384 385 static int xe_gpuvm_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec) 386 { 387 struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm); 388 struct drm_gpuva *gpuva; 389 int ret; 390 391 lockdep_assert_held(&vm->lock); 392 drm_gpuvm_bo_for_each_va(gpuva, vm_bo) 393 list_move_tail(&gpuva_to_vma(gpuva)->combined_links.rebind, 394 &vm->rebind_list); 395 396 ret = xe_bo_validate(gem_to_xe_bo(vm_bo->obj), vm, false); 397 if (ret) 398 return ret; 399 400 vm_bo->evicted = false; 401 return 0; 402 } 403 404 /** 405 * xe_vm_validate_rebind() - Validate buffer objects and rebind vmas 406 * @vm: The vm for which we are rebinding. 407 * @exec: The struct drm_exec with the locked GEM objects. 408 * @num_fences: The number of fences to reserve for the operation, not 409 * including rebinds and validations. 410 * 411 * Validates all evicted gem objects and rebinds their vmas. Note that 412 * rebindings may cause evictions and hence the validation-rebind 413 * sequence is rerun until there are no more objects to validate. 414 * 415 * Return: 0 on success, negative error code on error. In particular, 416 * may return -EINTR or -ERESTARTSYS if interrupted, and -EDEADLK if 417 * the drm_exec transaction needs to be restarted. 418 */ 419 int xe_vm_validate_rebind(struct xe_vm *vm, struct drm_exec *exec, 420 unsigned int num_fences) 421 { 422 struct drm_gem_object *obj; 423 unsigned long index; 424 int ret; 425 426 do { 427 ret = drm_gpuvm_validate(&vm->gpuvm, exec); 428 if (ret) 429 return ret; 430 431 ret = xe_vm_rebind(vm, false); 432 if (ret) 433 return ret; 434 } while (!list_empty(&vm->gpuvm.evict.list)); 435 436 drm_exec_for_each_locked_object(exec, index, obj) { 437 ret = dma_resv_reserve_fences(obj->resv, num_fences); 438 if (ret) 439 return ret; 440 } 441 442 return 0; 443 } 444 445 static int xe_preempt_work_begin(struct drm_exec *exec, struct xe_vm *vm, 446 bool *done) 447 { 448 int err; 449 450 err = drm_gpuvm_prepare_vm(&vm->gpuvm, exec, 0); 451 if (err) 452 return err; 453 454 if (xe_vm_is_idle(vm)) { 455 vm->preempt.rebind_deactivated = true; 456 *done = true; 457 return 0; 458 } 459 460 if (!preempt_fences_waiting(vm)) { 461 *done = true; 462 return 0; 463 } 464 465 err = drm_gpuvm_prepare_objects(&vm->gpuvm, exec, 0); 466 if (err) 467 return err; 468 469 err = wait_for_existing_preempt_fences(vm); 470 if (err) 471 return err; 472 473 /* 474 * Add validation and rebinding to the locking loop since both can 475 * cause evictions which may require blocing dma_resv locks. 476 * The fence reservation here is intended for the new preempt fences 477 * we attach at the end of the rebind work. 478 */ 479 return xe_vm_validate_rebind(vm, exec, vm->preempt.num_exec_queues); 480 } 481 482 static void preempt_rebind_work_func(struct work_struct *w) 483 { 484 struct xe_vm *vm = container_of(w, struct xe_vm, preempt.rebind_work); 485 struct drm_exec exec; 486 unsigned int fence_count = 0; 487 LIST_HEAD(preempt_fences); 488 ktime_t end = 0; 489 int err = 0; 490 long wait; 491 int __maybe_unused tries = 0; 492 493 xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm)); 494 trace_xe_vm_rebind_worker_enter(vm); 495 496 down_write(&vm->lock); 497 498 if (xe_vm_is_closed_or_banned(vm)) { 499 up_write(&vm->lock); 500 trace_xe_vm_rebind_worker_exit(vm); 501 return; 502 } 503 504 retry: 505 if (xe_vm_userptr_check_repin(vm)) { 506 err = xe_vm_userptr_pin(vm); 507 if (err) 508 goto out_unlock_outer; 509 } 510 511 drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 512 513 drm_exec_until_all_locked(&exec) { 514 bool done = false; 515 516 err = xe_preempt_work_begin(&exec, vm, &done); 517 drm_exec_retry_on_contention(&exec); 518 if (err || done) { 519 drm_exec_fini(&exec); 520 if (err && xe_vm_validate_should_retry(&exec, err, &end)) 521 err = -EAGAIN; 522 523 goto out_unlock_outer; 524 } 525 } 526 527 err = alloc_preempt_fences(vm, &preempt_fences, &fence_count); 528 if (err) 529 goto out_unlock; 530 531 err = xe_vm_rebind(vm, true); 532 if (err) 533 goto out_unlock; 534 535 /* Wait on rebinds and munmap style VM unbinds */ 536 wait = dma_resv_wait_timeout(xe_vm_resv(vm), 537 DMA_RESV_USAGE_KERNEL, 538 false, MAX_SCHEDULE_TIMEOUT); 539 if (wait <= 0) { 540 err = -ETIME; 541 goto out_unlock; 542 } 543 544 #define retry_required(__tries, __vm) \ 545 (IS_ENABLED(CONFIG_DRM_XE_USERPTR_INVAL_INJECT) ? \ 546 (!(__tries)++ || __xe_vm_userptr_needs_repin(__vm)) : \ 547 __xe_vm_userptr_needs_repin(__vm)) 548 549 down_read(&vm->userptr.notifier_lock); 550 if (retry_required(tries, vm)) { 551 up_read(&vm->userptr.notifier_lock); 552 err = -EAGAIN; 553 goto out_unlock; 554 } 555 556 #undef retry_required 557 558 spin_lock(&vm->xe->ttm.lru_lock); 559 ttm_lru_bulk_move_tail(&vm->lru_bulk_move); 560 spin_unlock(&vm->xe->ttm.lru_lock); 561 562 /* Point of no return. */ 563 arm_preempt_fences(vm, &preempt_fences); 564 resume_and_reinstall_preempt_fences(vm, &exec); 565 up_read(&vm->userptr.notifier_lock); 566 567 out_unlock: 568 drm_exec_fini(&exec); 569 out_unlock_outer: 570 if (err == -EAGAIN) { 571 trace_xe_vm_rebind_worker_retry(vm); 572 goto retry; 573 } 574 575 if (err) { 576 drm_warn(&vm->xe->drm, "VM worker error: %d\n", err); 577 xe_vm_kill(vm, true); 578 } 579 up_write(&vm->lock); 580 581 free_preempt_fences(&preempt_fences); 582 583 trace_xe_vm_rebind_worker_exit(vm); 584 } 585 586 static void __vma_userptr_invalidate(struct xe_vm *vm, struct xe_userptr_vma *uvma) 587 { 588 struct xe_userptr *userptr = &uvma->userptr; 589 struct xe_vma *vma = &uvma->vma; 590 struct dma_resv_iter cursor; 591 struct dma_fence *fence; 592 long err; 593 594 /* 595 * Tell exec and rebind worker they need to repin and rebind this 596 * userptr. 597 */ 598 if (!xe_vm_in_fault_mode(vm) && 599 !(vma->gpuva.flags & XE_VMA_DESTROYED)) { 600 spin_lock(&vm->userptr.invalidated_lock); 601 list_move_tail(&userptr->invalidate_link, 602 &vm->userptr.invalidated); 603 spin_unlock(&vm->userptr.invalidated_lock); 604 } 605 606 /* 607 * Preempt fences turn into schedule disables, pipeline these. 608 * Note that even in fault mode, we need to wait for binds and 609 * unbinds to complete, and those are attached as BOOKMARK fences 610 * to the vm. 611 */ 612 dma_resv_iter_begin(&cursor, xe_vm_resv(vm), 613 DMA_RESV_USAGE_BOOKKEEP); 614 dma_resv_for_each_fence_unlocked(&cursor, fence) 615 dma_fence_enable_sw_signaling(fence); 616 dma_resv_iter_end(&cursor); 617 618 err = dma_resv_wait_timeout(xe_vm_resv(vm), 619 DMA_RESV_USAGE_BOOKKEEP, 620 false, MAX_SCHEDULE_TIMEOUT); 621 XE_WARN_ON(err <= 0); 622 623 if (xe_vm_in_fault_mode(vm) && userptr->initial_bind) { 624 err = xe_vm_invalidate_vma(vma); 625 XE_WARN_ON(err); 626 } 627 628 xe_hmm_userptr_unmap(uvma); 629 } 630 631 static bool vma_userptr_invalidate(struct mmu_interval_notifier *mni, 632 const struct mmu_notifier_range *range, 633 unsigned long cur_seq) 634 { 635 struct xe_userptr_vma *uvma = container_of(mni, typeof(*uvma), userptr.notifier); 636 struct xe_vma *vma = &uvma->vma; 637 struct xe_vm *vm = xe_vma_vm(vma); 638 639 xe_assert(vm->xe, xe_vma_is_userptr(vma)); 640 trace_xe_vma_userptr_invalidate(vma); 641 642 if (!mmu_notifier_range_blockable(range)) 643 return false; 644 645 vm_dbg(&xe_vma_vm(vma)->xe->drm, 646 "NOTIFIER: addr=0x%016llx, range=0x%016llx", 647 xe_vma_start(vma), xe_vma_size(vma)); 648 649 down_write(&vm->userptr.notifier_lock); 650 mmu_interval_set_seq(mni, cur_seq); 651 652 __vma_userptr_invalidate(vm, uvma); 653 up_write(&vm->userptr.notifier_lock); 654 trace_xe_vma_userptr_invalidate_complete(vma); 655 656 return true; 657 } 658 659 static const struct mmu_interval_notifier_ops vma_userptr_notifier_ops = { 660 .invalidate = vma_userptr_invalidate, 661 }; 662 663 #if IS_ENABLED(CONFIG_DRM_XE_USERPTR_INVAL_INJECT) 664 /** 665 * xe_vma_userptr_force_invalidate() - force invalidate a userptr 666 * @uvma: The userptr vma to invalidate 667 * 668 * Perform a forced userptr invalidation for testing purposes. 669 */ 670 void xe_vma_userptr_force_invalidate(struct xe_userptr_vma *uvma) 671 { 672 struct xe_vm *vm = xe_vma_vm(&uvma->vma); 673 674 /* Protect against concurrent userptr pinning */ 675 lockdep_assert_held(&vm->lock); 676 /* Protect against concurrent notifiers */ 677 lockdep_assert_held(&vm->userptr.notifier_lock); 678 /* 679 * Protect against concurrent instances of this function and 680 * the critical exec sections 681 */ 682 xe_vm_assert_held(vm); 683 684 if (!mmu_interval_read_retry(&uvma->userptr.notifier, 685 uvma->userptr.notifier_seq)) 686 uvma->userptr.notifier_seq -= 2; 687 __vma_userptr_invalidate(vm, uvma); 688 } 689 #endif 690 691 int xe_vm_userptr_pin(struct xe_vm *vm) 692 { 693 struct xe_userptr_vma *uvma, *next; 694 int err = 0; 695 696 xe_assert(vm->xe, !xe_vm_in_fault_mode(vm)); 697 lockdep_assert_held_write(&vm->lock); 698 699 /* Collect invalidated userptrs */ 700 spin_lock(&vm->userptr.invalidated_lock); 701 xe_assert(vm->xe, list_empty(&vm->userptr.repin_list)); 702 list_for_each_entry_safe(uvma, next, &vm->userptr.invalidated, 703 userptr.invalidate_link) { 704 list_del_init(&uvma->userptr.invalidate_link); 705 list_add_tail(&uvma->userptr.repin_link, 706 &vm->userptr.repin_list); 707 } 708 spin_unlock(&vm->userptr.invalidated_lock); 709 710 /* Pin and move to bind list */ 711 list_for_each_entry_safe(uvma, next, &vm->userptr.repin_list, 712 userptr.repin_link) { 713 err = xe_vma_userptr_pin_pages(uvma); 714 if (err == -EFAULT) { 715 list_del_init(&uvma->userptr.repin_link); 716 /* 717 * We might have already done the pin once already, but 718 * then had to retry before the re-bind happened, due 719 * some other condition in the caller, but in the 720 * meantime the userptr got dinged by the notifier such 721 * that we need to revalidate here, but this time we hit 722 * the EFAULT. In such a case make sure we remove 723 * ourselves from the rebind list to avoid going down in 724 * flames. 725 */ 726 if (!list_empty(&uvma->vma.combined_links.rebind)) 727 list_del_init(&uvma->vma.combined_links.rebind); 728 729 /* Wait for pending binds */ 730 xe_vm_lock(vm, false); 731 dma_resv_wait_timeout(xe_vm_resv(vm), 732 DMA_RESV_USAGE_BOOKKEEP, 733 false, MAX_SCHEDULE_TIMEOUT); 734 735 down_read(&vm->userptr.notifier_lock); 736 err = xe_vm_invalidate_vma(&uvma->vma); 737 up_read(&vm->userptr.notifier_lock); 738 xe_vm_unlock(vm); 739 if (err) 740 break; 741 } else { 742 if (err) 743 break; 744 745 list_del_init(&uvma->userptr.repin_link); 746 list_move_tail(&uvma->vma.combined_links.rebind, 747 &vm->rebind_list); 748 } 749 } 750 751 if (err) { 752 down_write(&vm->userptr.notifier_lock); 753 spin_lock(&vm->userptr.invalidated_lock); 754 list_for_each_entry_safe(uvma, next, &vm->userptr.repin_list, 755 userptr.repin_link) { 756 list_del_init(&uvma->userptr.repin_link); 757 list_move_tail(&uvma->userptr.invalidate_link, 758 &vm->userptr.invalidated); 759 } 760 spin_unlock(&vm->userptr.invalidated_lock); 761 up_write(&vm->userptr.notifier_lock); 762 } 763 return err; 764 } 765 766 /** 767 * xe_vm_userptr_check_repin() - Check whether the VM might have userptrs 768 * that need repinning. 769 * @vm: The VM. 770 * 771 * This function does an advisory check for whether the VM has userptrs that 772 * need repinning. 773 * 774 * Return: 0 if there are no indications of userptrs needing repinning, 775 * -EAGAIN if there are. 776 */ 777 int xe_vm_userptr_check_repin(struct xe_vm *vm) 778 { 779 return (list_empty_careful(&vm->userptr.repin_list) && 780 list_empty_careful(&vm->userptr.invalidated)) ? 0 : -EAGAIN; 781 } 782 783 static int xe_vma_ops_alloc(struct xe_vma_ops *vops, bool array_of_binds) 784 { 785 int i; 786 787 for (i = 0; i < XE_MAX_TILES_PER_DEVICE; ++i) { 788 if (!vops->pt_update_ops[i].num_ops) 789 continue; 790 791 vops->pt_update_ops[i].ops = 792 kmalloc_array(vops->pt_update_ops[i].num_ops, 793 sizeof(*vops->pt_update_ops[i].ops), 794 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 795 if (!vops->pt_update_ops[i].ops) 796 return array_of_binds ? -ENOBUFS : -ENOMEM; 797 } 798 799 return 0; 800 } 801 ALLOW_ERROR_INJECTION(xe_vma_ops_alloc, ERRNO); 802 803 static void xe_vma_svm_prefetch_op_fini(struct xe_vma_op *op) 804 { 805 struct xe_vma *vma; 806 807 vma = gpuva_to_vma(op->base.prefetch.va); 808 809 if (op->base.op == DRM_GPUVA_OP_PREFETCH && xe_vma_is_cpu_addr_mirror(vma)) 810 xa_destroy(&op->prefetch_range.range); 811 } 812 813 static void xe_vma_svm_prefetch_ops_fini(struct xe_vma_ops *vops) 814 { 815 struct xe_vma_op *op; 816 817 if (!(vops->flags & XE_VMA_OPS_FLAG_HAS_SVM_PREFETCH)) 818 return; 819 820 list_for_each_entry(op, &vops->list, link) 821 xe_vma_svm_prefetch_op_fini(op); 822 } 823 824 static void xe_vma_ops_fini(struct xe_vma_ops *vops) 825 { 826 int i; 827 828 xe_vma_svm_prefetch_ops_fini(vops); 829 830 for (i = 0; i < XE_MAX_TILES_PER_DEVICE; ++i) 831 kfree(vops->pt_update_ops[i].ops); 832 } 833 834 static void xe_vma_ops_incr_pt_update_ops(struct xe_vma_ops *vops, u8 tile_mask, int inc_val) 835 { 836 int i; 837 838 if (!inc_val) 839 return; 840 841 for (i = 0; i < XE_MAX_TILES_PER_DEVICE; ++i) 842 if (BIT(i) & tile_mask) 843 vops->pt_update_ops[i].num_ops += inc_val; 844 } 845 846 static void xe_vm_populate_rebind(struct xe_vma_op *op, struct xe_vma *vma, 847 u8 tile_mask) 848 { 849 INIT_LIST_HEAD(&op->link); 850 op->tile_mask = tile_mask; 851 op->base.op = DRM_GPUVA_OP_MAP; 852 op->base.map.va.addr = vma->gpuva.va.addr; 853 op->base.map.va.range = vma->gpuva.va.range; 854 op->base.map.gem.obj = vma->gpuva.gem.obj; 855 op->base.map.gem.offset = vma->gpuva.gem.offset; 856 op->map.vma = vma; 857 op->map.immediate = true; 858 op->map.dumpable = vma->gpuva.flags & XE_VMA_DUMPABLE; 859 op->map.is_null = xe_vma_is_null(vma); 860 } 861 862 static int xe_vm_ops_add_rebind(struct xe_vma_ops *vops, struct xe_vma *vma, 863 u8 tile_mask) 864 { 865 struct xe_vma_op *op; 866 867 op = kzalloc(sizeof(*op), GFP_KERNEL); 868 if (!op) 869 return -ENOMEM; 870 871 xe_vm_populate_rebind(op, vma, tile_mask); 872 list_add_tail(&op->link, &vops->list); 873 xe_vma_ops_incr_pt_update_ops(vops, tile_mask, 1); 874 875 return 0; 876 } 877 878 static struct dma_fence *ops_execute(struct xe_vm *vm, 879 struct xe_vma_ops *vops); 880 static void xe_vma_ops_init(struct xe_vma_ops *vops, struct xe_vm *vm, 881 struct xe_exec_queue *q, 882 struct xe_sync_entry *syncs, u32 num_syncs); 883 884 int xe_vm_rebind(struct xe_vm *vm, bool rebind_worker) 885 { 886 struct dma_fence *fence; 887 struct xe_vma *vma, *next; 888 struct xe_vma_ops vops; 889 struct xe_vma_op *op, *next_op; 890 int err, i; 891 892 lockdep_assert_held(&vm->lock); 893 if ((xe_vm_in_lr_mode(vm) && !rebind_worker) || 894 list_empty(&vm->rebind_list)) 895 return 0; 896 897 xe_vma_ops_init(&vops, vm, NULL, NULL, 0); 898 for (i = 0; i < XE_MAX_TILES_PER_DEVICE; ++i) 899 vops.pt_update_ops[i].wait_vm_bookkeep = true; 900 901 xe_vm_assert_held(vm); 902 list_for_each_entry(vma, &vm->rebind_list, combined_links.rebind) { 903 xe_assert(vm->xe, vma->tile_present); 904 905 if (rebind_worker) 906 trace_xe_vma_rebind_worker(vma); 907 else 908 trace_xe_vma_rebind_exec(vma); 909 910 err = xe_vm_ops_add_rebind(&vops, vma, 911 vma->tile_present); 912 if (err) 913 goto free_ops; 914 } 915 916 err = xe_vma_ops_alloc(&vops, false); 917 if (err) 918 goto free_ops; 919 920 fence = ops_execute(vm, &vops); 921 if (IS_ERR(fence)) { 922 err = PTR_ERR(fence); 923 } else { 924 dma_fence_put(fence); 925 list_for_each_entry_safe(vma, next, &vm->rebind_list, 926 combined_links.rebind) 927 list_del_init(&vma->combined_links.rebind); 928 } 929 free_ops: 930 list_for_each_entry_safe(op, next_op, &vops.list, link) { 931 list_del(&op->link); 932 kfree(op); 933 } 934 xe_vma_ops_fini(&vops); 935 936 return err; 937 } 938 939 struct dma_fence *xe_vma_rebind(struct xe_vm *vm, struct xe_vma *vma, u8 tile_mask) 940 { 941 struct dma_fence *fence = NULL; 942 struct xe_vma_ops vops; 943 struct xe_vma_op *op, *next_op; 944 struct xe_tile *tile; 945 u8 id; 946 int err; 947 948 lockdep_assert_held(&vm->lock); 949 xe_vm_assert_held(vm); 950 xe_assert(vm->xe, xe_vm_in_fault_mode(vm)); 951 952 xe_vma_ops_init(&vops, vm, NULL, NULL, 0); 953 for_each_tile(tile, vm->xe, id) { 954 vops.pt_update_ops[id].wait_vm_bookkeep = true; 955 vops.pt_update_ops[tile->id].q = 956 xe_tile_migrate_exec_queue(tile); 957 } 958 959 err = xe_vm_ops_add_rebind(&vops, vma, tile_mask); 960 if (err) 961 return ERR_PTR(err); 962 963 err = xe_vma_ops_alloc(&vops, false); 964 if (err) { 965 fence = ERR_PTR(err); 966 goto free_ops; 967 } 968 969 fence = ops_execute(vm, &vops); 970 971 free_ops: 972 list_for_each_entry_safe(op, next_op, &vops.list, link) { 973 list_del(&op->link); 974 kfree(op); 975 } 976 xe_vma_ops_fini(&vops); 977 978 return fence; 979 } 980 981 static void xe_vm_populate_range_rebind(struct xe_vma_op *op, 982 struct xe_vma *vma, 983 struct xe_svm_range *range, 984 u8 tile_mask) 985 { 986 INIT_LIST_HEAD(&op->link); 987 op->tile_mask = tile_mask; 988 op->base.op = DRM_GPUVA_OP_DRIVER; 989 op->subop = XE_VMA_SUBOP_MAP_RANGE; 990 op->map_range.vma = vma; 991 op->map_range.range = range; 992 } 993 994 static int 995 xe_vm_ops_add_range_rebind(struct xe_vma_ops *vops, 996 struct xe_vma *vma, 997 struct xe_svm_range *range, 998 u8 tile_mask) 999 { 1000 struct xe_vma_op *op; 1001 1002 op = kzalloc(sizeof(*op), GFP_KERNEL); 1003 if (!op) 1004 return -ENOMEM; 1005 1006 xe_vm_populate_range_rebind(op, vma, range, tile_mask); 1007 list_add_tail(&op->link, &vops->list); 1008 xe_vma_ops_incr_pt_update_ops(vops, tile_mask, 1); 1009 1010 return 0; 1011 } 1012 1013 /** 1014 * xe_vm_range_rebind() - VM range (re)bind 1015 * @vm: The VM which the range belongs to. 1016 * @vma: The VMA which the range belongs to. 1017 * @range: SVM range to rebind. 1018 * @tile_mask: Tile mask to bind the range to. 1019 * 1020 * (re)bind SVM range setting up GPU page tables for the range. 1021 * 1022 * Return: dma fence for rebind to signal completion on succees, ERR_PTR on 1023 * failure 1024 */ 1025 struct dma_fence *xe_vm_range_rebind(struct xe_vm *vm, 1026 struct xe_vma *vma, 1027 struct xe_svm_range *range, 1028 u8 tile_mask) 1029 { 1030 struct dma_fence *fence = NULL; 1031 struct xe_vma_ops vops; 1032 struct xe_vma_op *op, *next_op; 1033 struct xe_tile *tile; 1034 u8 id; 1035 int err; 1036 1037 lockdep_assert_held(&vm->lock); 1038 xe_vm_assert_held(vm); 1039 xe_assert(vm->xe, xe_vm_in_fault_mode(vm)); 1040 xe_assert(vm->xe, xe_vma_is_cpu_addr_mirror(vma)); 1041 1042 xe_vma_ops_init(&vops, vm, NULL, NULL, 0); 1043 for_each_tile(tile, vm->xe, id) { 1044 vops.pt_update_ops[id].wait_vm_bookkeep = true; 1045 vops.pt_update_ops[tile->id].q = 1046 xe_tile_migrate_exec_queue(tile); 1047 } 1048 1049 err = xe_vm_ops_add_range_rebind(&vops, vma, range, tile_mask); 1050 if (err) 1051 return ERR_PTR(err); 1052 1053 err = xe_vma_ops_alloc(&vops, false); 1054 if (err) { 1055 fence = ERR_PTR(err); 1056 goto free_ops; 1057 } 1058 1059 fence = ops_execute(vm, &vops); 1060 1061 free_ops: 1062 list_for_each_entry_safe(op, next_op, &vops.list, link) { 1063 list_del(&op->link); 1064 kfree(op); 1065 } 1066 xe_vma_ops_fini(&vops); 1067 1068 return fence; 1069 } 1070 1071 static void xe_vm_populate_range_unbind(struct xe_vma_op *op, 1072 struct xe_svm_range *range) 1073 { 1074 INIT_LIST_HEAD(&op->link); 1075 op->tile_mask = range->tile_present; 1076 op->base.op = DRM_GPUVA_OP_DRIVER; 1077 op->subop = XE_VMA_SUBOP_UNMAP_RANGE; 1078 op->unmap_range.range = range; 1079 } 1080 1081 static int 1082 xe_vm_ops_add_range_unbind(struct xe_vma_ops *vops, 1083 struct xe_svm_range *range) 1084 { 1085 struct xe_vma_op *op; 1086 1087 op = kzalloc(sizeof(*op), GFP_KERNEL); 1088 if (!op) 1089 return -ENOMEM; 1090 1091 xe_vm_populate_range_unbind(op, range); 1092 list_add_tail(&op->link, &vops->list); 1093 xe_vma_ops_incr_pt_update_ops(vops, range->tile_present, 1); 1094 1095 return 0; 1096 } 1097 1098 /** 1099 * xe_vm_range_unbind() - VM range unbind 1100 * @vm: The VM which the range belongs to. 1101 * @range: SVM range to rebind. 1102 * 1103 * Unbind SVM range removing the GPU page tables for the range. 1104 * 1105 * Return: dma fence for unbind to signal completion on succees, ERR_PTR on 1106 * failure 1107 */ 1108 struct dma_fence *xe_vm_range_unbind(struct xe_vm *vm, 1109 struct xe_svm_range *range) 1110 { 1111 struct dma_fence *fence = NULL; 1112 struct xe_vma_ops vops; 1113 struct xe_vma_op *op, *next_op; 1114 struct xe_tile *tile; 1115 u8 id; 1116 int err; 1117 1118 lockdep_assert_held(&vm->lock); 1119 xe_vm_assert_held(vm); 1120 xe_assert(vm->xe, xe_vm_in_fault_mode(vm)); 1121 1122 if (!range->tile_present) 1123 return dma_fence_get_stub(); 1124 1125 xe_vma_ops_init(&vops, vm, NULL, NULL, 0); 1126 for_each_tile(tile, vm->xe, id) { 1127 vops.pt_update_ops[id].wait_vm_bookkeep = true; 1128 vops.pt_update_ops[tile->id].q = 1129 xe_tile_migrate_exec_queue(tile); 1130 } 1131 1132 err = xe_vm_ops_add_range_unbind(&vops, range); 1133 if (err) 1134 return ERR_PTR(err); 1135 1136 err = xe_vma_ops_alloc(&vops, false); 1137 if (err) { 1138 fence = ERR_PTR(err); 1139 goto free_ops; 1140 } 1141 1142 fence = ops_execute(vm, &vops); 1143 1144 free_ops: 1145 list_for_each_entry_safe(op, next_op, &vops.list, link) { 1146 list_del(&op->link); 1147 kfree(op); 1148 } 1149 xe_vma_ops_fini(&vops); 1150 1151 return fence; 1152 } 1153 1154 static void xe_vma_free(struct xe_vma *vma) 1155 { 1156 if (xe_vma_is_userptr(vma)) 1157 kfree(to_userptr_vma(vma)); 1158 else 1159 kfree(vma); 1160 } 1161 1162 #define VMA_CREATE_FLAG_READ_ONLY BIT(0) 1163 #define VMA_CREATE_FLAG_IS_NULL BIT(1) 1164 #define VMA_CREATE_FLAG_DUMPABLE BIT(2) 1165 #define VMA_CREATE_FLAG_IS_SYSTEM_ALLOCATOR BIT(3) 1166 1167 static struct xe_vma *xe_vma_create(struct xe_vm *vm, 1168 struct xe_bo *bo, 1169 u64 bo_offset_or_userptr, 1170 u64 start, u64 end, 1171 u16 pat_index, unsigned int flags) 1172 { 1173 struct xe_vma *vma; 1174 struct xe_tile *tile; 1175 u8 id; 1176 bool read_only = (flags & VMA_CREATE_FLAG_READ_ONLY); 1177 bool is_null = (flags & VMA_CREATE_FLAG_IS_NULL); 1178 bool dumpable = (flags & VMA_CREATE_FLAG_DUMPABLE); 1179 bool is_cpu_addr_mirror = 1180 (flags & VMA_CREATE_FLAG_IS_SYSTEM_ALLOCATOR); 1181 1182 xe_assert(vm->xe, start < end); 1183 xe_assert(vm->xe, end < vm->size); 1184 1185 /* 1186 * Allocate and ensure that the xe_vma_is_userptr() return 1187 * matches what was allocated. 1188 */ 1189 if (!bo && !is_null && !is_cpu_addr_mirror) { 1190 struct xe_userptr_vma *uvma = kzalloc(sizeof(*uvma), GFP_KERNEL); 1191 1192 if (!uvma) 1193 return ERR_PTR(-ENOMEM); 1194 1195 vma = &uvma->vma; 1196 } else { 1197 vma = kzalloc(sizeof(*vma), GFP_KERNEL); 1198 if (!vma) 1199 return ERR_PTR(-ENOMEM); 1200 1201 if (is_cpu_addr_mirror) 1202 vma->gpuva.flags |= XE_VMA_SYSTEM_ALLOCATOR; 1203 if (is_null) 1204 vma->gpuva.flags |= DRM_GPUVA_SPARSE; 1205 if (bo) 1206 vma->gpuva.gem.obj = &bo->ttm.base; 1207 } 1208 1209 INIT_LIST_HEAD(&vma->combined_links.rebind); 1210 1211 INIT_LIST_HEAD(&vma->gpuva.gem.entry); 1212 vma->gpuva.vm = &vm->gpuvm; 1213 vma->gpuva.va.addr = start; 1214 vma->gpuva.va.range = end - start + 1; 1215 if (read_only) 1216 vma->gpuva.flags |= XE_VMA_READ_ONLY; 1217 if (dumpable) 1218 vma->gpuva.flags |= XE_VMA_DUMPABLE; 1219 1220 for_each_tile(tile, vm->xe, id) 1221 vma->tile_mask |= 0x1 << id; 1222 1223 if (vm->xe->info.has_atomic_enable_pte_bit) 1224 vma->gpuva.flags |= XE_VMA_ATOMIC_PTE_BIT; 1225 1226 vma->pat_index = pat_index; 1227 1228 if (bo) { 1229 struct drm_gpuvm_bo *vm_bo; 1230 1231 xe_bo_assert_held(bo); 1232 1233 vm_bo = drm_gpuvm_bo_obtain(vma->gpuva.vm, &bo->ttm.base); 1234 if (IS_ERR(vm_bo)) { 1235 xe_vma_free(vma); 1236 return ERR_CAST(vm_bo); 1237 } 1238 1239 drm_gpuvm_bo_extobj_add(vm_bo); 1240 drm_gem_object_get(&bo->ttm.base); 1241 vma->gpuva.gem.offset = bo_offset_or_userptr; 1242 drm_gpuva_link(&vma->gpuva, vm_bo); 1243 drm_gpuvm_bo_put(vm_bo); 1244 } else /* userptr or null */ { 1245 if (!is_null && !is_cpu_addr_mirror) { 1246 struct xe_userptr *userptr = &to_userptr_vma(vma)->userptr; 1247 u64 size = end - start + 1; 1248 int err; 1249 1250 INIT_LIST_HEAD(&userptr->invalidate_link); 1251 INIT_LIST_HEAD(&userptr->repin_link); 1252 vma->gpuva.gem.offset = bo_offset_or_userptr; 1253 mutex_init(&userptr->unmap_mutex); 1254 1255 err = mmu_interval_notifier_insert(&userptr->notifier, 1256 current->mm, 1257 xe_vma_userptr(vma), size, 1258 &vma_userptr_notifier_ops); 1259 if (err) { 1260 xe_vma_free(vma); 1261 return ERR_PTR(err); 1262 } 1263 1264 userptr->notifier_seq = LONG_MAX; 1265 } 1266 1267 xe_vm_get(vm); 1268 } 1269 1270 return vma; 1271 } 1272 1273 static void xe_vma_destroy_late(struct xe_vma *vma) 1274 { 1275 struct xe_vm *vm = xe_vma_vm(vma); 1276 1277 if (vma->ufence) { 1278 xe_sync_ufence_put(vma->ufence); 1279 vma->ufence = NULL; 1280 } 1281 1282 if (xe_vma_is_userptr(vma)) { 1283 struct xe_userptr_vma *uvma = to_userptr_vma(vma); 1284 struct xe_userptr *userptr = &uvma->userptr; 1285 1286 if (userptr->sg) 1287 xe_hmm_userptr_free_sg(uvma); 1288 1289 /* 1290 * Since userptr pages are not pinned, we can't remove 1291 * the notifier until we're sure the GPU is not accessing 1292 * them anymore 1293 */ 1294 mmu_interval_notifier_remove(&userptr->notifier); 1295 mutex_destroy(&userptr->unmap_mutex); 1296 xe_vm_put(vm); 1297 } else if (xe_vma_is_null(vma) || xe_vma_is_cpu_addr_mirror(vma)) { 1298 xe_vm_put(vm); 1299 } else { 1300 xe_bo_put(xe_vma_bo(vma)); 1301 } 1302 1303 xe_vma_free(vma); 1304 } 1305 1306 static void vma_destroy_work_func(struct work_struct *w) 1307 { 1308 struct xe_vma *vma = 1309 container_of(w, struct xe_vma, destroy_work); 1310 1311 xe_vma_destroy_late(vma); 1312 } 1313 1314 static void vma_destroy_cb(struct dma_fence *fence, 1315 struct dma_fence_cb *cb) 1316 { 1317 struct xe_vma *vma = container_of(cb, struct xe_vma, destroy_cb); 1318 1319 INIT_WORK(&vma->destroy_work, vma_destroy_work_func); 1320 queue_work(system_unbound_wq, &vma->destroy_work); 1321 } 1322 1323 static void xe_vma_destroy(struct xe_vma *vma, struct dma_fence *fence) 1324 { 1325 struct xe_vm *vm = xe_vma_vm(vma); 1326 1327 lockdep_assert_held_write(&vm->lock); 1328 xe_assert(vm->xe, list_empty(&vma->combined_links.destroy)); 1329 1330 if (xe_vma_is_userptr(vma)) { 1331 xe_assert(vm->xe, vma->gpuva.flags & XE_VMA_DESTROYED); 1332 1333 spin_lock(&vm->userptr.invalidated_lock); 1334 xe_assert(vm->xe, list_empty(&to_userptr_vma(vma)->userptr.repin_link)); 1335 list_del(&to_userptr_vma(vma)->userptr.invalidate_link); 1336 spin_unlock(&vm->userptr.invalidated_lock); 1337 } else if (!xe_vma_is_null(vma) && !xe_vma_is_cpu_addr_mirror(vma)) { 1338 xe_bo_assert_held(xe_vma_bo(vma)); 1339 1340 drm_gpuva_unlink(&vma->gpuva); 1341 } 1342 1343 xe_vm_assert_held(vm); 1344 if (fence) { 1345 int ret = dma_fence_add_callback(fence, &vma->destroy_cb, 1346 vma_destroy_cb); 1347 1348 if (ret) { 1349 XE_WARN_ON(ret != -ENOENT); 1350 xe_vma_destroy_late(vma); 1351 } 1352 } else { 1353 xe_vma_destroy_late(vma); 1354 } 1355 } 1356 1357 /** 1358 * xe_vm_lock_vma() - drm_exec utility to lock a vma 1359 * @exec: The drm_exec object we're currently locking for. 1360 * @vma: The vma for witch we want to lock the vm resv and any attached 1361 * object's resv. 1362 * 1363 * Return: 0 on success, negative error code on error. In particular 1364 * may return -EDEADLK on WW transaction contention and -EINTR if 1365 * an interruptible wait is terminated by a signal. 1366 */ 1367 int xe_vm_lock_vma(struct drm_exec *exec, struct xe_vma *vma) 1368 { 1369 struct xe_vm *vm = xe_vma_vm(vma); 1370 struct xe_bo *bo = xe_vma_bo(vma); 1371 int err; 1372 1373 XE_WARN_ON(!vm); 1374 1375 err = drm_exec_lock_obj(exec, xe_vm_obj(vm)); 1376 if (!err && bo && !bo->vm) 1377 err = drm_exec_lock_obj(exec, &bo->ttm.base); 1378 1379 return err; 1380 } 1381 1382 static void xe_vma_destroy_unlocked(struct xe_vma *vma) 1383 { 1384 struct drm_exec exec; 1385 int err; 1386 1387 drm_exec_init(&exec, 0, 0); 1388 drm_exec_until_all_locked(&exec) { 1389 err = xe_vm_lock_vma(&exec, vma); 1390 drm_exec_retry_on_contention(&exec); 1391 if (XE_WARN_ON(err)) 1392 break; 1393 } 1394 1395 xe_vma_destroy(vma, NULL); 1396 1397 drm_exec_fini(&exec); 1398 } 1399 1400 struct xe_vma * 1401 xe_vm_find_overlapping_vma(struct xe_vm *vm, u64 start, u64 range) 1402 { 1403 struct drm_gpuva *gpuva; 1404 1405 lockdep_assert_held(&vm->lock); 1406 1407 if (xe_vm_is_closed_or_banned(vm)) 1408 return NULL; 1409 1410 xe_assert(vm->xe, start + range <= vm->size); 1411 1412 gpuva = drm_gpuva_find_first(&vm->gpuvm, start, range); 1413 1414 return gpuva ? gpuva_to_vma(gpuva) : NULL; 1415 } 1416 1417 static int xe_vm_insert_vma(struct xe_vm *vm, struct xe_vma *vma) 1418 { 1419 int err; 1420 1421 xe_assert(vm->xe, xe_vma_vm(vma) == vm); 1422 lockdep_assert_held(&vm->lock); 1423 1424 mutex_lock(&vm->snap_mutex); 1425 err = drm_gpuva_insert(&vm->gpuvm, &vma->gpuva); 1426 mutex_unlock(&vm->snap_mutex); 1427 XE_WARN_ON(err); /* Shouldn't be possible */ 1428 1429 return err; 1430 } 1431 1432 static void xe_vm_remove_vma(struct xe_vm *vm, struct xe_vma *vma) 1433 { 1434 xe_assert(vm->xe, xe_vma_vm(vma) == vm); 1435 lockdep_assert_held(&vm->lock); 1436 1437 mutex_lock(&vm->snap_mutex); 1438 drm_gpuva_remove(&vma->gpuva); 1439 mutex_unlock(&vm->snap_mutex); 1440 if (vm->usm.last_fault_vma == vma) 1441 vm->usm.last_fault_vma = NULL; 1442 } 1443 1444 static struct drm_gpuva_op *xe_vm_op_alloc(void) 1445 { 1446 struct xe_vma_op *op; 1447 1448 op = kzalloc(sizeof(*op), GFP_KERNEL); 1449 1450 if (unlikely(!op)) 1451 return NULL; 1452 1453 return &op->base; 1454 } 1455 1456 static void xe_vm_free(struct drm_gpuvm *gpuvm); 1457 1458 static const struct drm_gpuvm_ops gpuvm_ops = { 1459 .op_alloc = xe_vm_op_alloc, 1460 .vm_bo_validate = xe_gpuvm_validate, 1461 .vm_free = xe_vm_free, 1462 }; 1463 1464 static u64 pde_encode_pat_index(u16 pat_index) 1465 { 1466 u64 pte = 0; 1467 1468 if (pat_index & BIT(0)) 1469 pte |= XE_PPGTT_PTE_PAT0; 1470 1471 if (pat_index & BIT(1)) 1472 pte |= XE_PPGTT_PTE_PAT1; 1473 1474 return pte; 1475 } 1476 1477 static u64 pte_encode_pat_index(u16 pat_index, u32 pt_level) 1478 { 1479 u64 pte = 0; 1480 1481 if (pat_index & BIT(0)) 1482 pte |= XE_PPGTT_PTE_PAT0; 1483 1484 if (pat_index & BIT(1)) 1485 pte |= XE_PPGTT_PTE_PAT1; 1486 1487 if (pat_index & BIT(2)) { 1488 if (pt_level) 1489 pte |= XE_PPGTT_PDE_PDPE_PAT2; 1490 else 1491 pte |= XE_PPGTT_PTE_PAT2; 1492 } 1493 1494 if (pat_index & BIT(3)) 1495 pte |= XELPG_PPGTT_PTE_PAT3; 1496 1497 if (pat_index & (BIT(4))) 1498 pte |= XE2_PPGTT_PTE_PAT4; 1499 1500 return pte; 1501 } 1502 1503 static u64 pte_encode_ps(u32 pt_level) 1504 { 1505 XE_WARN_ON(pt_level > MAX_HUGEPTE_LEVEL); 1506 1507 if (pt_level == 1) 1508 return XE_PDE_PS_2M; 1509 else if (pt_level == 2) 1510 return XE_PDPE_PS_1G; 1511 1512 return 0; 1513 } 1514 1515 static u64 xelp_pde_encode_bo(struct xe_bo *bo, u64 bo_offset, 1516 const u16 pat_index) 1517 { 1518 u64 pde; 1519 1520 pde = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE); 1521 pde |= XE_PAGE_PRESENT | XE_PAGE_RW; 1522 pde |= pde_encode_pat_index(pat_index); 1523 1524 return pde; 1525 } 1526 1527 static u64 xelp_pte_encode_bo(struct xe_bo *bo, u64 bo_offset, 1528 u16 pat_index, u32 pt_level) 1529 { 1530 u64 pte; 1531 1532 pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE); 1533 pte |= XE_PAGE_PRESENT | XE_PAGE_RW; 1534 pte |= pte_encode_pat_index(pat_index, pt_level); 1535 pte |= pte_encode_ps(pt_level); 1536 1537 if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo)) 1538 pte |= XE_PPGTT_PTE_DM; 1539 1540 return pte; 1541 } 1542 1543 static u64 xelp_pte_encode_vma(u64 pte, struct xe_vma *vma, 1544 u16 pat_index, u32 pt_level) 1545 { 1546 pte |= XE_PAGE_PRESENT; 1547 1548 if (likely(!xe_vma_read_only(vma))) 1549 pte |= XE_PAGE_RW; 1550 1551 pte |= pte_encode_pat_index(pat_index, pt_level); 1552 pte |= pte_encode_ps(pt_level); 1553 1554 if (unlikely(xe_vma_is_null(vma))) 1555 pte |= XE_PTE_NULL; 1556 1557 return pte; 1558 } 1559 1560 static u64 xelp_pte_encode_addr(struct xe_device *xe, u64 addr, 1561 u16 pat_index, 1562 u32 pt_level, bool devmem, u64 flags) 1563 { 1564 u64 pte; 1565 1566 /* Avoid passing random bits directly as flags */ 1567 xe_assert(xe, !(flags & ~XE_PTE_PS64)); 1568 1569 pte = addr; 1570 pte |= XE_PAGE_PRESENT | XE_PAGE_RW; 1571 pte |= pte_encode_pat_index(pat_index, pt_level); 1572 pte |= pte_encode_ps(pt_level); 1573 1574 if (devmem) 1575 pte |= XE_PPGTT_PTE_DM; 1576 1577 pte |= flags; 1578 1579 return pte; 1580 } 1581 1582 static const struct xe_pt_ops xelp_pt_ops = { 1583 .pte_encode_bo = xelp_pte_encode_bo, 1584 .pte_encode_vma = xelp_pte_encode_vma, 1585 .pte_encode_addr = xelp_pte_encode_addr, 1586 .pde_encode_bo = xelp_pde_encode_bo, 1587 }; 1588 1589 static void vm_destroy_work_func(struct work_struct *w); 1590 1591 /** 1592 * xe_vm_create_scratch() - Setup a scratch memory pagetable tree for the 1593 * given tile and vm. 1594 * @xe: xe device. 1595 * @tile: tile to set up for. 1596 * @vm: vm to set up for. 1597 * 1598 * Sets up a pagetable tree with one page-table per level and a single 1599 * leaf PTE. All pagetable entries point to the single page-table or, 1600 * for MAX_HUGEPTE_LEVEL, a NULL huge PTE returning 0 on read and 1601 * writes become NOPs. 1602 * 1603 * Return: 0 on success, negative error code on error. 1604 */ 1605 static int xe_vm_create_scratch(struct xe_device *xe, struct xe_tile *tile, 1606 struct xe_vm *vm) 1607 { 1608 u8 id = tile->id; 1609 int i; 1610 1611 for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; i++) { 1612 vm->scratch_pt[id][i] = xe_pt_create(vm, tile, i); 1613 if (IS_ERR(vm->scratch_pt[id][i])) 1614 return PTR_ERR(vm->scratch_pt[id][i]); 1615 1616 xe_pt_populate_empty(tile, vm, vm->scratch_pt[id][i]); 1617 } 1618 1619 return 0; 1620 } 1621 ALLOW_ERROR_INJECTION(xe_vm_create_scratch, ERRNO); 1622 1623 static void xe_vm_free_scratch(struct xe_vm *vm) 1624 { 1625 struct xe_tile *tile; 1626 u8 id; 1627 1628 if (!xe_vm_has_scratch(vm)) 1629 return; 1630 1631 for_each_tile(tile, vm->xe, id) { 1632 u32 i; 1633 1634 if (!vm->pt_root[id]) 1635 continue; 1636 1637 for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; ++i) 1638 if (vm->scratch_pt[id][i]) 1639 xe_pt_destroy(vm->scratch_pt[id][i], vm->flags, NULL); 1640 } 1641 } 1642 1643 struct xe_vm *xe_vm_create(struct xe_device *xe, u32 flags) 1644 { 1645 struct drm_gem_object *vm_resv_obj; 1646 struct xe_vm *vm; 1647 int err, number_tiles = 0; 1648 struct xe_tile *tile; 1649 u8 id; 1650 1651 /* 1652 * Since the GSCCS is not user-accessible, we don't expect a GSC VM to 1653 * ever be in faulting mode. 1654 */ 1655 xe_assert(xe, !((flags & XE_VM_FLAG_GSC) && (flags & XE_VM_FLAG_FAULT_MODE))); 1656 1657 vm = kzalloc(sizeof(*vm), GFP_KERNEL); 1658 if (!vm) 1659 return ERR_PTR(-ENOMEM); 1660 1661 vm->xe = xe; 1662 1663 vm->size = 1ull << xe->info.va_bits; 1664 1665 vm->flags = flags; 1666 1667 /** 1668 * GSC VMs are kernel-owned, only used for PXP ops and can sometimes be 1669 * manipulated under the PXP mutex. However, the PXP mutex can be taken 1670 * under a user-VM lock when the PXP session is started at exec_queue 1671 * creation time. Those are different VMs and therefore there is no risk 1672 * of deadlock, but we need to tell lockdep that this is the case or it 1673 * will print a warning. 1674 */ 1675 if (flags & XE_VM_FLAG_GSC) { 1676 static struct lock_class_key gsc_vm_key; 1677 1678 __init_rwsem(&vm->lock, "gsc_vm", &gsc_vm_key); 1679 } else { 1680 init_rwsem(&vm->lock); 1681 } 1682 mutex_init(&vm->snap_mutex); 1683 1684 INIT_LIST_HEAD(&vm->rebind_list); 1685 1686 INIT_LIST_HEAD(&vm->userptr.repin_list); 1687 INIT_LIST_HEAD(&vm->userptr.invalidated); 1688 init_rwsem(&vm->userptr.notifier_lock); 1689 spin_lock_init(&vm->userptr.invalidated_lock); 1690 1691 ttm_lru_bulk_move_init(&vm->lru_bulk_move); 1692 1693 INIT_WORK(&vm->destroy_work, vm_destroy_work_func); 1694 1695 INIT_LIST_HEAD(&vm->preempt.exec_queues); 1696 vm->preempt.min_run_period_ms = 10; /* FIXME: Wire up to uAPI */ 1697 1698 for_each_tile(tile, xe, id) 1699 xe_range_fence_tree_init(&vm->rftree[id]); 1700 1701 vm->pt_ops = &xelp_pt_ops; 1702 1703 /* 1704 * Long-running workloads are not protected by the scheduler references. 1705 * By design, run_job for long-running workloads returns NULL and the 1706 * scheduler drops all the references of it, hence protecting the VM 1707 * for this case is necessary. 1708 */ 1709 if (flags & XE_VM_FLAG_LR_MODE) { 1710 INIT_WORK(&vm->preempt.rebind_work, preempt_rebind_work_func); 1711 xe_pm_runtime_get_noresume(xe); 1712 } 1713 1714 if (flags & XE_VM_FLAG_FAULT_MODE) { 1715 err = xe_svm_init(vm); 1716 if (err) 1717 goto err_no_resv; 1718 } 1719 1720 vm_resv_obj = drm_gpuvm_resv_object_alloc(&xe->drm); 1721 if (!vm_resv_obj) { 1722 err = -ENOMEM; 1723 goto err_svm_fini; 1724 } 1725 1726 drm_gpuvm_init(&vm->gpuvm, "Xe VM", DRM_GPUVM_RESV_PROTECTED, &xe->drm, 1727 vm_resv_obj, 0, vm->size, 0, 0, &gpuvm_ops); 1728 1729 drm_gem_object_put(vm_resv_obj); 1730 1731 err = xe_vm_lock(vm, true); 1732 if (err) 1733 goto err_close; 1734 1735 if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) 1736 vm->flags |= XE_VM_FLAG_64K; 1737 1738 for_each_tile(tile, xe, id) { 1739 if (flags & XE_VM_FLAG_MIGRATION && 1740 tile->id != XE_VM_FLAG_TILE_ID(flags)) 1741 continue; 1742 1743 vm->pt_root[id] = xe_pt_create(vm, tile, xe->info.vm_max_level); 1744 if (IS_ERR(vm->pt_root[id])) { 1745 err = PTR_ERR(vm->pt_root[id]); 1746 vm->pt_root[id] = NULL; 1747 goto err_unlock_close; 1748 } 1749 } 1750 1751 if (xe_vm_has_scratch(vm)) { 1752 for_each_tile(tile, xe, id) { 1753 if (!vm->pt_root[id]) 1754 continue; 1755 1756 err = xe_vm_create_scratch(xe, tile, vm); 1757 if (err) 1758 goto err_unlock_close; 1759 } 1760 vm->batch_invalidate_tlb = true; 1761 } 1762 1763 if (vm->flags & XE_VM_FLAG_LR_MODE) 1764 vm->batch_invalidate_tlb = false; 1765 1766 /* Fill pt_root after allocating scratch tables */ 1767 for_each_tile(tile, xe, id) { 1768 if (!vm->pt_root[id]) 1769 continue; 1770 1771 xe_pt_populate_empty(tile, vm, vm->pt_root[id]); 1772 } 1773 xe_vm_unlock(vm); 1774 1775 /* Kernel migration VM shouldn't have a circular loop.. */ 1776 if (!(flags & XE_VM_FLAG_MIGRATION)) { 1777 for_each_tile(tile, xe, id) { 1778 struct xe_exec_queue *q; 1779 u32 create_flags = EXEC_QUEUE_FLAG_VM; 1780 1781 if (!vm->pt_root[id]) 1782 continue; 1783 1784 q = xe_exec_queue_create_bind(xe, tile, create_flags, 0); 1785 if (IS_ERR(q)) { 1786 err = PTR_ERR(q); 1787 goto err_close; 1788 } 1789 vm->q[id] = q; 1790 number_tiles++; 1791 } 1792 } 1793 1794 if (number_tiles > 1) 1795 vm->composite_fence_ctx = dma_fence_context_alloc(1); 1796 1797 trace_xe_vm_create(vm); 1798 1799 return vm; 1800 1801 err_unlock_close: 1802 xe_vm_unlock(vm); 1803 err_close: 1804 xe_vm_close_and_put(vm); 1805 return ERR_PTR(err); 1806 1807 err_svm_fini: 1808 if (flags & XE_VM_FLAG_FAULT_MODE) { 1809 vm->size = 0; /* close the vm */ 1810 xe_svm_fini(vm); 1811 } 1812 err_no_resv: 1813 mutex_destroy(&vm->snap_mutex); 1814 for_each_tile(tile, xe, id) 1815 xe_range_fence_tree_fini(&vm->rftree[id]); 1816 ttm_lru_bulk_move_fini(&xe->ttm, &vm->lru_bulk_move); 1817 kfree(vm); 1818 if (flags & XE_VM_FLAG_LR_MODE) 1819 xe_pm_runtime_put(xe); 1820 return ERR_PTR(err); 1821 } 1822 1823 static void xe_vm_close(struct xe_vm *vm) 1824 { 1825 struct xe_device *xe = vm->xe; 1826 bool bound; 1827 int idx; 1828 1829 bound = drm_dev_enter(&xe->drm, &idx); 1830 1831 down_write(&vm->lock); 1832 if (xe_vm_in_fault_mode(vm)) 1833 xe_svm_notifier_lock(vm); 1834 1835 vm->size = 0; 1836 1837 if (!((vm->flags & XE_VM_FLAG_MIGRATION))) { 1838 struct xe_tile *tile; 1839 struct xe_gt *gt; 1840 u8 id; 1841 1842 /* Wait for pending binds */ 1843 dma_resv_wait_timeout(xe_vm_resv(vm), 1844 DMA_RESV_USAGE_BOOKKEEP, 1845 false, MAX_SCHEDULE_TIMEOUT); 1846 1847 if (bound) { 1848 for_each_tile(tile, xe, id) 1849 if (vm->pt_root[id]) 1850 xe_pt_clear(xe, vm->pt_root[id]); 1851 1852 for_each_gt(gt, xe, id) 1853 xe_gt_tlb_invalidation_vm(gt, vm); 1854 } 1855 } 1856 1857 if (xe_vm_in_fault_mode(vm)) 1858 xe_svm_notifier_unlock(vm); 1859 up_write(&vm->lock); 1860 1861 if (bound) 1862 drm_dev_exit(idx); 1863 } 1864 1865 void xe_vm_close_and_put(struct xe_vm *vm) 1866 { 1867 LIST_HEAD(contested); 1868 struct xe_device *xe = vm->xe; 1869 struct xe_tile *tile; 1870 struct xe_vma *vma, *next_vma; 1871 struct drm_gpuva *gpuva, *next; 1872 u8 id; 1873 1874 xe_assert(xe, !vm->preempt.num_exec_queues); 1875 1876 xe_vm_close(vm); 1877 if (xe_vm_in_preempt_fence_mode(vm)) 1878 flush_work(&vm->preempt.rebind_work); 1879 if (xe_vm_in_fault_mode(vm)) 1880 xe_svm_close(vm); 1881 1882 down_write(&vm->lock); 1883 for_each_tile(tile, xe, id) { 1884 if (vm->q[id]) 1885 xe_exec_queue_last_fence_put(vm->q[id], vm); 1886 } 1887 up_write(&vm->lock); 1888 1889 for_each_tile(tile, xe, id) { 1890 if (vm->q[id]) { 1891 xe_exec_queue_kill(vm->q[id]); 1892 xe_exec_queue_put(vm->q[id]); 1893 vm->q[id] = NULL; 1894 } 1895 } 1896 1897 down_write(&vm->lock); 1898 xe_vm_lock(vm, false); 1899 drm_gpuvm_for_each_va_safe(gpuva, next, &vm->gpuvm) { 1900 vma = gpuva_to_vma(gpuva); 1901 1902 if (xe_vma_has_no_bo(vma)) { 1903 down_read(&vm->userptr.notifier_lock); 1904 vma->gpuva.flags |= XE_VMA_DESTROYED; 1905 up_read(&vm->userptr.notifier_lock); 1906 } 1907 1908 xe_vm_remove_vma(vm, vma); 1909 1910 /* easy case, remove from VMA? */ 1911 if (xe_vma_has_no_bo(vma) || xe_vma_bo(vma)->vm) { 1912 list_del_init(&vma->combined_links.rebind); 1913 xe_vma_destroy(vma, NULL); 1914 continue; 1915 } 1916 1917 list_move_tail(&vma->combined_links.destroy, &contested); 1918 vma->gpuva.flags |= XE_VMA_DESTROYED; 1919 } 1920 1921 /* 1922 * All vm operations will add shared fences to resv. 1923 * The only exception is eviction for a shared object, 1924 * but even so, the unbind when evicted would still 1925 * install a fence to resv. Hence it's safe to 1926 * destroy the pagetables immediately. 1927 */ 1928 xe_vm_free_scratch(vm); 1929 1930 for_each_tile(tile, xe, id) { 1931 if (vm->pt_root[id]) { 1932 xe_pt_destroy(vm->pt_root[id], vm->flags, NULL); 1933 vm->pt_root[id] = NULL; 1934 } 1935 } 1936 xe_vm_unlock(vm); 1937 1938 /* 1939 * VM is now dead, cannot re-add nodes to vm->vmas if it's NULL 1940 * Since we hold a refcount to the bo, we can remove and free 1941 * the members safely without locking. 1942 */ 1943 list_for_each_entry_safe(vma, next_vma, &contested, 1944 combined_links.destroy) { 1945 list_del_init(&vma->combined_links.destroy); 1946 xe_vma_destroy_unlocked(vma); 1947 } 1948 1949 if (xe_vm_in_fault_mode(vm)) 1950 xe_svm_fini(vm); 1951 1952 up_write(&vm->lock); 1953 1954 down_write(&xe->usm.lock); 1955 if (vm->usm.asid) { 1956 void *lookup; 1957 1958 xe_assert(xe, xe->info.has_asid); 1959 xe_assert(xe, !(vm->flags & XE_VM_FLAG_MIGRATION)); 1960 1961 lookup = xa_erase(&xe->usm.asid_to_vm, vm->usm.asid); 1962 xe_assert(xe, lookup == vm); 1963 } 1964 up_write(&xe->usm.lock); 1965 1966 for_each_tile(tile, xe, id) 1967 xe_range_fence_tree_fini(&vm->rftree[id]); 1968 1969 xe_vm_put(vm); 1970 } 1971 1972 static void vm_destroy_work_func(struct work_struct *w) 1973 { 1974 struct xe_vm *vm = 1975 container_of(w, struct xe_vm, destroy_work); 1976 struct xe_device *xe = vm->xe; 1977 struct xe_tile *tile; 1978 u8 id; 1979 1980 /* xe_vm_close_and_put was not called? */ 1981 xe_assert(xe, !vm->size); 1982 1983 if (xe_vm_in_preempt_fence_mode(vm)) 1984 flush_work(&vm->preempt.rebind_work); 1985 1986 mutex_destroy(&vm->snap_mutex); 1987 1988 if (vm->flags & XE_VM_FLAG_LR_MODE) 1989 xe_pm_runtime_put(xe); 1990 1991 for_each_tile(tile, xe, id) 1992 XE_WARN_ON(vm->pt_root[id]); 1993 1994 trace_xe_vm_free(vm); 1995 1996 ttm_lru_bulk_move_fini(&xe->ttm, &vm->lru_bulk_move); 1997 1998 if (vm->xef) 1999 xe_file_put(vm->xef); 2000 2001 kfree(vm); 2002 } 2003 2004 static void xe_vm_free(struct drm_gpuvm *gpuvm) 2005 { 2006 struct xe_vm *vm = container_of(gpuvm, struct xe_vm, gpuvm); 2007 2008 /* To destroy the VM we need to be able to sleep */ 2009 queue_work(system_unbound_wq, &vm->destroy_work); 2010 } 2011 2012 struct xe_vm *xe_vm_lookup(struct xe_file *xef, u32 id) 2013 { 2014 struct xe_vm *vm; 2015 2016 mutex_lock(&xef->vm.lock); 2017 vm = xa_load(&xef->vm.xa, id); 2018 if (vm) 2019 xe_vm_get(vm); 2020 mutex_unlock(&xef->vm.lock); 2021 2022 return vm; 2023 } 2024 2025 u64 xe_vm_pdp4_descriptor(struct xe_vm *vm, struct xe_tile *tile) 2026 { 2027 return vm->pt_ops->pde_encode_bo(vm->pt_root[tile->id]->bo, 0, 2028 tile_to_xe(tile)->pat.idx[XE_CACHE_WB]); 2029 } 2030 2031 static struct xe_exec_queue * 2032 to_wait_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q) 2033 { 2034 return q ? q : vm->q[0]; 2035 } 2036 2037 static struct xe_user_fence * 2038 find_ufence_get(struct xe_sync_entry *syncs, u32 num_syncs) 2039 { 2040 unsigned int i; 2041 2042 for (i = 0; i < num_syncs; i++) { 2043 struct xe_sync_entry *e = &syncs[i]; 2044 2045 if (xe_sync_is_ufence(e)) 2046 return xe_sync_ufence_get(e); 2047 } 2048 2049 return NULL; 2050 } 2051 2052 #define ALL_DRM_XE_VM_CREATE_FLAGS (DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE | \ 2053 DRM_XE_VM_CREATE_FLAG_LR_MODE | \ 2054 DRM_XE_VM_CREATE_FLAG_FAULT_MODE) 2055 2056 int xe_vm_create_ioctl(struct drm_device *dev, void *data, 2057 struct drm_file *file) 2058 { 2059 struct xe_device *xe = to_xe_device(dev); 2060 struct xe_file *xef = to_xe_file(file); 2061 struct drm_xe_vm_create *args = data; 2062 struct xe_tile *tile; 2063 struct xe_vm *vm; 2064 u32 id, asid; 2065 int err; 2066 u32 flags = 0; 2067 2068 if (XE_IOCTL_DBG(xe, args->extensions)) 2069 return -EINVAL; 2070 2071 if (XE_WA(xe_root_mmio_gt(xe), 14016763929)) 2072 args->flags |= DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE; 2073 2074 if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE && 2075 !xe->info.has_usm)) 2076 return -EINVAL; 2077 2078 if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2079 return -EINVAL; 2080 2081 if (XE_IOCTL_DBG(xe, args->flags & ~ALL_DRM_XE_VM_CREATE_FLAGS)) 2082 return -EINVAL; 2083 2084 if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE && 2085 args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE && 2086 !xe->info.needs_scratch)) 2087 return -EINVAL; 2088 2089 if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE) && 2090 args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE)) 2091 return -EINVAL; 2092 2093 if (args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE) 2094 flags |= XE_VM_FLAG_SCRATCH_PAGE; 2095 if (args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE) 2096 flags |= XE_VM_FLAG_LR_MODE; 2097 if (args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE) 2098 flags |= XE_VM_FLAG_FAULT_MODE; 2099 2100 vm = xe_vm_create(xe, flags); 2101 if (IS_ERR(vm)) 2102 return PTR_ERR(vm); 2103 2104 if (xe->info.has_asid) { 2105 down_write(&xe->usm.lock); 2106 err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, vm, 2107 XA_LIMIT(1, XE_MAX_ASID - 1), 2108 &xe->usm.next_asid, GFP_KERNEL); 2109 up_write(&xe->usm.lock); 2110 if (err < 0) 2111 goto err_close_and_put; 2112 2113 vm->usm.asid = asid; 2114 } 2115 2116 vm->xef = xe_file_get(xef); 2117 2118 /* Record BO memory for VM pagetable created against client */ 2119 for_each_tile(tile, xe, id) 2120 if (vm->pt_root[id]) 2121 xe_drm_client_add_bo(vm->xef->client, vm->pt_root[id]->bo); 2122 2123 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_MEM) 2124 /* Warning: Security issue - never enable by default */ 2125 args->reserved[0] = xe_bo_main_addr(vm->pt_root[0]->bo, XE_PAGE_SIZE); 2126 #endif 2127 2128 /* user id alloc must always be last in ioctl to prevent UAF */ 2129 err = xa_alloc(&xef->vm.xa, &id, vm, xa_limit_32b, GFP_KERNEL); 2130 if (err) 2131 goto err_close_and_put; 2132 2133 args->vm_id = id; 2134 2135 return 0; 2136 2137 err_close_and_put: 2138 xe_vm_close_and_put(vm); 2139 2140 return err; 2141 } 2142 2143 int xe_vm_destroy_ioctl(struct drm_device *dev, void *data, 2144 struct drm_file *file) 2145 { 2146 struct xe_device *xe = to_xe_device(dev); 2147 struct xe_file *xef = to_xe_file(file); 2148 struct drm_xe_vm_destroy *args = data; 2149 struct xe_vm *vm; 2150 int err = 0; 2151 2152 if (XE_IOCTL_DBG(xe, args->pad) || 2153 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 2154 return -EINVAL; 2155 2156 mutex_lock(&xef->vm.lock); 2157 vm = xa_load(&xef->vm.xa, args->vm_id); 2158 if (XE_IOCTL_DBG(xe, !vm)) 2159 err = -ENOENT; 2160 else if (XE_IOCTL_DBG(xe, vm->preempt.num_exec_queues)) 2161 err = -EBUSY; 2162 else 2163 xa_erase(&xef->vm.xa, args->vm_id); 2164 mutex_unlock(&xef->vm.lock); 2165 2166 if (!err) 2167 xe_vm_close_and_put(vm); 2168 2169 return err; 2170 } 2171 2172 static bool vma_matches(struct xe_vma *vma, u64 page_addr) 2173 { 2174 if (page_addr > xe_vma_end(vma) - 1 || 2175 page_addr + SZ_4K - 1 < xe_vma_start(vma)) 2176 return false; 2177 2178 return true; 2179 } 2180 2181 /** 2182 * xe_vm_find_vma_by_addr() - Find a VMA by its address 2183 * 2184 * @vm: the xe_vm the vma belongs to 2185 * @page_addr: address to look up 2186 */ 2187 struct xe_vma *xe_vm_find_vma_by_addr(struct xe_vm *vm, u64 page_addr) 2188 { 2189 struct xe_vma *vma = NULL; 2190 2191 if (vm->usm.last_fault_vma) { /* Fast lookup */ 2192 if (vma_matches(vm->usm.last_fault_vma, page_addr)) 2193 vma = vm->usm.last_fault_vma; 2194 } 2195 if (!vma) 2196 vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K); 2197 2198 return vma; 2199 } 2200 2201 static const u32 region_to_mem_type[] = { 2202 XE_PL_TT, 2203 XE_PL_VRAM0, 2204 XE_PL_VRAM1, 2205 }; 2206 2207 static void prep_vma_destroy(struct xe_vm *vm, struct xe_vma *vma, 2208 bool post_commit) 2209 { 2210 down_read(&vm->userptr.notifier_lock); 2211 vma->gpuva.flags |= XE_VMA_DESTROYED; 2212 up_read(&vm->userptr.notifier_lock); 2213 if (post_commit) 2214 xe_vm_remove_vma(vm, vma); 2215 } 2216 2217 #undef ULL 2218 #define ULL unsigned long long 2219 2220 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM) 2221 static void print_op(struct xe_device *xe, struct drm_gpuva_op *op) 2222 { 2223 struct xe_vma *vma; 2224 2225 switch (op->op) { 2226 case DRM_GPUVA_OP_MAP: 2227 vm_dbg(&xe->drm, "MAP: addr=0x%016llx, range=0x%016llx", 2228 (ULL)op->map.va.addr, (ULL)op->map.va.range); 2229 break; 2230 case DRM_GPUVA_OP_REMAP: 2231 vma = gpuva_to_vma(op->remap.unmap->va); 2232 vm_dbg(&xe->drm, "REMAP:UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d", 2233 (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma), 2234 op->remap.unmap->keep ? 1 : 0); 2235 if (op->remap.prev) 2236 vm_dbg(&xe->drm, 2237 "REMAP:PREV: addr=0x%016llx, range=0x%016llx", 2238 (ULL)op->remap.prev->va.addr, 2239 (ULL)op->remap.prev->va.range); 2240 if (op->remap.next) 2241 vm_dbg(&xe->drm, 2242 "REMAP:NEXT: addr=0x%016llx, range=0x%016llx", 2243 (ULL)op->remap.next->va.addr, 2244 (ULL)op->remap.next->va.range); 2245 break; 2246 case DRM_GPUVA_OP_UNMAP: 2247 vma = gpuva_to_vma(op->unmap.va); 2248 vm_dbg(&xe->drm, "UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d", 2249 (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma), 2250 op->unmap.keep ? 1 : 0); 2251 break; 2252 case DRM_GPUVA_OP_PREFETCH: 2253 vma = gpuva_to_vma(op->prefetch.va); 2254 vm_dbg(&xe->drm, "PREFETCH: addr=0x%016llx, range=0x%016llx", 2255 (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma)); 2256 break; 2257 default: 2258 drm_warn(&xe->drm, "NOT POSSIBLE"); 2259 } 2260 } 2261 #else 2262 static void print_op(struct xe_device *xe, struct drm_gpuva_op *op) 2263 { 2264 } 2265 #endif 2266 2267 static bool __xe_vm_needs_clear_scratch_pages(struct xe_vm *vm, u32 bind_flags) 2268 { 2269 if (!xe_vm_in_fault_mode(vm)) 2270 return false; 2271 2272 if (!xe_vm_has_scratch(vm)) 2273 return false; 2274 2275 if (bind_flags & DRM_XE_VM_BIND_FLAG_IMMEDIATE) 2276 return false; 2277 2278 return true; 2279 } 2280 2281 static void xe_svm_prefetch_gpuva_ops_fini(struct drm_gpuva_ops *ops) 2282 { 2283 struct drm_gpuva_op *__op; 2284 2285 drm_gpuva_for_each_op(__op, ops) { 2286 struct xe_vma_op *op = gpuva_op_to_vma_op(__op); 2287 2288 xe_vma_svm_prefetch_op_fini(op); 2289 } 2290 } 2291 2292 /* 2293 * Create operations list from IOCTL arguments, setup operations fields so parse 2294 * and commit steps are decoupled from IOCTL arguments. This step can fail. 2295 */ 2296 static struct drm_gpuva_ops * 2297 vm_bind_ioctl_ops_create(struct xe_vm *vm, struct xe_vma_ops *vops, 2298 struct xe_bo *bo, u64 bo_offset_or_userptr, 2299 u64 addr, u64 range, 2300 u32 operation, u32 flags, 2301 u32 prefetch_region, u16 pat_index) 2302 { 2303 struct drm_gem_object *obj = bo ? &bo->ttm.base : NULL; 2304 struct drm_gpuva_ops *ops; 2305 struct drm_gpuva_op *__op; 2306 struct drm_gpuvm_bo *vm_bo; 2307 u64 range_end = addr + range; 2308 int err; 2309 2310 lockdep_assert_held_write(&vm->lock); 2311 2312 vm_dbg(&vm->xe->drm, 2313 "op=%d, addr=0x%016llx, range=0x%016llx, bo_offset_or_userptr=0x%016llx", 2314 operation, (ULL)addr, (ULL)range, 2315 (ULL)bo_offset_or_userptr); 2316 2317 switch (operation) { 2318 case DRM_XE_VM_BIND_OP_MAP: 2319 case DRM_XE_VM_BIND_OP_MAP_USERPTR: { 2320 struct drm_gpuvm_map_req map_req = { 2321 .map.va.addr = addr, 2322 .map.va.range = range, 2323 .map.gem.obj = obj, 2324 .map.gem.offset = bo_offset_or_userptr, 2325 }; 2326 2327 ops = drm_gpuvm_sm_map_ops_create(&vm->gpuvm, &map_req); 2328 break; 2329 } 2330 case DRM_XE_VM_BIND_OP_UNMAP: 2331 ops = drm_gpuvm_sm_unmap_ops_create(&vm->gpuvm, addr, range); 2332 break; 2333 case DRM_XE_VM_BIND_OP_PREFETCH: 2334 ops = drm_gpuvm_prefetch_ops_create(&vm->gpuvm, addr, range); 2335 break; 2336 case DRM_XE_VM_BIND_OP_UNMAP_ALL: 2337 xe_assert(vm->xe, bo); 2338 2339 err = xe_bo_lock(bo, true); 2340 if (err) 2341 return ERR_PTR(err); 2342 2343 vm_bo = drm_gpuvm_bo_obtain(&vm->gpuvm, obj); 2344 if (IS_ERR(vm_bo)) { 2345 xe_bo_unlock(bo); 2346 return ERR_CAST(vm_bo); 2347 } 2348 2349 ops = drm_gpuvm_bo_unmap_ops_create(vm_bo); 2350 drm_gpuvm_bo_put(vm_bo); 2351 xe_bo_unlock(bo); 2352 break; 2353 default: 2354 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2355 ops = ERR_PTR(-EINVAL); 2356 } 2357 if (IS_ERR(ops)) 2358 return ops; 2359 2360 drm_gpuva_for_each_op(__op, ops) { 2361 struct xe_vma_op *op = gpuva_op_to_vma_op(__op); 2362 2363 if (__op->op == DRM_GPUVA_OP_MAP) { 2364 op->map.immediate = 2365 flags & DRM_XE_VM_BIND_FLAG_IMMEDIATE; 2366 op->map.read_only = 2367 flags & DRM_XE_VM_BIND_FLAG_READONLY; 2368 op->map.is_null = flags & DRM_XE_VM_BIND_FLAG_NULL; 2369 op->map.is_cpu_addr_mirror = flags & 2370 DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR; 2371 op->map.dumpable = flags & DRM_XE_VM_BIND_FLAG_DUMPABLE; 2372 op->map.pat_index = pat_index; 2373 op->map.invalidate_on_bind = 2374 __xe_vm_needs_clear_scratch_pages(vm, flags); 2375 } else if (__op->op == DRM_GPUVA_OP_PREFETCH) { 2376 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2377 struct xe_svm_range *svm_range; 2378 struct drm_gpusvm_ctx ctx = {}; 2379 struct xe_tile *tile; 2380 u8 id, tile_mask = 0; 2381 u32 i; 2382 2383 if (!xe_vma_is_cpu_addr_mirror(vma)) { 2384 op->prefetch.region = prefetch_region; 2385 break; 2386 } 2387 2388 ctx.read_only = xe_vma_read_only(vma); 2389 ctx.devmem_possible = IS_DGFX(vm->xe) && 2390 IS_ENABLED(CONFIG_DRM_XE_PAGEMAP); 2391 2392 for_each_tile(tile, vm->xe, id) 2393 tile_mask |= 0x1 << id; 2394 2395 xa_init_flags(&op->prefetch_range.range, XA_FLAGS_ALLOC); 2396 op->prefetch_range.region = prefetch_region; 2397 op->prefetch_range.ranges_count = 0; 2398 alloc_next_range: 2399 svm_range = xe_svm_range_find_or_insert(vm, addr, vma, &ctx); 2400 2401 if (PTR_ERR(svm_range) == -ENOENT) { 2402 u64 ret = xe_svm_find_vma_start(vm, addr, range_end, vma); 2403 2404 addr = ret == ULONG_MAX ? 0 : ret; 2405 if (addr) 2406 goto alloc_next_range; 2407 else 2408 goto print_op_label; 2409 } 2410 2411 if (IS_ERR(svm_range)) { 2412 err = PTR_ERR(svm_range); 2413 goto unwind_prefetch_ops; 2414 } 2415 2416 if (xe_svm_range_validate(vm, svm_range, tile_mask, !!prefetch_region)) { 2417 xe_svm_range_debug(svm_range, "PREFETCH - RANGE IS VALID"); 2418 goto check_next_range; 2419 } 2420 2421 err = xa_alloc(&op->prefetch_range.range, 2422 &i, svm_range, xa_limit_32b, 2423 GFP_KERNEL); 2424 2425 if (err) 2426 goto unwind_prefetch_ops; 2427 2428 op->prefetch_range.ranges_count++; 2429 vops->flags |= XE_VMA_OPS_FLAG_HAS_SVM_PREFETCH; 2430 xe_svm_range_debug(svm_range, "PREFETCH - RANGE CREATED"); 2431 check_next_range: 2432 if (range_end > xe_svm_range_end(svm_range) && 2433 xe_svm_range_end(svm_range) < xe_vma_end(vma)) { 2434 addr = xe_svm_range_end(svm_range); 2435 goto alloc_next_range; 2436 } 2437 } 2438 print_op_label: 2439 print_op(vm->xe, __op); 2440 } 2441 2442 return ops; 2443 2444 unwind_prefetch_ops: 2445 xe_svm_prefetch_gpuva_ops_fini(ops); 2446 drm_gpuva_ops_free(&vm->gpuvm, ops); 2447 return ERR_PTR(err); 2448 } 2449 2450 ALLOW_ERROR_INJECTION(vm_bind_ioctl_ops_create, ERRNO); 2451 2452 static struct xe_vma *new_vma(struct xe_vm *vm, struct drm_gpuva_op_map *op, 2453 u16 pat_index, unsigned int flags) 2454 { 2455 struct xe_bo *bo = op->gem.obj ? gem_to_xe_bo(op->gem.obj) : NULL; 2456 struct drm_exec exec; 2457 struct xe_vma *vma; 2458 int err = 0; 2459 2460 lockdep_assert_held_write(&vm->lock); 2461 2462 if (bo) { 2463 drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0); 2464 drm_exec_until_all_locked(&exec) { 2465 err = 0; 2466 if (!bo->vm) { 2467 err = drm_exec_lock_obj(&exec, xe_vm_obj(vm)); 2468 drm_exec_retry_on_contention(&exec); 2469 } 2470 if (!err) { 2471 err = drm_exec_lock_obj(&exec, &bo->ttm.base); 2472 drm_exec_retry_on_contention(&exec); 2473 } 2474 if (err) { 2475 drm_exec_fini(&exec); 2476 return ERR_PTR(err); 2477 } 2478 } 2479 } 2480 vma = xe_vma_create(vm, bo, op->gem.offset, 2481 op->va.addr, op->va.addr + 2482 op->va.range - 1, pat_index, flags); 2483 if (IS_ERR(vma)) 2484 goto err_unlock; 2485 2486 if (xe_vma_is_userptr(vma)) 2487 err = xe_vma_userptr_pin_pages(to_userptr_vma(vma)); 2488 else if (!xe_vma_has_no_bo(vma) && !bo->vm) 2489 err = add_preempt_fences(vm, bo); 2490 2491 err_unlock: 2492 if (bo) 2493 drm_exec_fini(&exec); 2494 2495 if (err) { 2496 prep_vma_destroy(vm, vma, false); 2497 xe_vma_destroy_unlocked(vma); 2498 vma = ERR_PTR(err); 2499 } 2500 2501 return vma; 2502 } 2503 2504 static u64 xe_vma_max_pte_size(struct xe_vma *vma) 2505 { 2506 if (vma->gpuva.flags & XE_VMA_PTE_1G) 2507 return SZ_1G; 2508 else if (vma->gpuva.flags & (XE_VMA_PTE_2M | XE_VMA_PTE_COMPACT)) 2509 return SZ_2M; 2510 else if (vma->gpuva.flags & XE_VMA_PTE_64K) 2511 return SZ_64K; 2512 else if (vma->gpuva.flags & XE_VMA_PTE_4K) 2513 return SZ_4K; 2514 2515 return SZ_1G; /* Uninitialized, used max size */ 2516 } 2517 2518 static void xe_vma_set_pte_size(struct xe_vma *vma, u64 size) 2519 { 2520 switch (size) { 2521 case SZ_1G: 2522 vma->gpuva.flags |= XE_VMA_PTE_1G; 2523 break; 2524 case SZ_2M: 2525 vma->gpuva.flags |= XE_VMA_PTE_2M; 2526 break; 2527 case SZ_64K: 2528 vma->gpuva.flags |= XE_VMA_PTE_64K; 2529 break; 2530 case SZ_4K: 2531 vma->gpuva.flags |= XE_VMA_PTE_4K; 2532 break; 2533 } 2534 } 2535 2536 static int xe_vma_op_commit(struct xe_vm *vm, struct xe_vma_op *op) 2537 { 2538 int err = 0; 2539 2540 lockdep_assert_held_write(&vm->lock); 2541 2542 switch (op->base.op) { 2543 case DRM_GPUVA_OP_MAP: 2544 err |= xe_vm_insert_vma(vm, op->map.vma); 2545 if (!err) 2546 op->flags |= XE_VMA_OP_COMMITTED; 2547 break; 2548 case DRM_GPUVA_OP_REMAP: 2549 { 2550 u8 tile_present = 2551 gpuva_to_vma(op->base.remap.unmap->va)->tile_present; 2552 2553 prep_vma_destroy(vm, gpuva_to_vma(op->base.remap.unmap->va), 2554 true); 2555 op->flags |= XE_VMA_OP_COMMITTED; 2556 2557 if (op->remap.prev) { 2558 err |= xe_vm_insert_vma(vm, op->remap.prev); 2559 if (!err) 2560 op->flags |= XE_VMA_OP_PREV_COMMITTED; 2561 if (!err && op->remap.skip_prev) { 2562 op->remap.prev->tile_present = 2563 tile_present; 2564 op->remap.prev = NULL; 2565 } 2566 } 2567 if (op->remap.next) { 2568 err |= xe_vm_insert_vma(vm, op->remap.next); 2569 if (!err) 2570 op->flags |= XE_VMA_OP_NEXT_COMMITTED; 2571 if (!err && op->remap.skip_next) { 2572 op->remap.next->tile_present = 2573 tile_present; 2574 op->remap.next = NULL; 2575 } 2576 } 2577 2578 /* Adjust for partial unbind after removing VMA from VM */ 2579 if (!err) { 2580 op->base.remap.unmap->va->va.addr = op->remap.start; 2581 op->base.remap.unmap->va->va.range = op->remap.range; 2582 } 2583 break; 2584 } 2585 case DRM_GPUVA_OP_UNMAP: 2586 prep_vma_destroy(vm, gpuva_to_vma(op->base.unmap.va), true); 2587 op->flags |= XE_VMA_OP_COMMITTED; 2588 break; 2589 case DRM_GPUVA_OP_PREFETCH: 2590 op->flags |= XE_VMA_OP_COMMITTED; 2591 break; 2592 default: 2593 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2594 } 2595 2596 return err; 2597 } 2598 2599 static int vm_bind_ioctl_ops_parse(struct xe_vm *vm, struct drm_gpuva_ops *ops, 2600 struct xe_vma_ops *vops) 2601 { 2602 struct xe_device *xe = vm->xe; 2603 struct drm_gpuva_op *__op; 2604 struct xe_tile *tile; 2605 u8 id, tile_mask = 0; 2606 int err = 0; 2607 2608 lockdep_assert_held_write(&vm->lock); 2609 2610 for_each_tile(tile, vm->xe, id) 2611 tile_mask |= 0x1 << id; 2612 2613 drm_gpuva_for_each_op(__op, ops) { 2614 struct xe_vma_op *op = gpuva_op_to_vma_op(__op); 2615 struct xe_vma *vma; 2616 unsigned int flags = 0; 2617 2618 INIT_LIST_HEAD(&op->link); 2619 list_add_tail(&op->link, &vops->list); 2620 op->tile_mask = tile_mask; 2621 2622 switch (op->base.op) { 2623 case DRM_GPUVA_OP_MAP: 2624 { 2625 flags |= op->map.read_only ? 2626 VMA_CREATE_FLAG_READ_ONLY : 0; 2627 flags |= op->map.is_null ? 2628 VMA_CREATE_FLAG_IS_NULL : 0; 2629 flags |= op->map.dumpable ? 2630 VMA_CREATE_FLAG_DUMPABLE : 0; 2631 flags |= op->map.is_cpu_addr_mirror ? 2632 VMA_CREATE_FLAG_IS_SYSTEM_ALLOCATOR : 0; 2633 2634 vma = new_vma(vm, &op->base.map, op->map.pat_index, 2635 flags); 2636 if (IS_ERR(vma)) 2637 return PTR_ERR(vma); 2638 2639 op->map.vma = vma; 2640 if (((op->map.immediate || !xe_vm_in_fault_mode(vm)) && 2641 !op->map.is_cpu_addr_mirror) || 2642 op->map.invalidate_on_bind) 2643 xe_vma_ops_incr_pt_update_ops(vops, 2644 op->tile_mask, 1); 2645 break; 2646 } 2647 case DRM_GPUVA_OP_REMAP: 2648 { 2649 struct xe_vma *old = 2650 gpuva_to_vma(op->base.remap.unmap->va); 2651 bool skip = xe_vma_is_cpu_addr_mirror(old); 2652 u64 start = xe_vma_start(old), end = xe_vma_end(old); 2653 int num_remap_ops = 0; 2654 2655 if (op->base.remap.prev) 2656 start = op->base.remap.prev->va.addr + 2657 op->base.remap.prev->va.range; 2658 if (op->base.remap.next) 2659 end = op->base.remap.next->va.addr; 2660 2661 if (xe_vma_is_cpu_addr_mirror(old) && 2662 xe_svm_has_mapping(vm, start, end)) 2663 return -EBUSY; 2664 2665 op->remap.start = xe_vma_start(old); 2666 op->remap.range = xe_vma_size(old); 2667 2668 flags |= op->base.remap.unmap->va->flags & 2669 XE_VMA_READ_ONLY ? 2670 VMA_CREATE_FLAG_READ_ONLY : 0; 2671 flags |= op->base.remap.unmap->va->flags & 2672 DRM_GPUVA_SPARSE ? 2673 VMA_CREATE_FLAG_IS_NULL : 0; 2674 flags |= op->base.remap.unmap->va->flags & 2675 XE_VMA_DUMPABLE ? 2676 VMA_CREATE_FLAG_DUMPABLE : 0; 2677 flags |= xe_vma_is_cpu_addr_mirror(old) ? 2678 VMA_CREATE_FLAG_IS_SYSTEM_ALLOCATOR : 0; 2679 2680 if (op->base.remap.prev) { 2681 vma = new_vma(vm, op->base.remap.prev, 2682 old->pat_index, flags); 2683 if (IS_ERR(vma)) 2684 return PTR_ERR(vma); 2685 2686 op->remap.prev = vma; 2687 2688 /* 2689 * Userptr creates a new SG mapping so 2690 * we must also rebind. 2691 */ 2692 op->remap.skip_prev = skip || 2693 (!xe_vma_is_userptr(old) && 2694 IS_ALIGNED(xe_vma_end(vma), 2695 xe_vma_max_pte_size(old))); 2696 if (op->remap.skip_prev) { 2697 xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old)); 2698 op->remap.range -= 2699 xe_vma_end(vma) - 2700 xe_vma_start(old); 2701 op->remap.start = xe_vma_end(vma); 2702 vm_dbg(&xe->drm, "REMAP:SKIP_PREV: addr=0x%016llx, range=0x%016llx", 2703 (ULL)op->remap.start, 2704 (ULL)op->remap.range); 2705 } else { 2706 num_remap_ops++; 2707 } 2708 } 2709 2710 if (op->base.remap.next) { 2711 vma = new_vma(vm, op->base.remap.next, 2712 old->pat_index, flags); 2713 if (IS_ERR(vma)) 2714 return PTR_ERR(vma); 2715 2716 op->remap.next = vma; 2717 2718 /* 2719 * Userptr creates a new SG mapping so 2720 * we must also rebind. 2721 */ 2722 op->remap.skip_next = skip || 2723 (!xe_vma_is_userptr(old) && 2724 IS_ALIGNED(xe_vma_start(vma), 2725 xe_vma_max_pte_size(old))); 2726 if (op->remap.skip_next) { 2727 xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old)); 2728 op->remap.range -= 2729 xe_vma_end(old) - 2730 xe_vma_start(vma); 2731 vm_dbg(&xe->drm, "REMAP:SKIP_NEXT: addr=0x%016llx, range=0x%016llx", 2732 (ULL)op->remap.start, 2733 (ULL)op->remap.range); 2734 } else { 2735 num_remap_ops++; 2736 } 2737 } 2738 if (!skip) 2739 num_remap_ops++; 2740 2741 xe_vma_ops_incr_pt_update_ops(vops, op->tile_mask, num_remap_ops); 2742 break; 2743 } 2744 case DRM_GPUVA_OP_UNMAP: 2745 vma = gpuva_to_vma(op->base.unmap.va); 2746 2747 if (xe_vma_is_cpu_addr_mirror(vma) && 2748 xe_svm_has_mapping(vm, xe_vma_start(vma), 2749 xe_vma_end(vma))) 2750 return -EBUSY; 2751 2752 if (!xe_vma_is_cpu_addr_mirror(vma)) 2753 xe_vma_ops_incr_pt_update_ops(vops, op->tile_mask, 1); 2754 break; 2755 case DRM_GPUVA_OP_PREFETCH: 2756 vma = gpuva_to_vma(op->base.prefetch.va); 2757 2758 if (xe_vma_is_userptr(vma)) { 2759 err = xe_vma_userptr_pin_pages(to_userptr_vma(vma)); 2760 if (err) 2761 return err; 2762 } 2763 2764 if (xe_vma_is_cpu_addr_mirror(vma)) 2765 xe_vma_ops_incr_pt_update_ops(vops, op->tile_mask, 2766 op->prefetch_range.ranges_count); 2767 else 2768 xe_vma_ops_incr_pt_update_ops(vops, op->tile_mask, 1); 2769 2770 break; 2771 default: 2772 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2773 } 2774 2775 err = xe_vma_op_commit(vm, op); 2776 if (err) 2777 return err; 2778 } 2779 2780 return 0; 2781 } 2782 2783 static void xe_vma_op_unwind(struct xe_vm *vm, struct xe_vma_op *op, 2784 bool post_commit, bool prev_post_commit, 2785 bool next_post_commit) 2786 { 2787 lockdep_assert_held_write(&vm->lock); 2788 2789 switch (op->base.op) { 2790 case DRM_GPUVA_OP_MAP: 2791 if (op->map.vma) { 2792 prep_vma_destroy(vm, op->map.vma, post_commit); 2793 xe_vma_destroy_unlocked(op->map.vma); 2794 } 2795 break; 2796 case DRM_GPUVA_OP_UNMAP: 2797 { 2798 struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va); 2799 2800 if (vma) { 2801 down_read(&vm->userptr.notifier_lock); 2802 vma->gpuva.flags &= ~XE_VMA_DESTROYED; 2803 up_read(&vm->userptr.notifier_lock); 2804 if (post_commit) 2805 xe_vm_insert_vma(vm, vma); 2806 } 2807 break; 2808 } 2809 case DRM_GPUVA_OP_REMAP: 2810 { 2811 struct xe_vma *vma = gpuva_to_vma(op->base.remap.unmap->va); 2812 2813 if (op->remap.prev) { 2814 prep_vma_destroy(vm, op->remap.prev, prev_post_commit); 2815 xe_vma_destroy_unlocked(op->remap.prev); 2816 } 2817 if (op->remap.next) { 2818 prep_vma_destroy(vm, op->remap.next, next_post_commit); 2819 xe_vma_destroy_unlocked(op->remap.next); 2820 } 2821 if (vma) { 2822 down_read(&vm->userptr.notifier_lock); 2823 vma->gpuva.flags &= ~XE_VMA_DESTROYED; 2824 up_read(&vm->userptr.notifier_lock); 2825 if (post_commit) 2826 xe_vm_insert_vma(vm, vma); 2827 } 2828 break; 2829 } 2830 case DRM_GPUVA_OP_PREFETCH: 2831 /* Nothing to do */ 2832 break; 2833 default: 2834 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 2835 } 2836 } 2837 2838 static void vm_bind_ioctl_ops_unwind(struct xe_vm *vm, 2839 struct drm_gpuva_ops **ops, 2840 int num_ops_list) 2841 { 2842 int i; 2843 2844 for (i = num_ops_list - 1; i >= 0; --i) { 2845 struct drm_gpuva_ops *__ops = ops[i]; 2846 struct drm_gpuva_op *__op; 2847 2848 if (!__ops) 2849 continue; 2850 2851 drm_gpuva_for_each_op_reverse(__op, __ops) { 2852 struct xe_vma_op *op = gpuva_op_to_vma_op(__op); 2853 2854 xe_vma_op_unwind(vm, op, 2855 op->flags & XE_VMA_OP_COMMITTED, 2856 op->flags & XE_VMA_OP_PREV_COMMITTED, 2857 op->flags & XE_VMA_OP_NEXT_COMMITTED); 2858 } 2859 } 2860 } 2861 2862 static int vma_lock_and_validate(struct drm_exec *exec, struct xe_vma *vma, 2863 bool validate) 2864 { 2865 struct xe_bo *bo = xe_vma_bo(vma); 2866 struct xe_vm *vm = xe_vma_vm(vma); 2867 int err = 0; 2868 2869 if (bo) { 2870 if (!bo->vm) 2871 err = drm_exec_lock_obj(exec, &bo->ttm.base); 2872 if (!err && validate) 2873 err = xe_bo_validate(bo, vm, 2874 !xe_vm_in_preempt_fence_mode(vm)); 2875 } 2876 2877 return err; 2878 } 2879 2880 static int check_ufence(struct xe_vma *vma) 2881 { 2882 if (vma->ufence) { 2883 struct xe_user_fence * const f = vma->ufence; 2884 2885 if (!xe_sync_ufence_get_status(f)) 2886 return -EBUSY; 2887 2888 vma->ufence = NULL; 2889 xe_sync_ufence_put(f); 2890 } 2891 2892 return 0; 2893 } 2894 2895 static int prefetch_ranges(struct xe_vm *vm, struct xe_vma_op *op) 2896 { 2897 bool devmem_possible = IS_DGFX(vm->xe) && IS_ENABLED(CONFIG_DRM_XE_PAGEMAP); 2898 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2899 int err = 0; 2900 2901 struct xe_svm_range *svm_range; 2902 struct drm_gpusvm_ctx ctx = {}; 2903 struct xe_tile *tile; 2904 unsigned long i; 2905 u32 region; 2906 2907 if (!xe_vma_is_cpu_addr_mirror(vma)) 2908 return 0; 2909 2910 region = op->prefetch_range.region; 2911 2912 ctx.read_only = xe_vma_read_only(vma); 2913 ctx.devmem_possible = devmem_possible; 2914 ctx.check_pages_threshold = devmem_possible ? SZ_64K : 0; 2915 2916 /* TODO: Threading the migration */ 2917 xa_for_each(&op->prefetch_range.range, i, svm_range) { 2918 if (!region) 2919 xe_svm_range_migrate_to_smem(vm, svm_range); 2920 2921 if (xe_svm_range_needs_migrate_to_vram(svm_range, vma, region)) { 2922 tile = &vm->xe->tiles[region_to_mem_type[region] - XE_PL_VRAM0]; 2923 err = xe_svm_alloc_vram(tile, svm_range, &ctx); 2924 if (err) { 2925 drm_dbg(&vm->xe->drm, "VRAM allocation failed, retry from userspace, asid=%u, gpusvm=%p, errno=%pe\n", 2926 vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err)); 2927 return -ENODATA; 2928 } 2929 xe_svm_range_debug(svm_range, "PREFETCH - RANGE MIGRATED TO VRAM"); 2930 } 2931 2932 err = xe_svm_range_get_pages(vm, svm_range, &ctx); 2933 if (err) { 2934 drm_dbg(&vm->xe->drm, "Get pages failed, asid=%u, gpusvm=%p, errno=%pe\n", 2935 vm->usm.asid, &vm->svm.gpusvm, ERR_PTR(err)); 2936 if (err == -EOPNOTSUPP || err == -EFAULT || err == -EPERM) 2937 err = -ENODATA; 2938 return err; 2939 } 2940 xe_svm_range_debug(svm_range, "PREFETCH - RANGE GET PAGES DONE"); 2941 } 2942 2943 return err; 2944 } 2945 2946 static int op_lock_and_prep(struct drm_exec *exec, struct xe_vm *vm, 2947 struct xe_vma_op *op) 2948 { 2949 int err = 0; 2950 2951 switch (op->base.op) { 2952 case DRM_GPUVA_OP_MAP: 2953 if (!op->map.invalidate_on_bind) 2954 err = vma_lock_and_validate(exec, op->map.vma, 2955 !xe_vm_in_fault_mode(vm) || 2956 op->map.immediate); 2957 break; 2958 case DRM_GPUVA_OP_REMAP: 2959 err = check_ufence(gpuva_to_vma(op->base.remap.unmap->va)); 2960 if (err) 2961 break; 2962 2963 err = vma_lock_and_validate(exec, 2964 gpuva_to_vma(op->base.remap.unmap->va), 2965 false); 2966 if (!err && op->remap.prev) 2967 err = vma_lock_and_validate(exec, op->remap.prev, true); 2968 if (!err && op->remap.next) 2969 err = vma_lock_and_validate(exec, op->remap.next, true); 2970 break; 2971 case DRM_GPUVA_OP_UNMAP: 2972 err = check_ufence(gpuva_to_vma(op->base.unmap.va)); 2973 if (err) 2974 break; 2975 2976 err = vma_lock_and_validate(exec, 2977 gpuva_to_vma(op->base.unmap.va), 2978 false); 2979 break; 2980 case DRM_GPUVA_OP_PREFETCH: 2981 { 2982 struct xe_vma *vma = gpuva_to_vma(op->base.prefetch.va); 2983 u32 region; 2984 2985 if (xe_vma_is_cpu_addr_mirror(vma)) 2986 region = op->prefetch_range.region; 2987 else 2988 region = op->prefetch.region; 2989 2990 xe_assert(vm->xe, region <= ARRAY_SIZE(region_to_mem_type)); 2991 2992 err = vma_lock_and_validate(exec, 2993 gpuva_to_vma(op->base.prefetch.va), 2994 false); 2995 if (!err && !xe_vma_has_no_bo(vma)) 2996 err = xe_bo_migrate(xe_vma_bo(vma), 2997 region_to_mem_type[region]); 2998 break; 2999 } 3000 default: 3001 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 3002 } 3003 3004 return err; 3005 } 3006 3007 static int vm_bind_ioctl_ops_prefetch_ranges(struct xe_vm *vm, struct xe_vma_ops *vops) 3008 { 3009 struct xe_vma_op *op; 3010 int err; 3011 3012 if (!(vops->flags & XE_VMA_OPS_FLAG_HAS_SVM_PREFETCH)) 3013 return 0; 3014 3015 list_for_each_entry(op, &vops->list, link) { 3016 if (op->base.op == DRM_GPUVA_OP_PREFETCH) { 3017 err = prefetch_ranges(vm, op); 3018 if (err) 3019 return err; 3020 } 3021 } 3022 3023 return 0; 3024 } 3025 3026 static int vm_bind_ioctl_ops_lock_and_prep(struct drm_exec *exec, 3027 struct xe_vm *vm, 3028 struct xe_vma_ops *vops) 3029 { 3030 struct xe_vma_op *op; 3031 int err; 3032 3033 err = drm_exec_lock_obj(exec, xe_vm_obj(vm)); 3034 if (err) 3035 return err; 3036 3037 list_for_each_entry(op, &vops->list, link) { 3038 err = op_lock_and_prep(exec, vm, op); 3039 if (err) 3040 return err; 3041 } 3042 3043 #ifdef TEST_VM_OPS_ERROR 3044 if (vops->inject_error && 3045 vm->xe->vm_inject_error_position == FORCE_OP_ERROR_LOCK) 3046 return -ENOSPC; 3047 #endif 3048 3049 return 0; 3050 } 3051 3052 static void op_trace(struct xe_vma_op *op) 3053 { 3054 switch (op->base.op) { 3055 case DRM_GPUVA_OP_MAP: 3056 trace_xe_vma_bind(op->map.vma); 3057 break; 3058 case DRM_GPUVA_OP_REMAP: 3059 trace_xe_vma_unbind(gpuva_to_vma(op->base.remap.unmap->va)); 3060 if (op->remap.prev) 3061 trace_xe_vma_bind(op->remap.prev); 3062 if (op->remap.next) 3063 trace_xe_vma_bind(op->remap.next); 3064 break; 3065 case DRM_GPUVA_OP_UNMAP: 3066 trace_xe_vma_unbind(gpuva_to_vma(op->base.unmap.va)); 3067 break; 3068 case DRM_GPUVA_OP_PREFETCH: 3069 trace_xe_vma_bind(gpuva_to_vma(op->base.prefetch.va)); 3070 break; 3071 case DRM_GPUVA_OP_DRIVER: 3072 break; 3073 default: 3074 XE_WARN_ON("NOT POSSIBLE"); 3075 } 3076 } 3077 3078 static void trace_xe_vm_ops_execute(struct xe_vma_ops *vops) 3079 { 3080 struct xe_vma_op *op; 3081 3082 list_for_each_entry(op, &vops->list, link) 3083 op_trace(op); 3084 } 3085 3086 static int vm_ops_setup_tile_args(struct xe_vm *vm, struct xe_vma_ops *vops) 3087 { 3088 struct xe_exec_queue *q = vops->q; 3089 struct xe_tile *tile; 3090 int number_tiles = 0; 3091 u8 id; 3092 3093 for_each_tile(tile, vm->xe, id) { 3094 if (vops->pt_update_ops[id].num_ops) 3095 ++number_tiles; 3096 3097 if (vops->pt_update_ops[id].q) 3098 continue; 3099 3100 if (q) { 3101 vops->pt_update_ops[id].q = q; 3102 if (vm->pt_root[id] && !list_empty(&q->multi_gt_list)) 3103 q = list_next_entry(q, multi_gt_list); 3104 } else { 3105 vops->pt_update_ops[id].q = vm->q[id]; 3106 } 3107 } 3108 3109 return number_tiles; 3110 } 3111 3112 static struct dma_fence *ops_execute(struct xe_vm *vm, 3113 struct xe_vma_ops *vops) 3114 { 3115 struct xe_tile *tile; 3116 struct dma_fence *fence = NULL; 3117 struct dma_fence **fences = NULL; 3118 struct dma_fence_array *cf = NULL; 3119 int number_tiles = 0, current_fence = 0, err; 3120 u8 id; 3121 3122 number_tiles = vm_ops_setup_tile_args(vm, vops); 3123 if (number_tiles == 0) 3124 return ERR_PTR(-ENODATA); 3125 3126 if (number_tiles > 1) { 3127 fences = kmalloc_array(number_tiles, sizeof(*fences), 3128 GFP_KERNEL); 3129 if (!fences) { 3130 fence = ERR_PTR(-ENOMEM); 3131 goto err_trace; 3132 } 3133 } 3134 3135 for_each_tile(tile, vm->xe, id) { 3136 if (!vops->pt_update_ops[id].num_ops) 3137 continue; 3138 3139 err = xe_pt_update_ops_prepare(tile, vops); 3140 if (err) { 3141 fence = ERR_PTR(err); 3142 goto err_out; 3143 } 3144 } 3145 3146 trace_xe_vm_ops_execute(vops); 3147 3148 for_each_tile(tile, vm->xe, id) { 3149 if (!vops->pt_update_ops[id].num_ops) 3150 continue; 3151 3152 fence = xe_pt_update_ops_run(tile, vops); 3153 if (IS_ERR(fence)) 3154 goto err_out; 3155 3156 if (fences) 3157 fences[current_fence++] = fence; 3158 } 3159 3160 if (fences) { 3161 cf = dma_fence_array_create(number_tiles, fences, 3162 vm->composite_fence_ctx, 3163 vm->composite_fence_seqno++, 3164 false); 3165 if (!cf) { 3166 --vm->composite_fence_seqno; 3167 fence = ERR_PTR(-ENOMEM); 3168 goto err_out; 3169 } 3170 fence = &cf->base; 3171 } 3172 3173 for_each_tile(tile, vm->xe, id) { 3174 if (!vops->pt_update_ops[id].num_ops) 3175 continue; 3176 3177 xe_pt_update_ops_fini(tile, vops); 3178 } 3179 3180 return fence; 3181 3182 err_out: 3183 for_each_tile(tile, vm->xe, id) { 3184 if (!vops->pt_update_ops[id].num_ops) 3185 continue; 3186 3187 xe_pt_update_ops_abort(tile, vops); 3188 } 3189 while (current_fence) 3190 dma_fence_put(fences[--current_fence]); 3191 kfree(fences); 3192 kfree(cf); 3193 3194 err_trace: 3195 trace_xe_vm_ops_fail(vm); 3196 return fence; 3197 } 3198 3199 static void vma_add_ufence(struct xe_vma *vma, struct xe_user_fence *ufence) 3200 { 3201 if (vma->ufence) 3202 xe_sync_ufence_put(vma->ufence); 3203 vma->ufence = __xe_sync_ufence_get(ufence); 3204 } 3205 3206 static void op_add_ufence(struct xe_vm *vm, struct xe_vma_op *op, 3207 struct xe_user_fence *ufence) 3208 { 3209 switch (op->base.op) { 3210 case DRM_GPUVA_OP_MAP: 3211 vma_add_ufence(op->map.vma, ufence); 3212 break; 3213 case DRM_GPUVA_OP_REMAP: 3214 if (op->remap.prev) 3215 vma_add_ufence(op->remap.prev, ufence); 3216 if (op->remap.next) 3217 vma_add_ufence(op->remap.next, ufence); 3218 break; 3219 case DRM_GPUVA_OP_UNMAP: 3220 break; 3221 case DRM_GPUVA_OP_PREFETCH: 3222 vma_add_ufence(gpuva_to_vma(op->base.prefetch.va), ufence); 3223 break; 3224 default: 3225 drm_warn(&vm->xe->drm, "NOT POSSIBLE"); 3226 } 3227 } 3228 3229 static void vm_bind_ioctl_ops_fini(struct xe_vm *vm, struct xe_vma_ops *vops, 3230 struct dma_fence *fence) 3231 { 3232 struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, vops->q); 3233 struct xe_user_fence *ufence; 3234 struct xe_vma_op *op; 3235 int i; 3236 3237 ufence = find_ufence_get(vops->syncs, vops->num_syncs); 3238 list_for_each_entry(op, &vops->list, link) { 3239 if (ufence) 3240 op_add_ufence(vm, op, ufence); 3241 3242 if (op->base.op == DRM_GPUVA_OP_UNMAP) 3243 xe_vma_destroy(gpuva_to_vma(op->base.unmap.va), fence); 3244 else if (op->base.op == DRM_GPUVA_OP_REMAP) 3245 xe_vma_destroy(gpuva_to_vma(op->base.remap.unmap->va), 3246 fence); 3247 } 3248 if (ufence) 3249 xe_sync_ufence_put(ufence); 3250 if (fence) { 3251 for (i = 0; i < vops->num_syncs; i++) 3252 xe_sync_entry_signal(vops->syncs + i, fence); 3253 xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence); 3254 } 3255 } 3256 3257 static struct dma_fence *vm_bind_ioctl_ops_execute(struct xe_vm *vm, 3258 struct xe_vma_ops *vops) 3259 { 3260 struct drm_exec exec; 3261 struct dma_fence *fence; 3262 int err; 3263 3264 lockdep_assert_held_write(&vm->lock); 3265 3266 drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT | 3267 DRM_EXEC_IGNORE_DUPLICATES, 0); 3268 drm_exec_until_all_locked(&exec) { 3269 err = vm_bind_ioctl_ops_lock_and_prep(&exec, vm, vops); 3270 drm_exec_retry_on_contention(&exec); 3271 if (err) { 3272 fence = ERR_PTR(err); 3273 goto unlock; 3274 } 3275 3276 fence = ops_execute(vm, vops); 3277 if (IS_ERR(fence)) { 3278 if (PTR_ERR(fence) == -ENODATA) 3279 vm_bind_ioctl_ops_fini(vm, vops, NULL); 3280 goto unlock; 3281 } 3282 3283 vm_bind_ioctl_ops_fini(vm, vops, fence); 3284 } 3285 3286 unlock: 3287 drm_exec_fini(&exec); 3288 return fence; 3289 } 3290 ALLOW_ERROR_INJECTION(vm_bind_ioctl_ops_execute, ERRNO); 3291 3292 #define SUPPORTED_FLAGS_STUB \ 3293 (DRM_XE_VM_BIND_FLAG_READONLY | \ 3294 DRM_XE_VM_BIND_FLAG_IMMEDIATE | \ 3295 DRM_XE_VM_BIND_FLAG_NULL | \ 3296 DRM_XE_VM_BIND_FLAG_DUMPABLE | \ 3297 DRM_XE_VM_BIND_FLAG_CHECK_PXP | \ 3298 DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR) 3299 3300 #ifdef TEST_VM_OPS_ERROR 3301 #define SUPPORTED_FLAGS (SUPPORTED_FLAGS_STUB | FORCE_OP_ERROR) 3302 #else 3303 #define SUPPORTED_FLAGS SUPPORTED_FLAGS_STUB 3304 #endif 3305 3306 #define XE_64K_PAGE_MASK 0xffffull 3307 #define ALL_DRM_XE_SYNCS_FLAGS (DRM_XE_SYNCS_FLAG_WAIT_FOR_OP) 3308 3309 static int vm_bind_ioctl_check_args(struct xe_device *xe, struct xe_vm *vm, 3310 struct drm_xe_vm_bind *args, 3311 struct drm_xe_vm_bind_op **bind_ops) 3312 { 3313 int err; 3314 int i; 3315 3316 if (XE_IOCTL_DBG(xe, args->pad || args->pad2) || 3317 XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1])) 3318 return -EINVAL; 3319 3320 if (XE_IOCTL_DBG(xe, args->extensions)) 3321 return -EINVAL; 3322 3323 if (args->num_binds > 1) { 3324 u64 __user *bind_user = 3325 u64_to_user_ptr(args->vector_of_binds); 3326 3327 *bind_ops = kvmalloc_array(args->num_binds, 3328 sizeof(struct drm_xe_vm_bind_op), 3329 GFP_KERNEL | __GFP_ACCOUNT | 3330 __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 3331 if (!*bind_ops) 3332 return args->num_binds > 1 ? -ENOBUFS : -ENOMEM; 3333 3334 err = copy_from_user(*bind_ops, bind_user, 3335 sizeof(struct drm_xe_vm_bind_op) * 3336 args->num_binds); 3337 if (XE_IOCTL_DBG(xe, err)) { 3338 err = -EFAULT; 3339 goto free_bind_ops; 3340 } 3341 } else { 3342 *bind_ops = &args->bind; 3343 } 3344 3345 for (i = 0; i < args->num_binds; ++i) { 3346 u64 range = (*bind_ops)[i].range; 3347 u64 addr = (*bind_ops)[i].addr; 3348 u32 op = (*bind_ops)[i].op; 3349 u32 flags = (*bind_ops)[i].flags; 3350 u32 obj = (*bind_ops)[i].obj; 3351 u64 obj_offset = (*bind_ops)[i].obj_offset; 3352 u32 prefetch_region = (*bind_ops)[i].prefetch_mem_region_instance; 3353 bool is_null = flags & DRM_XE_VM_BIND_FLAG_NULL; 3354 bool is_cpu_addr_mirror = flags & 3355 DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR; 3356 u16 pat_index = (*bind_ops)[i].pat_index; 3357 u16 coh_mode; 3358 3359 if (XE_IOCTL_DBG(xe, is_cpu_addr_mirror && 3360 (!xe_vm_in_fault_mode(vm) || 3361 !IS_ENABLED(CONFIG_DRM_XE_GPUSVM)))) { 3362 err = -EINVAL; 3363 goto free_bind_ops; 3364 } 3365 3366 if (XE_IOCTL_DBG(xe, pat_index >= xe->pat.n_entries)) { 3367 err = -EINVAL; 3368 goto free_bind_ops; 3369 } 3370 3371 pat_index = array_index_nospec(pat_index, xe->pat.n_entries); 3372 (*bind_ops)[i].pat_index = pat_index; 3373 coh_mode = xe_pat_index_get_coh_mode(xe, pat_index); 3374 if (XE_IOCTL_DBG(xe, !coh_mode)) { /* hw reserved */ 3375 err = -EINVAL; 3376 goto free_bind_ops; 3377 } 3378 3379 if (XE_WARN_ON(coh_mode > XE_COH_AT_LEAST_1WAY)) { 3380 err = -EINVAL; 3381 goto free_bind_ops; 3382 } 3383 3384 if (XE_IOCTL_DBG(xe, op > DRM_XE_VM_BIND_OP_PREFETCH) || 3385 XE_IOCTL_DBG(xe, flags & ~SUPPORTED_FLAGS) || 3386 XE_IOCTL_DBG(xe, obj && (is_null || is_cpu_addr_mirror)) || 3387 XE_IOCTL_DBG(xe, obj_offset && (is_null || 3388 is_cpu_addr_mirror)) || 3389 XE_IOCTL_DBG(xe, op != DRM_XE_VM_BIND_OP_MAP && 3390 (is_null || is_cpu_addr_mirror)) || 3391 XE_IOCTL_DBG(xe, !obj && 3392 op == DRM_XE_VM_BIND_OP_MAP && 3393 !is_null && !is_cpu_addr_mirror) || 3394 XE_IOCTL_DBG(xe, !obj && 3395 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) || 3396 XE_IOCTL_DBG(xe, addr && 3397 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) || 3398 XE_IOCTL_DBG(xe, range && 3399 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) || 3400 XE_IOCTL_DBG(xe, obj && 3401 op == DRM_XE_VM_BIND_OP_MAP_USERPTR) || 3402 XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE && 3403 op == DRM_XE_VM_BIND_OP_MAP_USERPTR) || 3404 XE_IOCTL_DBG(xe, obj && 3405 op == DRM_XE_VM_BIND_OP_PREFETCH) || 3406 XE_IOCTL_DBG(xe, prefetch_region && 3407 op != DRM_XE_VM_BIND_OP_PREFETCH) || 3408 XE_IOCTL_DBG(xe, !(BIT(prefetch_region) & 3409 xe->info.mem_region_mask)) || 3410 XE_IOCTL_DBG(xe, obj && 3411 op == DRM_XE_VM_BIND_OP_UNMAP)) { 3412 err = -EINVAL; 3413 goto free_bind_ops; 3414 } 3415 3416 if (XE_IOCTL_DBG(xe, obj_offset & ~PAGE_MASK) || 3417 XE_IOCTL_DBG(xe, addr & ~PAGE_MASK) || 3418 XE_IOCTL_DBG(xe, range & ~PAGE_MASK) || 3419 XE_IOCTL_DBG(xe, !range && 3420 op != DRM_XE_VM_BIND_OP_UNMAP_ALL)) { 3421 err = -EINVAL; 3422 goto free_bind_ops; 3423 } 3424 } 3425 3426 return 0; 3427 3428 free_bind_ops: 3429 if (args->num_binds > 1) 3430 kvfree(*bind_ops); 3431 return err; 3432 } 3433 3434 static int vm_bind_ioctl_signal_fences(struct xe_vm *vm, 3435 struct xe_exec_queue *q, 3436 struct xe_sync_entry *syncs, 3437 int num_syncs) 3438 { 3439 struct dma_fence *fence; 3440 int i, err = 0; 3441 3442 fence = xe_sync_in_fence_get(syncs, num_syncs, 3443 to_wait_exec_queue(vm, q), vm); 3444 if (IS_ERR(fence)) 3445 return PTR_ERR(fence); 3446 3447 for (i = 0; i < num_syncs; i++) 3448 xe_sync_entry_signal(&syncs[i], fence); 3449 3450 xe_exec_queue_last_fence_set(to_wait_exec_queue(vm, q), vm, 3451 fence); 3452 dma_fence_put(fence); 3453 3454 return err; 3455 } 3456 3457 static void xe_vma_ops_init(struct xe_vma_ops *vops, struct xe_vm *vm, 3458 struct xe_exec_queue *q, 3459 struct xe_sync_entry *syncs, u32 num_syncs) 3460 { 3461 memset(vops, 0, sizeof(*vops)); 3462 INIT_LIST_HEAD(&vops->list); 3463 vops->vm = vm; 3464 vops->q = q; 3465 vops->syncs = syncs; 3466 vops->num_syncs = num_syncs; 3467 vops->flags = 0; 3468 } 3469 3470 static int xe_vm_bind_ioctl_validate_bo(struct xe_device *xe, struct xe_bo *bo, 3471 u64 addr, u64 range, u64 obj_offset, 3472 u16 pat_index, u32 op, u32 bind_flags) 3473 { 3474 u16 coh_mode; 3475 3476 if (XE_IOCTL_DBG(xe, range > xe_bo_size(bo)) || 3477 XE_IOCTL_DBG(xe, obj_offset > 3478 xe_bo_size(bo) - range)) { 3479 return -EINVAL; 3480 } 3481 3482 /* 3483 * Some platforms require 64k VM_BIND alignment, 3484 * specifically those with XE_VRAM_FLAGS_NEED64K. 3485 * 3486 * Other platforms may have BO's set to 64k physical placement, 3487 * but can be mapped at 4k offsets anyway. This check is only 3488 * there for the former case. 3489 */ 3490 if ((bo->flags & XE_BO_FLAG_INTERNAL_64K) && 3491 (xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)) { 3492 if (XE_IOCTL_DBG(xe, obj_offset & 3493 XE_64K_PAGE_MASK) || 3494 XE_IOCTL_DBG(xe, addr & XE_64K_PAGE_MASK) || 3495 XE_IOCTL_DBG(xe, range & XE_64K_PAGE_MASK)) { 3496 return -EINVAL; 3497 } 3498 } 3499 3500 coh_mode = xe_pat_index_get_coh_mode(xe, pat_index); 3501 if (bo->cpu_caching) { 3502 if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE && 3503 bo->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) { 3504 return -EINVAL; 3505 } 3506 } else if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE)) { 3507 /* 3508 * Imported dma-buf from a different device should 3509 * require 1way or 2way coherency since we don't know 3510 * how it was mapped on the CPU. Just assume is it 3511 * potentially cached on CPU side. 3512 */ 3513 return -EINVAL; 3514 } 3515 3516 /* If a BO is protected it can only be mapped if the key is still valid */ 3517 if ((bind_flags & DRM_XE_VM_BIND_FLAG_CHECK_PXP) && xe_bo_is_protected(bo) && 3518 op != DRM_XE_VM_BIND_OP_UNMAP && op != DRM_XE_VM_BIND_OP_UNMAP_ALL) 3519 if (XE_IOCTL_DBG(xe, xe_pxp_bo_key_check(xe->pxp, bo) != 0)) 3520 return -ENOEXEC; 3521 3522 return 0; 3523 } 3524 3525 int xe_vm_bind_ioctl(struct drm_device *dev, void *data, struct drm_file *file) 3526 { 3527 struct xe_device *xe = to_xe_device(dev); 3528 struct xe_file *xef = to_xe_file(file); 3529 struct drm_xe_vm_bind *args = data; 3530 struct drm_xe_sync __user *syncs_user; 3531 struct xe_bo **bos = NULL; 3532 struct drm_gpuva_ops **ops = NULL; 3533 struct xe_vm *vm; 3534 struct xe_exec_queue *q = NULL; 3535 u32 num_syncs, num_ufence = 0; 3536 struct xe_sync_entry *syncs = NULL; 3537 struct drm_xe_vm_bind_op *bind_ops; 3538 struct xe_vma_ops vops; 3539 struct dma_fence *fence; 3540 int err; 3541 int i; 3542 3543 vm = xe_vm_lookup(xef, args->vm_id); 3544 if (XE_IOCTL_DBG(xe, !vm)) 3545 return -EINVAL; 3546 3547 err = vm_bind_ioctl_check_args(xe, vm, args, &bind_ops); 3548 if (err) 3549 goto put_vm; 3550 3551 if (args->exec_queue_id) { 3552 q = xe_exec_queue_lookup(xef, args->exec_queue_id); 3553 if (XE_IOCTL_DBG(xe, !q)) { 3554 err = -ENOENT; 3555 goto put_vm; 3556 } 3557 3558 if (XE_IOCTL_DBG(xe, !(q->flags & EXEC_QUEUE_FLAG_VM))) { 3559 err = -EINVAL; 3560 goto put_exec_queue; 3561 } 3562 } 3563 3564 /* Ensure all UNMAPs visible */ 3565 xe_svm_flush(vm); 3566 3567 err = down_write_killable(&vm->lock); 3568 if (err) 3569 goto put_exec_queue; 3570 3571 if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) { 3572 err = -ENOENT; 3573 goto release_vm_lock; 3574 } 3575 3576 for (i = 0; i < args->num_binds; ++i) { 3577 u64 range = bind_ops[i].range; 3578 u64 addr = bind_ops[i].addr; 3579 3580 if (XE_IOCTL_DBG(xe, range > vm->size) || 3581 XE_IOCTL_DBG(xe, addr > vm->size - range)) { 3582 err = -EINVAL; 3583 goto release_vm_lock; 3584 } 3585 } 3586 3587 if (args->num_binds) { 3588 bos = kvcalloc(args->num_binds, sizeof(*bos), 3589 GFP_KERNEL | __GFP_ACCOUNT | 3590 __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 3591 if (!bos) { 3592 err = -ENOMEM; 3593 goto release_vm_lock; 3594 } 3595 3596 ops = kvcalloc(args->num_binds, sizeof(*ops), 3597 GFP_KERNEL | __GFP_ACCOUNT | 3598 __GFP_RETRY_MAYFAIL | __GFP_NOWARN); 3599 if (!ops) { 3600 err = -ENOMEM; 3601 goto release_vm_lock; 3602 } 3603 } 3604 3605 for (i = 0; i < args->num_binds; ++i) { 3606 struct drm_gem_object *gem_obj; 3607 u64 range = bind_ops[i].range; 3608 u64 addr = bind_ops[i].addr; 3609 u32 obj = bind_ops[i].obj; 3610 u64 obj_offset = bind_ops[i].obj_offset; 3611 u16 pat_index = bind_ops[i].pat_index; 3612 u32 op = bind_ops[i].op; 3613 u32 bind_flags = bind_ops[i].flags; 3614 3615 if (!obj) 3616 continue; 3617 3618 gem_obj = drm_gem_object_lookup(file, obj); 3619 if (XE_IOCTL_DBG(xe, !gem_obj)) { 3620 err = -ENOENT; 3621 goto put_obj; 3622 } 3623 bos[i] = gem_to_xe_bo(gem_obj); 3624 3625 err = xe_vm_bind_ioctl_validate_bo(xe, bos[i], addr, range, 3626 obj_offset, pat_index, op, 3627 bind_flags); 3628 if (err) 3629 goto put_obj; 3630 } 3631 3632 if (args->num_syncs) { 3633 syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL); 3634 if (!syncs) { 3635 err = -ENOMEM; 3636 goto put_obj; 3637 } 3638 } 3639 3640 syncs_user = u64_to_user_ptr(args->syncs); 3641 for (num_syncs = 0; num_syncs < args->num_syncs; num_syncs++) { 3642 err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs], 3643 &syncs_user[num_syncs], 3644 (xe_vm_in_lr_mode(vm) ? 3645 SYNC_PARSE_FLAG_LR_MODE : 0) | 3646 (!args->num_binds ? 3647 SYNC_PARSE_FLAG_DISALLOW_USER_FENCE : 0)); 3648 if (err) 3649 goto free_syncs; 3650 3651 if (xe_sync_is_ufence(&syncs[num_syncs])) 3652 num_ufence++; 3653 } 3654 3655 if (XE_IOCTL_DBG(xe, num_ufence > 1)) { 3656 err = -EINVAL; 3657 goto free_syncs; 3658 } 3659 3660 if (!args->num_binds) { 3661 err = -ENODATA; 3662 goto free_syncs; 3663 } 3664 3665 xe_vma_ops_init(&vops, vm, q, syncs, num_syncs); 3666 for (i = 0; i < args->num_binds; ++i) { 3667 u64 range = bind_ops[i].range; 3668 u64 addr = bind_ops[i].addr; 3669 u32 op = bind_ops[i].op; 3670 u32 flags = bind_ops[i].flags; 3671 u64 obj_offset = bind_ops[i].obj_offset; 3672 u32 prefetch_region = bind_ops[i].prefetch_mem_region_instance; 3673 u16 pat_index = bind_ops[i].pat_index; 3674 3675 ops[i] = vm_bind_ioctl_ops_create(vm, &vops, bos[i], obj_offset, 3676 addr, range, op, flags, 3677 prefetch_region, pat_index); 3678 if (IS_ERR(ops[i])) { 3679 err = PTR_ERR(ops[i]); 3680 ops[i] = NULL; 3681 goto unwind_ops; 3682 } 3683 3684 err = vm_bind_ioctl_ops_parse(vm, ops[i], &vops); 3685 if (err) 3686 goto unwind_ops; 3687 3688 #ifdef TEST_VM_OPS_ERROR 3689 if (flags & FORCE_OP_ERROR) { 3690 vops.inject_error = true; 3691 vm->xe->vm_inject_error_position = 3692 (vm->xe->vm_inject_error_position + 1) % 3693 FORCE_OP_ERROR_COUNT; 3694 } 3695 #endif 3696 } 3697 3698 /* Nothing to do */ 3699 if (list_empty(&vops.list)) { 3700 err = -ENODATA; 3701 goto unwind_ops; 3702 } 3703 3704 err = xe_vma_ops_alloc(&vops, args->num_binds > 1); 3705 if (err) 3706 goto unwind_ops; 3707 3708 err = vm_bind_ioctl_ops_prefetch_ranges(vm, &vops); 3709 if (err) 3710 goto unwind_ops; 3711 3712 fence = vm_bind_ioctl_ops_execute(vm, &vops); 3713 if (IS_ERR(fence)) 3714 err = PTR_ERR(fence); 3715 else 3716 dma_fence_put(fence); 3717 3718 unwind_ops: 3719 if (err && err != -ENODATA) 3720 vm_bind_ioctl_ops_unwind(vm, ops, args->num_binds); 3721 xe_vma_ops_fini(&vops); 3722 for (i = args->num_binds - 1; i >= 0; --i) 3723 if (ops[i]) 3724 drm_gpuva_ops_free(&vm->gpuvm, ops[i]); 3725 free_syncs: 3726 if (err == -ENODATA) 3727 err = vm_bind_ioctl_signal_fences(vm, q, syncs, num_syncs); 3728 while (num_syncs--) 3729 xe_sync_entry_cleanup(&syncs[num_syncs]); 3730 3731 kfree(syncs); 3732 put_obj: 3733 for (i = 0; i < args->num_binds; ++i) 3734 xe_bo_put(bos[i]); 3735 release_vm_lock: 3736 up_write(&vm->lock); 3737 put_exec_queue: 3738 if (q) 3739 xe_exec_queue_put(q); 3740 put_vm: 3741 xe_vm_put(vm); 3742 kvfree(bos); 3743 kvfree(ops); 3744 if (args->num_binds > 1) 3745 kvfree(bind_ops); 3746 return err; 3747 } 3748 3749 /** 3750 * xe_vm_bind_kernel_bo - bind a kernel BO to a VM 3751 * @vm: VM to bind the BO to 3752 * @bo: BO to bind 3753 * @q: exec queue to use for the bind (optional) 3754 * @addr: address at which to bind the BO 3755 * @cache_lvl: PAT cache level to use 3756 * 3757 * Execute a VM bind map operation on a kernel-owned BO to bind it into a 3758 * kernel-owned VM. 3759 * 3760 * Returns a dma_fence to track the binding completion if the job to do so was 3761 * successfully submitted, an error pointer otherwise. 3762 */ 3763 struct dma_fence *xe_vm_bind_kernel_bo(struct xe_vm *vm, struct xe_bo *bo, 3764 struct xe_exec_queue *q, u64 addr, 3765 enum xe_cache_level cache_lvl) 3766 { 3767 struct xe_vma_ops vops; 3768 struct drm_gpuva_ops *ops = NULL; 3769 struct dma_fence *fence; 3770 int err; 3771 3772 xe_bo_get(bo); 3773 xe_vm_get(vm); 3774 if (q) 3775 xe_exec_queue_get(q); 3776 3777 down_write(&vm->lock); 3778 3779 xe_vma_ops_init(&vops, vm, q, NULL, 0); 3780 3781 ops = vm_bind_ioctl_ops_create(vm, &vops, bo, 0, addr, xe_bo_size(bo), 3782 DRM_XE_VM_BIND_OP_MAP, 0, 0, 3783 vm->xe->pat.idx[cache_lvl]); 3784 if (IS_ERR(ops)) { 3785 err = PTR_ERR(ops); 3786 goto release_vm_lock; 3787 } 3788 3789 err = vm_bind_ioctl_ops_parse(vm, ops, &vops); 3790 if (err) 3791 goto release_vm_lock; 3792 3793 xe_assert(vm->xe, !list_empty(&vops.list)); 3794 3795 err = xe_vma_ops_alloc(&vops, false); 3796 if (err) 3797 goto unwind_ops; 3798 3799 fence = vm_bind_ioctl_ops_execute(vm, &vops); 3800 if (IS_ERR(fence)) 3801 err = PTR_ERR(fence); 3802 3803 unwind_ops: 3804 if (err && err != -ENODATA) 3805 vm_bind_ioctl_ops_unwind(vm, &ops, 1); 3806 3807 xe_vma_ops_fini(&vops); 3808 drm_gpuva_ops_free(&vm->gpuvm, ops); 3809 3810 release_vm_lock: 3811 up_write(&vm->lock); 3812 3813 if (q) 3814 xe_exec_queue_put(q); 3815 xe_vm_put(vm); 3816 xe_bo_put(bo); 3817 3818 if (err) 3819 fence = ERR_PTR(err); 3820 3821 return fence; 3822 } 3823 3824 /** 3825 * xe_vm_lock() - Lock the vm's dma_resv object 3826 * @vm: The struct xe_vm whose lock is to be locked 3827 * @intr: Whether to perform any wait interruptible 3828 * 3829 * Return: 0 on success, -EINTR if @intr is true and the wait for a 3830 * contended lock was interrupted. If @intr is false, the function 3831 * always returns 0. 3832 */ 3833 int xe_vm_lock(struct xe_vm *vm, bool intr) 3834 { 3835 if (intr) 3836 return dma_resv_lock_interruptible(xe_vm_resv(vm), NULL); 3837 3838 return dma_resv_lock(xe_vm_resv(vm), NULL); 3839 } 3840 3841 /** 3842 * xe_vm_unlock() - Unlock the vm's dma_resv object 3843 * @vm: The struct xe_vm whose lock is to be released. 3844 * 3845 * Unlock a buffer object lock that was locked by xe_vm_lock(). 3846 */ 3847 void xe_vm_unlock(struct xe_vm *vm) 3848 { 3849 dma_resv_unlock(xe_vm_resv(vm)); 3850 } 3851 3852 /** 3853 * xe_vm_range_tilemask_tlb_invalidation - Issue a TLB invalidation on this tilemask for an 3854 * address range 3855 * @vm: The VM 3856 * @start: start address 3857 * @end: end address 3858 * @tile_mask: mask for which gt's issue tlb invalidation 3859 * 3860 * Issue a range based TLB invalidation for gt's in tilemask 3861 * 3862 * Returns 0 for success, negative error code otherwise. 3863 */ 3864 int xe_vm_range_tilemask_tlb_invalidation(struct xe_vm *vm, u64 start, 3865 u64 end, u8 tile_mask) 3866 { 3867 struct xe_gt_tlb_invalidation_fence fence[XE_MAX_TILES_PER_DEVICE * XE_MAX_GT_PER_TILE]; 3868 struct xe_tile *tile; 3869 u32 fence_id = 0; 3870 u8 id; 3871 int err; 3872 3873 if (!tile_mask) 3874 return 0; 3875 3876 for_each_tile(tile, vm->xe, id) { 3877 if (tile_mask & BIT(id)) { 3878 xe_gt_tlb_invalidation_fence_init(tile->primary_gt, 3879 &fence[fence_id], true); 3880 3881 err = xe_gt_tlb_invalidation_range(tile->primary_gt, 3882 &fence[fence_id], 3883 start, 3884 end, 3885 vm->usm.asid); 3886 if (err) 3887 goto wait; 3888 ++fence_id; 3889 3890 if (!tile->media_gt) 3891 continue; 3892 3893 xe_gt_tlb_invalidation_fence_init(tile->media_gt, 3894 &fence[fence_id], true); 3895 3896 err = xe_gt_tlb_invalidation_range(tile->media_gt, 3897 &fence[fence_id], 3898 start, 3899 end, 3900 vm->usm.asid); 3901 if (err) 3902 goto wait; 3903 ++fence_id; 3904 } 3905 } 3906 3907 wait: 3908 for (id = 0; id < fence_id; ++id) 3909 xe_gt_tlb_invalidation_fence_wait(&fence[id]); 3910 3911 return err; 3912 } 3913 3914 /** 3915 * xe_vm_invalidate_vma - invalidate GPU mappings for VMA without a lock 3916 * @vma: VMA to invalidate 3917 * 3918 * Walks a list of page tables leaves which it memset the entries owned by this 3919 * VMA to zero, invalidates the TLBs, and block until TLBs invalidation is 3920 * complete. 3921 * 3922 * Returns 0 for success, negative error code otherwise. 3923 */ 3924 int xe_vm_invalidate_vma(struct xe_vma *vma) 3925 { 3926 struct xe_device *xe = xe_vma_vm(vma)->xe; 3927 struct xe_vm *vm = xe_vma_vm(vma); 3928 struct xe_tile *tile; 3929 u8 tile_mask = 0; 3930 int ret = 0; 3931 u8 id; 3932 3933 xe_assert(xe, !xe_vma_is_null(vma)); 3934 xe_assert(xe, !xe_vma_is_cpu_addr_mirror(vma)); 3935 trace_xe_vma_invalidate(vma); 3936 3937 vm_dbg(&vm->xe->drm, 3938 "INVALIDATE: addr=0x%016llx, range=0x%016llx", 3939 xe_vma_start(vma), xe_vma_size(vma)); 3940 3941 /* 3942 * Check that we don't race with page-table updates, tile_invalidated 3943 * update is safe 3944 */ 3945 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) { 3946 if (xe_vma_is_userptr(vma)) { 3947 lockdep_assert(lockdep_is_held_type(&vm->userptr.notifier_lock, 0) || 3948 (lockdep_is_held_type(&vm->userptr.notifier_lock, 1) && 3949 lockdep_is_held(&xe_vm_resv(vm)->lock.base))); 3950 3951 WARN_ON_ONCE(!mmu_interval_check_retry 3952 (&to_userptr_vma(vma)->userptr.notifier, 3953 to_userptr_vma(vma)->userptr.notifier_seq)); 3954 WARN_ON_ONCE(!dma_resv_test_signaled(xe_vm_resv(vm), 3955 DMA_RESV_USAGE_BOOKKEEP)); 3956 3957 } else { 3958 xe_bo_assert_held(xe_vma_bo(vma)); 3959 } 3960 } 3961 3962 for_each_tile(tile, xe, id) 3963 if (xe_pt_zap_ptes(tile, vma)) 3964 tile_mask |= BIT(id); 3965 3966 xe_device_wmb(xe); 3967 3968 ret = xe_vm_range_tilemask_tlb_invalidation(xe_vma_vm(vma), xe_vma_start(vma), 3969 xe_vma_end(vma), tile_mask); 3970 3971 /* WRITE_ONCE pairs with READ_ONCE in xe_vm_has_valid_gpu_mapping() */ 3972 WRITE_ONCE(vma->tile_invalidated, vma->tile_mask); 3973 3974 return ret; 3975 } 3976 3977 int xe_vm_validate_protected(struct xe_vm *vm) 3978 { 3979 struct drm_gpuva *gpuva; 3980 int err = 0; 3981 3982 if (!vm) 3983 return -ENODEV; 3984 3985 mutex_lock(&vm->snap_mutex); 3986 3987 drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) { 3988 struct xe_vma *vma = gpuva_to_vma(gpuva); 3989 struct xe_bo *bo = vma->gpuva.gem.obj ? 3990 gem_to_xe_bo(vma->gpuva.gem.obj) : NULL; 3991 3992 if (!bo) 3993 continue; 3994 3995 if (xe_bo_is_protected(bo)) { 3996 err = xe_pxp_bo_key_check(vm->xe->pxp, bo); 3997 if (err) 3998 break; 3999 } 4000 } 4001 4002 mutex_unlock(&vm->snap_mutex); 4003 return err; 4004 } 4005 4006 struct xe_vm_snapshot { 4007 unsigned long num_snaps; 4008 struct { 4009 u64 ofs, bo_ofs; 4010 unsigned long len; 4011 struct xe_bo *bo; 4012 void *data; 4013 struct mm_struct *mm; 4014 } snap[]; 4015 }; 4016 4017 struct xe_vm_snapshot *xe_vm_snapshot_capture(struct xe_vm *vm) 4018 { 4019 unsigned long num_snaps = 0, i; 4020 struct xe_vm_snapshot *snap = NULL; 4021 struct drm_gpuva *gpuva; 4022 4023 if (!vm) 4024 return NULL; 4025 4026 mutex_lock(&vm->snap_mutex); 4027 drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) { 4028 if (gpuva->flags & XE_VMA_DUMPABLE) 4029 num_snaps++; 4030 } 4031 4032 if (num_snaps) 4033 snap = kvzalloc(offsetof(struct xe_vm_snapshot, snap[num_snaps]), GFP_NOWAIT); 4034 if (!snap) { 4035 snap = num_snaps ? ERR_PTR(-ENOMEM) : ERR_PTR(-ENODEV); 4036 goto out_unlock; 4037 } 4038 4039 snap->num_snaps = num_snaps; 4040 i = 0; 4041 drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) { 4042 struct xe_vma *vma = gpuva_to_vma(gpuva); 4043 struct xe_bo *bo = vma->gpuva.gem.obj ? 4044 gem_to_xe_bo(vma->gpuva.gem.obj) : NULL; 4045 4046 if (!(gpuva->flags & XE_VMA_DUMPABLE)) 4047 continue; 4048 4049 snap->snap[i].ofs = xe_vma_start(vma); 4050 snap->snap[i].len = xe_vma_size(vma); 4051 if (bo) { 4052 snap->snap[i].bo = xe_bo_get(bo); 4053 snap->snap[i].bo_ofs = xe_vma_bo_offset(vma); 4054 } else if (xe_vma_is_userptr(vma)) { 4055 struct mm_struct *mm = 4056 to_userptr_vma(vma)->userptr.notifier.mm; 4057 4058 if (mmget_not_zero(mm)) 4059 snap->snap[i].mm = mm; 4060 else 4061 snap->snap[i].data = ERR_PTR(-EFAULT); 4062 4063 snap->snap[i].bo_ofs = xe_vma_userptr(vma); 4064 } else { 4065 snap->snap[i].data = ERR_PTR(-ENOENT); 4066 } 4067 i++; 4068 } 4069 4070 out_unlock: 4071 mutex_unlock(&vm->snap_mutex); 4072 return snap; 4073 } 4074 4075 void xe_vm_snapshot_capture_delayed(struct xe_vm_snapshot *snap) 4076 { 4077 if (IS_ERR_OR_NULL(snap)) 4078 return; 4079 4080 for (int i = 0; i < snap->num_snaps; i++) { 4081 struct xe_bo *bo = snap->snap[i].bo; 4082 int err; 4083 4084 if (IS_ERR(snap->snap[i].data)) 4085 continue; 4086 4087 snap->snap[i].data = kvmalloc(snap->snap[i].len, GFP_USER); 4088 if (!snap->snap[i].data) { 4089 snap->snap[i].data = ERR_PTR(-ENOMEM); 4090 goto cleanup_bo; 4091 } 4092 4093 if (bo) { 4094 err = xe_bo_read(bo, snap->snap[i].bo_ofs, 4095 snap->snap[i].data, snap->snap[i].len); 4096 } else { 4097 void __user *userptr = (void __user *)(size_t)snap->snap[i].bo_ofs; 4098 4099 kthread_use_mm(snap->snap[i].mm); 4100 if (!copy_from_user(snap->snap[i].data, userptr, snap->snap[i].len)) 4101 err = 0; 4102 else 4103 err = -EFAULT; 4104 kthread_unuse_mm(snap->snap[i].mm); 4105 4106 mmput(snap->snap[i].mm); 4107 snap->snap[i].mm = NULL; 4108 } 4109 4110 if (err) { 4111 kvfree(snap->snap[i].data); 4112 snap->snap[i].data = ERR_PTR(err); 4113 } 4114 4115 cleanup_bo: 4116 xe_bo_put(bo); 4117 snap->snap[i].bo = NULL; 4118 } 4119 } 4120 4121 void xe_vm_snapshot_print(struct xe_vm_snapshot *snap, struct drm_printer *p) 4122 { 4123 unsigned long i, j; 4124 4125 if (IS_ERR_OR_NULL(snap)) { 4126 drm_printf(p, "[0].error: %li\n", PTR_ERR(snap)); 4127 return; 4128 } 4129 4130 for (i = 0; i < snap->num_snaps; i++) { 4131 drm_printf(p, "[%llx].length: 0x%lx\n", snap->snap[i].ofs, snap->snap[i].len); 4132 4133 if (IS_ERR(snap->snap[i].data)) { 4134 drm_printf(p, "[%llx].error: %li\n", snap->snap[i].ofs, 4135 PTR_ERR(snap->snap[i].data)); 4136 continue; 4137 } 4138 4139 drm_printf(p, "[%llx].data: ", snap->snap[i].ofs); 4140 4141 for (j = 0; j < snap->snap[i].len; j += sizeof(u32)) { 4142 u32 *val = snap->snap[i].data + j; 4143 char dumped[ASCII85_BUFSZ]; 4144 4145 drm_puts(p, ascii85_encode(*val, dumped)); 4146 } 4147 4148 drm_puts(p, "\n"); 4149 4150 if (drm_coredump_printer_is_full(p)) 4151 return; 4152 } 4153 } 4154 4155 void xe_vm_snapshot_free(struct xe_vm_snapshot *snap) 4156 { 4157 unsigned long i; 4158 4159 if (IS_ERR_OR_NULL(snap)) 4160 return; 4161 4162 for (i = 0; i < snap->num_snaps; i++) { 4163 if (!IS_ERR(snap->snap[i].data)) 4164 kvfree(snap->snap[i].data); 4165 xe_bo_put(snap->snap[i].bo); 4166 if (snap->snap[i].mm) 4167 mmput(snap->snap[i].mm); 4168 } 4169 kvfree(snap); 4170 } 4171