1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2023 Intel Corporation 4 */ 5 6 #include <linux/fault-inject.h> 7 8 #include <drm/drm_managed.h> 9 10 #include "xe_device.h" 11 #include "xe_ggtt.h" 12 #include "xe_gt.h" 13 #include "xe_migrate.h" 14 #include "xe_pcode.h" 15 #include "xe_sa.h" 16 #include "xe_svm.h" 17 #include "xe_tile.h" 18 #include "xe_tile_sysfs.h" 19 #include "xe_ttm_vram_mgr.h" 20 #include "xe_wa.h" 21 22 /** 23 * DOC: Multi-tile Design 24 * 25 * Different vendors use the term "tile" a bit differently, but in the Intel 26 * world, a 'tile' is pretty close to what most people would think of as being 27 * a complete GPU. When multiple GPUs are placed behind a single PCI device, 28 * that's what is referred to as a "multi-tile device." In such cases, pretty 29 * much all hardware is replicated per-tile, although certain responsibilities 30 * like PCI communication, reporting of interrupts to the OS, etc. are handled 31 * solely by the "root tile." A multi-tile platform takes care of tying the 32 * tiles together in a way such that interrupt notifications from remote tiles 33 * are forwarded to the root tile, the per-tile vram is combined into a single 34 * address space, etc. 35 * 36 * In contrast, a "GT" (which officially stands for "Graphics Technology") is 37 * the subset of a GPU/tile that is responsible for implementing graphics 38 * and/or media operations. The GT is where a lot of the driver implementation 39 * happens since it's where the hardware engines, the execution units, and the 40 * GuC all reside. 41 * 42 * Historically most Intel devices were single-tile devices that contained a 43 * single GT. PVC is an example of an Intel platform built on a multi-tile 44 * design (i.e., multiple GPUs behind a single PCI device); each PVC tile only 45 * has a single GT. In contrast, platforms like MTL that have separate chips 46 * for render and media IP are still only a single logical GPU, but the 47 * graphics and media IP blocks are each exposed as a separate GT within that 48 * single GPU. This is important from a software perspective because multi-GT 49 * platforms like MTL only replicate a subset of the GPU hardware and behave 50 * differently than multi-tile platforms like PVC where nearly everything is 51 * replicated. 52 * 53 * Per-tile functionality (shared by all GTs within the tile): 54 * - Complete 4MB MMIO space (containing SGunit/SoC registers, GT 55 * registers, display registers, etc.) 56 * - Global GTT 57 * - VRAM (if discrete) 58 * - Interrupt flows 59 * - Migration context 60 * - kernel batchbuffer pool 61 * - Primary GT 62 * - Media GT (if media version >= 13) 63 * 64 * Per-GT functionality: 65 * - GuC 66 * - Hardware engines 67 * - Programmable hardware units (subslices, EUs) 68 * - GSI subset of registers (multiple copies of these registers reside 69 * within the complete MMIO space provided by the tile, but at different 70 * offsets --- 0 for render, 0x380000 for media) 71 * - Multicast register steering 72 * - TLBs to cache page table translations 73 * - Reset capability 74 * - Low-level power management (e.g., C6) 75 * - Clock frequency 76 * - MOCS and PAT programming 77 */ 78 79 /** 80 * xe_tile_alloc - Perform per-tile memory allocation 81 * @tile: Tile to perform allocations for 82 * 83 * Allocates various per-tile data structures using DRM-managed allocations. 84 * Does not touch the hardware. 85 * 86 * Returns -ENOMEM if allocations fail, otherwise 0. 87 */ 88 static int xe_tile_alloc(struct xe_tile *tile) 89 { 90 struct drm_device *drm = &tile_to_xe(tile)->drm; 91 92 tile->mem.ggtt = drmm_kzalloc(drm, sizeof(*tile->mem.ggtt), 93 GFP_KERNEL); 94 if (!tile->mem.ggtt) 95 return -ENOMEM; 96 tile->mem.ggtt->tile = tile; 97 98 return 0; 99 } 100 101 /** 102 * xe_tile_init_early - Initialize the tile and primary GT 103 * @tile: Tile to initialize 104 * @xe: Parent Xe device 105 * @id: Tile ID 106 * 107 * Initializes per-tile resources that don't require any interactions with the 108 * hardware or any knowledge about the Graphics/Media IP version. 109 * 110 * Returns: 0 on success, negative error code on error. 111 */ 112 int xe_tile_init_early(struct xe_tile *tile, struct xe_device *xe, u8 id) 113 { 114 int err; 115 116 tile->xe = xe; 117 tile->id = id; 118 119 err = xe_tile_alloc(tile); 120 if (err) 121 return err; 122 123 tile->primary_gt = xe_gt_alloc(tile); 124 if (IS_ERR(tile->primary_gt)) 125 return PTR_ERR(tile->primary_gt); 126 127 xe_pcode_init(tile); 128 129 return 0; 130 } 131 ALLOW_ERROR_INJECTION(xe_tile_init_early, ERRNO); /* See xe_pci_probe() */ 132 133 static int tile_ttm_mgr_init(struct xe_tile *tile) 134 { 135 struct xe_device *xe = tile_to_xe(tile); 136 int err; 137 138 if (tile->mem.vram.usable_size) { 139 err = xe_ttm_vram_mgr_init(tile, &tile->mem.vram.ttm); 140 if (err) 141 return err; 142 xe->info.mem_region_mask |= BIT(tile->id) << 1; 143 } 144 145 return 0; 146 } 147 148 /** 149 * xe_tile_init_noalloc - Init tile up to the point where allocations can happen. 150 * @tile: The tile to initialize. 151 * 152 * This function prepares the tile to allow memory allocations to VRAM, but is 153 * not allowed to allocate memory itself. This state is useful for display 154 * readout, because the inherited display framebuffer will otherwise be 155 * overwritten as it is usually put at the start of VRAM. 156 * 157 * Note that since this is tile initialization, it should not perform any 158 * GT-specific operations, and thus does not need to hold GT forcewake. 159 * 160 * Returns: 0 on success, negative error code on error. 161 */ 162 int xe_tile_init_noalloc(struct xe_tile *tile) 163 { 164 struct xe_device *xe = tile_to_xe(tile); 165 int err; 166 167 err = tile_ttm_mgr_init(tile); 168 if (err) 169 return err; 170 171 xe_wa_apply_tile_workarounds(tile); 172 173 if (xe->info.has_usm && IS_DGFX(xe)) 174 xe_devm_add(tile, &tile->mem.vram); 175 176 return xe_tile_sysfs_init(tile); 177 } 178 179 int xe_tile_init(struct xe_tile *tile) 180 { 181 tile->mem.kernel_bb_pool = xe_sa_bo_manager_init(tile, SZ_1M, 16); 182 if (IS_ERR(tile->mem.kernel_bb_pool)) 183 return PTR_ERR(tile->mem.kernel_bb_pool); 184 185 return 0; 186 } 187 void xe_tile_migrate_wait(struct xe_tile *tile) 188 { 189 xe_migrate_wait(tile->migrate); 190 } 191