xref: /linux/drivers/gpu/drm/xe/xe_vm.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_vm.h"
7 
8 #include <linux/dma-fence-array.h>
9 #include <linux/nospec.h>
10 
11 #include <drm/drm_exec.h>
12 #include <drm/drm_print.h>
13 #include <drm/ttm/ttm_execbuf_util.h>
14 #include <drm/ttm/ttm_tt.h>
15 #include <drm/xe_drm.h>
16 #include <linux/ascii85.h>
17 #include <linux/delay.h>
18 #include <linux/kthread.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 
22 #include <generated/xe_wa_oob.h>
23 
24 #include "regs/xe_gtt_defs.h"
25 #include "xe_assert.h"
26 #include "xe_bo.h"
27 #include "xe_device.h"
28 #include "xe_drm_client.h"
29 #include "xe_exec_queue.h"
30 #include "xe_gt_pagefault.h"
31 #include "xe_gt_tlb_invalidation.h"
32 #include "xe_migrate.h"
33 #include "xe_pat.h"
34 #include "xe_pm.h"
35 #include "xe_preempt_fence.h"
36 #include "xe_pt.h"
37 #include "xe_res_cursor.h"
38 #include "xe_sync.h"
39 #include "xe_trace.h"
40 #include "xe_wa.h"
41 #include "xe_hmm.h"
42 
43 static struct drm_gem_object *xe_vm_obj(struct xe_vm *vm)
44 {
45 	return vm->gpuvm.r_obj;
46 }
47 
48 /**
49  * xe_vma_userptr_check_repin() - Advisory check for repin needed
50  * @uvma: The userptr vma
51  *
52  * Check if the userptr vma has been invalidated since last successful
53  * repin. The check is advisory only and can the function can be called
54  * without the vm->userptr.notifier_lock held. There is no guarantee that the
55  * vma userptr will remain valid after a lockless check, so typically
56  * the call needs to be followed by a proper check under the notifier_lock.
57  *
58  * Return: 0 if userptr vma is valid, -EAGAIN otherwise; repin recommended.
59  */
60 int xe_vma_userptr_check_repin(struct xe_userptr_vma *uvma)
61 {
62 	return mmu_interval_check_retry(&uvma->userptr.notifier,
63 					uvma->userptr.notifier_seq) ?
64 		-EAGAIN : 0;
65 }
66 
67 int xe_vma_userptr_pin_pages(struct xe_userptr_vma *uvma)
68 {
69 	struct xe_vma *vma = &uvma->vma;
70 	struct xe_vm *vm = xe_vma_vm(vma);
71 	struct xe_device *xe = vm->xe;
72 
73 	lockdep_assert_held(&vm->lock);
74 	xe_assert(xe, xe_vma_is_userptr(vma));
75 
76 	return xe_hmm_userptr_populate_range(uvma, false);
77 }
78 
79 static bool preempt_fences_waiting(struct xe_vm *vm)
80 {
81 	struct xe_exec_queue *q;
82 
83 	lockdep_assert_held(&vm->lock);
84 	xe_vm_assert_held(vm);
85 
86 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
87 		if (!q->compute.pfence ||
88 		    (q->compute.pfence && test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
89 						   &q->compute.pfence->flags))) {
90 			return true;
91 		}
92 	}
93 
94 	return false;
95 }
96 
97 static void free_preempt_fences(struct list_head *list)
98 {
99 	struct list_head *link, *next;
100 
101 	list_for_each_safe(link, next, list)
102 		xe_preempt_fence_free(to_preempt_fence_from_link(link));
103 }
104 
105 static int alloc_preempt_fences(struct xe_vm *vm, struct list_head *list,
106 				unsigned int *count)
107 {
108 	lockdep_assert_held(&vm->lock);
109 	xe_vm_assert_held(vm);
110 
111 	if (*count >= vm->preempt.num_exec_queues)
112 		return 0;
113 
114 	for (; *count < vm->preempt.num_exec_queues; ++(*count)) {
115 		struct xe_preempt_fence *pfence = xe_preempt_fence_alloc();
116 
117 		if (IS_ERR(pfence))
118 			return PTR_ERR(pfence);
119 
120 		list_move_tail(xe_preempt_fence_link(pfence), list);
121 	}
122 
123 	return 0;
124 }
125 
126 static int wait_for_existing_preempt_fences(struct xe_vm *vm)
127 {
128 	struct xe_exec_queue *q;
129 
130 	xe_vm_assert_held(vm);
131 
132 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
133 		if (q->compute.pfence) {
134 			long timeout = dma_fence_wait(q->compute.pfence, false);
135 
136 			if (timeout < 0)
137 				return -ETIME;
138 			dma_fence_put(q->compute.pfence);
139 			q->compute.pfence = NULL;
140 		}
141 	}
142 
143 	return 0;
144 }
145 
146 static bool xe_vm_is_idle(struct xe_vm *vm)
147 {
148 	struct xe_exec_queue *q;
149 
150 	xe_vm_assert_held(vm);
151 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
152 		if (!xe_exec_queue_is_idle(q))
153 			return false;
154 	}
155 
156 	return true;
157 }
158 
159 static void arm_preempt_fences(struct xe_vm *vm, struct list_head *list)
160 {
161 	struct list_head *link;
162 	struct xe_exec_queue *q;
163 
164 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
165 		struct dma_fence *fence;
166 
167 		link = list->next;
168 		xe_assert(vm->xe, link != list);
169 
170 		fence = xe_preempt_fence_arm(to_preempt_fence_from_link(link),
171 					     q, q->compute.context,
172 					     ++q->compute.seqno);
173 		dma_fence_put(q->compute.pfence);
174 		q->compute.pfence = fence;
175 	}
176 }
177 
178 static int add_preempt_fences(struct xe_vm *vm, struct xe_bo *bo)
179 {
180 	struct xe_exec_queue *q;
181 	int err;
182 
183 	if (!vm->preempt.num_exec_queues)
184 		return 0;
185 
186 	err = xe_bo_lock(bo, true);
187 	if (err)
188 		return err;
189 
190 	err = dma_resv_reserve_fences(bo->ttm.base.resv, vm->preempt.num_exec_queues);
191 	if (err)
192 		goto out_unlock;
193 
194 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link)
195 		if (q->compute.pfence) {
196 			dma_resv_add_fence(bo->ttm.base.resv,
197 					   q->compute.pfence,
198 					   DMA_RESV_USAGE_BOOKKEEP);
199 		}
200 
201 out_unlock:
202 	xe_bo_unlock(bo);
203 	return err;
204 }
205 
206 static void resume_and_reinstall_preempt_fences(struct xe_vm *vm,
207 						struct drm_exec *exec)
208 {
209 	struct xe_exec_queue *q;
210 
211 	lockdep_assert_held(&vm->lock);
212 	xe_vm_assert_held(vm);
213 
214 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link) {
215 		q->ops->resume(q);
216 
217 		drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, q->compute.pfence,
218 					 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
219 	}
220 }
221 
222 int xe_vm_add_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
223 {
224 	struct drm_gpuvm_exec vm_exec = {
225 		.vm = &vm->gpuvm,
226 		.flags = DRM_EXEC_INTERRUPTIBLE_WAIT,
227 		.num_fences = 1,
228 	};
229 	struct drm_exec *exec = &vm_exec.exec;
230 	struct dma_fence *pfence;
231 	int err;
232 	bool wait;
233 
234 	xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm));
235 
236 	down_write(&vm->lock);
237 	err = drm_gpuvm_exec_lock(&vm_exec);
238 	if (err)
239 		goto out_up_write;
240 
241 	pfence = xe_preempt_fence_create(q, q->compute.context,
242 					 ++q->compute.seqno);
243 	if (!pfence) {
244 		err = -ENOMEM;
245 		goto out_fini;
246 	}
247 
248 	list_add(&q->compute.link, &vm->preempt.exec_queues);
249 	++vm->preempt.num_exec_queues;
250 	q->compute.pfence = pfence;
251 
252 	down_read(&vm->userptr.notifier_lock);
253 
254 	drm_gpuvm_resv_add_fence(&vm->gpuvm, exec, pfence,
255 				 DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
256 
257 	/*
258 	 * Check to see if a preemption on VM is in flight or userptr
259 	 * invalidation, if so trigger this preempt fence to sync state with
260 	 * other preempt fences on the VM.
261 	 */
262 	wait = __xe_vm_userptr_needs_repin(vm) || preempt_fences_waiting(vm);
263 	if (wait)
264 		dma_fence_enable_sw_signaling(pfence);
265 
266 	up_read(&vm->userptr.notifier_lock);
267 
268 out_fini:
269 	drm_exec_fini(exec);
270 out_up_write:
271 	up_write(&vm->lock);
272 
273 	return err;
274 }
275 
276 /**
277  * xe_vm_remove_compute_exec_queue() - Remove compute exec queue from VM
278  * @vm: The VM.
279  * @q: The exec_queue
280  */
281 void xe_vm_remove_compute_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
282 {
283 	if (!xe_vm_in_preempt_fence_mode(vm))
284 		return;
285 
286 	down_write(&vm->lock);
287 	list_del(&q->compute.link);
288 	--vm->preempt.num_exec_queues;
289 	if (q->compute.pfence) {
290 		dma_fence_enable_sw_signaling(q->compute.pfence);
291 		dma_fence_put(q->compute.pfence);
292 		q->compute.pfence = NULL;
293 	}
294 	up_write(&vm->lock);
295 }
296 
297 /**
298  * __xe_vm_userptr_needs_repin() - Check whether the VM does have userptrs
299  * that need repinning.
300  * @vm: The VM.
301  *
302  * This function checks for whether the VM has userptrs that need repinning,
303  * and provides a release-type barrier on the userptr.notifier_lock after
304  * checking.
305  *
306  * Return: 0 if there are no userptrs needing repinning, -EAGAIN if there are.
307  */
308 int __xe_vm_userptr_needs_repin(struct xe_vm *vm)
309 {
310 	lockdep_assert_held_read(&vm->userptr.notifier_lock);
311 
312 	return (list_empty(&vm->userptr.repin_list) &&
313 		list_empty(&vm->userptr.invalidated)) ? 0 : -EAGAIN;
314 }
315 
316 #define XE_VM_REBIND_RETRY_TIMEOUT_MS 1000
317 
318 static void xe_vm_kill(struct xe_vm *vm)
319 {
320 	struct xe_exec_queue *q;
321 
322 	lockdep_assert_held(&vm->lock);
323 
324 	xe_vm_lock(vm, false);
325 	vm->flags |= XE_VM_FLAG_BANNED;
326 	trace_xe_vm_kill(vm);
327 
328 	list_for_each_entry(q, &vm->preempt.exec_queues, compute.link)
329 		q->ops->kill(q);
330 	xe_vm_unlock(vm);
331 
332 	/* TODO: Inform user the VM is banned */
333 }
334 
335 /**
336  * xe_vm_validate_should_retry() - Whether to retry after a validate error.
337  * @exec: The drm_exec object used for locking before validation.
338  * @err: The error returned from ttm_bo_validate().
339  * @end: A ktime_t cookie that should be set to 0 before first use and
340  * that should be reused on subsequent calls.
341  *
342  * With multiple active VMs, under memory pressure, it is possible that
343  * ttm_bo_validate() run into -EDEADLK and in such case returns -ENOMEM.
344  * Until ttm properly handles locking in such scenarios, best thing the
345  * driver can do is retry with a timeout. Check if that is necessary, and
346  * if so unlock the drm_exec's objects while keeping the ticket to prepare
347  * for a rerun.
348  *
349  * Return: true if a retry after drm_exec_init() is recommended;
350  * false otherwise.
351  */
352 bool xe_vm_validate_should_retry(struct drm_exec *exec, int err, ktime_t *end)
353 {
354 	ktime_t cur;
355 
356 	if (err != -ENOMEM)
357 		return false;
358 
359 	cur = ktime_get();
360 	*end = *end ? : ktime_add_ms(cur, XE_VM_REBIND_RETRY_TIMEOUT_MS);
361 	if (!ktime_before(cur, *end))
362 		return false;
363 
364 	msleep(20);
365 	return true;
366 }
367 
368 static int xe_gpuvm_validate(struct drm_gpuvm_bo *vm_bo, struct drm_exec *exec)
369 {
370 	struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
371 	struct drm_gpuva *gpuva;
372 	int ret;
373 
374 	lockdep_assert_held(&vm->lock);
375 	drm_gpuvm_bo_for_each_va(gpuva, vm_bo)
376 		list_move_tail(&gpuva_to_vma(gpuva)->combined_links.rebind,
377 			       &vm->rebind_list);
378 
379 	ret = xe_bo_validate(gem_to_xe_bo(vm_bo->obj), vm, false);
380 	if (ret)
381 		return ret;
382 
383 	vm_bo->evicted = false;
384 	return 0;
385 }
386 
387 /**
388  * xe_vm_validate_rebind() - Validate buffer objects and rebind vmas
389  * @vm: The vm for which we are rebinding.
390  * @exec: The struct drm_exec with the locked GEM objects.
391  * @num_fences: The number of fences to reserve for the operation, not
392  * including rebinds and validations.
393  *
394  * Validates all evicted gem objects and rebinds their vmas. Note that
395  * rebindings may cause evictions and hence the validation-rebind
396  * sequence is rerun until there are no more objects to validate.
397  *
398  * Return: 0 on success, negative error code on error. In particular,
399  * may return -EINTR or -ERESTARTSYS if interrupted, and -EDEADLK if
400  * the drm_exec transaction needs to be restarted.
401  */
402 int xe_vm_validate_rebind(struct xe_vm *vm, struct drm_exec *exec,
403 			  unsigned int num_fences)
404 {
405 	struct drm_gem_object *obj;
406 	unsigned long index;
407 	int ret;
408 
409 	do {
410 		ret = drm_gpuvm_validate(&vm->gpuvm, exec);
411 		if (ret)
412 			return ret;
413 
414 		ret = xe_vm_rebind(vm, false);
415 		if (ret)
416 			return ret;
417 	} while (!list_empty(&vm->gpuvm.evict.list));
418 
419 	drm_exec_for_each_locked_object(exec, index, obj) {
420 		ret = dma_resv_reserve_fences(obj->resv, num_fences);
421 		if (ret)
422 			return ret;
423 	}
424 
425 	return 0;
426 }
427 
428 static int xe_preempt_work_begin(struct drm_exec *exec, struct xe_vm *vm,
429 				 bool *done)
430 {
431 	int err;
432 
433 	err = drm_gpuvm_prepare_vm(&vm->gpuvm, exec, 0);
434 	if (err)
435 		return err;
436 
437 	if (xe_vm_is_idle(vm)) {
438 		vm->preempt.rebind_deactivated = true;
439 		*done = true;
440 		return 0;
441 	}
442 
443 	if (!preempt_fences_waiting(vm)) {
444 		*done = true;
445 		return 0;
446 	}
447 
448 	err = drm_gpuvm_prepare_objects(&vm->gpuvm, exec, 0);
449 	if (err)
450 		return err;
451 
452 	err = wait_for_existing_preempt_fences(vm);
453 	if (err)
454 		return err;
455 
456 	/*
457 	 * Add validation and rebinding to the locking loop since both can
458 	 * cause evictions which may require blocing dma_resv locks.
459 	 * The fence reservation here is intended for the new preempt fences
460 	 * we attach at the end of the rebind work.
461 	 */
462 	return xe_vm_validate_rebind(vm, exec, vm->preempt.num_exec_queues);
463 }
464 
465 static void preempt_rebind_work_func(struct work_struct *w)
466 {
467 	struct xe_vm *vm = container_of(w, struct xe_vm, preempt.rebind_work);
468 	struct drm_exec exec;
469 	unsigned int fence_count = 0;
470 	LIST_HEAD(preempt_fences);
471 	ktime_t end = 0;
472 	int err = 0;
473 	long wait;
474 	int __maybe_unused tries = 0;
475 
476 	xe_assert(vm->xe, xe_vm_in_preempt_fence_mode(vm));
477 	trace_xe_vm_rebind_worker_enter(vm);
478 
479 	down_write(&vm->lock);
480 
481 	if (xe_vm_is_closed_or_banned(vm)) {
482 		up_write(&vm->lock);
483 		trace_xe_vm_rebind_worker_exit(vm);
484 		return;
485 	}
486 
487 retry:
488 	if (xe_vm_userptr_check_repin(vm)) {
489 		err = xe_vm_userptr_pin(vm);
490 		if (err)
491 			goto out_unlock_outer;
492 	}
493 
494 	drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
495 
496 	drm_exec_until_all_locked(&exec) {
497 		bool done = false;
498 
499 		err = xe_preempt_work_begin(&exec, vm, &done);
500 		drm_exec_retry_on_contention(&exec);
501 		if (err || done) {
502 			drm_exec_fini(&exec);
503 			if (err && xe_vm_validate_should_retry(&exec, err, &end))
504 				err = -EAGAIN;
505 
506 			goto out_unlock_outer;
507 		}
508 	}
509 
510 	err = alloc_preempt_fences(vm, &preempt_fences, &fence_count);
511 	if (err)
512 		goto out_unlock;
513 
514 	err = xe_vm_rebind(vm, true);
515 	if (err)
516 		goto out_unlock;
517 
518 	/* Wait on rebinds and munmap style VM unbinds */
519 	wait = dma_resv_wait_timeout(xe_vm_resv(vm),
520 				     DMA_RESV_USAGE_KERNEL,
521 				     false, MAX_SCHEDULE_TIMEOUT);
522 	if (wait <= 0) {
523 		err = -ETIME;
524 		goto out_unlock;
525 	}
526 
527 #define retry_required(__tries, __vm) \
528 	(IS_ENABLED(CONFIG_DRM_XE_USERPTR_INVAL_INJECT) ? \
529 	(!(__tries)++ || __xe_vm_userptr_needs_repin(__vm)) : \
530 	__xe_vm_userptr_needs_repin(__vm))
531 
532 	down_read(&vm->userptr.notifier_lock);
533 	if (retry_required(tries, vm)) {
534 		up_read(&vm->userptr.notifier_lock);
535 		err = -EAGAIN;
536 		goto out_unlock;
537 	}
538 
539 #undef retry_required
540 
541 	spin_lock(&vm->xe->ttm.lru_lock);
542 	ttm_lru_bulk_move_tail(&vm->lru_bulk_move);
543 	spin_unlock(&vm->xe->ttm.lru_lock);
544 
545 	/* Point of no return. */
546 	arm_preempt_fences(vm, &preempt_fences);
547 	resume_and_reinstall_preempt_fences(vm, &exec);
548 	up_read(&vm->userptr.notifier_lock);
549 
550 out_unlock:
551 	drm_exec_fini(&exec);
552 out_unlock_outer:
553 	if (err == -EAGAIN) {
554 		trace_xe_vm_rebind_worker_retry(vm);
555 		goto retry;
556 	}
557 
558 	if (err) {
559 		drm_warn(&vm->xe->drm, "VM worker error: %d\n", err);
560 		xe_vm_kill(vm);
561 	}
562 	up_write(&vm->lock);
563 
564 	free_preempt_fences(&preempt_fences);
565 
566 	trace_xe_vm_rebind_worker_exit(vm);
567 }
568 
569 static bool vma_userptr_invalidate(struct mmu_interval_notifier *mni,
570 				   const struct mmu_notifier_range *range,
571 				   unsigned long cur_seq)
572 {
573 	struct xe_userptr *userptr = container_of(mni, typeof(*userptr), notifier);
574 	struct xe_userptr_vma *uvma = container_of(userptr, typeof(*uvma), userptr);
575 	struct xe_vma *vma = &uvma->vma;
576 	struct xe_vm *vm = xe_vma_vm(vma);
577 	struct dma_resv_iter cursor;
578 	struct dma_fence *fence;
579 	long err;
580 
581 	xe_assert(vm->xe, xe_vma_is_userptr(vma));
582 	trace_xe_vma_userptr_invalidate(vma);
583 
584 	if (!mmu_notifier_range_blockable(range))
585 		return false;
586 
587 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
588 	       "NOTIFIER: addr=0x%016llx, range=0x%016llx",
589 		xe_vma_start(vma), xe_vma_size(vma));
590 
591 	down_write(&vm->userptr.notifier_lock);
592 	mmu_interval_set_seq(mni, cur_seq);
593 
594 	/* No need to stop gpu access if the userptr is not yet bound. */
595 	if (!userptr->initial_bind) {
596 		up_write(&vm->userptr.notifier_lock);
597 		return true;
598 	}
599 
600 	/*
601 	 * Tell exec and rebind worker they need to repin and rebind this
602 	 * userptr.
603 	 */
604 	if (!xe_vm_in_fault_mode(vm) &&
605 	    !(vma->gpuva.flags & XE_VMA_DESTROYED) && vma->tile_present) {
606 		spin_lock(&vm->userptr.invalidated_lock);
607 		list_move_tail(&userptr->invalidate_link,
608 			       &vm->userptr.invalidated);
609 		spin_unlock(&vm->userptr.invalidated_lock);
610 	}
611 
612 	up_write(&vm->userptr.notifier_lock);
613 
614 	/*
615 	 * Preempt fences turn into schedule disables, pipeline these.
616 	 * Note that even in fault mode, we need to wait for binds and
617 	 * unbinds to complete, and those are attached as BOOKMARK fences
618 	 * to the vm.
619 	 */
620 	dma_resv_iter_begin(&cursor, xe_vm_resv(vm),
621 			    DMA_RESV_USAGE_BOOKKEEP);
622 	dma_resv_for_each_fence_unlocked(&cursor, fence)
623 		dma_fence_enable_sw_signaling(fence);
624 	dma_resv_iter_end(&cursor);
625 
626 	err = dma_resv_wait_timeout(xe_vm_resv(vm),
627 				    DMA_RESV_USAGE_BOOKKEEP,
628 				    false, MAX_SCHEDULE_TIMEOUT);
629 	XE_WARN_ON(err <= 0);
630 
631 	if (xe_vm_in_fault_mode(vm)) {
632 		err = xe_vm_invalidate_vma(vma);
633 		XE_WARN_ON(err);
634 	}
635 
636 	trace_xe_vma_userptr_invalidate_complete(vma);
637 
638 	return true;
639 }
640 
641 static const struct mmu_interval_notifier_ops vma_userptr_notifier_ops = {
642 	.invalidate = vma_userptr_invalidate,
643 };
644 
645 int xe_vm_userptr_pin(struct xe_vm *vm)
646 {
647 	struct xe_userptr_vma *uvma, *next;
648 	int err = 0;
649 	LIST_HEAD(tmp_evict);
650 
651 	xe_assert(vm->xe, !xe_vm_in_fault_mode(vm));
652 	lockdep_assert_held_write(&vm->lock);
653 
654 	/* Collect invalidated userptrs */
655 	spin_lock(&vm->userptr.invalidated_lock);
656 	list_for_each_entry_safe(uvma, next, &vm->userptr.invalidated,
657 				 userptr.invalidate_link) {
658 		list_del_init(&uvma->userptr.invalidate_link);
659 		list_move_tail(&uvma->userptr.repin_link,
660 			       &vm->userptr.repin_list);
661 	}
662 	spin_unlock(&vm->userptr.invalidated_lock);
663 
664 	/* Pin and move to temporary list */
665 	list_for_each_entry_safe(uvma, next, &vm->userptr.repin_list,
666 				 userptr.repin_link) {
667 		err = xe_vma_userptr_pin_pages(uvma);
668 		if (err == -EFAULT) {
669 			list_del_init(&uvma->userptr.repin_link);
670 
671 			/* Wait for pending binds */
672 			xe_vm_lock(vm, false);
673 			dma_resv_wait_timeout(xe_vm_resv(vm),
674 					      DMA_RESV_USAGE_BOOKKEEP,
675 					      false, MAX_SCHEDULE_TIMEOUT);
676 
677 			err = xe_vm_invalidate_vma(&uvma->vma);
678 			xe_vm_unlock(vm);
679 			if (err)
680 				return err;
681 		} else {
682 			if (err < 0)
683 				return err;
684 
685 			list_del_init(&uvma->userptr.repin_link);
686 			list_move_tail(&uvma->vma.combined_links.rebind,
687 				       &vm->rebind_list);
688 		}
689 	}
690 
691 	return 0;
692 }
693 
694 /**
695  * xe_vm_userptr_check_repin() - Check whether the VM might have userptrs
696  * that need repinning.
697  * @vm: The VM.
698  *
699  * This function does an advisory check for whether the VM has userptrs that
700  * need repinning.
701  *
702  * Return: 0 if there are no indications of userptrs needing repinning,
703  * -EAGAIN if there are.
704  */
705 int xe_vm_userptr_check_repin(struct xe_vm *vm)
706 {
707 	return (list_empty_careful(&vm->userptr.repin_list) &&
708 		list_empty_careful(&vm->userptr.invalidated)) ? 0 : -EAGAIN;
709 }
710 
711 static struct dma_fence *
712 xe_vm_bind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
713 	       struct xe_sync_entry *syncs, u32 num_syncs,
714 	       bool first_op, bool last_op);
715 
716 int xe_vm_rebind(struct xe_vm *vm, bool rebind_worker)
717 {
718 	struct dma_fence *fence;
719 	struct xe_vma *vma, *next;
720 
721 	lockdep_assert_held(&vm->lock);
722 	if (xe_vm_in_lr_mode(vm) && !rebind_worker)
723 		return 0;
724 
725 	xe_vm_assert_held(vm);
726 	list_for_each_entry_safe(vma, next, &vm->rebind_list,
727 				 combined_links.rebind) {
728 		xe_assert(vm->xe, vma->tile_present);
729 
730 		list_del_init(&vma->combined_links.rebind);
731 		if (rebind_worker)
732 			trace_xe_vma_rebind_worker(vma);
733 		else
734 			trace_xe_vma_rebind_exec(vma);
735 		fence = xe_vm_bind_vma(vma, NULL, NULL, 0, false, false);
736 		if (IS_ERR(fence))
737 			return PTR_ERR(fence);
738 		dma_fence_put(fence);
739 	}
740 
741 	return 0;
742 }
743 
744 static void xe_vma_free(struct xe_vma *vma)
745 {
746 	if (xe_vma_is_userptr(vma))
747 		kfree(to_userptr_vma(vma));
748 	else
749 		kfree(vma);
750 }
751 
752 #define VMA_CREATE_FLAG_READ_ONLY	BIT(0)
753 #define VMA_CREATE_FLAG_IS_NULL		BIT(1)
754 #define VMA_CREATE_FLAG_DUMPABLE	BIT(2)
755 
756 static struct xe_vma *xe_vma_create(struct xe_vm *vm,
757 				    struct xe_bo *bo,
758 				    u64 bo_offset_or_userptr,
759 				    u64 start, u64 end,
760 				    u16 pat_index, unsigned int flags)
761 {
762 	struct xe_vma *vma;
763 	struct xe_tile *tile;
764 	u8 id;
765 	bool read_only = (flags & VMA_CREATE_FLAG_READ_ONLY);
766 	bool is_null = (flags & VMA_CREATE_FLAG_IS_NULL);
767 	bool dumpable = (flags & VMA_CREATE_FLAG_DUMPABLE);
768 
769 	xe_assert(vm->xe, start < end);
770 	xe_assert(vm->xe, end < vm->size);
771 
772 	/*
773 	 * Allocate and ensure that the xe_vma_is_userptr() return
774 	 * matches what was allocated.
775 	 */
776 	if (!bo && !is_null) {
777 		struct xe_userptr_vma *uvma = kzalloc(sizeof(*uvma), GFP_KERNEL);
778 
779 		if (!uvma)
780 			return ERR_PTR(-ENOMEM);
781 
782 		vma = &uvma->vma;
783 	} else {
784 		vma = kzalloc(sizeof(*vma), GFP_KERNEL);
785 		if (!vma)
786 			return ERR_PTR(-ENOMEM);
787 
788 		if (is_null)
789 			vma->gpuva.flags |= DRM_GPUVA_SPARSE;
790 		if (bo)
791 			vma->gpuva.gem.obj = &bo->ttm.base;
792 	}
793 
794 	INIT_LIST_HEAD(&vma->combined_links.rebind);
795 
796 	INIT_LIST_HEAD(&vma->gpuva.gem.entry);
797 	vma->gpuva.vm = &vm->gpuvm;
798 	vma->gpuva.va.addr = start;
799 	vma->gpuva.va.range = end - start + 1;
800 	if (read_only)
801 		vma->gpuva.flags |= XE_VMA_READ_ONLY;
802 	if (dumpable)
803 		vma->gpuva.flags |= XE_VMA_DUMPABLE;
804 
805 	for_each_tile(tile, vm->xe, id)
806 		vma->tile_mask |= 0x1 << id;
807 
808 	if (GRAPHICS_VER(vm->xe) >= 20 || vm->xe->info.platform == XE_PVC)
809 		vma->gpuva.flags |= XE_VMA_ATOMIC_PTE_BIT;
810 
811 	vma->pat_index = pat_index;
812 
813 	if (bo) {
814 		struct drm_gpuvm_bo *vm_bo;
815 
816 		xe_bo_assert_held(bo);
817 
818 		vm_bo = drm_gpuvm_bo_obtain(vma->gpuva.vm, &bo->ttm.base);
819 		if (IS_ERR(vm_bo)) {
820 			xe_vma_free(vma);
821 			return ERR_CAST(vm_bo);
822 		}
823 
824 		drm_gpuvm_bo_extobj_add(vm_bo);
825 		drm_gem_object_get(&bo->ttm.base);
826 		vma->gpuva.gem.offset = bo_offset_or_userptr;
827 		drm_gpuva_link(&vma->gpuva, vm_bo);
828 		drm_gpuvm_bo_put(vm_bo);
829 	} else /* userptr or null */ {
830 		if (!is_null) {
831 			struct xe_userptr *userptr = &to_userptr_vma(vma)->userptr;
832 			u64 size = end - start + 1;
833 			int err;
834 
835 			INIT_LIST_HEAD(&userptr->invalidate_link);
836 			INIT_LIST_HEAD(&userptr->repin_link);
837 			vma->gpuva.gem.offset = bo_offset_or_userptr;
838 
839 			err = mmu_interval_notifier_insert(&userptr->notifier,
840 							   current->mm,
841 							   xe_vma_userptr(vma), size,
842 							   &vma_userptr_notifier_ops);
843 			if (err) {
844 				xe_vma_free(vma);
845 				return ERR_PTR(err);
846 			}
847 
848 			userptr->notifier_seq = LONG_MAX;
849 		}
850 
851 		xe_vm_get(vm);
852 	}
853 
854 	return vma;
855 }
856 
857 static void xe_vma_destroy_late(struct xe_vma *vma)
858 {
859 	struct xe_vm *vm = xe_vma_vm(vma);
860 
861 	if (vma->ufence) {
862 		xe_sync_ufence_put(vma->ufence);
863 		vma->ufence = NULL;
864 	}
865 
866 	if (xe_vma_is_userptr(vma)) {
867 		struct xe_userptr_vma *uvma = to_userptr_vma(vma);
868 		struct xe_userptr *userptr = &uvma->userptr;
869 
870 		if (userptr->sg)
871 			xe_hmm_userptr_free_sg(uvma);
872 
873 		/*
874 		 * Since userptr pages are not pinned, we can't remove
875 		 * the notifer until we're sure the GPU is not accessing
876 		 * them anymore
877 		 */
878 		mmu_interval_notifier_remove(&userptr->notifier);
879 		xe_vm_put(vm);
880 	} else if (xe_vma_is_null(vma)) {
881 		xe_vm_put(vm);
882 	} else {
883 		xe_bo_put(xe_vma_bo(vma));
884 	}
885 
886 	xe_vma_free(vma);
887 }
888 
889 static void vma_destroy_work_func(struct work_struct *w)
890 {
891 	struct xe_vma *vma =
892 		container_of(w, struct xe_vma, destroy_work);
893 
894 	xe_vma_destroy_late(vma);
895 }
896 
897 static void vma_destroy_cb(struct dma_fence *fence,
898 			   struct dma_fence_cb *cb)
899 {
900 	struct xe_vma *vma = container_of(cb, struct xe_vma, destroy_cb);
901 
902 	INIT_WORK(&vma->destroy_work, vma_destroy_work_func);
903 	queue_work(system_unbound_wq, &vma->destroy_work);
904 }
905 
906 static void xe_vma_destroy(struct xe_vma *vma, struct dma_fence *fence)
907 {
908 	struct xe_vm *vm = xe_vma_vm(vma);
909 
910 	lockdep_assert_held_write(&vm->lock);
911 	xe_assert(vm->xe, list_empty(&vma->combined_links.destroy));
912 
913 	if (xe_vma_is_userptr(vma)) {
914 		xe_assert(vm->xe, vma->gpuva.flags & XE_VMA_DESTROYED);
915 
916 		spin_lock(&vm->userptr.invalidated_lock);
917 		list_del(&to_userptr_vma(vma)->userptr.invalidate_link);
918 		spin_unlock(&vm->userptr.invalidated_lock);
919 	} else if (!xe_vma_is_null(vma)) {
920 		xe_bo_assert_held(xe_vma_bo(vma));
921 
922 		drm_gpuva_unlink(&vma->gpuva);
923 	}
924 
925 	xe_vm_assert_held(vm);
926 	if (fence) {
927 		int ret = dma_fence_add_callback(fence, &vma->destroy_cb,
928 						 vma_destroy_cb);
929 
930 		if (ret) {
931 			XE_WARN_ON(ret != -ENOENT);
932 			xe_vma_destroy_late(vma);
933 		}
934 	} else {
935 		xe_vma_destroy_late(vma);
936 	}
937 }
938 
939 /**
940  * xe_vm_lock_vma() - drm_exec utility to lock a vma
941  * @exec: The drm_exec object we're currently locking for.
942  * @vma: The vma for witch we want to lock the vm resv and any attached
943  * object's resv.
944  *
945  * Return: 0 on success, negative error code on error. In particular
946  * may return -EDEADLK on WW transaction contention and -EINTR if
947  * an interruptible wait is terminated by a signal.
948  */
949 int xe_vm_lock_vma(struct drm_exec *exec, struct xe_vma *vma)
950 {
951 	struct xe_vm *vm = xe_vma_vm(vma);
952 	struct xe_bo *bo = xe_vma_bo(vma);
953 	int err;
954 
955 	XE_WARN_ON(!vm);
956 
957 	err = drm_exec_lock_obj(exec, xe_vm_obj(vm));
958 	if (!err && bo && !bo->vm)
959 		err = drm_exec_lock_obj(exec, &bo->ttm.base);
960 
961 	return err;
962 }
963 
964 static void xe_vma_destroy_unlocked(struct xe_vma *vma)
965 {
966 	struct drm_exec exec;
967 	int err;
968 
969 	drm_exec_init(&exec, 0, 0);
970 	drm_exec_until_all_locked(&exec) {
971 		err = xe_vm_lock_vma(&exec, vma);
972 		drm_exec_retry_on_contention(&exec);
973 		if (XE_WARN_ON(err))
974 			break;
975 	}
976 
977 	xe_vma_destroy(vma, NULL);
978 
979 	drm_exec_fini(&exec);
980 }
981 
982 struct xe_vma *
983 xe_vm_find_overlapping_vma(struct xe_vm *vm, u64 start, u64 range)
984 {
985 	struct drm_gpuva *gpuva;
986 
987 	lockdep_assert_held(&vm->lock);
988 
989 	if (xe_vm_is_closed_or_banned(vm))
990 		return NULL;
991 
992 	xe_assert(vm->xe, start + range <= vm->size);
993 
994 	gpuva = drm_gpuva_find_first(&vm->gpuvm, start, range);
995 
996 	return gpuva ? gpuva_to_vma(gpuva) : NULL;
997 }
998 
999 static int xe_vm_insert_vma(struct xe_vm *vm, struct xe_vma *vma)
1000 {
1001 	int err;
1002 
1003 	xe_assert(vm->xe, xe_vma_vm(vma) == vm);
1004 	lockdep_assert_held(&vm->lock);
1005 
1006 	mutex_lock(&vm->snap_mutex);
1007 	err = drm_gpuva_insert(&vm->gpuvm, &vma->gpuva);
1008 	mutex_unlock(&vm->snap_mutex);
1009 	XE_WARN_ON(err);	/* Shouldn't be possible */
1010 
1011 	return err;
1012 }
1013 
1014 static void xe_vm_remove_vma(struct xe_vm *vm, struct xe_vma *vma)
1015 {
1016 	xe_assert(vm->xe, xe_vma_vm(vma) == vm);
1017 	lockdep_assert_held(&vm->lock);
1018 
1019 	mutex_lock(&vm->snap_mutex);
1020 	drm_gpuva_remove(&vma->gpuva);
1021 	mutex_unlock(&vm->snap_mutex);
1022 	if (vm->usm.last_fault_vma == vma)
1023 		vm->usm.last_fault_vma = NULL;
1024 }
1025 
1026 static struct drm_gpuva_op *xe_vm_op_alloc(void)
1027 {
1028 	struct xe_vma_op *op;
1029 
1030 	op = kzalloc(sizeof(*op), GFP_KERNEL);
1031 
1032 	if (unlikely(!op))
1033 		return NULL;
1034 
1035 	return &op->base;
1036 }
1037 
1038 static void xe_vm_free(struct drm_gpuvm *gpuvm);
1039 
1040 static const struct drm_gpuvm_ops gpuvm_ops = {
1041 	.op_alloc = xe_vm_op_alloc,
1042 	.vm_bo_validate = xe_gpuvm_validate,
1043 	.vm_free = xe_vm_free,
1044 };
1045 
1046 static u64 pde_encode_pat_index(struct xe_device *xe, u16 pat_index)
1047 {
1048 	u64 pte = 0;
1049 
1050 	if (pat_index & BIT(0))
1051 		pte |= XE_PPGTT_PTE_PAT0;
1052 
1053 	if (pat_index & BIT(1))
1054 		pte |= XE_PPGTT_PTE_PAT1;
1055 
1056 	return pte;
1057 }
1058 
1059 static u64 pte_encode_pat_index(struct xe_device *xe, u16 pat_index,
1060 				u32 pt_level)
1061 {
1062 	u64 pte = 0;
1063 
1064 	if (pat_index & BIT(0))
1065 		pte |= XE_PPGTT_PTE_PAT0;
1066 
1067 	if (pat_index & BIT(1))
1068 		pte |= XE_PPGTT_PTE_PAT1;
1069 
1070 	if (pat_index & BIT(2)) {
1071 		if (pt_level)
1072 			pte |= XE_PPGTT_PDE_PDPE_PAT2;
1073 		else
1074 			pte |= XE_PPGTT_PTE_PAT2;
1075 	}
1076 
1077 	if (pat_index & BIT(3))
1078 		pte |= XELPG_PPGTT_PTE_PAT3;
1079 
1080 	if (pat_index & (BIT(4)))
1081 		pte |= XE2_PPGTT_PTE_PAT4;
1082 
1083 	return pte;
1084 }
1085 
1086 static u64 pte_encode_ps(u32 pt_level)
1087 {
1088 	XE_WARN_ON(pt_level > MAX_HUGEPTE_LEVEL);
1089 
1090 	if (pt_level == 1)
1091 		return XE_PDE_PS_2M;
1092 	else if (pt_level == 2)
1093 		return XE_PDPE_PS_1G;
1094 
1095 	return 0;
1096 }
1097 
1098 static u64 xelp_pde_encode_bo(struct xe_bo *bo, u64 bo_offset,
1099 			      const u16 pat_index)
1100 {
1101 	struct xe_device *xe = xe_bo_device(bo);
1102 	u64 pde;
1103 
1104 	pde = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
1105 	pde |= XE_PAGE_PRESENT | XE_PAGE_RW;
1106 	pde |= pde_encode_pat_index(xe, pat_index);
1107 
1108 	return pde;
1109 }
1110 
1111 static u64 xelp_pte_encode_bo(struct xe_bo *bo, u64 bo_offset,
1112 			      u16 pat_index, u32 pt_level)
1113 {
1114 	struct xe_device *xe = xe_bo_device(bo);
1115 	u64 pte;
1116 
1117 	pte = xe_bo_addr(bo, bo_offset, XE_PAGE_SIZE);
1118 	pte |= XE_PAGE_PRESENT | XE_PAGE_RW;
1119 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1120 	pte |= pte_encode_ps(pt_level);
1121 
1122 	if (xe_bo_is_vram(bo) || xe_bo_is_stolen_devmem(bo))
1123 		pte |= XE_PPGTT_PTE_DM;
1124 
1125 	return pte;
1126 }
1127 
1128 static u64 xelp_pte_encode_vma(u64 pte, struct xe_vma *vma,
1129 			       u16 pat_index, u32 pt_level)
1130 {
1131 	struct xe_device *xe = xe_vma_vm(vma)->xe;
1132 
1133 	pte |= XE_PAGE_PRESENT;
1134 
1135 	if (likely(!xe_vma_read_only(vma)))
1136 		pte |= XE_PAGE_RW;
1137 
1138 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1139 	pte |= pte_encode_ps(pt_level);
1140 
1141 	if (unlikely(xe_vma_is_null(vma)))
1142 		pte |= XE_PTE_NULL;
1143 
1144 	return pte;
1145 }
1146 
1147 static u64 xelp_pte_encode_addr(struct xe_device *xe, u64 addr,
1148 				u16 pat_index,
1149 				u32 pt_level, bool devmem, u64 flags)
1150 {
1151 	u64 pte;
1152 
1153 	/* Avoid passing random bits directly as flags */
1154 	xe_assert(xe, !(flags & ~XE_PTE_PS64));
1155 
1156 	pte = addr;
1157 	pte |= XE_PAGE_PRESENT | XE_PAGE_RW;
1158 	pte |= pte_encode_pat_index(xe, pat_index, pt_level);
1159 	pte |= pte_encode_ps(pt_level);
1160 
1161 	if (devmem)
1162 		pte |= XE_PPGTT_PTE_DM;
1163 
1164 	pte |= flags;
1165 
1166 	return pte;
1167 }
1168 
1169 static const struct xe_pt_ops xelp_pt_ops = {
1170 	.pte_encode_bo = xelp_pte_encode_bo,
1171 	.pte_encode_vma = xelp_pte_encode_vma,
1172 	.pte_encode_addr = xelp_pte_encode_addr,
1173 	.pde_encode_bo = xelp_pde_encode_bo,
1174 };
1175 
1176 /**
1177  * xe_vm_create_scratch() - Setup a scratch memory pagetable tree for the
1178  * given tile and vm.
1179  * @xe: xe device.
1180  * @tile: tile to set up for.
1181  * @vm: vm to set up for.
1182  *
1183  * Sets up a pagetable tree with one page-table per level and a single
1184  * leaf PTE. All pagetable entries point to the single page-table or,
1185  * for MAX_HUGEPTE_LEVEL, a NULL huge PTE returning 0 on read and
1186  * writes become NOPs.
1187  *
1188  * Return: 0 on success, negative error code on error.
1189  */
1190 static int xe_vm_create_scratch(struct xe_device *xe, struct xe_tile *tile,
1191 				struct xe_vm *vm)
1192 {
1193 	u8 id = tile->id;
1194 	int i;
1195 
1196 	for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; i++) {
1197 		vm->scratch_pt[id][i] = xe_pt_create(vm, tile, i);
1198 		if (IS_ERR(vm->scratch_pt[id][i]))
1199 			return PTR_ERR(vm->scratch_pt[id][i]);
1200 
1201 		xe_pt_populate_empty(tile, vm, vm->scratch_pt[id][i]);
1202 	}
1203 
1204 	return 0;
1205 }
1206 
1207 static void xe_vm_free_scratch(struct xe_vm *vm)
1208 {
1209 	struct xe_tile *tile;
1210 	u8 id;
1211 
1212 	if (!xe_vm_has_scratch(vm))
1213 		return;
1214 
1215 	for_each_tile(tile, vm->xe, id) {
1216 		u32 i;
1217 
1218 		if (!vm->pt_root[id])
1219 			continue;
1220 
1221 		for (i = MAX_HUGEPTE_LEVEL; i < vm->pt_root[id]->level; ++i)
1222 			if (vm->scratch_pt[id][i])
1223 				xe_pt_destroy(vm->scratch_pt[id][i], vm->flags, NULL);
1224 	}
1225 }
1226 
1227 struct xe_vm *xe_vm_create(struct xe_device *xe, u32 flags)
1228 {
1229 	struct drm_gem_object *vm_resv_obj;
1230 	struct xe_vm *vm;
1231 	int err, number_tiles = 0;
1232 	struct xe_tile *tile;
1233 	u8 id;
1234 
1235 	vm = kzalloc(sizeof(*vm), GFP_KERNEL);
1236 	if (!vm)
1237 		return ERR_PTR(-ENOMEM);
1238 
1239 	vm->xe = xe;
1240 
1241 	vm->size = 1ull << xe->info.va_bits;
1242 
1243 	vm->flags = flags;
1244 
1245 	init_rwsem(&vm->lock);
1246 	mutex_init(&vm->snap_mutex);
1247 
1248 	INIT_LIST_HEAD(&vm->rebind_list);
1249 
1250 	INIT_LIST_HEAD(&vm->userptr.repin_list);
1251 	INIT_LIST_HEAD(&vm->userptr.invalidated);
1252 	init_rwsem(&vm->userptr.notifier_lock);
1253 	spin_lock_init(&vm->userptr.invalidated_lock);
1254 
1255 	INIT_LIST_HEAD(&vm->preempt.exec_queues);
1256 	vm->preempt.min_run_period_ms = 10;	/* FIXME: Wire up to uAPI */
1257 
1258 	for_each_tile(tile, xe, id)
1259 		xe_range_fence_tree_init(&vm->rftree[id]);
1260 
1261 	vm->pt_ops = &xelp_pt_ops;
1262 
1263 	if (!(flags & XE_VM_FLAG_MIGRATION))
1264 		xe_pm_runtime_get_noresume(xe);
1265 
1266 	vm_resv_obj = drm_gpuvm_resv_object_alloc(&xe->drm);
1267 	if (!vm_resv_obj) {
1268 		err = -ENOMEM;
1269 		goto err_no_resv;
1270 	}
1271 
1272 	drm_gpuvm_init(&vm->gpuvm, "Xe VM", DRM_GPUVM_RESV_PROTECTED, &xe->drm,
1273 		       vm_resv_obj, 0, vm->size, 0, 0, &gpuvm_ops);
1274 
1275 	drm_gem_object_put(vm_resv_obj);
1276 
1277 	err = dma_resv_lock_interruptible(xe_vm_resv(vm), NULL);
1278 	if (err)
1279 		goto err_close;
1280 
1281 	if (IS_DGFX(xe) && xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K)
1282 		vm->flags |= XE_VM_FLAG_64K;
1283 
1284 	for_each_tile(tile, xe, id) {
1285 		if (flags & XE_VM_FLAG_MIGRATION &&
1286 		    tile->id != XE_VM_FLAG_TILE_ID(flags))
1287 			continue;
1288 
1289 		vm->pt_root[id] = xe_pt_create(vm, tile, xe->info.vm_max_level);
1290 		if (IS_ERR(vm->pt_root[id])) {
1291 			err = PTR_ERR(vm->pt_root[id]);
1292 			vm->pt_root[id] = NULL;
1293 			goto err_unlock_close;
1294 		}
1295 	}
1296 
1297 	if (xe_vm_has_scratch(vm)) {
1298 		for_each_tile(tile, xe, id) {
1299 			if (!vm->pt_root[id])
1300 				continue;
1301 
1302 			err = xe_vm_create_scratch(xe, tile, vm);
1303 			if (err)
1304 				goto err_unlock_close;
1305 		}
1306 		vm->batch_invalidate_tlb = true;
1307 	}
1308 
1309 	if (vm->flags & XE_VM_FLAG_LR_MODE) {
1310 		INIT_WORK(&vm->preempt.rebind_work, preempt_rebind_work_func);
1311 		vm->batch_invalidate_tlb = false;
1312 	}
1313 
1314 	/* Fill pt_root after allocating scratch tables */
1315 	for_each_tile(tile, xe, id) {
1316 		if (!vm->pt_root[id])
1317 			continue;
1318 
1319 		xe_pt_populate_empty(tile, vm, vm->pt_root[id]);
1320 	}
1321 	dma_resv_unlock(xe_vm_resv(vm));
1322 
1323 	/* Kernel migration VM shouldn't have a circular loop.. */
1324 	if (!(flags & XE_VM_FLAG_MIGRATION)) {
1325 		for_each_tile(tile, xe, id) {
1326 			struct xe_gt *gt = tile->primary_gt;
1327 			struct xe_vm *migrate_vm;
1328 			struct xe_exec_queue *q;
1329 			u32 create_flags = EXEC_QUEUE_FLAG_VM;
1330 
1331 			if (!vm->pt_root[id])
1332 				continue;
1333 
1334 			migrate_vm = xe_migrate_get_vm(tile->migrate);
1335 			q = xe_exec_queue_create_class(xe, gt, migrate_vm,
1336 						       XE_ENGINE_CLASS_COPY,
1337 						       create_flags);
1338 			xe_vm_put(migrate_vm);
1339 			if (IS_ERR(q)) {
1340 				err = PTR_ERR(q);
1341 				goto err_close;
1342 			}
1343 			vm->q[id] = q;
1344 			number_tiles++;
1345 		}
1346 	}
1347 
1348 	if (number_tiles > 1)
1349 		vm->composite_fence_ctx = dma_fence_context_alloc(1);
1350 
1351 	mutex_lock(&xe->usm.lock);
1352 	if (flags & XE_VM_FLAG_FAULT_MODE)
1353 		xe->usm.num_vm_in_fault_mode++;
1354 	else if (!(flags & XE_VM_FLAG_MIGRATION))
1355 		xe->usm.num_vm_in_non_fault_mode++;
1356 	mutex_unlock(&xe->usm.lock);
1357 
1358 	trace_xe_vm_create(vm);
1359 
1360 	return vm;
1361 
1362 err_unlock_close:
1363 	dma_resv_unlock(xe_vm_resv(vm));
1364 err_close:
1365 	xe_vm_close_and_put(vm);
1366 	return ERR_PTR(err);
1367 
1368 err_no_resv:
1369 	mutex_destroy(&vm->snap_mutex);
1370 	for_each_tile(tile, xe, id)
1371 		xe_range_fence_tree_fini(&vm->rftree[id]);
1372 	kfree(vm);
1373 	if (!(flags & XE_VM_FLAG_MIGRATION))
1374 		xe_pm_runtime_put(xe);
1375 	return ERR_PTR(err);
1376 }
1377 
1378 static void xe_vm_close(struct xe_vm *vm)
1379 {
1380 	down_write(&vm->lock);
1381 	vm->size = 0;
1382 	up_write(&vm->lock);
1383 }
1384 
1385 void xe_vm_close_and_put(struct xe_vm *vm)
1386 {
1387 	LIST_HEAD(contested);
1388 	struct xe_device *xe = vm->xe;
1389 	struct xe_tile *tile;
1390 	struct xe_vma *vma, *next_vma;
1391 	struct drm_gpuva *gpuva, *next;
1392 	u8 id;
1393 
1394 	xe_assert(xe, !vm->preempt.num_exec_queues);
1395 
1396 	xe_vm_close(vm);
1397 	if (xe_vm_in_preempt_fence_mode(vm))
1398 		flush_work(&vm->preempt.rebind_work);
1399 
1400 	down_write(&vm->lock);
1401 	for_each_tile(tile, xe, id) {
1402 		if (vm->q[id])
1403 			xe_exec_queue_last_fence_put(vm->q[id], vm);
1404 	}
1405 	up_write(&vm->lock);
1406 
1407 	for_each_tile(tile, xe, id) {
1408 		if (vm->q[id]) {
1409 			xe_exec_queue_kill(vm->q[id]);
1410 			xe_exec_queue_put(vm->q[id]);
1411 			vm->q[id] = NULL;
1412 		}
1413 	}
1414 
1415 	down_write(&vm->lock);
1416 	xe_vm_lock(vm, false);
1417 	drm_gpuvm_for_each_va_safe(gpuva, next, &vm->gpuvm) {
1418 		vma = gpuva_to_vma(gpuva);
1419 
1420 		if (xe_vma_has_no_bo(vma)) {
1421 			down_read(&vm->userptr.notifier_lock);
1422 			vma->gpuva.flags |= XE_VMA_DESTROYED;
1423 			up_read(&vm->userptr.notifier_lock);
1424 		}
1425 
1426 		xe_vm_remove_vma(vm, vma);
1427 
1428 		/* easy case, remove from VMA? */
1429 		if (xe_vma_has_no_bo(vma) || xe_vma_bo(vma)->vm) {
1430 			list_del_init(&vma->combined_links.rebind);
1431 			xe_vma_destroy(vma, NULL);
1432 			continue;
1433 		}
1434 
1435 		list_move_tail(&vma->combined_links.destroy, &contested);
1436 		vma->gpuva.flags |= XE_VMA_DESTROYED;
1437 	}
1438 
1439 	/*
1440 	 * All vm operations will add shared fences to resv.
1441 	 * The only exception is eviction for a shared object,
1442 	 * but even so, the unbind when evicted would still
1443 	 * install a fence to resv. Hence it's safe to
1444 	 * destroy the pagetables immediately.
1445 	 */
1446 	xe_vm_free_scratch(vm);
1447 
1448 	for_each_tile(tile, xe, id) {
1449 		if (vm->pt_root[id]) {
1450 			xe_pt_destroy(vm->pt_root[id], vm->flags, NULL);
1451 			vm->pt_root[id] = NULL;
1452 		}
1453 	}
1454 	xe_vm_unlock(vm);
1455 
1456 	/*
1457 	 * VM is now dead, cannot re-add nodes to vm->vmas if it's NULL
1458 	 * Since we hold a refcount to the bo, we can remove and free
1459 	 * the members safely without locking.
1460 	 */
1461 	list_for_each_entry_safe(vma, next_vma, &contested,
1462 				 combined_links.destroy) {
1463 		list_del_init(&vma->combined_links.destroy);
1464 		xe_vma_destroy_unlocked(vma);
1465 	}
1466 
1467 	up_write(&vm->lock);
1468 
1469 	mutex_lock(&xe->usm.lock);
1470 	if (vm->flags & XE_VM_FLAG_FAULT_MODE)
1471 		xe->usm.num_vm_in_fault_mode--;
1472 	else if (!(vm->flags & XE_VM_FLAG_MIGRATION))
1473 		xe->usm.num_vm_in_non_fault_mode--;
1474 
1475 	if (vm->usm.asid) {
1476 		void *lookup;
1477 
1478 		xe_assert(xe, xe->info.has_asid);
1479 		xe_assert(xe, !(vm->flags & XE_VM_FLAG_MIGRATION));
1480 
1481 		lookup = xa_erase(&xe->usm.asid_to_vm, vm->usm.asid);
1482 		xe_assert(xe, lookup == vm);
1483 	}
1484 	mutex_unlock(&xe->usm.lock);
1485 
1486 	for_each_tile(tile, xe, id)
1487 		xe_range_fence_tree_fini(&vm->rftree[id]);
1488 
1489 	xe_vm_put(vm);
1490 }
1491 
1492 static void xe_vm_free(struct drm_gpuvm *gpuvm)
1493 {
1494 	struct xe_vm *vm = container_of(gpuvm, struct xe_vm, gpuvm);
1495 	struct xe_device *xe = vm->xe;
1496 	struct xe_tile *tile;
1497 	u8 id;
1498 
1499 	/* xe_vm_close_and_put was not called? */
1500 	xe_assert(xe, !vm->size);
1501 
1502 	if (xe_vm_in_preempt_fence_mode(vm))
1503 		flush_work(&vm->preempt.rebind_work);
1504 
1505 	mutex_destroy(&vm->snap_mutex);
1506 
1507 	if (!(vm->flags & XE_VM_FLAG_MIGRATION))
1508 		xe_pm_runtime_put(xe);
1509 
1510 	for_each_tile(tile, xe, id)
1511 		XE_WARN_ON(vm->pt_root[id]);
1512 
1513 	trace_xe_vm_free(vm);
1514 	kfree(vm);
1515 }
1516 
1517 struct xe_vm *xe_vm_lookup(struct xe_file *xef, u32 id)
1518 {
1519 	struct xe_vm *vm;
1520 
1521 	mutex_lock(&xef->vm.lock);
1522 	vm = xa_load(&xef->vm.xa, id);
1523 	if (vm)
1524 		xe_vm_get(vm);
1525 	mutex_unlock(&xef->vm.lock);
1526 
1527 	return vm;
1528 }
1529 
1530 u64 xe_vm_pdp4_descriptor(struct xe_vm *vm, struct xe_tile *tile)
1531 {
1532 	return vm->pt_ops->pde_encode_bo(vm->pt_root[tile->id]->bo, 0,
1533 					 tile_to_xe(tile)->pat.idx[XE_CACHE_WB]);
1534 }
1535 
1536 static struct xe_exec_queue *
1537 to_wait_exec_queue(struct xe_vm *vm, struct xe_exec_queue *q)
1538 {
1539 	return q ? q : vm->q[0];
1540 }
1541 
1542 static struct dma_fence *
1543 xe_vm_unbind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
1544 		 struct xe_sync_entry *syncs, u32 num_syncs,
1545 		 bool first_op, bool last_op)
1546 {
1547 	struct xe_vm *vm = xe_vma_vm(vma);
1548 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1549 	struct xe_tile *tile;
1550 	struct dma_fence *fence = NULL;
1551 	struct dma_fence **fences = NULL;
1552 	struct dma_fence_array *cf = NULL;
1553 	int cur_fence = 0, i;
1554 	int number_tiles = hweight8(vma->tile_present);
1555 	int err;
1556 	u8 id;
1557 
1558 	trace_xe_vma_unbind(vma);
1559 
1560 	if (vma->ufence) {
1561 		struct xe_user_fence * const f = vma->ufence;
1562 
1563 		if (!xe_sync_ufence_get_status(f))
1564 			return ERR_PTR(-EBUSY);
1565 
1566 		vma->ufence = NULL;
1567 		xe_sync_ufence_put(f);
1568 	}
1569 
1570 	if (number_tiles > 1) {
1571 		fences = kmalloc_array(number_tiles, sizeof(*fences),
1572 				       GFP_KERNEL);
1573 		if (!fences)
1574 			return ERR_PTR(-ENOMEM);
1575 	}
1576 
1577 	for_each_tile(tile, vm->xe, id) {
1578 		if (!(vma->tile_present & BIT(id)))
1579 			goto next;
1580 
1581 		fence = __xe_pt_unbind_vma(tile, vma, q ? q : vm->q[id],
1582 					   first_op ? syncs : NULL,
1583 					   first_op ? num_syncs : 0);
1584 		if (IS_ERR(fence)) {
1585 			err = PTR_ERR(fence);
1586 			goto err_fences;
1587 		}
1588 
1589 		if (fences)
1590 			fences[cur_fence++] = fence;
1591 
1592 next:
1593 		if (q && vm->pt_root[id] && !list_empty(&q->multi_gt_list))
1594 			q = list_next_entry(q, multi_gt_list);
1595 	}
1596 
1597 	if (fences) {
1598 		cf = dma_fence_array_create(number_tiles, fences,
1599 					    vm->composite_fence_ctx,
1600 					    vm->composite_fence_seqno++,
1601 					    false);
1602 		if (!cf) {
1603 			--vm->composite_fence_seqno;
1604 			err = -ENOMEM;
1605 			goto err_fences;
1606 		}
1607 	}
1608 
1609 	fence = cf ? &cf->base : !fence ?
1610 		xe_exec_queue_last_fence_get(wait_exec_queue, vm) : fence;
1611 	if (last_op) {
1612 		for (i = 0; i < num_syncs; i++)
1613 			xe_sync_entry_signal(&syncs[i], fence);
1614 	}
1615 
1616 	return fence;
1617 
1618 err_fences:
1619 	if (fences) {
1620 		while (cur_fence)
1621 			dma_fence_put(fences[--cur_fence]);
1622 		kfree(fences);
1623 	}
1624 
1625 	return ERR_PTR(err);
1626 }
1627 
1628 static struct dma_fence *
1629 xe_vm_bind_vma(struct xe_vma *vma, struct xe_exec_queue *q,
1630 	       struct xe_sync_entry *syncs, u32 num_syncs,
1631 	       bool first_op, bool last_op)
1632 {
1633 	struct xe_tile *tile;
1634 	struct dma_fence *fence;
1635 	struct dma_fence **fences = NULL;
1636 	struct dma_fence_array *cf = NULL;
1637 	struct xe_vm *vm = xe_vma_vm(vma);
1638 	int cur_fence = 0, i;
1639 	int number_tiles = hweight8(vma->tile_mask);
1640 	int err;
1641 	u8 id;
1642 
1643 	trace_xe_vma_bind(vma);
1644 
1645 	if (number_tiles > 1) {
1646 		fences = kmalloc_array(number_tiles, sizeof(*fences),
1647 				       GFP_KERNEL);
1648 		if (!fences)
1649 			return ERR_PTR(-ENOMEM);
1650 	}
1651 
1652 	for_each_tile(tile, vm->xe, id) {
1653 		if (!(vma->tile_mask & BIT(id)))
1654 			goto next;
1655 
1656 		fence = __xe_pt_bind_vma(tile, vma, q ? q : vm->q[id],
1657 					 first_op ? syncs : NULL,
1658 					 first_op ? num_syncs : 0,
1659 					 vma->tile_present & BIT(id));
1660 		if (IS_ERR(fence)) {
1661 			err = PTR_ERR(fence);
1662 			goto err_fences;
1663 		}
1664 
1665 		if (fences)
1666 			fences[cur_fence++] = fence;
1667 
1668 next:
1669 		if (q && vm->pt_root[id] && !list_empty(&q->multi_gt_list))
1670 			q = list_next_entry(q, multi_gt_list);
1671 	}
1672 
1673 	if (fences) {
1674 		cf = dma_fence_array_create(number_tiles, fences,
1675 					    vm->composite_fence_ctx,
1676 					    vm->composite_fence_seqno++,
1677 					    false);
1678 		if (!cf) {
1679 			--vm->composite_fence_seqno;
1680 			err = -ENOMEM;
1681 			goto err_fences;
1682 		}
1683 	}
1684 
1685 	if (last_op) {
1686 		for (i = 0; i < num_syncs; i++)
1687 			xe_sync_entry_signal(&syncs[i],
1688 					     cf ? &cf->base : fence);
1689 	}
1690 
1691 	return cf ? &cf->base : fence;
1692 
1693 err_fences:
1694 	if (fences) {
1695 		while (cur_fence)
1696 			dma_fence_put(fences[--cur_fence]);
1697 		kfree(fences);
1698 	}
1699 
1700 	return ERR_PTR(err);
1701 }
1702 
1703 static struct xe_user_fence *
1704 find_ufence_get(struct xe_sync_entry *syncs, u32 num_syncs)
1705 {
1706 	unsigned int i;
1707 
1708 	for (i = 0; i < num_syncs; i++) {
1709 		struct xe_sync_entry *e = &syncs[i];
1710 
1711 		if (xe_sync_is_ufence(e))
1712 			return xe_sync_ufence_get(e);
1713 	}
1714 
1715 	return NULL;
1716 }
1717 
1718 static int __xe_vm_bind(struct xe_vm *vm, struct xe_vma *vma,
1719 			struct xe_exec_queue *q, struct xe_sync_entry *syncs,
1720 			u32 num_syncs, bool immediate, bool first_op,
1721 			bool last_op)
1722 {
1723 	struct dma_fence *fence;
1724 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1725 	struct xe_user_fence *ufence;
1726 
1727 	xe_vm_assert_held(vm);
1728 
1729 	ufence = find_ufence_get(syncs, num_syncs);
1730 	if (vma->ufence && ufence)
1731 		xe_sync_ufence_put(vma->ufence);
1732 
1733 	vma->ufence = ufence ?: vma->ufence;
1734 
1735 	if (immediate) {
1736 		fence = xe_vm_bind_vma(vma, q, syncs, num_syncs, first_op,
1737 				       last_op);
1738 		if (IS_ERR(fence))
1739 			return PTR_ERR(fence);
1740 	} else {
1741 		int i;
1742 
1743 		xe_assert(vm->xe, xe_vm_in_fault_mode(vm));
1744 
1745 		fence = xe_exec_queue_last_fence_get(wait_exec_queue, vm);
1746 		if (last_op) {
1747 			for (i = 0; i < num_syncs; i++)
1748 				xe_sync_entry_signal(&syncs[i], fence);
1749 		}
1750 	}
1751 
1752 	if (last_op)
1753 		xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence);
1754 	dma_fence_put(fence);
1755 
1756 	return 0;
1757 }
1758 
1759 static int xe_vm_bind(struct xe_vm *vm, struct xe_vma *vma, struct xe_exec_queue *q,
1760 		      struct xe_bo *bo, struct xe_sync_entry *syncs,
1761 		      u32 num_syncs, bool immediate, bool first_op,
1762 		      bool last_op)
1763 {
1764 	int err;
1765 
1766 	xe_vm_assert_held(vm);
1767 	xe_bo_assert_held(bo);
1768 
1769 	if (bo && immediate) {
1770 		err = xe_bo_validate(bo, vm, true);
1771 		if (err)
1772 			return err;
1773 	}
1774 
1775 	return __xe_vm_bind(vm, vma, q, syncs, num_syncs, immediate, first_op,
1776 			    last_op);
1777 }
1778 
1779 static int xe_vm_unbind(struct xe_vm *vm, struct xe_vma *vma,
1780 			struct xe_exec_queue *q, struct xe_sync_entry *syncs,
1781 			u32 num_syncs, bool first_op, bool last_op)
1782 {
1783 	struct dma_fence *fence;
1784 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1785 
1786 	xe_vm_assert_held(vm);
1787 	xe_bo_assert_held(xe_vma_bo(vma));
1788 
1789 	fence = xe_vm_unbind_vma(vma, q, syncs, num_syncs, first_op, last_op);
1790 	if (IS_ERR(fence))
1791 		return PTR_ERR(fence);
1792 
1793 	xe_vma_destroy(vma, fence);
1794 	if (last_op)
1795 		xe_exec_queue_last_fence_set(wait_exec_queue, vm, fence);
1796 	dma_fence_put(fence);
1797 
1798 	return 0;
1799 }
1800 
1801 #define ALL_DRM_XE_VM_CREATE_FLAGS (DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE | \
1802 				    DRM_XE_VM_CREATE_FLAG_LR_MODE | \
1803 				    DRM_XE_VM_CREATE_FLAG_FAULT_MODE)
1804 
1805 int xe_vm_create_ioctl(struct drm_device *dev, void *data,
1806 		       struct drm_file *file)
1807 {
1808 	struct xe_device *xe = to_xe_device(dev);
1809 	struct xe_file *xef = to_xe_file(file);
1810 	struct drm_xe_vm_create *args = data;
1811 	struct xe_tile *tile;
1812 	struct xe_vm *vm;
1813 	u32 id, asid;
1814 	int err;
1815 	u32 flags = 0;
1816 
1817 	if (XE_IOCTL_DBG(xe, args->extensions))
1818 		return -EINVAL;
1819 
1820 	if (XE_WA(xe_root_mmio_gt(xe), 14016763929))
1821 		args->flags |= DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE;
1822 
1823 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE &&
1824 			 !xe->info.has_usm))
1825 		return -EINVAL;
1826 
1827 	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1828 		return -EINVAL;
1829 
1830 	if (XE_IOCTL_DBG(xe, args->flags & ~ALL_DRM_XE_VM_CREATE_FLAGS))
1831 		return -EINVAL;
1832 
1833 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE &&
1834 			 args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE))
1835 		return -EINVAL;
1836 
1837 	if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE) &&
1838 			 args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE))
1839 		return -EINVAL;
1840 
1841 	if (XE_IOCTL_DBG(xe, args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE &&
1842 			 xe_device_in_non_fault_mode(xe)))
1843 		return -EINVAL;
1844 
1845 	if (XE_IOCTL_DBG(xe, !(args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE) &&
1846 			 xe_device_in_fault_mode(xe)))
1847 		return -EINVAL;
1848 
1849 	if (XE_IOCTL_DBG(xe, args->extensions))
1850 		return -EINVAL;
1851 
1852 	if (args->flags & DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE)
1853 		flags |= XE_VM_FLAG_SCRATCH_PAGE;
1854 	if (args->flags & DRM_XE_VM_CREATE_FLAG_LR_MODE)
1855 		flags |= XE_VM_FLAG_LR_MODE;
1856 	if (args->flags & DRM_XE_VM_CREATE_FLAG_FAULT_MODE)
1857 		flags |= XE_VM_FLAG_FAULT_MODE;
1858 
1859 	vm = xe_vm_create(xe, flags);
1860 	if (IS_ERR(vm))
1861 		return PTR_ERR(vm);
1862 
1863 	mutex_lock(&xef->vm.lock);
1864 	err = xa_alloc(&xef->vm.xa, &id, vm, xa_limit_32b, GFP_KERNEL);
1865 	mutex_unlock(&xef->vm.lock);
1866 	if (err)
1867 		goto err_close_and_put;
1868 
1869 	if (xe->info.has_asid) {
1870 		mutex_lock(&xe->usm.lock);
1871 		err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, vm,
1872 				      XA_LIMIT(1, XE_MAX_ASID - 1),
1873 				      &xe->usm.next_asid, GFP_KERNEL);
1874 		mutex_unlock(&xe->usm.lock);
1875 		if (err < 0)
1876 			goto err_free_id;
1877 
1878 		vm->usm.asid = asid;
1879 	}
1880 
1881 	args->vm_id = id;
1882 	vm->xef = xef;
1883 
1884 	/* Record BO memory for VM pagetable created against client */
1885 	for_each_tile(tile, xe, id)
1886 		if (vm->pt_root[id])
1887 			xe_drm_client_add_bo(vm->xef->client, vm->pt_root[id]->bo);
1888 
1889 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_MEM)
1890 	/* Warning: Security issue - never enable by default */
1891 	args->reserved[0] = xe_bo_main_addr(vm->pt_root[0]->bo, XE_PAGE_SIZE);
1892 #endif
1893 
1894 	return 0;
1895 
1896 err_free_id:
1897 	mutex_lock(&xef->vm.lock);
1898 	xa_erase(&xef->vm.xa, id);
1899 	mutex_unlock(&xef->vm.lock);
1900 err_close_and_put:
1901 	xe_vm_close_and_put(vm);
1902 
1903 	return err;
1904 }
1905 
1906 int xe_vm_destroy_ioctl(struct drm_device *dev, void *data,
1907 			struct drm_file *file)
1908 {
1909 	struct xe_device *xe = to_xe_device(dev);
1910 	struct xe_file *xef = to_xe_file(file);
1911 	struct drm_xe_vm_destroy *args = data;
1912 	struct xe_vm *vm;
1913 	int err = 0;
1914 
1915 	if (XE_IOCTL_DBG(xe, args->pad) ||
1916 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
1917 		return -EINVAL;
1918 
1919 	mutex_lock(&xef->vm.lock);
1920 	vm = xa_load(&xef->vm.xa, args->vm_id);
1921 	if (XE_IOCTL_DBG(xe, !vm))
1922 		err = -ENOENT;
1923 	else if (XE_IOCTL_DBG(xe, vm->preempt.num_exec_queues))
1924 		err = -EBUSY;
1925 	else
1926 		xa_erase(&xef->vm.xa, args->vm_id);
1927 	mutex_unlock(&xef->vm.lock);
1928 
1929 	if (!err)
1930 		xe_vm_close_and_put(vm);
1931 
1932 	return err;
1933 }
1934 
1935 static const u32 region_to_mem_type[] = {
1936 	XE_PL_TT,
1937 	XE_PL_VRAM0,
1938 	XE_PL_VRAM1,
1939 };
1940 
1941 static int xe_vm_prefetch(struct xe_vm *vm, struct xe_vma *vma,
1942 			  struct xe_exec_queue *q, u32 region,
1943 			  struct xe_sync_entry *syncs, u32 num_syncs,
1944 			  bool first_op, bool last_op)
1945 {
1946 	struct xe_exec_queue *wait_exec_queue = to_wait_exec_queue(vm, q);
1947 	int err;
1948 
1949 	xe_assert(vm->xe, region < ARRAY_SIZE(region_to_mem_type));
1950 
1951 	if (!xe_vma_has_no_bo(vma)) {
1952 		err = xe_bo_migrate(xe_vma_bo(vma), region_to_mem_type[region]);
1953 		if (err)
1954 			return err;
1955 	}
1956 
1957 	if (vma->tile_mask != (vma->tile_present & ~vma->tile_invalidated)) {
1958 		return xe_vm_bind(vm, vma, q, xe_vma_bo(vma), syncs, num_syncs,
1959 				  true, first_op, last_op);
1960 	} else {
1961 		int i;
1962 
1963 		/* Nothing to do, signal fences now */
1964 		if (last_op) {
1965 			for (i = 0; i < num_syncs; i++) {
1966 				struct dma_fence *fence =
1967 					xe_exec_queue_last_fence_get(wait_exec_queue, vm);
1968 
1969 				xe_sync_entry_signal(&syncs[i], fence);
1970 				dma_fence_put(fence);
1971 			}
1972 		}
1973 
1974 		return 0;
1975 	}
1976 }
1977 
1978 static void prep_vma_destroy(struct xe_vm *vm, struct xe_vma *vma,
1979 			     bool post_commit)
1980 {
1981 	down_read(&vm->userptr.notifier_lock);
1982 	vma->gpuva.flags |= XE_VMA_DESTROYED;
1983 	up_read(&vm->userptr.notifier_lock);
1984 	if (post_commit)
1985 		xe_vm_remove_vma(vm, vma);
1986 }
1987 
1988 #undef ULL
1989 #define ULL	unsigned long long
1990 
1991 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG_VM)
1992 static void print_op(struct xe_device *xe, struct drm_gpuva_op *op)
1993 {
1994 	struct xe_vma *vma;
1995 
1996 	switch (op->op) {
1997 	case DRM_GPUVA_OP_MAP:
1998 		vm_dbg(&xe->drm, "MAP: addr=0x%016llx, range=0x%016llx",
1999 		       (ULL)op->map.va.addr, (ULL)op->map.va.range);
2000 		break;
2001 	case DRM_GPUVA_OP_REMAP:
2002 		vma = gpuva_to_vma(op->remap.unmap->va);
2003 		vm_dbg(&xe->drm, "REMAP:UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d",
2004 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma),
2005 		       op->remap.unmap->keep ? 1 : 0);
2006 		if (op->remap.prev)
2007 			vm_dbg(&xe->drm,
2008 			       "REMAP:PREV: addr=0x%016llx, range=0x%016llx",
2009 			       (ULL)op->remap.prev->va.addr,
2010 			       (ULL)op->remap.prev->va.range);
2011 		if (op->remap.next)
2012 			vm_dbg(&xe->drm,
2013 			       "REMAP:NEXT: addr=0x%016llx, range=0x%016llx",
2014 			       (ULL)op->remap.next->va.addr,
2015 			       (ULL)op->remap.next->va.range);
2016 		break;
2017 	case DRM_GPUVA_OP_UNMAP:
2018 		vma = gpuva_to_vma(op->unmap.va);
2019 		vm_dbg(&xe->drm, "UNMAP: addr=0x%016llx, range=0x%016llx, keep=%d",
2020 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma),
2021 		       op->unmap.keep ? 1 : 0);
2022 		break;
2023 	case DRM_GPUVA_OP_PREFETCH:
2024 		vma = gpuva_to_vma(op->prefetch.va);
2025 		vm_dbg(&xe->drm, "PREFETCH: addr=0x%016llx, range=0x%016llx",
2026 		       (ULL)xe_vma_start(vma), (ULL)xe_vma_size(vma));
2027 		break;
2028 	default:
2029 		drm_warn(&xe->drm, "NOT POSSIBLE");
2030 	}
2031 }
2032 #else
2033 static void print_op(struct xe_device *xe, struct drm_gpuva_op *op)
2034 {
2035 }
2036 #endif
2037 
2038 /*
2039  * Create operations list from IOCTL arguments, setup operations fields so parse
2040  * and commit steps are decoupled from IOCTL arguments. This step can fail.
2041  */
2042 static struct drm_gpuva_ops *
2043 vm_bind_ioctl_ops_create(struct xe_vm *vm, struct xe_bo *bo,
2044 			 u64 bo_offset_or_userptr, u64 addr, u64 range,
2045 			 u32 operation, u32 flags,
2046 			 u32 prefetch_region, u16 pat_index)
2047 {
2048 	struct drm_gem_object *obj = bo ? &bo->ttm.base : NULL;
2049 	struct drm_gpuva_ops *ops;
2050 	struct drm_gpuva_op *__op;
2051 	struct drm_gpuvm_bo *vm_bo;
2052 	int err;
2053 
2054 	lockdep_assert_held_write(&vm->lock);
2055 
2056 	vm_dbg(&vm->xe->drm,
2057 	       "op=%d, addr=0x%016llx, range=0x%016llx, bo_offset_or_userptr=0x%016llx",
2058 	       operation, (ULL)addr, (ULL)range,
2059 	       (ULL)bo_offset_or_userptr);
2060 
2061 	switch (operation) {
2062 	case DRM_XE_VM_BIND_OP_MAP:
2063 	case DRM_XE_VM_BIND_OP_MAP_USERPTR:
2064 		ops = drm_gpuvm_sm_map_ops_create(&vm->gpuvm, addr, range,
2065 						  obj, bo_offset_or_userptr);
2066 		break;
2067 	case DRM_XE_VM_BIND_OP_UNMAP:
2068 		ops = drm_gpuvm_sm_unmap_ops_create(&vm->gpuvm, addr, range);
2069 		break;
2070 	case DRM_XE_VM_BIND_OP_PREFETCH:
2071 		ops = drm_gpuvm_prefetch_ops_create(&vm->gpuvm, addr, range);
2072 		break;
2073 	case DRM_XE_VM_BIND_OP_UNMAP_ALL:
2074 		xe_assert(vm->xe, bo);
2075 
2076 		err = xe_bo_lock(bo, true);
2077 		if (err)
2078 			return ERR_PTR(err);
2079 
2080 		vm_bo = drm_gpuvm_bo_obtain(&vm->gpuvm, obj);
2081 		if (IS_ERR(vm_bo)) {
2082 			xe_bo_unlock(bo);
2083 			return ERR_CAST(vm_bo);
2084 		}
2085 
2086 		ops = drm_gpuvm_bo_unmap_ops_create(vm_bo);
2087 		drm_gpuvm_bo_put(vm_bo);
2088 		xe_bo_unlock(bo);
2089 		break;
2090 	default:
2091 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2092 		ops = ERR_PTR(-EINVAL);
2093 	}
2094 	if (IS_ERR(ops))
2095 		return ops;
2096 
2097 	drm_gpuva_for_each_op(__op, ops) {
2098 		struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2099 
2100 		if (__op->op == DRM_GPUVA_OP_MAP) {
2101 			op->map.immediate =
2102 				flags & DRM_XE_VM_BIND_FLAG_IMMEDIATE;
2103 			op->map.read_only =
2104 				flags & DRM_XE_VM_BIND_FLAG_READONLY;
2105 			op->map.is_null = flags & DRM_XE_VM_BIND_FLAG_NULL;
2106 			op->map.dumpable = flags & DRM_XE_VM_BIND_FLAG_DUMPABLE;
2107 			op->map.pat_index = pat_index;
2108 		} else if (__op->op == DRM_GPUVA_OP_PREFETCH) {
2109 			op->prefetch.region = prefetch_region;
2110 		}
2111 
2112 		print_op(vm->xe, __op);
2113 	}
2114 
2115 	return ops;
2116 }
2117 
2118 static struct xe_vma *new_vma(struct xe_vm *vm, struct drm_gpuva_op_map *op,
2119 			      u16 pat_index, unsigned int flags)
2120 {
2121 	struct xe_bo *bo = op->gem.obj ? gem_to_xe_bo(op->gem.obj) : NULL;
2122 	struct drm_exec exec;
2123 	struct xe_vma *vma;
2124 	int err;
2125 
2126 	lockdep_assert_held_write(&vm->lock);
2127 
2128 	if (bo) {
2129 		drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
2130 		drm_exec_until_all_locked(&exec) {
2131 			err = 0;
2132 			if (!bo->vm) {
2133 				err = drm_exec_lock_obj(&exec, xe_vm_obj(vm));
2134 				drm_exec_retry_on_contention(&exec);
2135 			}
2136 			if (!err) {
2137 				err = drm_exec_lock_obj(&exec, &bo->ttm.base);
2138 				drm_exec_retry_on_contention(&exec);
2139 			}
2140 			if (err) {
2141 				drm_exec_fini(&exec);
2142 				return ERR_PTR(err);
2143 			}
2144 		}
2145 	}
2146 	vma = xe_vma_create(vm, bo, op->gem.offset,
2147 			    op->va.addr, op->va.addr +
2148 			    op->va.range - 1, pat_index, flags);
2149 	if (bo)
2150 		drm_exec_fini(&exec);
2151 
2152 	if (xe_vma_is_userptr(vma)) {
2153 		err = xe_vma_userptr_pin_pages(to_userptr_vma(vma));
2154 		if (err) {
2155 			prep_vma_destroy(vm, vma, false);
2156 			xe_vma_destroy_unlocked(vma);
2157 			return ERR_PTR(err);
2158 		}
2159 	} else if (!xe_vma_has_no_bo(vma) && !bo->vm) {
2160 		err = add_preempt_fences(vm, bo);
2161 		if (err) {
2162 			prep_vma_destroy(vm, vma, false);
2163 			xe_vma_destroy_unlocked(vma);
2164 			return ERR_PTR(err);
2165 		}
2166 	}
2167 
2168 	return vma;
2169 }
2170 
2171 static u64 xe_vma_max_pte_size(struct xe_vma *vma)
2172 {
2173 	if (vma->gpuva.flags & XE_VMA_PTE_1G)
2174 		return SZ_1G;
2175 	else if (vma->gpuva.flags & (XE_VMA_PTE_2M | XE_VMA_PTE_COMPACT))
2176 		return SZ_2M;
2177 	else if (vma->gpuva.flags & XE_VMA_PTE_64K)
2178 		return SZ_64K;
2179 	else if (vma->gpuva.flags & XE_VMA_PTE_4K)
2180 		return SZ_4K;
2181 
2182 	return SZ_1G;	/* Uninitialized, used max size */
2183 }
2184 
2185 static void xe_vma_set_pte_size(struct xe_vma *vma, u64 size)
2186 {
2187 	switch (size) {
2188 	case SZ_1G:
2189 		vma->gpuva.flags |= XE_VMA_PTE_1G;
2190 		break;
2191 	case SZ_2M:
2192 		vma->gpuva.flags |= XE_VMA_PTE_2M;
2193 		break;
2194 	case SZ_64K:
2195 		vma->gpuva.flags |= XE_VMA_PTE_64K;
2196 		break;
2197 	case SZ_4K:
2198 		vma->gpuva.flags |= XE_VMA_PTE_4K;
2199 		break;
2200 	}
2201 }
2202 
2203 static int xe_vma_op_commit(struct xe_vm *vm, struct xe_vma_op *op)
2204 {
2205 	int err = 0;
2206 
2207 	lockdep_assert_held_write(&vm->lock);
2208 
2209 	switch (op->base.op) {
2210 	case DRM_GPUVA_OP_MAP:
2211 		err |= xe_vm_insert_vma(vm, op->map.vma);
2212 		if (!err)
2213 			op->flags |= XE_VMA_OP_COMMITTED;
2214 		break;
2215 	case DRM_GPUVA_OP_REMAP:
2216 	{
2217 		u8 tile_present =
2218 			gpuva_to_vma(op->base.remap.unmap->va)->tile_present;
2219 
2220 		prep_vma_destroy(vm, gpuva_to_vma(op->base.remap.unmap->va),
2221 				 true);
2222 		op->flags |= XE_VMA_OP_COMMITTED;
2223 
2224 		if (op->remap.prev) {
2225 			err |= xe_vm_insert_vma(vm, op->remap.prev);
2226 			if (!err)
2227 				op->flags |= XE_VMA_OP_PREV_COMMITTED;
2228 			if (!err && op->remap.skip_prev) {
2229 				op->remap.prev->tile_present =
2230 					tile_present;
2231 				op->remap.prev = NULL;
2232 			}
2233 		}
2234 		if (op->remap.next) {
2235 			err |= xe_vm_insert_vma(vm, op->remap.next);
2236 			if (!err)
2237 				op->flags |= XE_VMA_OP_NEXT_COMMITTED;
2238 			if (!err && op->remap.skip_next) {
2239 				op->remap.next->tile_present =
2240 					tile_present;
2241 				op->remap.next = NULL;
2242 			}
2243 		}
2244 
2245 		/* Adjust for partial unbind after removin VMA from VM */
2246 		if (!err) {
2247 			op->base.remap.unmap->va->va.addr = op->remap.start;
2248 			op->base.remap.unmap->va->va.range = op->remap.range;
2249 		}
2250 		break;
2251 	}
2252 	case DRM_GPUVA_OP_UNMAP:
2253 		prep_vma_destroy(vm, gpuva_to_vma(op->base.unmap.va), true);
2254 		op->flags |= XE_VMA_OP_COMMITTED;
2255 		break;
2256 	case DRM_GPUVA_OP_PREFETCH:
2257 		op->flags |= XE_VMA_OP_COMMITTED;
2258 		break;
2259 	default:
2260 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2261 	}
2262 
2263 	return err;
2264 }
2265 
2266 
2267 static int vm_bind_ioctl_ops_parse(struct xe_vm *vm, struct xe_exec_queue *q,
2268 				   struct drm_gpuva_ops *ops,
2269 				   struct xe_sync_entry *syncs, u32 num_syncs,
2270 				   struct list_head *ops_list, bool last)
2271 {
2272 	struct xe_device *xe = vm->xe;
2273 	struct xe_vma_op *last_op = NULL;
2274 	struct drm_gpuva_op *__op;
2275 	int err = 0;
2276 
2277 	lockdep_assert_held_write(&vm->lock);
2278 
2279 	drm_gpuva_for_each_op(__op, ops) {
2280 		struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2281 		struct xe_vma *vma;
2282 		bool first = list_empty(ops_list);
2283 		unsigned int flags = 0;
2284 
2285 		INIT_LIST_HEAD(&op->link);
2286 		list_add_tail(&op->link, ops_list);
2287 
2288 		if (first) {
2289 			op->flags |= XE_VMA_OP_FIRST;
2290 			op->num_syncs = num_syncs;
2291 			op->syncs = syncs;
2292 		}
2293 
2294 		op->q = q;
2295 
2296 		switch (op->base.op) {
2297 		case DRM_GPUVA_OP_MAP:
2298 		{
2299 			flags |= op->map.read_only ?
2300 				VMA_CREATE_FLAG_READ_ONLY : 0;
2301 			flags |= op->map.is_null ?
2302 				VMA_CREATE_FLAG_IS_NULL : 0;
2303 			flags |= op->map.dumpable ?
2304 				VMA_CREATE_FLAG_DUMPABLE : 0;
2305 
2306 			vma = new_vma(vm, &op->base.map, op->map.pat_index,
2307 				      flags);
2308 			if (IS_ERR(vma))
2309 				return PTR_ERR(vma);
2310 
2311 			op->map.vma = vma;
2312 			break;
2313 		}
2314 		case DRM_GPUVA_OP_REMAP:
2315 		{
2316 			struct xe_vma *old =
2317 				gpuva_to_vma(op->base.remap.unmap->va);
2318 
2319 			op->remap.start = xe_vma_start(old);
2320 			op->remap.range = xe_vma_size(old);
2321 
2322 			if (op->base.remap.prev) {
2323 				flags |= op->base.remap.unmap->va->flags &
2324 					XE_VMA_READ_ONLY ?
2325 					VMA_CREATE_FLAG_READ_ONLY : 0;
2326 				flags |= op->base.remap.unmap->va->flags &
2327 					DRM_GPUVA_SPARSE ?
2328 					VMA_CREATE_FLAG_IS_NULL : 0;
2329 				flags |= op->base.remap.unmap->va->flags &
2330 					XE_VMA_DUMPABLE ?
2331 					VMA_CREATE_FLAG_DUMPABLE : 0;
2332 
2333 				vma = new_vma(vm, op->base.remap.prev,
2334 					      old->pat_index, flags);
2335 				if (IS_ERR(vma))
2336 					return PTR_ERR(vma);
2337 
2338 				op->remap.prev = vma;
2339 
2340 				/*
2341 				 * Userptr creates a new SG mapping so
2342 				 * we must also rebind.
2343 				 */
2344 				op->remap.skip_prev = !xe_vma_is_userptr(old) &&
2345 					IS_ALIGNED(xe_vma_end(vma),
2346 						   xe_vma_max_pte_size(old));
2347 				if (op->remap.skip_prev) {
2348 					xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old));
2349 					op->remap.range -=
2350 						xe_vma_end(vma) -
2351 						xe_vma_start(old);
2352 					op->remap.start = xe_vma_end(vma);
2353 					vm_dbg(&xe->drm, "REMAP:SKIP_PREV: addr=0x%016llx, range=0x%016llx",
2354 					       (ULL)op->remap.start,
2355 					       (ULL)op->remap.range);
2356 				}
2357 			}
2358 
2359 			if (op->base.remap.next) {
2360 				flags |= op->base.remap.unmap->va->flags &
2361 					XE_VMA_READ_ONLY ?
2362 					VMA_CREATE_FLAG_READ_ONLY : 0;
2363 				flags |= op->base.remap.unmap->va->flags &
2364 					DRM_GPUVA_SPARSE ?
2365 					VMA_CREATE_FLAG_IS_NULL : 0;
2366 				flags |= op->base.remap.unmap->va->flags &
2367 					XE_VMA_DUMPABLE ?
2368 					VMA_CREATE_FLAG_DUMPABLE : 0;
2369 
2370 				vma = new_vma(vm, op->base.remap.next,
2371 					      old->pat_index, flags);
2372 				if (IS_ERR(vma))
2373 					return PTR_ERR(vma);
2374 
2375 				op->remap.next = vma;
2376 
2377 				/*
2378 				 * Userptr creates a new SG mapping so
2379 				 * we must also rebind.
2380 				 */
2381 				op->remap.skip_next = !xe_vma_is_userptr(old) &&
2382 					IS_ALIGNED(xe_vma_start(vma),
2383 						   xe_vma_max_pte_size(old));
2384 				if (op->remap.skip_next) {
2385 					xe_vma_set_pte_size(vma, xe_vma_max_pte_size(old));
2386 					op->remap.range -=
2387 						xe_vma_end(old) -
2388 						xe_vma_start(vma);
2389 					vm_dbg(&xe->drm, "REMAP:SKIP_NEXT: addr=0x%016llx, range=0x%016llx",
2390 					       (ULL)op->remap.start,
2391 					       (ULL)op->remap.range);
2392 				}
2393 			}
2394 			break;
2395 		}
2396 		case DRM_GPUVA_OP_UNMAP:
2397 		case DRM_GPUVA_OP_PREFETCH:
2398 			/* Nothing to do */
2399 			break;
2400 		default:
2401 			drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2402 		}
2403 
2404 		last_op = op;
2405 
2406 		err = xe_vma_op_commit(vm, op);
2407 		if (err)
2408 			return err;
2409 	}
2410 
2411 	/* FIXME: Unhandled corner case */
2412 	XE_WARN_ON(!last_op && last && !list_empty(ops_list));
2413 
2414 	if (!last_op)
2415 		return 0;
2416 
2417 	last_op->ops = ops;
2418 	if (last) {
2419 		last_op->flags |= XE_VMA_OP_LAST;
2420 		last_op->num_syncs = num_syncs;
2421 		last_op->syncs = syncs;
2422 	}
2423 
2424 	return 0;
2425 }
2426 
2427 static int op_execute(struct drm_exec *exec, struct xe_vm *vm,
2428 		      struct xe_vma *vma, struct xe_vma_op *op)
2429 {
2430 	int err;
2431 
2432 	lockdep_assert_held_write(&vm->lock);
2433 
2434 	err = xe_vm_lock_vma(exec, vma);
2435 	if (err)
2436 		return err;
2437 
2438 	xe_vm_assert_held(vm);
2439 	xe_bo_assert_held(xe_vma_bo(vma));
2440 
2441 	switch (op->base.op) {
2442 	case DRM_GPUVA_OP_MAP:
2443 		err = xe_vm_bind(vm, vma, op->q, xe_vma_bo(vma),
2444 				 op->syncs, op->num_syncs,
2445 				 op->map.immediate || !xe_vm_in_fault_mode(vm),
2446 				 op->flags & XE_VMA_OP_FIRST,
2447 				 op->flags & XE_VMA_OP_LAST);
2448 		break;
2449 	case DRM_GPUVA_OP_REMAP:
2450 	{
2451 		bool prev = !!op->remap.prev;
2452 		bool next = !!op->remap.next;
2453 
2454 		if (!op->remap.unmap_done) {
2455 			if (prev || next)
2456 				vma->gpuva.flags |= XE_VMA_FIRST_REBIND;
2457 			err = xe_vm_unbind(vm, vma, op->q, op->syncs,
2458 					   op->num_syncs,
2459 					   op->flags & XE_VMA_OP_FIRST,
2460 					   op->flags & XE_VMA_OP_LAST &&
2461 					   !prev && !next);
2462 			if (err)
2463 				break;
2464 			op->remap.unmap_done = true;
2465 		}
2466 
2467 		if (prev) {
2468 			op->remap.prev->gpuva.flags |= XE_VMA_LAST_REBIND;
2469 			err = xe_vm_bind(vm, op->remap.prev, op->q,
2470 					 xe_vma_bo(op->remap.prev), op->syncs,
2471 					 op->num_syncs, true, false,
2472 					 op->flags & XE_VMA_OP_LAST && !next);
2473 			op->remap.prev->gpuva.flags &= ~XE_VMA_LAST_REBIND;
2474 			if (err)
2475 				break;
2476 			op->remap.prev = NULL;
2477 		}
2478 
2479 		if (next) {
2480 			op->remap.next->gpuva.flags |= XE_VMA_LAST_REBIND;
2481 			err = xe_vm_bind(vm, op->remap.next, op->q,
2482 					 xe_vma_bo(op->remap.next),
2483 					 op->syncs, op->num_syncs,
2484 					 true, false,
2485 					 op->flags & XE_VMA_OP_LAST);
2486 			op->remap.next->gpuva.flags &= ~XE_VMA_LAST_REBIND;
2487 			if (err)
2488 				break;
2489 			op->remap.next = NULL;
2490 		}
2491 
2492 		break;
2493 	}
2494 	case DRM_GPUVA_OP_UNMAP:
2495 		err = xe_vm_unbind(vm, vma, op->q, op->syncs,
2496 				   op->num_syncs, op->flags & XE_VMA_OP_FIRST,
2497 				   op->flags & XE_VMA_OP_LAST);
2498 		break;
2499 	case DRM_GPUVA_OP_PREFETCH:
2500 		err = xe_vm_prefetch(vm, vma, op->q, op->prefetch.region,
2501 				     op->syncs, op->num_syncs,
2502 				     op->flags & XE_VMA_OP_FIRST,
2503 				     op->flags & XE_VMA_OP_LAST);
2504 		break;
2505 	default:
2506 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2507 	}
2508 
2509 	if (err)
2510 		trace_xe_vma_fail(vma);
2511 
2512 	return err;
2513 }
2514 
2515 static int __xe_vma_op_execute(struct xe_vm *vm, struct xe_vma *vma,
2516 			       struct xe_vma_op *op)
2517 {
2518 	struct drm_exec exec;
2519 	int err;
2520 
2521 retry_userptr:
2522 	drm_exec_init(&exec, DRM_EXEC_INTERRUPTIBLE_WAIT, 0);
2523 	drm_exec_until_all_locked(&exec) {
2524 		err = op_execute(&exec, vm, vma, op);
2525 		drm_exec_retry_on_contention(&exec);
2526 		if (err)
2527 			break;
2528 	}
2529 	drm_exec_fini(&exec);
2530 
2531 	if (err == -EAGAIN) {
2532 		lockdep_assert_held_write(&vm->lock);
2533 
2534 		if (op->base.op == DRM_GPUVA_OP_REMAP) {
2535 			if (!op->remap.unmap_done)
2536 				vma = gpuva_to_vma(op->base.remap.unmap->va);
2537 			else if (op->remap.prev)
2538 				vma = op->remap.prev;
2539 			else
2540 				vma = op->remap.next;
2541 		}
2542 
2543 		if (xe_vma_is_userptr(vma)) {
2544 			err = xe_vma_userptr_pin_pages(to_userptr_vma(vma));
2545 			if (!err)
2546 				goto retry_userptr;
2547 
2548 			trace_xe_vma_fail(vma);
2549 		}
2550 	}
2551 
2552 	return err;
2553 }
2554 
2555 static int xe_vma_op_execute(struct xe_vm *vm, struct xe_vma_op *op)
2556 {
2557 	int ret = 0;
2558 
2559 	lockdep_assert_held_write(&vm->lock);
2560 
2561 	switch (op->base.op) {
2562 	case DRM_GPUVA_OP_MAP:
2563 		ret = __xe_vma_op_execute(vm, op->map.vma, op);
2564 		break;
2565 	case DRM_GPUVA_OP_REMAP:
2566 	{
2567 		struct xe_vma *vma;
2568 
2569 		if (!op->remap.unmap_done)
2570 			vma = gpuva_to_vma(op->base.remap.unmap->va);
2571 		else if (op->remap.prev)
2572 			vma = op->remap.prev;
2573 		else
2574 			vma = op->remap.next;
2575 
2576 		ret = __xe_vma_op_execute(vm, vma, op);
2577 		break;
2578 	}
2579 	case DRM_GPUVA_OP_UNMAP:
2580 		ret = __xe_vma_op_execute(vm, gpuva_to_vma(op->base.unmap.va),
2581 					  op);
2582 		break;
2583 	case DRM_GPUVA_OP_PREFETCH:
2584 		ret = __xe_vma_op_execute(vm,
2585 					  gpuva_to_vma(op->base.prefetch.va),
2586 					  op);
2587 		break;
2588 	default:
2589 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 static void xe_vma_op_cleanup(struct xe_vm *vm, struct xe_vma_op *op)
2596 {
2597 	bool last = op->flags & XE_VMA_OP_LAST;
2598 
2599 	if (last) {
2600 		while (op->num_syncs--)
2601 			xe_sync_entry_cleanup(&op->syncs[op->num_syncs]);
2602 		kfree(op->syncs);
2603 		if (op->q)
2604 			xe_exec_queue_put(op->q);
2605 	}
2606 	if (!list_empty(&op->link))
2607 		list_del(&op->link);
2608 	if (op->ops)
2609 		drm_gpuva_ops_free(&vm->gpuvm, op->ops);
2610 	if (last)
2611 		xe_vm_put(vm);
2612 }
2613 
2614 static void xe_vma_op_unwind(struct xe_vm *vm, struct xe_vma_op *op,
2615 			     bool post_commit, bool prev_post_commit,
2616 			     bool next_post_commit)
2617 {
2618 	lockdep_assert_held_write(&vm->lock);
2619 
2620 	switch (op->base.op) {
2621 	case DRM_GPUVA_OP_MAP:
2622 		if (op->map.vma) {
2623 			prep_vma_destroy(vm, op->map.vma, post_commit);
2624 			xe_vma_destroy_unlocked(op->map.vma);
2625 		}
2626 		break;
2627 	case DRM_GPUVA_OP_UNMAP:
2628 	{
2629 		struct xe_vma *vma = gpuva_to_vma(op->base.unmap.va);
2630 
2631 		if (vma) {
2632 			down_read(&vm->userptr.notifier_lock);
2633 			vma->gpuva.flags &= ~XE_VMA_DESTROYED;
2634 			up_read(&vm->userptr.notifier_lock);
2635 			if (post_commit)
2636 				xe_vm_insert_vma(vm, vma);
2637 		}
2638 		break;
2639 	}
2640 	case DRM_GPUVA_OP_REMAP:
2641 	{
2642 		struct xe_vma *vma = gpuva_to_vma(op->base.remap.unmap->va);
2643 
2644 		if (op->remap.prev) {
2645 			prep_vma_destroy(vm, op->remap.prev, prev_post_commit);
2646 			xe_vma_destroy_unlocked(op->remap.prev);
2647 		}
2648 		if (op->remap.next) {
2649 			prep_vma_destroy(vm, op->remap.next, next_post_commit);
2650 			xe_vma_destroy_unlocked(op->remap.next);
2651 		}
2652 		if (vma) {
2653 			down_read(&vm->userptr.notifier_lock);
2654 			vma->gpuva.flags &= ~XE_VMA_DESTROYED;
2655 			up_read(&vm->userptr.notifier_lock);
2656 			if (post_commit)
2657 				xe_vm_insert_vma(vm, vma);
2658 		}
2659 		break;
2660 	}
2661 	case DRM_GPUVA_OP_PREFETCH:
2662 		/* Nothing to do */
2663 		break;
2664 	default:
2665 		drm_warn(&vm->xe->drm, "NOT POSSIBLE");
2666 	}
2667 }
2668 
2669 static void vm_bind_ioctl_ops_unwind(struct xe_vm *vm,
2670 				     struct drm_gpuva_ops **ops,
2671 				     int num_ops_list)
2672 {
2673 	int i;
2674 
2675 	for (i = num_ops_list - 1; i >= 0; --i) {
2676 		struct drm_gpuva_ops *__ops = ops[i];
2677 		struct drm_gpuva_op *__op;
2678 
2679 		if (!__ops)
2680 			continue;
2681 
2682 		drm_gpuva_for_each_op_reverse(__op, __ops) {
2683 			struct xe_vma_op *op = gpuva_op_to_vma_op(__op);
2684 
2685 			xe_vma_op_unwind(vm, op,
2686 					 op->flags & XE_VMA_OP_COMMITTED,
2687 					 op->flags & XE_VMA_OP_PREV_COMMITTED,
2688 					 op->flags & XE_VMA_OP_NEXT_COMMITTED);
2689 		}
2690 
2691 		drm_gpuva_ops_free(&vm->gpuvm, __ops);
2692 	}
2693 }
2694 
2695 static int vm_bind_ioctl_ops_execute(struct xe_vm *vm,
2696 				     struct list_head *ops_list)
2697 {
2698 	struct xe_vma_op *op, *next;
2699 	int err;
2700 
2701 	lockdep_assert_held_write(&vm->lock);
2702 
2703 	list_for_each_entry_safe(op, next, ops_list, link) {
2704 		err = xe_vma_op_execute(vm, op);
2705 		if (err) {
2706 			drm_warn(&vm->xe->drm, "VM op(%d) failed with %d",
2707 				 op->base.op, err);
2708 			/*
2709 			 * FIXME: Killing VM rather than proper error handling
2710 			 */
2711 			xe_vm_kill(vm);
2712 			return -ENOSPC;
2713 		}
2714 		xe_vma_op_cleanup(vm, op);
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 #define SUPPORTED_FLAGS	\
2721 	(DRM_XE_VM_BIND_FLAG_READONLY | \
2722 	 DRM_XE_VM_BIND_FLAG_IMMEDIATE | \
2723 	 DRM_XE_VM_BIND_FLAG_NULL | \
2724 	 DRM_XE_VM_BIND_FLAG_DUMPABLE)
2725 #define XE_64K_PAGE_MASK 0xffffull
2726 #define ALL_DRM_XE_SYNCS_FLAGS (DRM_XE_SYNCS_FLAG_WAIT_FOR_OP)
2727 
2728 static int vm_bind_ioctl_check_args(struct xe_device *xe,
2729 				    struct drm_xe_vm_bind *args,
2730 				    struct drm_xe_vm_bind_op **bind_ops)
2731 {
2732 	int err;
2733 	int i;
2734 
2735 	if (XE_IOCTL_DBG(xe, args->pad || args->pad2) ||
2736 	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
2737 		return -EINVAL;
2738 
2739 	if (XE_IOCTL_DBG(xe, args->extensions))
2740 		return -EINVAL;
2741 
2742 	if (args->num_binds > 1) {
2743 		u64 __user *bind_user =
2744 			u64_to_user_ptr(args->vector_of_binds);
2745 
2746 		*bind_ops = kvmalloc_array(args->num_binds,
2747 					   sizeof(struct drm_xe_vm_bind_op),
2748 					   GFP_KERNEL | __GFP_ACCOUNT);
2749 		if (!*bind_ops)
2750 			return -ENOMEM;
2751 
2752 		err = __copy_from_user(*bind_ops, bind_user,
2753 				       sizeof(struct drm_xe_vm_bind_op) *
2754 				       args->num_binds);
2755 		if (XE_IOCTL_DBG(xe, err)) {
2756 			err = -EFAULT;
2757 			goto free_bind_ops;
2758 		}
2759 	} else {
2760 		*bind_ops = &args->bind;
2761 	}
2762 
2763 	for (i = 0; i < args->num_binds; ++i) {
2764 		u64 range = (*bind_ops)[i].range;
2765 		u64 addr = (*bind_ops)[i].addr;
2766 		u32 op = (*bind_ops)[i].op;
2767 		u32 flags = (*bind_ops)[i].flags;
2768 		u32 obj = (*bind_ops)[i].obj;
2769 		u64 obj_offset = (*bind_ops)[i].obj_offset;
2770 		u32 prefetch_region = (*bind_ops)[i].prefetch_mem_region_instance;
2771 		bool is_null = flags & DRM_XE_VM_BIND_FLAG_NULL;
2772 		u16 pat_index = (*bind_ops)[i].pat_index;
2773 		u16 coh_mode;
2774 
2775 		if (XE_IOCTL_DBG(xe, pat_index >= xe->pat.n_entries)) {
2776 			err = -EINVAL;
2777 			goto free_bind_ops;
2778 		}
2779 
2780 		pat_index = array_index_nospec(pat_index, xe->pat.n_entries);
2781 		(*bind_ops)[i].pat_index = pat_index;
2782 		coh_mode = xe_pat_index_get_coh_mode(xe, pat_index);
2783 		if (XE_IOCTL_DBG(xe, !coh_mode)) { /* hw reserved */
2784 			err = -EINVAL;
2785 			goto free_bind_ops;
2786 		}
2787 
2788 		if (XE_WARN_ON(coh_mode > XE_COH_AT_LEAST_1WAY)) {
2789 			err = -EINVAL;
2790 			goto free_bind_ops;
2791 		}
2792 
2793 		if (XE_IOCTL_DBG(xe, op > DRM_XE_VM_BIND_OP_PREFETCH) ||
2794 		    XE_IOCTL_DBG(xe, flags & ~SUPPORTED_FLAGS) ||
2795 		    XE_IOCTL_DBG(xe, obj && is_null) ||
2796 		    XE_IOCTL_DBG(xe, obj_offset && is_null) ||
2797 		    XE_IOCTL_DBG(xe, op != DRM_XE_VM_BIND_OP_MAP &&
2798 				 is_null) ||
2799 		    XE_IOCTL_DBG(xe, !obj &&
2800 				 op == DRM_XE_VM_BIND_OP_MAP &&
2801 				 !is_null) ||
2802 		    XE_IOCTL_DBG(xe, !obj &&
2803 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2804 		    XE_IOCTL_DBG(xe, addr &&
2805 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2806 		    XE_IOCTL_DBG(xe, range &&
2807 				 op == DRM_XE_VM_BIND_OP_UNMAP_ALL) ||
2808 		    XE_IOCTL_DBG(xe, obj &&
2809 				 op == DRM_XE_VM_BIND_OP_MAP_USERPTR) ||
2810 		    XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE &&
2811 				 op == DRM_XE_VM_BIND_OP_MAP_USERPTR) ||
2812 		    XE_IOCTL_DBG(xe, obj &&
2813 				 op == DRM_XE_VM_BIND_OP_PREFETCH) ||
2814 		    XE_IOCTL_DBG(xe, prefetch_region &&
2815 				 op != DRM_XE_VM_BIND_OP_PREFETCH) ||
2816 		    XE_IOCTL_DBG(xe, !(BIT(prefetch_region) &
2817 				       xe->info.mem_region_mask)) ||
2818 		    XE_IOCTL_DBG(xe, obj &&
2819 				 op == DRM_XE_VM_BIND_OP_UNMAP)) {
2820 			err = -EINVAL;
2821 			goto free_bind_ops;
2822 		}
2823 
2824 		if (XE_IOCTL_DBG(xe, obj_offset & ~PAGE_MASK) ||
2825 		    XE_IOCTL_DBG(xe, addr & ~PAGE_MASK) ||
2826 		    XE_IOCTL_DBG(xe, range & ~PAGE_MASK) ||
2827 		    XE_IOCTL_DBG(xe, !range &&
2828 				 op != DRM_XE_VM_BIND_OP_UNMAP_ALL)) {
2829 			err = -EINVAL;
2830 			goto free_bind_ops;
2831 		}
2832 	}
2833 
2834 	return 0;
2835 
2836 free_bind_ops:
2837 	if (args->num_binds > 1)
2838 		kvfree(*bind_ops);
2839 	return err;
2840 }
2841 
2842 static int vm_bind_ioctl_signal_fences(struct xe_vm *vm,
2843 				       struct xe_exec_queue *q,
2844 				       struct xe_sync_entry *syncs,
2845 				       int num_syncs)
2846 {
2847 	struct dma_fence *fence;
2848 	int i, err = 0;
2849 
2850 	fence = xe_sync_in_fence_get(syncs, num_syncs,
2851 				     to_wait_exec_queue(vm, q), vm);
2852 	if (IS_ERR(fence))
2853 		return PTR_ERR(fence);
2854 
2855 	for (i = 0; i < num_syncs; i++)
2856 		xe_sync_entry_signal(&syncs[i], fence);
2857 
2858 	xe_exec_queue_last_fence_set(to_wait_exec_queue(vm, q), vm,
2859 				     fence);
2860 	dma_fence_put(fence);
2861 
2862 	return err;
2863 }
2864 
2865 int xe_vm_bind_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2866 {
2867 	struct xe_device *xe = to_xe_device(dev);
2868 	struct xe_file *xef = to_xe_file(file);
2869 	struct drm_xe_vm_bind *args = data;
2870 	struct drm_xe_sync __user *syncs_user;
2871 	struct xe_bo **bos = NULL;
2872 	struct drm_gpuva_ops **ops = NULL;
2873 	struct xe_vm *vm;
2874 	struct xe_exec_queue *q = NULL;
2875 	u32 num_syncs, num_ufence = 0;
2876 	struct xe_sync_entry *syncs = NULL;
2877 	struct drm_xe_vm_bind_op *bind_ops;
2878 	LIST_HEAD(ops_list);
2879 	int err;
2880 	int i;
2881 
2882 	err = vm_bind_ioctl_check_args(xe, args, &bind_ops);
2883 	if (err)
2884 		return err;
2885 
2886 	if (args->exec_queue_id) {
2887 		q = xe_exec_queue_lookup(xef, args->exec_queue_id);
2888 		if (XE_IOCTL_DBG(xe, !q)) {
2889 			err = -ENOENT;
2890 			goto free_objs;
2891 		}
2892 
2893 		if (XE_IOCTL_DBG(xe, !(q->flags & EXEC_QUEUE_FLAG_VM))) {
2894 			err = -EINVAL;
2895 			goto put_exec_queue;
2896 		}
2897 	}
2898 
2899 	vm = xe_vm_lookup(xef, args->vm_id);
2900 	if (XE_IOCTL_DBG(xe, !vm)) {
2901 		err = -EINVAL;
2902 		goto put_exec_queue;
2903 	}
2904 
2905 	err = down_write_killable(&vm->lock);
2906 	if (err)
2907 		goto put_vm;
2908 
2909 	if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
2910 		err = -ENOENT;
2911 		goto release_vm_lock;
2912 	}
2913 
2914 	for (i = 0; i < args->num_binds; ++i) {
2915 		u64 range = bind_ops[i].range;
2916 		u64 addr = bind_ops[i].addr;
2917 
2918 		if (XE_IOCTL_DBG(xe, range > vm->size) ||
2919 		    XE_IOCTL_DBG(xe, addr > vm->size - range)) {
2920 			err = -EINVAL;
2921 			goto release_vm_lock;
2922 		}
2923 	}
2924 
2925 	if (args->num_binds) {
2926 		bos = kvcalloc(args->num_binds, sizeof(*bos),
2927 			       GFP_KERNEL | __GFP_ACCOUNT);
2928 		if (!bos) {
2929 			err = -ENOMEM;
2930 			goto release_vm_lock;
2931 		}
2932 
2933 		ops = kvcalloc(args->num_binds, sizeof(*ops),
2934 			       GFP_KERNEL | __GFP_ACCOUNT);
2935 		if (!ops) {
2936 			err = -ENOMEM;
2937 			goto release_vm_lock;
2938 		}
2939 	}
2940 
2941 	for (i = 0; i < args->num_binds; ++i) {
2942 		struct drm_gem_object *gem_obj;
2943 		u64 range = bind_ops[i].range;
2944 		u64 addr = bind_ops[i].addr;
2945 		u32 obj = bind_ops[i].obj;
2946 		u64 obj_offset = bind_ops[i].obj_offset;
2947 		u16 pat_index = bind_ops[i].pat_index;
2948 		u16 coh_mode;
2949 
2950 		if (!obj)
2951 			continue;
2952 
2953 		gem_obj = drm_gem_object_lookup(file, obj);
2954 		if (XE_IOCTL_DBG(xe, !gem_obj)) {
2955 			err = -ENOENT;
2956 			goto put_obj;
2957 		}
2958 		bos[i] = gem_to_xe_bo(gem_obj);
2959 
2960 		if (XE_IOCTL_DBG(xe, range > bos[i]->size) ||
2961 		    XE_IOCTL_DBG(xe, obj_offset >
2962 				 bos[i]->size - range)) {
2963 			err = -EINVAL;
2964 			goto put_obj;
2965 		}
2966 
2967 		if (bos[i]->flags & XE_BO_FLAG_INTERNAL_64K) {
2968 			if (XE_IOCTL_DBG(xe, obj_offset &
2969 					 XE_64K_PAGE_MASK) ||
2970 			    XE_IOCTL_DBG(xe, addr & XE_64K_PAGE_MASK) ||
2971 			    XE_IOCTL_DBG(xe, range & XE_64K_PAGE_MASK)) {
2972 				err = -EINVAL;
2973 				goto put_obj;
2974 			}
2975 		}
2976 
2977 		coh_mode = xe_pat_index_get_coh_mode(xe, pat_index);
2978 		if (bos[i]->cpu_caching) {
2979 			if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE &&
2980 					 bos[i]->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB)) {
2981 				err = -EINVAL;
2982 				goto put_obj;
2983 			}
2984 		} else if (XE_IOCTL_DBG(xe, coh_mode == XE_COH_NONE)) {
2985 			/*
2986 			 * Imported dma-buf from a different device should
2987 			 * require 1way or 2way coherency since we don't know
2988 			 * how it was mapped on the CPU. Just assume is it
2989 			 * potentially cached on CPU side.
2990 			 */
2991 			err = -EINVAL;
2992 			goto put_obj;
2993 		}
2994 	}
2995 
2996 	if (args->num_syncs) {
2997 		syncs = kcalloc(args->num_syncs, sizeof(*syncs), GFP_KERNEL);
2998 		if (!syncs) {
2999 			err = -ENOMEM;
3000 			goto put_obj;
3001 		}
3002 	}
3003 
3004 	syncs_user = u64_to_user_ptr(args->syncs);
3005 	for (num_syncs = 0; num_syncs < args->num_syncs; num_syncs++) {
3006 		err = xe_sync_entry_parse(xe, xef, &syncs[num_syncs],
3007 					  &syncs_user[num_syncs],
3008 					  (xe_vm_in_lr_mode(vm) ?
3009 					   SYNC_PARSE_FLAG_LR_MODE : 0) |
3010 					  (!args->num_binds ?
3011 					   SYNC_PARSE_FLAG_DISALLOW_USER_FENCE : 0));
3012 		if (err)
3013 			goto free_syncs;
3014 
3015 		if (xe_sync_is_ufence(&syncs[num_syncs]))
3016 			num_ufence++;
3017 	}
3018 
3019 	if (XE_IOCTL_DBG(xe, num_ufence > 1)) {
3020 		err = -EINVAL;
3021 		goto free_syncs;
3022 	}
3023 
3024 	if (!args->num_binds) {
3025 		err = -ENODATA;
3026 		goto free_syncs;
3027 	}
3028 
3029 	for (i = 0; i < args->num_binds; ++i) {
3030 		u64 range = bind_ops[i].range;
3031 		u64 addr = bind_ops[i].addr;
3032 		u32 op = bind_ops[i].op;
3033 		u32 flags = bind_ops[i].flags;
3034 		u64 obj_offset = bind_ops[i].obj_offset;
3035 		u32 prefetch_region = bind_ops[i].prefetch_mem_region_instance;
3036 		u16 pat_index = bind_ops[i].pat_index;
3037 
3038 		ops[i] = vm_bind_ioctl_ops_create(vm, bos[i], obj_offset,
3039 						  addr, range, op, flags,
3040 						  prefetch_region, pat_index);
3041 		if (IS_ERR(ops[i])) {
3042 			err = PTR_ERR(ops[i]);
3043 			ops[i] = NULL;
3044 			goto unwind_ops;
3045 		}
3046 
3047 		err = vm_bind_ioctl_ops_parse(vm, q, ops[i], syncs, num_syncs,
3048 					      &ops_list,
3049 					      i == args->num_binds - 1);
3050 		if (err)
3051 			goto unwind_ops;
3052 	}
3053 
3054 	/* Nothing to do */
3055 	if (list_empty(&ops_list)) {
3056 		err = -ENODATA;
3057 		goto unwind_ops;
3058 	}
3059 
3060 	xe_vm_get(vm);
3061 	if (q)
3062 		xe_exec_queue_get(q);
3063 
3064 	err = vm_bind_ioctl_ops_execute(vm, &ops_list);
3065 
3066 	up_write(&vm->lock);
3067 
3068 	if (q)
3069 		xe_exec_queue_put(q);
3070 	xe_vm_put(vm);
3071 
3072 	for (i = 0; bos && i < args->num_binds; ++i)
3073 		xe_bo_put(bos[i]);
3074 
3075 	kvfree(bos);
3076 	kvfree(ops);
3077 	if (args->num_binds > 1)
3078 		kvfree(bind_ops);
3079 
3080 	return err;
3081 
3082 unwind_ops:
3083 	vm_bind_ioctl_ops_unwind(vm, ops, args->num_binds);
3084 free_syncs:
3085 	if (err == -ENODATA)
3086 		err = vm_bind_ioctl_signal_fences(vm, q, syncs, num_syncs);
3087 	while (num_syncs--)
3088 		xe_sync_entry_cleanup(&syncs[num_syncs]);
3089 
3090 	kfree(syncs);
3091 put_obj:
3092 	for (i = 0; i < args->num_binds; ++i)
3093 		xe_bo_put(bos[i]);
3094 release_vm_lock:
3095 	up_write(&vm->lock);
3096 put_vm:
3097 	xe_vm_put(vm);
3098 put_exec_queue:
3099 	if (q)
3100 		xe_exec_queue_put(q);
3101 free_objs:
3102 	kvfree(bos);
3103 	kvfree(ops);
3104 	if (args->num_binds > 1)
3105 		kvfree(bind_ops);
3106 	return err;
3107 }
3108 
3109 /**
3110  * xe_vm_lock() - Lock the vm's dma_resv object
3111  * @vm: The struct xe_vm whose lock is to be locked
3112  * @intr: Whether to perform any wait interruptible
3113  *
3114  * Return: 0 on success, -EINTR if @intr is true and the wait for a
3115  * contended lock was interrupted. If @intr is false, the function
3116  * always returns 0.
3117  */
3118 int xe_vm_lock(struct xe_vm *vm, bool intr)
3119 {
3120 	if (intr)
3121 		return dma_resv_lock_interruptible(xe_vm_resv(vm), NULL);
3122 
3123 	return dma_resv_lock(xe_vm_resv(vm), NULL);
3124 }
3125 
3126 /**
3127  * xe_vm_unlock() - Unlock the vm's dma_resv object
3128  * @vm: The struct xe_vm whose lock is to be released.
3129  *
3130  * Unlock a buffer object lock that was locked by xe_vm_lock().
3131  */
3132 void xe_vm_unlock(struct xe_vm *vm)
3133 {
3134 	dma_resv_unlock(xe_vm_resv(vm));
3135 }
3136 
3137 /**
3138  * xe_vm_invalidate_vma - invalidate GPU mappings for VMA without a lock
3139  * @vma: VMA to invalidate
3140  *
3141  * Walks a list of page tables leaves which it memset the entries owned by this
3142  * VMA to zero, invalidates the TLBs, and block until TLBs invalidation is
3143  * complete.
3144  *
3145  * Returns 0 for success, negative error code otherwise.
3146  */
3147 int xe_vm_invalidate_vma(struct xe_vma *vma)
3148 {
3149 	struct xe_device *xe = xe_vma_vm(vma)->xe;
3150 	struct xe_tile *tile;
3151 	u32 tile_needs_invalidate = 0;
3152 	int seqno[XE_MAX_TILES_PER_DEVICE];
3153 	u8 id;
3154 	int ret;
3155 
3156 	xe_assert(xe, !xe_vma_is_null(vma));
3157 	trace_xe_vma_invalidate(vma);
3158 
3159 	vm_dbg(&xe_vma_vm(vma)->xe->drm,
3160 	       "INVALIDATE: addr=0x%016llx, range=0x%016llx",
3161 		xe_vma_start(vma), xe_vma_size(vma));
3162 
3163 	/* Check that we don't race with page-table updates */
3164 	if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
3165 		if (xe_vma_is_userptr(vma)) {
3166 			WARN_ON_ONCE(!mmu_interval_check_retry
3167 				     (&to_userptr_vma(vma)->userptr.notifier,
3168 				      to_userptr_vma(vma)->userptr.notifier_seq));
3169 			WARN_ON_ONCE(!dma_resv_test_signaled(xe_vm_resv(xe_vma_vm(vma)),
3170 							     DMA_RESV_USAGE_BOOKKEEP));
3171 
3172 		} else {
3173 			xe_bo_assert_held(xe_vma_bo(vma));
3174 		}
3175 	}
3176 
3177 	for_each_tile(tile, xe, id) {
3178 		if (xe_pt_zap_ptes(tile, vma)) {
3179 			tile_needs_invalidate |= BIT(id);
3180 			xe_device_wmb(xe);
3181 			/*
3182 			 * FIXME: We potentially need to invalidate multiple
3183 			 * GTs within the tile
3184 			 */
3185 			seqno[id] = xe_gt_tlb_invalidation_vma(tile->primary_gt, NULL, vma);
3186 			if (seqno[id] < 0)
3187 				return seqno[id];
3188 		}
3189 	}
3190 
3191 	for_each_tile(tile, xe, id) {
3192 		if (tile_needs_invalidate & BIT(id)) {
3193 			ret = xe_gt_tlb_invalidation_wait(tile->primary_gt, seqno[id]);
3194 			if (ret < 0)
3195 				return ret;
3196 		}
3197 	}
3198 
3199 	vma->tile_invalidated = vma->tile_mask;
3200 
3201 	return 0;
3202 }
3203 
3204 int xe_analyze_vm(struct drm_printer *p, struct xe_vm *vm, int gt_id)
3205 {
3206 	struct drm_gpuva *gpuva;
3207 	bool is_vram;
3208 	uint64_t addr;
3209 
3210 	if (!down_read_trylock(&vm->lock)) {
3211 		drm_printf(p, " Failed to acquire VM lock to dump capture");
3212 		return 0;
3213 	}
3214 	if (vm->pt_root[gt_id]) {
3215 		addr = xe_bo_addr(vm->pt_root[gt_id]->bo, 0, XE_PAGE_SIZE);
3216 		is_vram = xe_bo_is_vram(vm->pt_root[gt_id]->bo);
3217 		drm_printf(p, " VM root: A:0x%llx %s\n", addr,
3218 			   is_vram ? "VRAM" : "SYS");
3219 	}
3220 
3221 	drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) {
3222 		struct xe_vma *vma = gpuva_to_vma(gpuva);
3223 		bool is_userptr = xe_vma_is_userptr(vma);
3224 		bool is_null = xe_vma_is_null(vma);
3225 
3226 		if (is_null) {
3227 			addr = 0;
3228 		} else if (is_userptr) {
3229 			struct sg_table *sg = to_userptr_vma(vma)->userptr.sg;
3230 			struct xe_res_cursor cur;
3231 
3232 			if (sg) {
3233 				xe_res_first_sg(sg, 0, XE_PAGE_SIZE, &cur);
3234 				addr = xe_res_dma(&cur);
3235 			} else {
3236 				addr = 0;
3237 			}
3238 		} else {
3239 			addr = __xe_bo_addr(xe_vma_bo(vma), 0, XE_PAGE_SIZE);
3240 			is_vram = xe_bo_is_vram(xe_vma_bo(vma));
3241 		}
3242 		drm_printf(p, " [%016llx-%016llx] S:0x%016llx A:%016llx %s\n",
3243 			   xe_vma_start(vma), xe_vma_end(vma) - 1,
3244 			   xe_vma_size(vma),
3245 			   addr, is_null ? "NULL" : is_userptr ? "USR" :
3246 			   is_vram ? "VRAM" : "SYS");
3247 	}
3248 	up_read(&vm->lock);
3249 
3250 	return 0;
3251 }
3252 
3253 struct xe_vm_snapshot {
3254 	unsigned long num_snaps;
3255 	struct {
3256 		u64 ofs, bo_ofs;
3257 		unsigned long len;
3258 		struct xe_bo *bo;
3259 		void *data;
3260 		struct mm_struct *mm;
3261 	} snap[];
3262 };
3263 
3264 struct xe_vm_snapshot *xe_vm_snapshot_capture(struct xe_vm *vm)
3265 {
3266 	unsigned long num_snaps = 0, i;
3267 	struct xe_vm_snapshot *snap = NULL;
3268 	struct drm_gpuva *gpuva;
3269 
3270 	if (!vm)
3271 		return NULL;
3272 
3273 	mutex_lock(&vm->snap_mutex);
3274 	drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) {
3275 		if (gpuva->flags & XE_VMA_DUMPABLE)
3276 			num_snaps++;
3277 	}
3278 
3279 	if (num_snaps)
3280 		snap = kvzalloc(offsetof(struct xe_vm_snapshot, snap[num_snaps]), GFP_NOWAIT);
3281 	if (!snap) {
3282 		snap = num_snaps ? ERR_PTR(-ENOMEM) : ERR_PTR(-ENODEV);
3283 		goto out_unlock;
3284 	}
3285 
3286 	snap->num_snaps = num_snaps;
3287 	i = 0;
3288 	drm_gpuvm_for_each_va(gpuva, &vm->gpuvm) {
3289 		struct xe_vma *vma = gpuva_to_vma(gpuva);
3290 		struct xe_bo *bo = vma->gpuva.gem.obj ?
3291 			gem_to_xe_bo(vma->gpuva.gem.obj) : NULL;
3292 
3293 		if (!(gpuva->flags & XE_VMA_DUMPABLE))
3294 			continue;
3295 
3296 		snap->snap[i].ofs = xe_vma_start(vma);
3297 		snap->snap[i].len = xe_vma_size(vma);
3298 		if (bo) {
3299 			snap->snap[i].bo = xe_bo_get(bo);
3300 			snap->snap[i].bo_ofs = xe_vma_bo_offset(vma);
3301 		} else if (xe_vma_is_userptr(vma)) {
3302 			struct mm_struct *mm =
3303 				to_userptr_vma(vma)->userptr.notifier.mm;
3304 
3305 			if (mmget_not_zero(mm))
3306 				snap->snap[i].mm = mm;
3307 			else
3308 				snap->snap[i].data = ERR_PTR(-EFAULT);
3309 
3310 			snap->snap[i].bo_ofs = xe_vma_userptr(vma);
3311 		} else {
3312 			snap->snap[i].data = ERR_PTR(-ENOENT);
3313 		}
3314 		i++;
3315 	}
3316 
3317 out_unlock:
3318 	mutex_unlock(&vm->snap_mutex);
3319 	return snap;
3320 }
3321 
3322 void xe_vm_snapshot_capture_delayed(struct xe_vm_snapshot *snap)
3323 {
3324 	if (IS_ERR_OR_NULL(snap))
3325 		return;
3326 
3327 	for (int i = 0; i < snap->num_snaps; i++) {
3328 		struct xe_bo *bo = snap->snap[i].bo;
3329 		struct iosys_map src;
3330 		int err;
3331 
3332 		if (IS_ERR(snap->snap[i].data))
3333 			continue;
3334 
3335 		snap->snap[i].data = kvmalloc(snap->snap[i].len, GFP_USER);
3336 		if (!snap->snap[i].data) {
3337 			snap->snap[i].data = ERR_PTR(-ENOMEM);
3338 			goto cleanup_bo;
3339 		}
3340 
3341 		if (bo) {
3342 			dma_resv_lock(bo->ttm.base.resv, NULL);
3343 			err = ttm_bo_vmap(&bo->ttm, &src);
3344 			if (!err) {
3345 				xe_map_memcpy_from(xe_bo_device(bo),
3346 						   snap->snap[i].data,
3347 						   &src, snap->snap[i].bo_ofs,
3348 						   snap->snap[i].len);
3349 				ttm_bo_vunmap(&bo->ttm, &src);
3350 			}
3351 			dma_resv_unlock(bo->ttm.base.resv);
3352 		} else {
3353 			void __user *userptr = (void __user *)(size_t)snap->snap[i].bo_ofs;
3354 
3355 			kthread_use_mm(snap->snap[i].mm);
3356 			if (!copy_from_user(snap->snap[i].data, userptr, snap->snap[i].len))
3357 				err = 0;
3358 			else
3359 				err = -EFAULT;
3360 			kthread_unuse_mm(snap->snap[i].mm);
3361 
3362 			mmput(snap->snap[i].mm);
3363 			snap->snap[i].mm = NULL;
3364 		}
3365 
3366 		if (err) {
3367 			kvfree(snap->snap[i].data);
3368 			snap->snap[i].data = ERR_PTR(err);
3369 		}
3370 
3371 cleanup_bo:
3372 		xe_bo_put(bo);
3373 		snap->snap[i].bo = NULL;
3374 	}
3375 }
3376 
3377 void xe_vm_snapshot_print(struct xe_vm_snapshot *snap, struct drm_printer *p)
3378 {
3379 	unsigned long i, j;
3380 
3381 	if (IS_ERR_OR_NULL(snap)) {
3382 		drm_printf(p, "[0].error: %li\n", PTR_ERR(snap));
3383 		return;
3384 	}
3385 
3386 	for (i = 0; i < snap->num_snaps; i++) {
3387 		drm_printf(p, "[%llx].length: 0x%lx\n", snap->snap[i].ofs, snap->snap[i].len);
3388 
3389 		if (IS_ERR(snap->snap[i].data)) {
3390 			drm_printf(p, "[%llx].error: %li\n", snap->snap[i].ofs,
3391 				   PTR_ERR(snap->snap[i].data));
3392 			continue;
3393 		}
3394 
3395 		drm_printf(p, "[%llx].data: ", snap->snap[i].ofs);
3396 
3397 		for (j = 0; j < snap->snap[i].len; j += sizeof(u32)) {
3398 			u32 *val = snap->snap[i].data + j;
3399 			char dumped[ASCII85_BUFSZ];
3400 
3401 			drm_puts(p, ascii85_encode(*val, dumped));
3402 		}
3403 
3404 		drm_puts(p, "\n");
3405 	}
3406 }
3407 
3408 void xe_vm_snapshot_free(struct xe_vm_snapshot *snap)
3409 {
3410 	unsigned long i;
3411 
3412 	if (IS_ERR_OR_NULL(snap))
3413 		return;
3414 
3415 	for (i = 0; i < snap->num_snaps; i++) {
3416 		if (!IS_ERR(snap->snap[i].data))
3417 			kvfree(snap->snap[i].data);
3418 		xe_bo_put(snap->snap[i].bo);
3419 		if (snap->snap[i].mm)
3420 			mmput(snap->snap[i].mm);
3421 	}
3422 	kvfree(snap);
3423 }
3424