xref: /linux/drivers/gpu/drm/xe/xe_sync.c (revision 68c402fe5c5e5aa9a04c8bba9d99feb08a68afa7)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_sync.h"
7 
8 #include <linux/dma-fence-array.h>
9 #include <linux/kthread.h>
10 #include <linux/sched/mm.h>
11 #include <linux/uaccess.h>
12 
13 #include <drm/drm_print.h>
14 #include <drm/drm_syncobj.h>
15 #include <drm/xe_drm.h>
16 
17 #include "xe_device_types.h"
18 #include "xe_exec_queue.h"
19 #include "xe_macros.h"
20 #include "xe_sched_job_types.h"
21 
22 struct xe_user_fence {
23 	struct xe_device *xe;
24 	struct kref refcount;
25 	struct dma_fence_cb cb;
26 	struct work_struct worker;
27 	struct mm_struct *mm;
28 	u64 __user *addr;
29 	u64 value;
30 	int signalled;
31 };
32 
33 static void user_fence_destroy(struct kref *kref)
34 {
35 	struct xe_user_fence *ufence = container_of(kref, struct xe_user_fence,
36 						 refcount);
37 
38 	mmdrop(ufence->mm);
39 	kfree(ufence);
40 }
41 
42 static void user_fence_get(struct xe_user_fence *ufence)
43 {
44 	kref_get(&ufence->refcount);
45 }
46 
47 static void user_fence_put(struct xe_user_fence *ufence)
48 {
49 	kref_put(&ufence->refcount, user_fence_destroy);
50 }
51 
52 static struct xe_user_fence *user_fence_create(struct xe_device *xe, u64 addr,
53 					       u64 value)
54 {
55 	struct xe_user_fence *ufence;
56 
57 	ufence = kmalloc(sizeof(*ufence), GFP_KERNEL);
58 	if (!ufence)
59 		return NULL;
60 
61 	ufence->xe = xe;
62 	kref_init(&ufence->refcount);
63 	ufence->addr = u64_to_user_ptr(addr);
64 	ufence->value = value;
65 	ufence->mm = current->mm;
66 	mmgrab(ufence->mm);
67 
68 	return ufence;
69 }
70 
71 static void user_fence_worker(struct work_struct *w)
72 {
73 	struct xe_user_fence *ufence = container_of(w, struct xe_user_fence, worker);
74 
75 	if (mmget_not_zero(ufence->mm)) {
76 		kthread_use_mm(ufence->mm);
77 		if (copy_to_user(ufence->addr, &ufence->value, sizeof(ufence->value)))
78 			XE_WARN_ON("Copy to user failed");
79 		kthread_unuse_mm(ufence->mm);
80 		mmput(ufence->mm);
81 	}
82 
83 	wake_up_all(&ufence->xe->ufence_wq);
84 	WRITE_ONCE(ufence->signalled, 1);
85 	user_fence_put(ufence);
86 }
87 
88 static void kick_ufence(struct xe_user_fence *ufence, struct dma_fence *fence)
89 {
90 	INIT_WORK(&ufence->worker, user_fence_worker);
91 	queue_work(ufence->xe->ordered_wq, &ufence->worker);
92 	dma_fence_put(fence);
93 }
94 
95 static void user_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
96 {
97 	struct xe_user_fence *ufence = container_of(cb, struct xe_user_fence, cb);
98 
99 	kick_ufence(ufence, fence);
100 }
101 
102 int xe_sync_entry_parse(struct xe_device *xe, struct xe_file *xef,
103 			struct xe_sync_entry *sync,
104 			struct drm_xe_sync __user *sync_user,
105 			unsigned int flags)
106 {
107 	struct drm_xe_sync sync_in;
108 	int err;
109 	bool exec = flags & SYNC_PARSE_FLAG_EXEC;
110 	bool in_lr_mode = flags & SYNC_PARSE_FLAG_LR_MODE;
111 	bool disallow_user_fence = flags & SYNC_PARSE_FLAG_DISALLOW_USER_FENCE;
112 	bool signal;
113 
114 	if (copy_from_user(&sync_in, sync_user, sizeof(*sync_user)))
115 		return -EFAULT;
116 
117 	if (XE_IOCTL_DBG(xe, sync_in.flags & ~DRM_XE_SYNC_FLAG_SIGNAL) ||
118 	    XE_IOCTL_DBG(xe, sync_in.reserved[0] || sync_in.reserved[1]))
119 		return -EINVAL;
120 
121 	signal = sync_in.flags & DRM_XE_SYNC_FLAG_SIGNAL;
122 	switch (sync_in.type) {
123 	case DRM_XE_SYNC_TYPE_SYNCOBJ:
124 		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
125 			return -EOPNOTSUPP;
126 
127 		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
128 			return -EINVAL;
129 
130 		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
131 		if (XE_IOCTL_DBG(xe, !sync->syncobj))
132 			return -ENOENT;
133 
134 		if (!signal) {
135 			sync->fence = drm_syncobj_fence_get(sync->syncobj);
136 			if (XE_IOCTL_DBG(xe, !sync->fence))
137 				return -EINVAL;
138 		}
139 		break;
140 
141 	case DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ:
142 		if (XE_IOCTL_DBG(xe, in_lr_mode && signal))
143 			return -EOPNOTSUPP;
144 
145 		if (XE_IOCTL_DBG(xe, upper_32_bits(sync_in.addr)))
146 			return -EINVAL;
147 
148 		if (XE_IOCTL_DBG(xe, sync_in.timeline_value == 0))
149 			return -EINVAL;
150 
151 		sync->syncobj = drm_syncobj_find(xef->drm, sync_in.handle);
152 		if (XE_IOCTL_DBG(xe, !sync->syncobj))
153 			return -ENOENT;
154 
155 		if (signal) {
156 			sync->chain_fence = dma_fence_chain_alloc();
157 			if (!sync->chain_fence)
158 				return -ENOMEM;
159 		} else {
160 			sync->fence = drm_syncobj_fence_get(sync->syncobj);
161 			if (XE_IOCTL_DBG(xe, !sync->fence))
162 				return -EINVAL;
163 
164 			err = dma_fence_chain_find_seqno(&sync->fence,
165 							 sync_in.timeline_value);
166 			if (err)
167 				return err;
168 		}
169 		break;
170 
171 	case DRM_XE_SYNC_TYPE_USER_FENCE:
172 		if (XE_IOCTL_DBG(xe, disallow_user_fence))
173 			return -EOPNOTSUPP;
174 
175 		if (XE_IOCTL_DBG(xe, !signal))
176 			return -EOPNOTSUPP;
177 
178 		if (XE_IOCTL_DBG(xe, sync_in.addr & 0x7))
179 			return -EINVAL;
180 
181 		if (exec) {
182 			sync->addr = sync_in.addr;
183 		} else {
184 			sync->ufence = user_fence_create(xe, sync_in.addr,
185 							 sync_in.timeline_value);
186 			if (XE_IOCTL_DBG(xe, !sync->ufence))
187 				return -ENOMEM;
188 		}
189 
190 		break;
191 
192 	default:
193 		return -EINVAL;
194 	}
195 
196 	sync->type = sync_in.type;
197 	sync->flags = sync_in.flags;
198 	sync->timeline_value = sync_in.timeline_value;
199 
200 	return 0;
201 }
202 
203 int xe_sync_entry_wait(struct xe_sync_entry *sync)
204 {
205 	if (sync->fence)
206 		dma_fence_wait(sync->fence, true);
207 
208 	return 0;
209 }
210 
211 int xe_sync_entry_add_deps(struct xe_sync_entry *sync, struct xe_sched_job *job)
212 {
213 	int err;
214 
215 	if (sync->fence) {
216 		err = drm_sched_job_add_dependency(&job->drm,
217 						   dma_fence_get(sync->fence));
218 		if (err) {
219 			dma_fence_put(sync->fence);
220 			return err;
221 		}
222 	}
223 
224 	return 0;
225 }
226 
227 void xe_sync_entry_signal(struct xe_sync_entry *sync, struct dma_fence *fence)
228 {
229 	if (!(sync->flags & DRM_XE_SYNC_FLAG_SIGNAL))
230 		return;
231 
232 	if (sync->chain_fence) {
233 		drm_syncobj_add_point(sync->syncobj, sync->chain_fence,
234 				      fence, sync->timeline_value);
235 		/*
236 		 * The chain's ownership is transferred to the
237 		 * timeline.
238 		 */
239 		sync->chain_fence = NULL;
240 	} else if (sync->syncobj) {
241 		drm_syncobj_replace_fence(sync->syncobj, fence);
242 	} else if (sync->ufence) {
243 		int err;
244 
245 		dma_fence_get(fence);
246 		user_fence_get(sync->ufence);
247 		err = dma_fence_add_callback(fence, &sync->ufence->cb,
248 					     user_fence_cb);
249 		if (err == -ENOENT) {
250 			kick_ufence(sync->ufence, fence);
251 		} else if (err) {
252 			XE_WARN_ON("failed to add user fence");
253 			user_fence_put(sync->ufence);
254 			dma_fence_put(fence);
255 		}
256 	}
257 }
258 
259 void xe_sync_entry_cleanup(struct xe_sync_entry *sync)
260 {
261 	if (sync->syncobj)
262 		drm_syncobj_put(sync->syncobj);
263 	if (sync->fence)
264 		dma_fence_put(sync->fence);
265 	if (sync->chain_fence)
266 		dma_fence_put(&sync->chain_fence->base);
267 	if (sync->ufence)
268 		user_fence_put(sync->ufence);
269 }
270 
271 /**
272  * xe_sync_in_fence_get() - Get a fence from syncs, exec queue, and VM
273  * @sync: input syncs
274  * @num_sync: number of syncs
275  * @q: exec queue
276  * @vm: VM
277  *
278  * Get a fence from syncs, exec queue, and VM. If syncs contain in-fences create
279  * and return a composite fence of all in-fences + last fence. If no in-fences
280  * return last fence on  input exec queue. Caller must drop reference to
281  * returned fence.
282  *
283  * Return: fence on success, ERR_PTR(-ENOMEM) on failure
284  */
285 struct dma_fence *
286 xe_sync_in_fence_get(struct xe_sync_entry *sync, int num_sync,
287 		     struct xe_exec_queue *q, struct xe_vm *vm)
288 {
289 	struct dma_fence **fences = NULL;
290 	struct dma_fence_array *cf = NULL;
291 	struct dma_fence *fence;
292 	int i, num_in_fence = 0, current_fence = 0;
293 
294 	lockdep_assert_held(&vm->lock);
295 
296 	/* Count in-fences */
297 	for (i = 0; i < num_sync; ++i) {
298 		if (sync[i].fence) {
299 			++num_in_fence;
300 			fence = sync[i].fence;
301 		}
302 	}
303 
304 	/* Easy case... */
305 	if (!num_in_fence) {
306 		fence = xe_exec_queue_last_fence_get(q, vm);
307 		return fence;
308 	}
309 
310 	/* Create composite fence */
311 	fences = kmalloc_array(num_in_fence + 1, sizeof(*fences), GFP_KERNEL);
312 	if (!fences)
313 		return ERR_PTR(-ENOMEM);
314 	for (i = 0; i < num_sync; ++i) {
315 		if (sync[i].fence) {
316 			dma_fence_get(sync[i].fence);
317 			fences[current_fence++] = sync[i].fence;
318 		}
319 	}
320 	fences[current_fence++] = xe_exec_queue_last_fence_get(q, vm);
321 	cf = dma_fence_array_create(num_in_fence, fences,
322 				    vm->composite_fence_ctx,
323 				    vm->composite_fence_seqno++,
324 				    false);
325 	if (!cf) {
326 		--vm->composite_fence_seqno;
327 		goto err_out;
328 	}
329 
330 	return &cf->base;
331 
332 err_out:
333 	while (current_fence)
334 		dma_fence_put(fences[--current_fence]);
335 	kfree(fences);
336 	kfree(cf);
337 
338 	return ERR_PTR(-ENOMEM);
339 }
340 
341 /**
342  * xe_sync_ufence_get() - Get user fence from sync
343  * @sync: input sync
344  *
345  * Get a user fence reference from sync.
346  *
347  * Return: xe_user_fence pointer with reference
348  */
349 struct xe_user_fence *xe_sync_ufence_get(struct xe_sync_entry *sync)
350 {
351 	user_fence_get(sync->ufence);
352 
353 	return sync->ufence;
354 }
355 
356 /**
357  * xe_sync_ufence_put() - Put user fence reference
358  * @ufence: user fence reference
359  *
360  */
361 void xe_sync_ufence_put(struct xe_user_fence *ufence)
362 {
363 	user_fence_put(ufence);
364 }
365 
366 /**
367  * xe_sync_ufence_get_status() - Get user fence status
368  * @ufence: user fence
369  *
370  * Return: 1 if signalled, 0 not signalled, <0 on error
371  */
372 int xe_sync_ufence_get_status(struct xe_user_fence *ufence)
373 {
374 	return READ_ONCE(ufence->signalled);
375 }
376