xref: /linux/drivers/gpu/drm/xe/xe_sched_job.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5 
6 #include "xe_sched_job.h"
7 
8 #include <linux/dma-fence-array.h>
9 #include <linux/slab.h>
10 
11 #include "xe_device.h"
12 #include "xe_exec_queue.h"
13 #include "xe_gt.h"
14 #include "xe_hw_engine_types.h"
15 #include "xe_hw_fence.h"
16 #include "xe_lrc.h"
17 #include "xe_macros.h"
18 #include "xe_trace.h"
19 #include "xe_vm.h"
20 
21 static struct kmem_cache *xe_sched_job_slab;
22 static struct kmem_cache *xe_sched_job_parallel_slab;
23 
24 int __init xe_sched_job_module_init(void)
25 {
26 	xe_sched_job_slab =
27 		kmem_cache_create("xe_sched_job",
28 				  sizeof(struct xe_sched_job) +
29 				  sizeof(u64), 0,
30 				  SLAB_HWCACHE_ALIGN, NULL);
31 	if (!xe_sched_job_slab)
32 		return -ENOMEM;
33 
34 	xe_sched_job_parallel_slab =
35 		kmem_cache_create("xe_sched_job_parallel",
36 				  sizeof(struct xe_sched_job) +
37 				  sizeof(u64) *
38 				  XE_HW_ENGINE_MAX_INSTANCE, 0,
39 				  SLAB_HWCACHE_ALIGN, NULL);
40 	if (!xe_sched_job_parallel_slab) {
41 		kmem_cache_destroy(xe_sched_job_slab);
42 		return -ENOMEM;
43 	}
44 
45 	return 0;
46 }
47 
48 void xe_sched_job_module_exit(void)
49 {
50 	kmem_cache_destroy(xe_sched_job_slab);
51 	kmem_cache_destroy(xe_sched_job_parallel_slab);
52 }
53 
54 static struct xe_sched_job *job_alloc(bool parallel)
55 {
56 	return kmem_cache_zalloc(parallel ? xe_sched_job_parallel_slab :
57 				 xe_sched_job_slab, GFP_KERNEL);
58 }
59 
60 bool xe_sched_job_is_migration(struct xe_exec_queue *q)
61 {
62 	return q->vm && (q->vm->flags & XE_VM_FLAG_MIGRATION);
63 }
64 
65 static void job_free(struct xe_sched_job *job)
66 {
67 	struct xe_exec_queue *q = job->q;
68 	bool is_migration = xe_sched_job_is_migration(q);
69 
70 	kmem_cache_free(xe_exec_queue_is_parallel(job->q) || is_migration ?
71 			xe_sched_job_parallel_slab : xe_sched_job_slab, job);
72 }
73 
74 static struct xe_device *job_to_xe(struct xe_sched_job *job)
75 {
76 	return gt_to_xe(job->q->gt);
77 }
78 
79 struct xe_sched_job *xe_sched_job_create(struct xe_exec_queue *q,
80 					 u64 *batch_addr)
81 {
82 	struct xe_sched_job *job;
83 	struct dma_fence **fences;
84 	bool is_migration = xe_sched_job_is_migration(q);
85 	int err;
86 	int i, j;
87 	u32 width;
88 
89 	/* only a kernel context can submit a vm-less job */
90 	XE_WARN_ON(!q->vm && !(q->flags & EXEC_QUEUE_FLAG_KERNEL));
91 
92 	/* Migration and kernel engines have their own locking */
93 	if (!(q->flags & (EXEC_QUEUE_FLAG_KERNEL | EXEC_QUEUE_FLAG_VM))) {
94 		lockdep_assert_held(&q->vm->lock);
95 		if (!xe_vm_in_lr_mode(q->vm))
96 			xe_vm_assert_held(q->vm);
97 	}
98 
99 	job = job_alloc(xe_exec_queue_is_parallel(q) || is_migration);
100 	if (!job)
101 		return ERR_PTR(-ENOMEM);
102 
103 	job->q = q;
104 	kref_init(&job->refcount);
105 	xe_exec_queue_get(job->q);
106 
107 	err = drm_sched_job_init(&job->drm, q->entity, 1, NULL);
108 	if (err)
109 		goto err_free;
110 
111 	if (!xe_exec_queue_is_parallel(q)) {
112 		job->fence = xe_lrc_create_seqno_fence(q->lrc);
113 		if (IS_ERR(job->fence)) {
114 			err = PTR_ERR(job->fence);
115 			goto err_sched_job;
116 		}
117 	} else {
118 		struct dma_fence_array *cf;
119 
120 		fences = kmalloc_array(q->width, sizeof(*fences), GFP_KERNEL);
121 		if (!fences) {
122 			err = -ENOMEM;
123 			goto err_sched_job;
124 		}
125 
126 		for (j = 0; j < q->width; ++j) {
127 			fences[j] = xe_lrc_create_seqno_fence(q->lrc + j);
128 			if (IS_ERR(fences[j])) {
129 				err = PTR_ERR(fences[j]);
130 				goto err_fences;
131 			}
132 		}
133 
134 		cf = dma_fence_array_create(q->width, fences,
135 					    q->parallel.composite_fence_ctx,
136 					    q->parallel.composite_fence_seqno++,
137 					    false);
138 		if (!cf) {
139 			--q->parallel.composite_fence_seqno;
140 			err = -ENOMEM;
141 			goto err_fences;
142 		}
143 
144 		/* Sanity check */
145 		for (j = 0; j < q->width; ++j)
146 			xe_assert(job_to_xe(job), cf->base.seqno == fences[j]->seqno);
147 
148 		job->fence = &cf->base;
149 	}
150 
151 	width = q->width;
152 	if (is_migration)
153 		width = 2;
154 
155 	for (i = 0; i < width; ++i)
156 		job->batch_addr[i] = batch_addr[i];
157 
158 	/* All other jobs require a VM to be open which has a ref */
159 	if (unlikely(q->flags & EXEC_QUEUE_FLAG_KERNEL))
160 		xe_device_mem_access_get(job_to_xe(job));
161 	xe_device_assert_mem_access(job_to_xe(job));
162 
163 	trace_xe_sched_job_create(job);
164 	return job;
165 
166 err_fences:
167 	for (j = j - 1; j >= 0; --j) {
168 		--q->lrc[j].fence_ctx.next_seqno;
169 		dma_fence_put(fences[j]);
170 	}
171 	kfree(fences);
172 err_sched_job:
173 	drm_sched_job_cleanup(&job->drm);
174 err_free:
175 	xe_exec_queue_put(q);
176 	job_free(job);
177 	return ERR_PTR(err);
178 }
179 
180 /**
181  * xe_sched_job_destroy - Destroy XE schedule job
182  * @ref: reference to XE schedule job
183  *
184  * Called when ref == 0, drop a reference to job's xe_engine + fence, cleanup
185  * base DRM schedule job, and free memory for XE schedule job.
186  */
187 void xe_sched_job_destroy(struct kref *ref)
188 {
189 	struct xe_sched_job *job =
190 		container_of(ref, struct xe_sched_job, refcount);
191 
192 	if (unlikely(job->q->flags & EXEC_QUEUE_FLAG_KERNEL))
193 		xe_device_mem_access_put(job_to_xe(job));
194 	xe_exec_queue_put(job->q);
195 	dma_fence_put(job->fence);
196 	drm_sched_job_cleanup(&job->drm);
197 	job_free(job);
198 }
199 
200 void xe_sched_job_set_error(struct xe_sched_job *job, int error)
201 {
202 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &job->fence->flags))
203 		return;
204 
205 	dma_fence_set_error(job->fence, error);
206 
207 	if (dma_fence_is_array(job->fence)) {
208 		struct dma_fence_array *array =
209 			to_dma_fence_array(job->fence);
210 		struct dma_fence **child = array->fences;
211 		unsigned int nchild = array->num_fences;
212 
213 		do {
214 			struct dma_fence *current_fence = *child++;
215 
216 			if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
217 				     &current_fence->flags))
218 				continue;
219 			dma_fence_set_error(current_fence, error);
220 		} while (--nchild);
221 	}
222 
223 	trace_xe_sched_job_set_error(job);
224 
225 	dma_fence_enable_sw_signaling(job->fence);
226 	xe_hw_fence_irq_run(job->q->fence_irq);
227 }
228 
229 bool xe_sched_job_started(struct xe_sched_job *job)
230 {
231 	struct xe_lrc *lrc = job->q->lrc;
232 
233 	return !__dma_fence_is_later(xe_sched_job_seqno(job),
234 				     xe_lrc_start_seqno(lrc),
235 				     job->fence->ops);
236 }
237 
238 bool xe_sched_job_completed(struct xe_sched_job *job)
239 {
240 	struct xe_lrc *lrc = job->q->lrc;
241 
242 	/*
243 	 * Can safely check just LRC[0] seqno as that is last seqno written when
244 	 * parallel handshake is done.
245 	 */
246 
247 	return !__dma_fence_is_later(xe_sched_job_seqno(job), xe_lrc_seqno(lrc),
248 				     job->fence->ops);
249 }
250 
251 void xe_sched_job_arm(struct xe_sched_job *job)
252 {
253 	struct xe_exec_queue *q = job->q;
254 	struct xe_vm *vm = q->vm;
255 
256 	if (vm && !xe_sched_job_is_migration(q) && !xe_vm_in_lr_mode(vm) &&
257 	    (vm->batch_invalidate_tlb || vm->tlb_flush_seqno != q->tlb_flush_seqno)) {
258 		xe_vm_assert_held(vm);
259 		q->tlb_flush_seqno = vm->tlb_flush_seqno;
260 		job->ring_ops_flush_tlb = true;
261 	}
262 
263 	drm_sched_job_arm(&job->drm);
264 }
265 
266 void xe_sched_job_push(struct xe_sched_job *job)
267 {
268 	xe_sched_job_get(job);
269 	trace_xe_sched_job_exec(job);
270 	drm_sched_entity_push_job(&job->drm);
271 	xe_sched_job_put(job);
272 }
273 
274 /**
275  * xe_sched_job_last_fence_add_dep - Add last fence dependency to job
276  * @job:job to add the last fence dependency to
277  * @vm: virtual memory job belongs to
278  *
279  * Returns:
280  * 0 on success, or an error on failing to expand the array.
281  */
282 int xe_sched_job_last_fence_add_dep(struct xe_sched_job *job, struct xe_vm *vm)
283 {
284 	struct dma_fence *fence;
285 
286 	fence = xe_exec_queue_last_fence_get(job->q, vm);
287 
288 	return drm_sched_job_add_dependency(&job->drm, fence);
289 }
290 
291 struct xe_sched_job_snapshot *
292 xe_sched_job_snapshot_capture(struct xe_sched_job *job)
293 {
294 	struct xe_exec_queue *q = job->q;
295 	struct xe_device *xe = q->gt->tile->xe;
296 	struct xe_sched_job_snapshot *snapshot;
297 	size_t len = sizeof(*snapshot) + (sizeof(u64) * q->width);
298 	u16 i;
299 
300 	snapshot = kzalloc(len, GFP_ATOMIC);
301 	if (!snapshot)
302 		return NULL;
303 
304 	snapshot->batch_addr_len = q->width;
305 	for (i = 0; i < q->width; i++)
306 		snapshot->batch_addr[i] = xe_device_uncanonicalize_addr(xe, job->batch_addr[i]);
307 
308 	return snapshot;
309 }
310 
311 void xe_sched_job_snapshot_free(struct xe_sched_job_snapshot *snapshot)
312 {
313 	kfree(snapshot);
314 }
315 
316 void
317 xe_sched_job_snapshot_print(struct xe_sched_job_snapshot *snapshot,
318 			    struct drm_printer *p)
319 {
320 	u16 i;
321 
322 	if (!snapshot)
323 		return;
324 
325 	for (i = 0; i < snapshot->batch_addr_len; i++)
326 		drm_printf(p, "batch_addr[%u]: 0x%016llx\n", i, snapshot->batch_addr[i]);
327 }
328